
2020-02-02

1

EITA25 Computer Security (Datasäkerhet)

Unix (and Linux) Security
PAUL STANKOVSKI WAGNER, EIT, 2020-02-03

2EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Identification and Authentication

• Access Control

• Other security related things:

– Devices, mounting file systems

– Search path

– TCP wrappers

– Race conditions

• NOTE: filenames may differ between OS/distributions

Unix (and Linux) Security

3EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Principals (users) have unique UIDs (user IDs)

– System cares about ID, not name

– Several users can have different names but same ID.

Then they are treated as the same.

• Superuser (root) has UID = 0

– There is only one superuser

• Stored in /etc/passwd

• Processes are subjects

Users

4EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Real user ID – The ID of the logged in principal

– Can only be changed by root (effective user ID = 0) → this is how login works

• Effective user ID – The ID used for access control

– Can be changed by root (effective user ID = 0) to anything

» Used by processes with effective user ID = 0 when they temporarily access files as a less

privileged user

– Can be changed by anyone (any effective user ID) to real user ID

» This process has to be able to get back to effective user ID = 0

• Same rules apply to group ID

UIDs for Processes

2020-02-02

2

5EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Can not associate multiple user IDs with one file

– We have to put users in groups if we want several users to have access to the file

• Every user belongs to a primary group.

• Older Unix: Can only be in one group at a time

• Newer Unix and Linux: Can be in several groups at the same time

– New files are associated with current group ID of user

– Process group ID is the current group ID of user running the process

• Change group (newgrp)

• Primary group given in /etc/passwd

• Secondary groups in /etc/group

– A group can not belong to a group

Groups

6EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Salt is always used

• Hash function and salt will depend on OS

• We look at three variants

Authentication

Hash function
Password Hash’

Password file

=

Hash
Salt

Yes/No

7EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Design dates back to 1976

• Based on DES

• Password up to 8 characters, salt 12 bits

– Take least significant 7 bits → 56 bit key

– Encrypt zero string 25 times with DES

– If bit i = 1 in salt, swap bits i and i + 24 in E-box output

– Output 12 + 64 = 76 bits. Encode to 13 characters.

• Problems: Short passwords, short salts, constant cost (and fast function)

Traditional crypt (Password Hashing)

8EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• MD5 crypt

– Developed for FreeBSD to avoid export restrictions and allow longer passwords

(up to 264 bits)

– Algorithm uses 1000 iterations → slow

– Salt 12-48 bits

– Output: 1 ’salt’ $ 128 bit hash output

• Problem: Constant cost

Other Alternatives – MD5 crypt

2020-02-02

3

9EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Based on block cipher Blowfish

• Password up to 72 characters, 128-bit random salt

• Internal loop with variable cost

• Output $2a$cost$salt + 192 bit hash output

• Default in OpenBSD

• All problems solved

Other Alternatives – bcrypt

Bullshit!

10EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Evals/sec based on 3.2 GHz processor, approximate values given

Comparison

DES crypt MD5 crypt bcrypt

Password length max 8 chars virtually any max 72 chars

Salt length 12 bits 12-48 bits 128 bits

Variable cost No No Yes

Evals/sec 1,000,000 10,000 450

11EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• ”All problems solved” is kind of bullshit

• Some devices can be really fast at a low cost

– With enough money they are really really really fast

– Several instances can be implemented in parallel

• Can no longer compare

– CPU – ”needed” when verifying password

– GPU, FPGA, ASIC – used by attackers

• Make this more fair by making hashing more difficult (costly)
for GPUs, FPGAs and ASICs

• Example: scrypt – requires memory as well as CPU cycles

Final words on our password discussion

GPU

FPGA/ASIC

12EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Store user (principal) information

Format:

username:password:UID:GID:ID string:home directory:login shell

• File is world readable

• Example:

The File /etc/passwd

alice:x:1004:100:Alice:/home/alice:/bin/bash

bob:x:1005:100:Bob:/home/bob:/bin/bash

2020-02-02

4

13EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Save passwords in a non-world readable file

– Username

– (Hashed) password

– Date of last change (days since Jan 1, 1970)

– Minimum days between password changes (0 means anytime)

– Maximum days of validity

– Days in advance to warn user about change

– Days account is active after password expired

– Date of account disabling (days since Jan 1, 1970)

– Last entry is reserved

The File /etc/shadow

alice:9SuDfhDz3112U:13920:30:180:7:2:14609:

bob:IBDXWbkBirMfU:13920:0:99999:7:::

14EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Discretionary access control – owner of file can change permissions

• Three categories: User (owner), Group, Other (world)

• Three access rights: Read, Write, Execute

Access Control

Other info from ls -l

Link counter, owner, group, size, date of last change, name

alice@home:>ls –l

totalt 8

drwxr-xr-x 2 alice Students 48 2020-02-03 06:18 directory

-rw-rw-r-- 1 alice Students 22 2020-02-03 06:19 file1

-rw-r--r-- 1 alice Students 9 2020-02-03 06:19 file2

15EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

1. Owner

2. Group

3. Other

Consequence:

if owner = r and other = rw then owner has no write permission

Order of Checking

alice@home:>ls –l

totalt 0

-r--rw-rw- 1 alice Students 0 2020-02-03 06:20 file

alice@home:>echo hello > file

bash: file: Åtkomst nekas

bob@home:>ls –l

totalt 0

-r--rw-rw- 1 alice Students 0 2020-02-03 06:20 file

bob@home:>echo hello > file

bob@home:>_

16EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Read = list the directory

• Write = Delete, rename and insert files in directory

• Execute = access directory and access files in directory

Permissions For Directories

alice@home:>ls –la

totalt 0

dr-xr-xr-x 2 alice Students 72 2020-02-03 06:21 .

drwxr-xr-x 8 alice Students 384 2020-02-03 06:21 ..

-rw-rw-rw- 1 alice Students 0 2020-02-03 06:21 file

alice@home:>rm file

rm: kan inte ta bort ”file”: Åtkomst nekas

alice@home:>ls –la

totalt 0

drwxr-xr-x 2 alice Students 72 2020-02-03 06:21 .

drwxr-xr-x 8 alice Students 384 2020-02-03 06:21 ..

-rw-r--r-- 1 root root 0 2020-02-03 06:21 file

alice@home:>rm –f file

alice@home:>_

2020-02-02

5

17EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Used to change permissions on files

• Mnemonics can be used: user, group, other, all, read write

execute.

• Examples:

chmod u+rw file

chmod u=r file

chmod a+rwx file

chmod u-w,g+r,o+r file

chmod a-rwx,u+r file1 file2

Change Permissions – chmod

18EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Alternatively, numbers can be used.

• See each group of permissions as one number.

– Read = 4

– Write = 2 Sum gives permission

– Execute = 1

• Example:

chmod 754 file

Change Permissions – chmod

Read permission for others

Read and execute for group

Read, write and execute for user

alice@home:>chmod 754 file; ls –l file

-rwxr-xr-- 1 alice Students 46 2020-02-03 06:22 file

19EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Some actions require elevated permission

– Example: Changing password requires root privileges

• Solved by an additional flag

• Allows caller to run program as owner

– Effective ID of process is ID of program owner (usually root)

– Users can get general root privileges without root password

• A disadvantage is that this right cannot be given to specified users

– given to all or group

Controlled Invocation

20EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Effective ID of process is ID of program owner (usually root)

– Here is the situation when RUID ≠ EUID (real user ID vs. effective user ID)

• Used to temporarily change access rights

• x is replaced by s

Setuid and Setgid (programs)

alice@home:>ls –l

totalt 16

-rwxr-sr-x 1 root root 6378 2020-01-12 15:16 prog_setgid

-rwsr-xr-x 1 root root 6378 2020-01-12 14:58 prog_setuid

alice@home:>./prog_setgid &

[1] 12189

alice@home:>./prog_setuid &

[2] 12190

alice@home:>ps –C prog_setgid,prog_setuid –o pid,ruser,euser,rgroup,egroup,args

PID RUSER EUSER RGROUP EGROUP COMMAND

12189 alice alice Students root ./prog_setgid

12190 alice root Students Students ./prog_setuid

2020-02-02

6

21EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Setuid on directory usually ignored

• Setgid on directory causes new files to get the same group as directory

Setuid and Setgid (directories)

Allows users to share files more easily

Without setgid, file would get the group which is current group ID

for user (set by newgrp or defaults to primary group).

alice@home:>ls –l

totalt 0

drwxr-s--- 2 alice root 48 2020-01-12 15:37 directory

alice@home:>cd directory; touch file; ls -l

totalt 0

-rw-r----- 1 alice root 0 2020-01-12 15:38 file

22EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• /usr/bin/passwd change password

• /usr/bin/at batch job submission

• /bin/su change UID program

Important SUID Programs

setuid and setgid:

chmod u+s file or chmod 4XXX file

chmod g+s file or chmod 2XXX file

alice@home:>ls –l /usr/bin/passwd /bin/su /usr/bin/at

-rwsr-xr-x 1 root root 31668 2019-04-23 08:48 /bin/su

-rwsr-xr-x 1 root trusted 43940 2019-05-02 09:47 /usr/bin/at

-rwsr-xr-x 1 root shadow 72836 2019-05-02 10:50 /usr/bin/passwd

23EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Historically used to keep program code in memory when exiting program

– still the case in e.g., NetBSD

• Now used to only let owner delete file

– directory owner and superuser can also delete it

• Typical example: the directory /tmp has sticky bit set

Sticky Bit

bob@home:>ls –la

totalt 0

drwxrwxr-t 2 alice Students 72 2020-02-03 06:52 .

drwxr-x--- 3 alice Students 80 2020-02-03 06:50 ..

-rw-rw-r-- 1 alice Students 0 2020-02-03 06:52 file

bob@home:>rm file

rm: kan inte ta bort ”file”: Operationen inte tillåten

bob@home:>ls –la

totalt 0

drwxrwxr-x 2 alice Students 72 2020-02-03 06:52 .

drwxr-x--- 3 alice Students 80 2020-02-03 06:50 ..

-rw-rw-r-- 1 alice Students 0 2020-02-03 06:52 file

bob@home:>rm file

bob@home:>_

24EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• chown is used to change the owner of a file (or directory)

• chgrp is used to change the group of a file (or directory)

– chown can set group also

• Possible problem: A user creates a suid program and owner gets changed to root

• Common solution:

– Only root can change owner and setuid and setgid bits are removed when owner is changed

– Anyone can change group to a group they are member of, but setuid and setgid bits are

removed when group is changed

• Other solutions possible

– Let only root use chown, but preserve setuid and setgid bits

– Let any user change owner on his/her own files, but remove setuid and setgid bits

Change Owner and Group (chown and chgrp)

2020-02-02

7

25EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

Unix Security on the Man-Machine Scale

specific

complex

focus on users

generic

simple

focus on data

man

oriented

machine

oriented

• Lack of ”flexibility” puts it more to the machine end of the scale

• Limited to read, write and execute

– E.g., ”shutdown computer” does not exist but may exist in more user-

focused environments

– Can still be implemented though, using the basic access rights

Windows

26EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Shutdown can be done with
– /sbin/shutdown

– /sbin/halt

– /sbin/reboot

– /sbin/poweroff

• Only root can use these

• Problem: Need to allow some users to shutdown

• Solution (one of several):
– Add group ”shutdown” in /etc/group

– Add users to this group
shutdown:x:1500:alice,bob

– Use chown or chgrp to change group of /sbin/shutdown
chown root:shutdown /sbin/shutdown or chgrp shutdown /sbin/shutdown

– Allow group shutdown to execute and set SUID bit since only root is allowed to execute this
command

chmod u+s,g+x /sbin/shutdown

Example: Shutdown in Unix/Linux

27EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Stores file information

• Directory contains filename and inode number

• inode contains e.g.:

– Access rights

– Owner (UID)

– Group (GID)

– Time of latest access, modification and change

– Size of file

– Pointers to block of data

The inode

Note that file1 and file4

point to the same inode

alice@home:>ls –i

133143 file1 133144 file2 133145 file3 133143 file4

28EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

alice@home:>stat file

File: ”file”

Size: 102 Blocks: 8 IO Block: 4096 normal fil

Device: 802h/2050d Inode: 133060 Links: 1

Access: (0644/-rw-r—-r--) Uid: (1004/ alice) Gid: (1000/Students)

Access: 2020-02-03 06:55:50.000000000 +0100

Modify: 2020-02-03 06:12:00.000000000 +0100

Change: 2020-02-03 06:55:59.000000000 +0100

alice@home:>_

• Some information about an inode can be found using stat

inode Information (stat)

Size in bytes Inode number

Last access

Last

modification of

fileLast

modification of

inode

Access rights

given to this file

2020-02-02

8

29EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Control default permissions, stored in /etc/profile

• Override in ~/.profile or in prompt

• umask tells which permissions to exclude by default

• Access = full access AND NOT(umask)

– Full access for programs and directories: 0777

– Full access for files: 0666

Default Access Rights (umask)

alice@home:>umask 0027; mkdir directory; touch file; ls -l

totalt 0

drwxr-x--- 2 alice Students 48 2020-02-03 06:54 directory

-rw-r----- 1 alice Students 0 2020-02-03 06:54 file

30EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Devices are treated as files

• Example: If you can read/write physical memory all access control is overruled!

• /dev/mem is the physical memory

• /dev/kmem is the virtual memory

Protection of devices

31EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Files can be copied in two ways

• cp src dest

– Creates a new inode and new physical file owned by user running cp

• ln target linkname

– Creates filename and pointer to target’s inode. No new file is created.

– When one filename is deleted the other is still there and the file is not deleted

– rm subtracts the number of links in the inode by 1. If it becomes zero the corresponding

data block is freed

• ln –s target linkname

– Creates a symbolic link, not a real link

– When opening symbolic link for reading or writing link is automatically dereferenced

– If file is deleted, the symbolic link remains, pointing to nothing

Copy files

32EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Assume process ”proc” with effective user ID = 0 writes to files in /tmp directory

– Process creates, e.g., /tmp/file and writes temporary data to this file

(Proc. opens file for writing and new file is created if it does not exist)

• What if malicious user creates /tmp/file as symbolic link to /etc/passwd?

– The file /etc/passwd will be overwritten since ”proc” has write access to this file

– System is damaged

• Race condition: Who creates the file first?

Race conditions

2020-02-02

9

33EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Create files with unpredictable filenames in /tmp

– Still, attacker can try thousands of

filenames and will succeed with

probability > 0

• Use O_EXCL flag when opening file

– Then open fails if file already exists

Solutions To This Race Condition

Function mkstemp()

will do this

 Check if file was opened through a symbolic link

◦ Can be done with lstat()

 All of the above should be used

34EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• Mounting a file system =
making the particular file system accessible at a specific place in the Linux directory tree

• Different physical devices put under a single root “/”

• The mounted file system may contain unwelcome programs

• Options:

– nosuid – turn off SUID and SGID bits

– noexec – no binaries can be executed

– nodev – no devices can be accessed

– ro – read-only

• UIDs and GIDs are local identifiers that may be interpreted differently on different Unix
systems

– Use global/universally unique identifiers

Mounting File Systems

35EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• When executing programs, system needs to know where to look for them →

– PATH tells system where to look

• PATH=.:$HOME/bin:/usr/bin:/bin

– Programs can be located in current directory + 3 bin directories

– Trojan horse

• Can be a bad idea to put your current directory in the search path

(especially for programs executed by root)

– At least, put . last

– PATH=$HOME/bin:/usr/bin:/bin:.

• Alternatively, call program by its full name

Search Path

36EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• inetd is a super-server deamon (starts other servers)

• Config file inetd.conf maps port numbers to programs

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

• Put intermediate program with access control and logging

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

• The TCP wrapper (tcpd) will have process name (in.ftpd and in.telnetd) and thus know where to

go after security checks are done

• tcpd provides generic network services:

– Logging (through syslog)

– Access Control

– Host Name Verification (client host name spoofing protection)

TCP Wrapper

2020-02-02

10

37EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-03

• /etc/hosts.allow: (deamon, client) pair that is allowed access

• /etc/hosts.deny: (deamon, client) pair that is denied access

Example:

Network Access Control

file: /etc/hosts.allow

ALL : localhost

ALL : 192.168.1.2

sshd : ALL EXCEPT .somedomain.com

file: /etc/hosts.deny

ALL : ALL

Priority:

1. Check hosts.allow

2. Check hosts.deny

3. Allow access

Compare with allow/deny

in Windows!

