2020-02-28

Bell-LaPadula and Other Security Models

UNIVERSITY

EITA25 Computer Security (Datasékerhet) | poirLapadula model

Security Models « Chinese Wall model
* (Clark-Wilson model)

PAUL STANKOVSKI WAGNER, EIT, 2020-02-28

UND
UNIVERSITY

2

Purpose of Security Models

Motivation

« In practice, all complicated systems reveal flaws or bugs that need to be fixed
« Consider the two classes of errors:

— design errors (design not conforming to set of security requirements)

— implementation errors (errors in implementing the design)
« Primary aim of security models with provable properties:

» Demonstrate how security policies can be expressed in a formal way.
« Give some history of computer security
* Understand the limitations of various models

minimize the class of design errors

Unnvmsiry Unnvmsiry
4

State Machine Model

« State — Representation of the system at some given time
« State transition — next state depends on current state + input
« Idea: If we start in a secure state and all state transitions preserve security, then the

system will be secure.

Input=0
Input = 0
&, oA
2, N\ Y
%, ?‘\\, Q@ S‘//
“ & g
0

Notation

Question:
What is a secure state?

LUND
Favenarre

« Set of subjects S
* Set of objects O
* Set of access operations A
— execute, read, append, write

Execute | Append

Read | Write

[observe |

x [x|

[CAtter |

X

* Set of security levels L with ordering <
* Functions

— fs:S—L, maximum security level
— fc:S— L, current security level
— fo: O — L, security level of object

UNIVERSITY

7

Bell-LaPadula Model

2020-02-28

« Most famous security model
« First developed around 1973
 ”Unified exposition and Multics interpretation”, 1976
« Focus on confidentiality, not integrity
« Based on state transitions
« Both mandatory and discretionary access control
— Multilevel security
— Access control matrix

LUND
Giverarre
6
Security Levels
« Multilevel security classification _ Top Secret
« Categories |
— {Division A, Division B} Secret
« Security level given by pair Confidential
(MLS classification, Set of categories) ‘
« (Partial) Ordering: Unclassified
(hy,cy) <(hy,c,) ifandonly if h; <h,andc, Sc,
« Security level (h,,c,) dominates (h,,c;)
Gavessire
8

The State

The state consists of three parts

1. Current access given by a set of (s,0,a) tuples
— An element of the powerset P(S x O x A)
— Can be written as matrix b.
— sisrow, o is column, a is current access operation

2. Access matrix given by M
— Defines what is allowed

3. Functions f = (fg, f¢, fo)

« State is given by (b, M, f)

LUND
UNIVERSITY
9
State Example
Access Control Matrix M
Currqnt access seth file_a | file_b | file_c | file_d | file_e
(Alice, file_b, r) lAlice rwa e a
(David, file_c, w) Bob a re
(Erika, file_a, a) (Charlie r r a
David Lwa nwa
Erika a e
Functions f = (fg, f, fo)
fs:
ASIice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A B}), Erika: (public, {A})
/fll‘ce: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})
139‘}: (private, {A}), file_b: (private, {#}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})
State is given by (b,M,f)
UnivessiTy
11

2020-02-28

State Example

* We have a system with 5 subjects and 5 objects, 2 classifications and
2 categories
— Subjects: Alice, Bob, Charlie, David, Erika
— Objects: file_a, file_b, file_c, file_d, file_e
— MLS classifications : public, private
— Categories: A, B

Lunp
.10
ss—property
« Simple Security Property Execute | Append | Read | Write
- Mandatory access control e ——m——
State (b,M,f) satisfies the ss-property if
for each element (s,0,a) € b where the
access operation a is read or write, the
security level of s dominates security
level of o, i.e., f5(0) <f5(s)
« No read up:
A user is not allowed read (observe) access to objects with higher security level
ER

Example

Access Control Matrix M

Current access set b file_a | file_b | file_c | file_d | file e
(Alice, file_b, r) [alice wa e | o
(David, file_c, w) Bob a re
(Erika, file_a, a) (Charlie r r a

IDavid Lw,a nwa
rika a e

- Functions f = (fs, fo fe
Alice: (private, {A}),JBob: (public, {A,B}), Charlie: (public, {B} rika: (public, {A})

Acli-ce: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

o fle_c: (public, {A B})

According to ss-property:
« Alice is allowed to read file_b since f(file_b) < f5(Alice)
« David is allowed write access to file_c since fy(file_c) < fg(David)

fi(ie;a: (private, {A}) ile_d: (public, {A}), file_e: (private, {A,B})

LUND
Gnviasiry

13

Controlling Write Access

« Asubject can append to any object with higher security level than the subject.
* We do not allow information to flow downwards.
— Easy way: A subject can not send any information to an object with lower security level —
Not practical
— Better solution:
» Possible to temporarily downgrade a subject — the reason to introduce f(s)
» Let trusted subjects send information downwards
« Note that we assume that a subject does not have an internal memory — We have to see it as a
process, not a human being
— Only know the contents of the objects it is currently accessing

UNIVERSITY

15

ss-property (No read up)

2020-02-28

MLS classifications

*-property (Incomplete Version)

Information flow

LUND
Gnviasiry

14

« Star-Property
« Mandatory access control
< Does not apply to trusted subjects

Execute | Append | Read | Write
[observe | | | x x|
Alter | T x T x]

State (b,M,f) satisfies the *-property if for each

element (s,0,a) € b where the access operation a
is append or write, the current security level of s
is dominated by the security level of o, i.e., fo(s)

<fo(0)

« No write down: A user is not allowed write (alter) access to object with
lower security level than the current security level of subject

UNIVERSITY

16

Example Access Control Matrix M
file_a | file_b | file_c | file_d | file_e
|Alice rnwa e a
Current access set b Bob _ 2 re
(Aie i b.1 e T
(Dayld, flvlefc, w) Erika a e
(Erika, file_a, a)
[Functions f = (fg, f¢, fo)
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A B}), Erika: (public, {A})
fe:
Alice: (private, {A3), Bobs (public, {A), Charlie: (public, {BY) .‘ (oubli
fieﬁa: (private, {A}), Jile_b: (private, {@}) file_d: (public, {A}), file_e: (private, {A,B})
According to *-property:
« David is allowed write access to file_c since fo(David) < fy(file_c)
« Erika is allowed append access to file_a since f(Erika) < fo(file_a)
UND
UnivessiTY
17
ss- and *-properties together
MLS classifications Information flow
'y
19

*-property (No write down)

2020-02-28

MLS classifications Information flow

Problem

UND
UNIVERSITY

18

« ss-property considers maximum level of subject — f5(s)
« *-property considers current level of subject f(s)

« David has append access to file_c, but he would also be granted read access to
file_e

fo: Functions f = (fg, fc, fo

Alice: (private, {A}). Bob: (public, {A.B), Charlie: (public, {B)
Py

Acli-ce: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B})
) file_d: (public, {A}), file

rika: (public, {A})

e: (private, {A,B})

0!
file_a: (private, {A}), file_b: (private, {0}

UNIVERSITY

20

Problem

* Result: It would be possible for information to flow from file_e to file_c

fs(s)=(private, {A,B})

fo(s)=(public, {A,B})

David

—> We need another restriction in the *-property

ds-property

(private, {A,B})

Possible information
flow

append

(public, {A,B})

LUND
Gnviasiry

21

« Subject may pass an access permission on to other users.

« Discretionary access control

State (b,M,f) satisfies the ds-property if for
each element (s,0,a) € b we have a € Mg,

« Access rights given in access control matrix must also be followed

UNIVERSITY

23

2020-02-28

*-property

P

[State (b,M,f) satisfies the *-property if for each element
(s,0,a) € b where the access operation a is append or write,
the current security level of s is dominated by the security
level of o, i.e., f(s) <f5(0).

Furthermore, if there exists an element (s,0,a) € b where
the access operation a is append or write, then we must
have fy(0’) < f(0) for all objects o’ with (s,0%4’) €b and
a’is read or write

« In other words: If a subject has access to several objects at the same time, then all
objects with observe access must have lower (or equal) security level than all objects
with alter access

« Still does not apply to trusted subjects LuND
NVERSITY
22
Example
Access Control Matrix M
Current access set b file_a | file_b | file_c | file_d | file_e
(Alice, file_b®) :":e (wa e | a
(David, file_c.@) C:arlie r r ’ - a
(Erika, file_a,@ Ibavid Gn wa
[Erika @ e
Functions f = (fs, fc, fo)
fs:
Aslin:e (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})
Acli-n:e (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})
file_a: (private, CAY) fil_by: private, {93), file_c: (public, (A BY), file_d: (publc, {A}), fle_e: (private, {A.B})
« All accesses given in b are allowed in the access control matrix M
UnivessiTy
24

2020-02-28

Basic Security Theorem State Transitions

Get access — add triple (subject, object, access operation) to
current access set b

Release access — remove triple from b

Change object level — change value of fy(0) for object o }

« Current state is secure if and only if each (s;,0;,a;) € b satisfies the three properties
— ss-property, *-property and ds-property
« State of the system changes if any component in (b,M,f) changes
« As long as any state change does not violate any of the three properties, the system remains

Change b in state

.

. Change f in state
Change current level — change value of f(s) for subject s

secure .
« Give access permission —add an access operation to M .
. L . Change M in state
- } « Rescind access permission — remove an access operation from M
If all state transitions are secure and if the X)
initial state is secure then every subsequent + Create object — add an object to system Not supported by
state will be secure. Remove object — remove an object from system “our” state
LUND LUND
25 26
Tranquility Drawbacks
McLean criticism: « Only focus on confidentiality, not integrity
Make a state transition that « Not addressing management of access control
» downgrade all subjects and objects to lowest security level
+ enter all access rights in all entries of M - Contains covert channels — information flow not controlled by the security
— Everyone can do everything — not secure mechanisms.
) Example:
Bell standpoint: — Low level subject creates file.txt at low level
« If such a transition is required, it should be ok. — High level subject upgrades file.txt to higher level, or leaves it alone
« Otherwise, it should not be implemented. — Low level subject tries to read file.txt
Example 2:
Tranquility: security levels of subjects and objects do not change while in use . — If low-level subjects can read filenames at high levels the filename can also be used to send
= information from high-level subjects
27 28

Biba Model

* Focuses on integrity, i.e., unauthorized modification of data
* Proposed in 1977
« Similar to Bell-LaPadula in several ways
— Based on multilevel security with a partial ordering
— Based on subjects and objects
« Subjects and objects mapped to integrity levels forming a lattice
—fgS— 1L subject integrity level
— fo: O — L objectintegrity level

LUND
Gnviasiry

29

Static Integrity Levels

« Simple integrity property
— Corresponds to ss-property in Bell-LaPadula
— If subject s can modify object o, then f,(0) < f4(s)
— No write up

* Integrity *-property
— Corresponds to *-property in Bell-LaPadula
— Asubject s can read an object o only if fy(s) < f5(0)
— No read down

UNIVERSITY

31

2020-02-28

Subjects and Objects

« Information flows downward
« High integrity subjects and objects are called clean,
low integrity subjects and objects are called dirty;
— Clean objects are more accurate or reliable than dirty
— We have more confidence in clean subjects to execute as expected or to validate input
« Clean objects cannot be contaminated by information from low-integrity processes
(subjects)
« Clean subjects should not read dirty objects
« Operations of interest: Modify, Read, Invoke

LUND
Gnviasiry

30

Dynamic Integrity Levels

« Integrity levels are automatically adjusted
« Subject low watermark property

Subject s can read an object o at any integrity level.
The new integrity level of the subject is the greatest
lower bound of f¢(s) and f,(0).

< Object low watermark property

Subject s can modify an object o at any integrity
level. The new integrity level of the object is the
greatest lower bound of fg(s) and f5(0).

UNIVERSITY

32

Example

« Subject low watermark policy

Alice (private, {A})
time t: read
file_a (private, {B})

!

time t+1: ?

Example

private, {A,B}

private, {A}
private, {B}

private, {0}
public, {A,B}

public, {A}
public, {B}

public, {#}

LUND
UNIVERsITY

33

* Object low watermark policy

Alice (public, {A})
time t: modify
file_a (private, {B})

!

time t+1: ?

private, {A,B}

private, {A}
private, {B}

private, {0}
public, {A,B}

public, {A}
public, {B}

public, {8}

UNIVERSITY

35

Example

2020-02-28

* Subject low watermark policy

Alice (private, {A})

read

file_a (private, {B})

time t:

!

Alice (private, {0})
time t+1: read
file_a (private, {B})

Example

private, {A,B}

private, {A}
private, {B}

private, {@}
public, {A,B}

public, {A}
public, {B}

public, {#}

LUND
UNIVERsITY

34

« Object low watermark policy

Alice (public, {A})
time t: modify.
file_a (private, {B})

!

Alice (public, {A})
time t+1: modify
file_a (public, {93)

private, {A,B}

private, {A}
private, {B}

private, {0}
public, {A,B}

public, {A}
public, {B}

public, {@}

UNIVERSITY

36

Invocation

» Asubject may invoke another subject to access an object
« Invoke property

| Subject s, can invoke subject s, only if fy(s;) > fs(s,) |

» Only invoke subjects (e.g., software tools) at lower levels
— Otherwise dirty subjects could use clean tools to alter clean objects
— But maybe this is what we want? Controlled invocation!

* Ring property

A subject s, can read all objects. It can only modify objects with
fo(0) < fs(s;) and it can invoke subject s, only if fg(s;) > f5(s,)

LUND
Favenarre

37

Elements of the Model

Company denoted c € C
Subjects s € S are the analysts having access to company information
Objects o € O are items of information, each belonging to a company
Company dataset (DS) are all objects concerning a company
— Function y : O — C maps object to its company DS
Conflict of interest (Cl) class indicates which companies are in competition
— Function x : O — P (C) maps object to its CI class, an element in the powerset of C
Security label is a pair (x(0), y(0))
Sanitized information is object with no sensitive information
— Label is (8.y(0))
Matrix Ns records history of subjects actions (true or false)

UNIVERSITY

39

Chinese Wall Model

2020-02-28

« Proposed by Brewer and Nash, 1989

« Aimed at consultancy business

« Based on avoiding conflicts of interest
 Motivation:

— A business consultant should not give advice to Volvo if he has
insider knowledge about Scania

— A business consultant can give advice to both Volvo and H&M since
they are not competitors

Prevent Direct Information Flow

LUND
Favenarre

38

» Access granted only if object belongs to
— Acompany DS already accessed by the subject or
— Adifferent Cl class than previous objects

* ss-property

A subject s is permitted to access an object o only if for
all objects o’ with N,,.= true, y(o)=y(0’) or y(0) £x(0’)

Cl class —

‘/ Barb‘ //Ban k\“

A B /\
{g/ix\ /m\ ™
AN ORORORY)

\

An analyst with access to grey
shaded areas, will have access
to other objects in Bank A data
set, but not Bank B dataset

UNIVERSITY

40

10

Indirect Information Flow

Bank

« Analyst A updates bank information about company A

« Analyst B can read this bank information and
write to an object in company B

Clark-Wilson Model

* Developed in 1987
« Security (integrity) in commercial systems
— Bank system will be used as example
« Differences between military and commercial applications (according to Clark and Wilson):

Military: Data item associated Military: Users constrained by
with a particular level what they can read or write.
Commercial: Data item Commercial: Users constrained
associated by a set of programs by which programs they are
permitted to manipulate it. allowed to execute.

UNIVERSITY

43

2020-02-28

Avoiding Indirect Information Flow

 *-property regulates write access

A subject s can write to an object o, only
if s has no read access to an object o’ with
y(0) # y(0’) and x(0) # @

Other data set Unsanitized data

« Very restrictive: If you can read sensitive information in one company, you can not write to
objects in any other company — ever

Clark-Wilson Model

* Integrity model
« Compared to Biba:
— More elaborate
— More practical
« More focus on commercial applications (less on military ones)

UNIVERSITY

44

11

Clark-Wilson Model

« Consistency — data is consistent if it satisfies some given properties
— Balance day i = balance day i-1 + deposits — withdrawals
« Two important concepts
— Well-formed transactions — users can only change system through programs
— Separation of duties — User can only use a certain set of programs
» Being allowed to create a well-formed transaction does not mean that you are allowed to run it
» Users have to collaborate to manipulate data

UNIVERSITY

45

Certification and Enforcement Rules

« Certification rule 1: I\VPs must ensure that all CDls are in a valid state.

« Certification rule 2: A TP has an associated set of CDIs. TP must transform these
CDls from valid states to valid states.

CR2 implies that nonassociated CDIs can be corrupted by a TP.
« Enforcement rule 1: System must maintain list of CDIs associated to each TP.
Only these CDIs can be manipulated by this TP.

Not everyone should be able to run any TP.

« Enforcement rule 2: System must associate a list of TPs with each user.
ATP can not be run by a user not associated with that TP.

Now we have a set of triples (user, TP, {CDI set}). These must be certified.
* Certification rule 3: All triples must meet the separation of duties requirements. LuND
47

2020-02-28

Parts of the System

« Two kinds of data items
— Constrained data items (CDI): data items subject to integrity control, e.g., account balances.
— Unconstrained data items (UDI): data items not subject to integrity control, e.g., unimportant text
files

« Integrity verification procedures (IVP)
— check the integrity of CDlIs, e.g., check that account balance is what it should be
« Transformation procedures (TP)

— changes the state of the system (i.e., manipulates CDIs), e.g., deposit money;,
withdraw money, transfer money

« Certification rules — How should the system behave
« Enforcement rules — How do we make the system behave the way we want

UNIVERSITY

46

Rules Continued

Only certain users are allowed to run a certain TP.
How do we know the user is who he claims to be?

« Enforcement rule 3: The system must authenticate each user trying to execute a TP.

Each operation must be logged.
« Certification rule 4: All TPs must log information about all operations.

An UDI entering the system may not be trusted.
« Certification rule 5: ATP taking a UDI as input must either transform it to a valid
CDI or reject it.

No person should be able to both create and runa TP
« Enforcement rule 4: Only certifier of TP may change the list of entities associated
with that TP. No certifier may ever execute the TP. (separation of duties) LUND

NIVERSITY

48

12

2020-02-28

USERS

E3: Users are ouih

&2 U mboued 10
C1: VP vaidaies CO1 siate

sepasation|
©5: TPs vaide UDI

Which security model | use?

C2: TPs pressrvn vald st
ol
oo

o) v
ehangod anly
- -

- (=) B

Ca: TPs waie 1o 1og.

The one that best suits me!

System In
some s

Picture from D. Clark and D. Wilson — A comparison

of commercial and military computer security
policies, IEEE 1987.

Ef: CDIs changed anly by auhorized T

UND
UNIVERSITY

Library of Congress,
49

No known

UND
UNIVERSITY

50

LUND

UNIVERSITY

13

https://www.loc.gov/item/2016841518/

