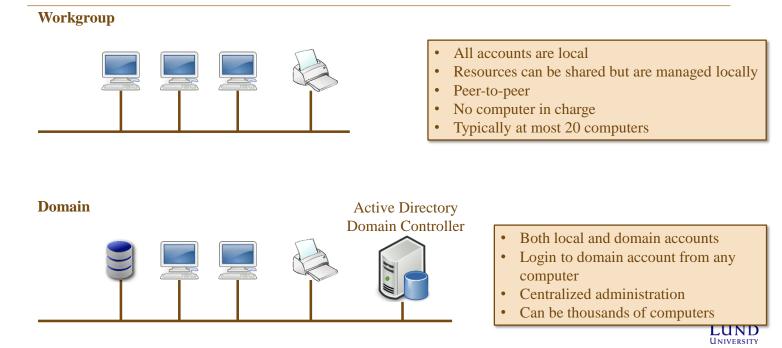


Windows Security

- Windows XP evolved from Windows 2000
- Windows 10, 8, 7 and Vista evolved from XP
- Similar security solution
 - Things have been added, but ideas are the same
- Standalone computers administered locally
- Domains used for centralized administration
 - Domain controller (DC) has information about users
 - » Acts as a trusted third party

Paul Stankovski Wagner

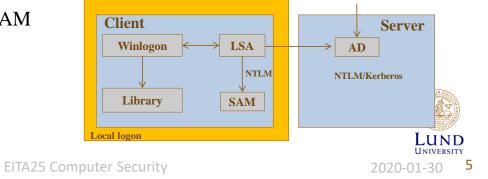

Design Motivation

- Security was designed to meet requirements for C2 rating in Orange Book
 - Secure logon users must be uniquely identified
 - Discretionary access control Owner determines access
 - Auditing Record security related events in a logfile
 - Object reuse protection Initialize all objects before giving access to users
 - Trusted path Functionality to detect spoofing attacks at authentication time (called SAS in Windows)
 - Trusted facility management Separate accounts for users and administrators
- Windows NT 3.5 SP3 was the first Windows version to earn C2 rating (1995)
 - Windows NT 4 SP6a earned C2 rating in 1999

Paul Stankovski Wagner

Networked Computers, Domains and Workgroups

Paul Stankovski Wagner


EITA25 Computer Security

2020-01-30 4

Windows Logon (somewhat simplified)

- Winlogon.exe handles logon and responds to the Secure Attention Sequence (SAS)
 - CTRL+ALT+DEL
- Winlogon uses libraries that authenticate the user
 - Can be libraries for passwords, smartcards, biometric data, etc.
- Local Security Authority (LSA) creates an access token
 - LSA is responsible for the local security policy (who can log in, password policies, privileges, what should be audited, etc.)
- Password hashes are stored in SAM
 - Security Accounts Manager

Paul Stankovski Wagner

Security Accounts Manager (SAM)

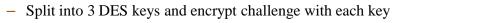
- Stores user account information
 - Username
 - Full name
 - Expiration date
 - Password dates (date of last change, expiry, when it can be changed next time, if it can be changed)
 - Logon hours and workstations (thrown out a certain time or continue)
 - Profile path and logon script name
 - Home directory
 - Groups
- Locked while machine is running

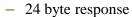
Paul Stankovski Wagner

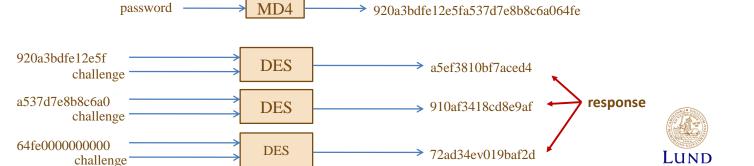
Local Accounts vs. Domain Accounts

• Local accounts

- NTLM used as authentication protocol
- Domain accounts
 - Kerberos V5 used as authentication protocol
 - »Mutual authentication
 - » This will be covered in detail later in the course
 - NTLM used in some cases
 - » Unilateral authentication


Paul Stankovski Wagner


NTLM Hash and Protocol


Can you find problems here?

NTLM hash

- Challenge response
- Server sends 8 byte random challenge
- Response calculated as:
 - MD4(password) gives 16 byte result (NTLM hash stored in SAM database)
 - Pad with 5 zero bytes \rightarrow 21 bytes

Paul Stankovski Wagner

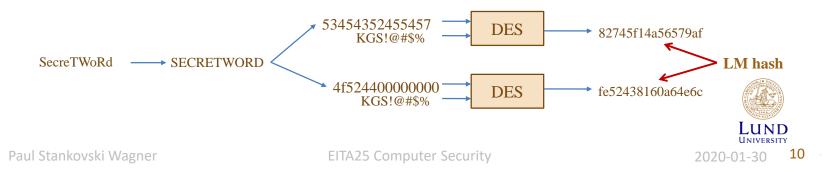
EITA25 Computer Security

8

2020-01-30

NTLM Hash, Problems

- Problem 1: MD4 is a very fast hash function
- **Problem 2:** No salt is used so time-memory tradeoff attacks (rainbow tables) can be used



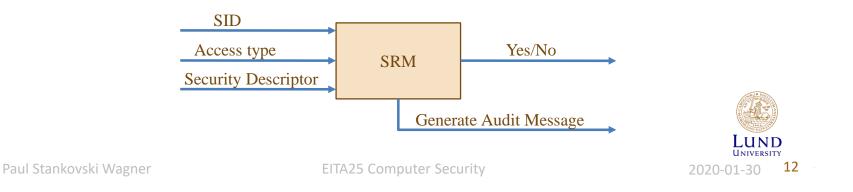
Paul Stankovski Wagner

LM Hash

Can you find problems here?

- If wanted, both NTLM and LM response are used
 - This was default before Windows Vista
- LM hash calculated as
 - Convert password to uppercase and pad to 14 bytes
 - Split into two parts of 7 byte each \rightarrow two DES keys
 - Encrypt "KGS!@#\$%" with the two keys to get 16 bytes LM hash stored in the SAM database
- LM response calculated same way as NTLM response

LM Hash, Problems


- Problem 1: DES is a fast block cipher
- Problem 2: No salt here either...
- **Problem 3:** Passwords up to 14 characters are never better than passwords of 7 characters
- Problem 4: No lowercase characters in the effective character set

Paul Stankovski Wagner

Access Control

- Security Reference Monitor (SRM) responsible for access control
- Three parameters are considered
 - Identity of subject (SID)
 - Type of access
 - Object security settings (Security Descriptor)

SID

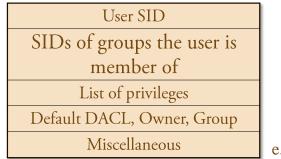
- SID = Security Identifier
- Unique for each user or group
- Format:

S-R-I-SA-SA-SA-N

- S: The letter S (just means that the string is a SID)
- R: revision number (1)
- I: Identifier authority (5 for user accounts)
- SA: subauthority (specifies domain or computer)
 - Can be up to 14 groups, but 3 is typical
- N: relative identifier, incremented for each new principal

Paul Stankovski Wagner

Known SIDs


- Generic groups and users
- **S-1-1-0** Everyone, a group that includes all users
- S-1-5-20 Network Service
- S-1-5-18 SYSTEM, local operating system
- S-1-5-SA-SA-SA-500 Administrator
- S-1-5-SA-SA-SA-501 Guest account (no password required)
- S-1-5-SA-SA-SA-512 Domain Admins (global group)

Paul Stankovski Wagner

Access Token

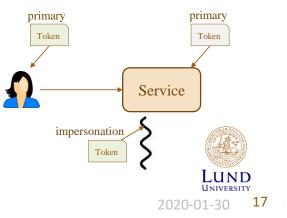
- After successful authentication LSA builds an access token
- Processes which run as the user has a copy of the token
- When a process interacts with a securable object, token determines authorization level

e.g., restricting SIDs

Paul Stankovski Wagner

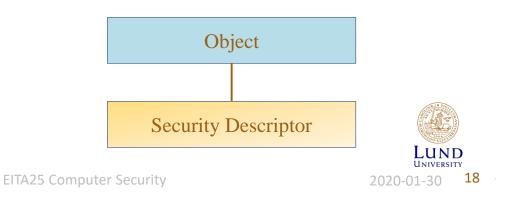
Privileges

- The right to perform system related operations
 - Shutting down
 - Change system time
 - Backup files
 - Generate audit
- Applies only to local computer. A user can have different privileges on different machines in a domain.
- Privileges can be assigned to both users and groups
- Access token is checked when user tries to perform privileged operation
- Differs from access rights
 - Access to resources and tasks, not objects
 - Stored with subject
 - Admin assigns privileges
- Stored in access token produced at logon

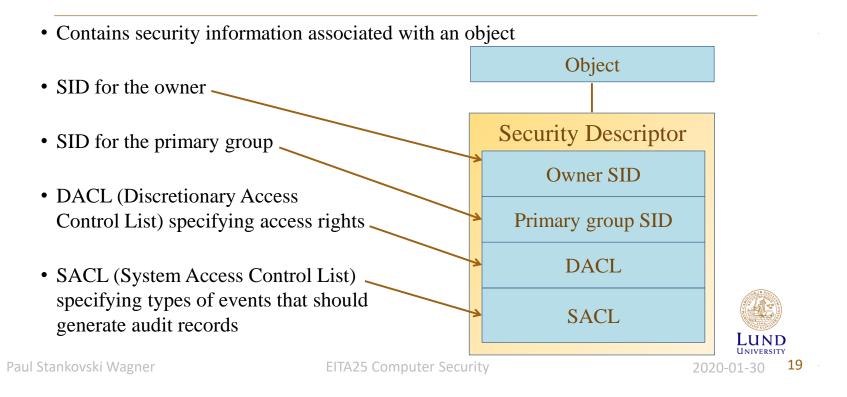


Paul Stankovski Wagner

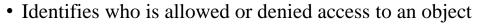
Two Kinds of Access Tokens


- Token is either a
 - primary access token or an
 - impersonation access token
- Primary access token access token of the user account associated with the process.
 - Every process has this
- Impersonation access token allows a thread to execute in a different security context than the process owner.
 - A thread may additionally have an impersonation access token
- **Example:** File server runs with high privileges and can access any files
 - Threads handle concurrent user requests
 - Thread gets token of user \rightarrow access based on user's token
- Ability to create access token is a privilege
 - SeImpersonatePrivilege

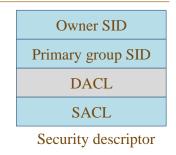
Paul Stankovski Wagner

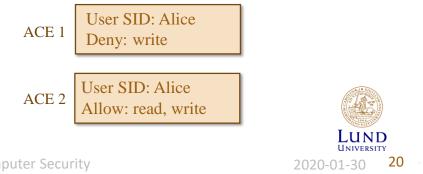

Objects

- All resources are objects
 - Files, folders, printers, registry keys, processes, threads, access tokens, etc..
- Containers can hold other objects, e.g., folders
- Non-containers can not hold other objects, e.g., files
- Securable object Any object that can be shared
- All securable objects can have a security descriptor
 - But it is not necessary



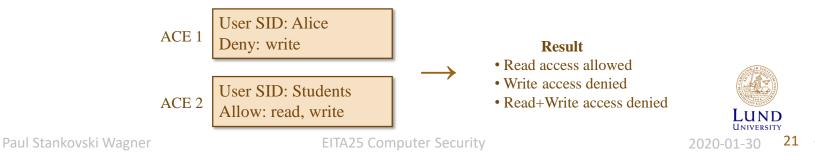
Paul Stankovski Wagner


Security Descriptor

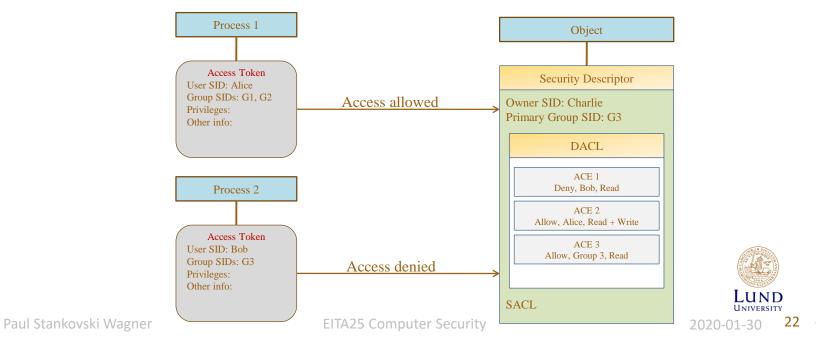


DACL

- If an object has no DACL, everyone has full control
- An empty DACL results in everyone is denied access
- A SID can be allowed or denied access.
- All "deny" entries are stored in the beginning of the DACL
- Contains a list of access control entries (ACEs)



Paul Stankovski Wagner


Searching the DACL

- Rule:
 - Go through list of ACEs until all access requests are allowed or any request is denied
 - Otherwise deny access
- Consequences
 - Deny has higher precedence than allow
 - If user SID has read only access and user is member of group which SID has read + write, then user has read + write access (Different from Unix/Linux)
- Example, Alice is member of group "Students"

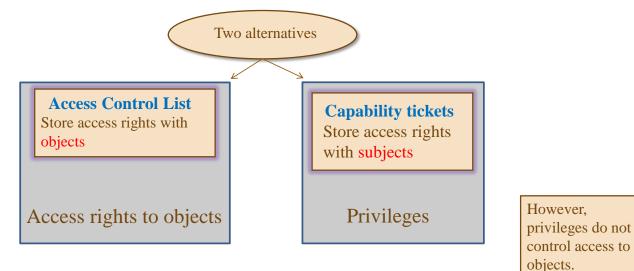
Example: Accessing Object

• Two processes (subjects) wants *read* access to an object

Access Control, Network Shares

- Users must go through two ACL's to access a file via a share
 - ACL on the share
 - ACL on the file itself
 - User's effective permission through a file share is determined by masking both sets of ACL's together.
- Example 1:
 - Client sets share permission to *read only* for everyone and file permission to *read+write* for everyone
 - Result: Users on client machine get read+write, network users get read
- Example 2:
 - Client sets share permission to *full* control for everyone and file permission to *read* for everyone
 - Result: Users on client machine get read access, network users get read access

Paul Stankovski Wagner


EITA25 Computer Security

26

2020-01-30

Access Control Matrix Implementation

- Recall the two variants
 - In Windows a combination is used

Paul Stankovski Wagner

EITA25 Computer Security

UNIVERSITY

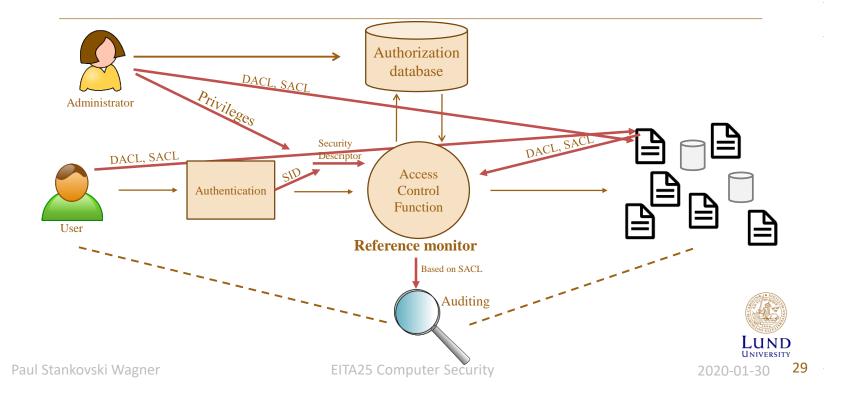
2020-01-30

27

SACL

- System Access Control List
- Controls which events should be audited
- Contains a set of ACEs that define
 - Who it applies to
 - What type of access should be logged
 - Which access result should be logged

ACE User SID: Everyone Failure: read, write


• Also holds mandatory label (more later)

Owner SID Primary group SID DACL SACL Security descriptor

Paul Stankovski Wagner

Compare with Context

The Registry

- Central database for Windows configuration data
- Just files on the hard disk
- Entries are called *keys* and *values*
- A registry *Hive* is a group of keys, subkeys, and values in the registry stored in a file
 - "Registreringsdatafil" in swedish
- Protecting the integrity of registry data is important
 - Example: The search path is set in registry, if an attacker can modify it, malicious software can be inserted/executed.
- Proprietary format: registry editor (Regedit.exe)
- Can be used by applications to store configurations

Paul Stankovski Wagner

The Registry

	5 root key	s (none is a hive)	
Not symbolic	HKEY_CLASSES_ROOT	Merge of HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES and HKEY_USERS\'SID'_Classes Contains file extension associations.	
	HKEY_CURRENT_USER	Symbolic link to key under HKEY_USERS that represents the user that is logged in	
	HKEY_LOCAL_MACHINE	Contains several hives that store information about the local computer	
	HKEY_USERS	Contains all active user profiles on the system.	
ome hives	HKEY_CURRENT_CONFIG	Symbolic link to HKEY_LOCAL_MACHINE\SYSTEM\CurrentCont rolSet\Hardware Profiles\Current. Information about the hardware profile. Used when system starts up.	

My Computer My Computer My Computer My Casses_ROOT My Casses_ROOT My Casses_ROOT My Casses My Casses

Some hives

Path to registry hive	Path to file hive
HKEY_LOCAL_MACHINE\SYSTEM	\WINDOWS\system32\config\system
HKEY_LOCAL_MACHINE\SAM	\WINDOWS\system32\config\sam
HKEY_LOCAL_MACHINE\SECURIT	Y \WINDOWS\system32\config\security
HKEY_LOCAL_MACHINE\SOFTWA	RE \WINDOWS\system32\config\software

LUND UNIVERSITY 2020-01-30 31

Paul Stankovski Wagner

Temporary Hives

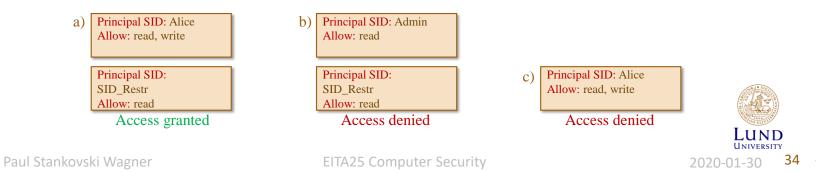
- HKEY_LOCAL_MACHINE\hardware
 - Hardware is detected when system starts
- HKEY_LOCAL_MACHINE\system\clone
 - Built during startup, saved as HKEY_LOCAL_MACHINE\SYSTEM\Select\LastKnownGood Control Set if startup is successful
 - If there is a problem to start (e.g., if an installed driver has damaged the system), then LastKnownGood configuration can be used by copying this to CurrentControlSet

Paul Stankovski Wagner

Restricted Context

- Application can start process with restricted token
- Process can start process or thread with restricted token
 - Can be either primary token or impersonation token
- Example 1: Untrusted webpages can be displayed with restrictions
- Example 2: Email attachments can be opened with restrictions
- Restrict by (one or more of):
 - 1. Remove privileges
 - 2. Set deny-only attribute to SIDs
 - 3. Specify restricting SID

Paul Stankovski Wagner


How To Restrict a Token

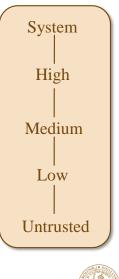
- 1. Let group SIDs be used for deny only
- 2. Add restricted SID
- \rightarrow Two access checks are done

Both must allow access, otherwise access is denied

Restricted Token			
User SID	Alice		
Group SIDs	Admin (deny only)		
	Users		
Restricted SIDs	SID_Restr		
Privileges	none		

Example: Process with restricted token require read access

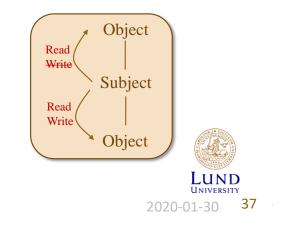
User Account Control (UAC)


- Introduced in Windows Vista
- Administrators get two access tokens when logging in
 - One administrator token
 - One standard user token
- Standard user token used unless administrator privileges are needed
 - User has to actively acknowledge use of administrator token
- Windows 7+ uses UAC, but not all programs ask for explicit permission

Paul Stankovski Wagner

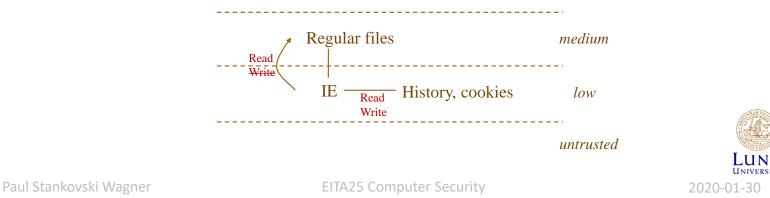
Mandatory Access Control

- Windows Vista and later include Mandatory Access Control (MAC)
 - Called Integrity Control
- Access tokens have an integrity level
 - Untrusted (Processes started by group Anonymous)
 - Low integrity (e.g., IE in protected mode)
 - Medium integrity (Used by normal applications when UAC is enabled)
 - High integrity (Admin applications started through UAC, normal applications if UAC is disabled)
 - System integrity (Used by some system processes)



Paul Stankovski Wagner

Mandatory Access Control

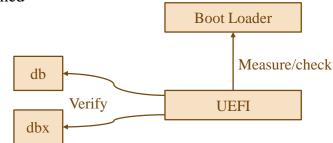

- Each object can also have an integrity level stored in the Security Decriptor's SACL
- Default for newly created objects:
 - If access token is lower than medium, integrity level of object is same as in access token
 - If access token is medium or higher, integrity level of object is medium
- Subject has label S, object has label O
- Policy defined by (total) ordering:
 - Write access granted if $O \le S$
- Subjects integrity level must dominate object's integrity level in write operations
 - Checked before DACL

Paul Stankovski Wagner

Example, Use of MAC (or MIC)

- Internet Explorer 7 can run in Protected Mode
 - Will run with "low integrity" access token
- Can not be forced to make changes to operating system files, registry, etc
 - However, it can read all this data
- Can write to history, cookies etc.
- This can be compared to the Biba security model

high



35

38

Secure Boot in Windows 8 and 10

- **UEFI** (Unified Extensible Firmware Interface) provides support for Secure Boot
 - OEMs providing Windows 8 must support it
- Only trusted boot loader can be loaded
- **db** is a database with known *good* CAs, hashed
 - Includes Microsoft Windows CA
- **dbx** is a database with known *bad* CAs and hashes
- Databases are signed with a Microsoft key

Idea: It will not be possible to install other Boot loaders than those trusted

Protects against certain rootkits

Paul Stankovski Wagner

2020-01-30

LUND UNIVERSITY