
2020-02-28

1

EITA25 Computer Security (Datasäkerhet)

Security Models
PAUL STANKOVSKI WAGNER, EIT, 2020-02-28

2020-02-28

2

2EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Bell-LaPadula model

• Biba model

• Chinese Wall model

• (Clark-Wilson model)

Bell-LaPadula and Other Security Models

2020-02-28

3

3EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Demonstrate how security policies can be expressed in a formal way.

• Give some history of computer security

• Understand the limitations of various models

Motivation

2020-02-28

4

4EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• In practice, all complicated systems reveal flaws or bugs that need to be fixed

• Consider the two classes of errors:

– design errors (design not conforming to set of security requirements)

– implementation errors (errors in implementing the design)

• Primary aim of security models with provable properties:

minimize the class of design errors

Purpose of Security Models

2020-02-28

5

5EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• State – Representation of the system at some given time

• State transition – next state depends on current state + input

• Idea: If we start in a secure state and all state transitions preserve security, then the

system will be secure.

State Machine Model

Question:

What is a secure state?

2020-02-28

6

6EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Most famous security model

• First developed around 1973

• ”Unified exposition and Multics interpretation”, 1976

• Focus on confidentiality, not integrity

• Based on state transitions

• Both mandatory and discretionary access control

– Multilevel security

– Access control matrix

Bell-LaPadula Model

2020-02-28

7

7EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Set of subjects S

• Set of objects O

• Set of access operations A

– execute, read, append, write

• Set of security levels L with ordering ≤

• Functions

– fS: S → L, maximum security level

– fC: S → L, current security level

– fO: O → L, security level of object

Notation

Execute Append Read Write

Observe X X

Alter X X

2020-02-28

8

8EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Multilevel security classification

• Categories

– {Division A, Division B}

• Security level given by pair

• (Partial) Ordering:

• Security level (h2 ,c2) dominates (h1,c1)

Security Levels

(MLS classification, Set of categories)

(h1,c1) ≤ (h2 ,c2) if and only if h1 ≤ h2 and c1 ⊆ c2

Top Secret

Secret

Confidential

Unclassified

2020-02-28

9

9EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

The state consists of three parts

1. Current access given by a set of (s,o,a) tuples

– An element of the powerset P(S ☓ O ☓A)

– Can be written as matrix b.

– s is row, o is column, a is current access operation

2. Access matrix given by M

– Defines what is allowed

3. Functions f = (fS, fC, fO)

• State is given by (b, M, f)

The State

2020-02-28

10

10EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• We have a system with 5 subjects and 5 objects, 2 classifications and

2 categories

– Subjects: Alice, Bob, Charlie, David, Erika

– Objects: file_a, file_b, file_c, file_d, file_e

– MLS classifications : public, private

– Categories: A, B

State Example

2020-02-28

11

11EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

State Example

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Functions f = (fS, fC, fO)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

Access Control Matrix M

State is given by (b,M,f)

2020-02-28

12

12EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Simple Security Property

• Mandatory access control

• No read up:

A user is not allowed read (observe) access to objects with higher security level

ss-property

State (b,M,f) satisfies the ss-property if

for each element (s,o,a) ∈ b where the

access operation a is read or write, the

security level of s dominates security

level of o, i.e., fO(o) ≤ fS(s)

Execute Append Read Write

Observe X X

Alter X X

2020-02-28

13

13EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

According to ss-property:

• Alice is allowed to read file_b since fO(file_b) ≤ fS(Alice)

• David is allowed write access to file_c since fO(file_c) ≤ fS(David)

Example

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

2020-02-28

14

14EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

ss-property (No read up)

MLS classifications Information flow

2020-02-28

15

15EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• A subject can append to any object with higher security level than the subject.

• We do not allow information to flow downwards.

– Easy way: A subject can not send any information to an object with lower security level –

Not practical

– Better solution:

» Possible to temporarily downgrade a subject – the reason to introduce fC(s)

» Let trusted subjects send information downwards

• Note that we assume that a subject does not have an internal memory – We have to see it as a

process, not a human being

– Only know the contents of the objects it is currently accessing

Controlling Write Access

2020-02-28

16

16EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Star-Property

• Mandatory access control

• Does not apply to trusted subjects

• No write down: A user is not allowed write (alter) access to object with

lower security level than the current security level of subject

*-property (Incomplete Version)

State (b,M,f) satisfies the *-property if for each

element (s,o,a) ∈ b where the access operation a

is append or write, the current security level of s

is dominated by the security level of o, i.e., fC(s)

≤ fO(o)

Execute Append Read Write

Observe X X

Alter X X

2020-02-28

17

17EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

According to *-property:

• David is allowed write access to file_c since fC(David) ≤ fO(file_c)

• Erika is allowed append access to file_a since fC(Erika) ≤ fO(file_a)

Example

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

2020-02-28

18

18EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

*-property (No write down)

MLS classifications Information flow

2020-02-28

19

19EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

ss- and *-properties together

MLS classifications Information flow

2020-02-28

20

20EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• ss-property considers maximum level of subject – fS(s)

• *-property considers current level of subject fC(s)

• David has append access to file_c, but he would also be granted read access to

file_e

Problem

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

Functions f = (fS, fC, fO)

2020-02-28

21

21EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Result: It would be possible for information to flow from file_e to file_c

Problem

file_e

file_c

(private, {A,B})

(public, {A,B})

David

fS(s)=(private, {A,B})

fC(s)=(public, {A,B})

read

append

Possible information

flow

→ We need another restriction in the *-property

2020-02-28

22

22EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• In other words: If a subject has access to several objects at the same time, then all

objects with observe access must have lower (or equal) security level than all objects

with alter access

• Still does not apply to trusted subjects

*-property

State (b,M,f) satisfies the *-property if for each element

(s,o,a) ∈ b where the access operation a is append or write,

the current security level of s is dominated by the security

level of o, i.e., fC(s) ≤ fO(o).

Furthermore, if there exists an element (s,o,a) ∈ b where

the access operation a is append or write, then we must

have fO(o’) ≤ fO(o) for all objects o’ with (s,o’,a’) ∈ b and

a’ is read or write

2020-02-28

23

23EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Subject may pass an access permission on to other users.

• Discretionary access control

• Access rights given in access control matrix must also be followed

ds-property

State (b,M,f) satisfies the ds-property if for

each element (s,o,a) ∈ b we have a ∈ MSO

2020-02-28

24

24EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• All accesses given in b are allowed in the access control matrix M

Example

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

2020-02-28

25

25EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Current state is secure if and only if each (si,oi,ai) ∈ b satisfies the three properties

– ss-property, *-property and ds-property

• State of the system changes if any component in (b,M,f) changes

• As long as any state change does not violate any of the three properties, the system remains

secure

Basic Security Theorem

If all state transitions are secure and if the

initial state is secure then every subsequent

state will be secure.

2020-02-28

26

26EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Get access – add triple (subject, object, access operation) to

current access set b

• Release access – remove triple from b

• Change object level – change value of fO(o) for object o

• Change current level – change value of fC(s) for subject s

• Give access permission – add an access operation to M

• Rescind access permission – remove an access operation from M

• Create object – add an object to system

• Remove object – remove an object from system

State Transitions

} Not supported by

”our” state

}
} Change b in state

Change f in state

Change M in state}

2020-02-28

27

27EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

McLean criticism:
Make a state transition that
• downgrade all subjects and objects to lowest security level

• enter all access rights in all entries of M

→ Everyone can do everything – not secure

Bell standpoint:
• If such a transition is required, it should be ok.

• Otherwise, it should not be implemented.

Tranquility: security levels of subjects and objects do not change while in use

Tranquility

2020-02-28

28

28EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Only focus on confidentiality, not integrity

• Not addressing management of access control

• Contains covert channels – information flow not controlled by the security

mechanisms.

Example:

– Low level subject creates file.txt at low level

– High level subject upgrades file.txt to higher level, or leaves it alone

– Low level subject tries to read file.txt

Example 2:

– If low-level subjects can read filenames at high levels the filename can also be used to send

information from high-level subjects

Drawbacks

2020-02-28

29

29EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Focuses on integrity, i.e., unauthorized modification of data

• Proposed in 1977

• Similar to Bell-LaPadula in several ways

– Based on multilevel security with a partial ordering

– Based on subjects and objects

• Subjects and objects mapped to integrity levels forming a lattice

– fS: S → L subject integrity level

– fO: O → L object integrity level

Biba Model

2020-02-28

30

30EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Information flows downward

• High integrity subjects and objects are called clean,

low integrity subjects and objects are called dirty;

– Clean objects are more accurate or reliable than dirty

– We have more confidence in clean subjects to execute as expected or to validate input

• Clean objects cannot be contaminated by information from low-integrity processes

(subjects)

• Clean subjects should not read dirty objects

• Operations of interest: Modify, Read, Invoke

Subjects and Objects

2020-02-28

31

31EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Simple integrity property

– Corresponds to ss-property in Bell-LaPadula

– If subject s can modify object o, then fO(o) ≤ fS(s)

– No write up

• Integrity *-property

– Corresponds to *-property in Bell-LaPadula

– A subject s can read an object o only if fS(s) ≤ fO(o)

– No read down

Static Integrity Levels

2020-02-28

32

32EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Integrity levels are automatically adjusted

• Subject low watermark property

• Object low watermark property

Dynamic Integrity Levels

Subject s can read an object o at any integrity level.

The new integrity level of the subject is the greatest

lower bound of fS(s) and fO(o).

Subject s can modify an object o at any integrity

level. The new integrity level of the object is the

greatest lower bound of fS(s) and fO(o).

2020-02-28

33

33EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Subject low watermark policy

Example

Alice (private, {A})

time t:

file_a (private, {B})

read

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (private, {∅})

time t+1:

file_a (private, {B})
?

2020-02-28

34

34EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Subject low watermark policy

Example

Alice (private, {A})

time t:

file_a (private, {B})

read

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (private, {∅})

time t+1:

file_a (private, {B})

read

2020-02-28

35

35EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Object low watermark policy

Example

Alice (public, {A})

time t:

file_a (private, {B})

modify

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (public, {A})

time t+1:

file_a (public, {∅})
?

2020-02-28

36

36EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Object low watermark policy

Example

Alice (public, {A})

time t:

file_a (private, {B})

modify

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (public, {A})

time t+1:

file_a (public, {∅})

modify

2020-02-28

37

37EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• A subject may invoke another subject to access an object

• Invoke property

• Only invoke subjects (e.g., software tools) at lower levels

– Otherwise dirty subjects could use clean tools to alter clean objects

– But maybe this is what we want? Controlled invocation!

• Ring property

Invocation

Subject s1 can invoke subject s2 only if fS(s1) ≥ fS(s2)

A subject s1 can read all objects. It can only modify objects with

fO(o) ≤ fS(s1) and it can invoke subject s2 only if fS(s1) ≥ fS(s2)

2020-02-28

38

38EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Proposed by Brewer and Nash, 1989

• Aimed at consultancy business

• Based on avoiding conflicts of interest

• Motivation:

– A business consultant should not give advice to Volvo if he has

insider knowledge about Scania

– A business consultant can give advice to both Volvo and H&M since

they are not competitors

Chinese Wall Model

2020-02-28

39

39EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Company denoted c ∈ C

• Subjects s ∈ S are the analysts having access to company information

• Objects o ∈ O are items of information, each belonging to a company

• Company dataset (DS) are all objects concerning a company

– Function y : O → C maps object to its company DS

• Conflict of interest (CI) class indicates which companies are in competition

– Function x : O → P (C) maps object to its CI class, an element in the powerset of C

• Security label is a pair (x(o), y(o))

• Sanitized information is object with no sensitive information

– Label is (∅,y(o))

• Matrix NS,O records history of subjects actions (true or false)

Elements of the Model

2020-02-28

40

40EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Access granted only if object belongs to

– A company DS already accessed by the subject or

– A different CI class than previous objects

• ss-property

Prevent Direct Information Flow

A subject s is permitted to access an object o only if for

all objects o’ with Nso’ = true, y(o)=y(o’) or y(o) ∉ x(o’)

Bank

A

Bank

B

CI class

An analyst with access to grey

shaded areas, will have access

to other objects in Bank A data

set, but not Bank B dataset

2020-02-28

41

41EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Analyst A updates bank information about company A

• Analyst B can read this bank information and
write to an object in company B

Indirect Information Flow

Company

B Analyst B

Company

A Analyst A

Bank

read

read

write

write

CI class

2020-02-28

42

42EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• *-property regulates write access

• Very restrictive: If you can read sensitive information in one company, you can not write to

objects in any other company – ever

Avoiding Indirect Information Flow

A subject s can write to an object o, only

if s has no read access to an object o’ with

y(o) ≠ y(o’) and x(o’) ≠ ∅

Other data set Unsanitized data

2020-02-28

43

43EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Developed in 1987

• Security (integrity) in commercial systems

– Bank system will be used as example

• Differences between military and commercial applications (according to Clark and Wilson):

Clark-Wilson Model

Military: Data item associated

with a particular level.

Commercial: Data item

associated by a set of programs

permitted to manipulate it.

Military: Users constrained by

what they can read or write.

Commercial: Users constrained

by which programs they are

allowed to execute.

2020-02-28

44

44EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Integrity model

• Compared to Biba:

– More elaborate

– More practical

• More focus on commercial applications (less on military ones)

Clark-Wilson Model

2020-02-28

45

45EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Consistency – data is consistent if it satisfies some given properties

– Balance day i = balance day i–1 + deposits – withdrawals

• Two important concepts

– Well-formed transactions – users can only change system through programs

– Separation of duties – User can only use a certain set of programs

» Being allowed to create a well-formed transaction does not mean that you are allowed to run it

» Users have to collaborate to manipulate data

Clark-Wilson Model

2020-02-28

46

46EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Two kinds of data items

– Constrained data items (CDI): data items subject to integrity control, e.g., account balances.

– Unconstrained data items (UDI): data items not subject to integrity control, e.g., unimportant text

files

• Integrity verification procedures (IVP)

– check the integrity of CDIs, e.g., check that account balance is what it should be

• Transformation procedures (TP)

– changes the state of the system (i.e., manipulates CDIs), e.g., deposit money,

withdraw money, transfer money

• Certification rules – How should the system behave

• Enforcement rules – How do we make the system behave the way we want

Parts of the System

2020-02-28

47

47EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

• Certification rule 1: IVPs must ensure that all CDIs are in a valid state.

• Certification rule 2: A TP has an associated set of CDIs. TP must transform these
CDIs from valid states to valid states.

CR2 implies that nonassociated CDIs can be corrupted by a TP.

• Enforcement rule 1: System must maintain list of CDIs associated to each TP.
Only these CDIs can be manipulated by this TP.

Not everyone should be able to run any TP.

• Enforcement rule 2: System must associate a list of TPs with each user.
A TP can not be run by a user not associated with that TP.

Now we have a set of triples (user, TP, {CDI set}). These must be certified.

• Certification rule 3: All triples must meet the separation of duties requirements.

Certification and Enforcement Rules

2020-02-28

48

48EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

Only certain users are allowed to run a certain TP.
How do we know the user is who he claims to be?

• Enforcement rule 3: The system must authenticate each user trying to execute a TP.

Each operation must be logged.

• Certification rule 4: All TPs must log information about all operations.

An UDI entering the system may not be trusted.

• Certification rule 5: A TP taking a UDI as input must either transform it to a valid
CDI or reject it.

No person should be able to both create and run a TP

• Enforcement rule 4: Only certifier of TP may change the list of entities associated
with that TP. No certifier may ever execute the TP. (separation of duties)

Rules Continued

2020-02-28

49

49EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

Picture from D. Clark and D. Wilson – A comparison

of commercial and military computer security

policies, IEEE 1987.

2020-02-28

50

50EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-28

Library of Congress, https://www.loc.gov/item/2016841518/, No known restrictions on publication.

Which security model I use?

The one that best suits me!

https://www.loc.gov/item/2016841518/

2020-02-28

51

