
2019-02-25

1

 Bell-LaPadula model

 Biba model

 Chinese Wall model

 (Clark-Wilson model)

EITA25 - Computer Security 1

 Demonstrate how security policies can be expressed in a formal way.

 Give some history of computer security

 Understand the limitations of various models

EITA25 - Computer Security 2

 State – Representation of the system at some given time

 State transition – next state depends on current state + input.

 Idea: If we start in a secure state and all state transitions preserve security, then the 

system will be secure.

EITA25 - Computer Security 3

Question:

What is a secure state?

 Most famous security model

 First developed around 1973

 ”Unified exposition and Multics interpretation”, 1976

 Focus on confidentiality, not integrity

 Based on state transitions

 Both mandatory and discretionary access control

◦ Multilevel security

◦ Access control matrix

EITA25 - Computer Security 4



2019-02-25

2

 Set of subjects S

 Set of objects O

 Set of access operations A

◦ execute, read, append, write

 Set of security levels L with ordering ≤

 Functions

◦ fS: S → L, maximum security level

◦ fC: S → L, current security level

◦ fO: O → L, security level of object

EITA25 - Computer Security 5

Execute Append Read Write

Observe X X

Alter X X

 Multilevel security

 Categories

◦ {Division A, Division B}

 Security level given by pair

 Ordering: 

 Security level (h2 ,c2) dominates (h1,c1)

EITA25 - Computer Security 6

(Classification, Set of categories)

(h1,c1) ≤ (h2 ,c2) if and only if  h1 ≤ h2 and c1 ⊆ c2

Top Secret

Secret

Confidential

Unclassified

The state consists of three parts

1. Current access given by a set of (s,o,a) tuples

◦ An element of the powerset P(S ☓ O ☓A)

◦ Can be written as matrix b. 

◦ s is row, o is column, a is current access operation

2. Access matrix given by M 

◦ Defines what is allowed

3. Functions f = (fS, fC, fO) 

 State is given by ( b, M, f )

EITA25 - Computer Security 7

 We have a system with 5 subjects and 5 objects, 2 classifications and 

2 categories

◦ Subjects: Alice, Bob, Charlie, David, Erika

◦ Objects: file_a, file_b, file_c, file_d, file_e

◦ Classifications : public, private

◦ Categories: A, B

EITA25 - Computer Security 8



2019-02-25

3

EITA25 - Computer Security 9

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Functions f = (fS, fC, fO)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

Access Control Matrix M

State is given by (b,M,f)

 Simple Security Property

 Mandatory access control

 No read-up – A user is not allowed read (observe) access to objects with higher 
security level

EITA25 - Computer Security 10

State (b,M,f) satisfies the ss-property if 

for each element (s,o,a) ∈ b where the 

access operation a is read or write, the 

security level of s dominates security 

level of o, i.e., fO(o) ≤ fS(s)

Execute Append Read Write

Observe X X

Alter X X

According to ss-property:

 Alice is allowed to read file_b since fO(file_b) ≤ fS(Alice)

 David is allowed write access to file_c since fO(file_c) ≤ fS(David)

EITA25 - Computer Security 11

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

 A subject can append to any object with higher security level than the 

subject. 

 We do not allow information to flow downwards.

◦ Easy way: A subject can not send any information to an object with lower security 

level – Not practical

◦ Better solution:

 Possible to temporarily downgrade a subject – the reason to introduce fC(s)

 Let trusted subjects send information downwards

 Note that we assume that a subject does not have an internal memory – We 

have to see it as a process, not a human being

◦ Only know the contents of the objects it is currently accessing

EITA25 - Computer Security 12



2019-02-25

4

 Star-Property

 Mandatory access control

 Does not apply to trusted subjects

 No write-down – A user is not allowed write (alter) access to object with 
lower security level than the current security level of subject

EITA25 - Computer Security 13

State (b,M,f) satisfies the *-property if for each 

element (s,o,a) ∈ b where the access operation a

is append or write, the current security level of s

is dominated by the security level of o, i.e., fC(s) 

≤ fO(o)

Execute Append Read Write

Observe X X

Alter X X

According to *-property:

 David is allowed write access to file_c since fC(David) ≤ fO(file_c)

 Erika is allowed append access to file_a since fC(Erika) ≤ fO(file_a)

EITA25 - Computer Security 14

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

 ss-property considers maximum level of subject – fS(s)

 *-property considers current level of subject fC(s)

 David has append access to file_c, but he would also be granted 

read access to file_e

EITA25 - Computer Security 15

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

Functions f = (fS, fC, fO)

 Result: It would be possible for information to flow from file_e to file_c

EITA25 - Computer Security 16

file_e

file_c

(private, {A,B})

(public, {A,B})

David

fS(s)=(private, {A,B})

fC(s)=(public, {A,B})

read

append

Possible information 

flow

→ We need another restriction in the *-property



2019-02-25

5

 In other words: If a subject has access to several objects at the same time, all objects 

with observe access must have lower (or equal) security level than all objects with 

alter access

 Still does not apply to trusted subjects

EITA25 - Computer Security 17

State (b,M,f) satisfies the *-property if for each element 

(s,o,a) ∈ b where the access operation a is append or write, 

the current security level of s is dominated by the security 

level of o, i.e., fC(s) ≤ fO(o)

Furthermore, if there exists an element (s,o,a) ∈ b where 

the access operation a is append or write, then we must 

have fO(o’) ≤ fO(o) for all objects o’ with (s,o’,a’) ∈ b and 

a’ is read or write

 Subject may pass an access permission on to other users.

 Discretionary access control

 Access rights given in access control matrix must also be followed

EITA25 - Computer Security 18

State (b,M,f) satisfies the ds-property if for each 

element (s,o,a) ∈ b we have a ∈ MSO

 All accesses given in b are allowed in the access control matrix M

EITA25 - Computer Security 19

Current access set b

(Alice, file_b, r)

(David, file_c, w)

(Erika, file_a, a)

fS :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (private, {A,B}), Erika: (public, {A})

fC :
Alice: (private, {A}), Bob: (public, {A,B}), Charlie: (public, {B}), David: (public, {A,B}), Erika: (public, {A})

fO :
file_a: (private, {A}), file_b: (private, {∅}), file_c: (public, {A,B}), file_d: (public, {A}), file_e: (private, {A,B})

file_a file_b file_c file_d file_e

Alice r,w,a e a

Bob a r,e

Charlie r r a

David r,w,a r,w,a

Erika a e

Access Control Matrix M

Functions f = (fS, fC, fO)

 Current state is secure if and only if each (si,oi,ai) ∈ b satisfies the three 

properties

◦ ss-property, *-property and ds-property

 State of the system changes if any component in (b,M,f) changes

 As long as any state change does not violate any of the three properties, the 

system remains secure

EITA25 - Computer Security 20

If all state transitions are secure and if the 

initial state is secure then every subsequent 

state will be secure



2019-02-25

6

 Get access – add triple (subject, object, access operation) to 

current access set b

 Release access – remove triple from b

 Change object level – change value of fO(o) for object o

 Change current level – change value of fC(s) for subject s

 Give access permission – add an access operation to M

 Rescind access permission – remove an access operation from M

 Create object – add an object to system

 Remove object – remove an object from system

EITA25 - Computer Security 21

} Not supported by 

”our” state

}
} Change b in state

Change f in state

Change M in state}

McLean criticism: 
Make a state transition that
 downgrade all subjects and objects to lowest security level
 enter all access rights in all entries of M
→ Everyone can do everything – not secure

Bell standpoint:
 If such a transition is required, it should be ok.
 Otherwise, it should not be implemented.

Tranquility: security levels and access rights never change.

EITA25 - Computer Security 22

 Only focus on confidentiality, not integrity

 Not addressing management of access control

 Contains covert channels – information flow not controlled by the security 

mechanisms.

Example:

◦ Low level subject creates file.txt at low level

◦ High level subject upgrades file.txt to higher level, or leaves it alone

◦ Low level subject tries to read file.txt

Example 2:

◦ If low-level subjects can read filenames at high levels the filename can also be used to send 

information from high-level subjects

EITA25 - Computer Security 23

 Focuses on integrity, i.e., unauthorized modification of data

 Proposed in 1977

 Similar to Bell-LaPadula in several ways

◦ Based on multilevel security with a partial ordering

◦ Based on subjects and objects

 Subjects and objects mapped to integrity levels forming a lattice

◦ fS: S → L subject integrity level

◦ fO: O → L object integrity level

EITA25 - Computer Security 24



2019-02-25

7

 Information flows downward

 High integrity subjects and objects are called clean, low integrity subjects and objects 

are called dirty

◦ Clean objects are more accurate or reliable than dirty

◦ We have more confidence in clean subjects to execute as expected or to validate input

 Clean objects cannot be contaminated by information from low-integrity processes 

(subjects)

 Clean subjects should not read dirty objects

 Operations of interest: Modify, Read, Invoke

EITA25 - Computer Security 25

 Simple integrity property

◦ Corresponds to ss-property in Bell-LaPadula

◦ If subject s can modify object o, then fO(o) ≤ fS(s) . 

◦ no write-up

 Integrity *-property

◦ Corresponds to *-property in Bell-LaPadula

◦ A subject s can read an object o only if fS(s) ≤ fO(o)

◦ No read down

EITA25 - Computer Security 26

 Integrity levels are automatically adjusted

 Subject low watermark property

 Object low watermark property

EITA25 - Computer Security 27

Subject s can read an object o at any integrity level. 

The new integrity level of the subject is the greatest 

lower bound of fS(s) and fO(o).

Subject s can modify an object o at any integrity 

level. The new integrity level of the object is the 

greatest lower bound of fS(s) and fO(o).

 Subject low watermark policy

EITA25 - Computer Security 28

Alice (private, {A}) 

time t:

file_a (private, {B})

read

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (private, {∅}) 

time t+1:

file_a (private, {B})
?



2019-02-25

8

 Subject low watermark policy

EITA25 - Computer Security 29

Alice (private, {A}) 

time t:

file_a (private, {B})

read

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (private, {∅}) 

time t+1:

file_a (private, {B})

read

 Object low watermark policy

EITA25 - Computer Security 30

Alice (public, {A}) 

time t:

file_a (private, {B})

modify

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (public, {A})

time t+1:

file_a (public, {∅})
?

 Object low watermark policy

EITA25 - Computer Security 31

Alice (public, {A}) 

time t:

file_a (private, {B})

modify

public, {A}

public, {B}

public, {∅}

public, {A,B}

private, {A}

private, {B}

private, {∅}

private, {A,B}

Alice (public, {A}) 

time t+1:

file_a (public, {∅})

modify

 A subject may invoke another subject to access an object

 Invoke property

 Only invoke subjects (e.g., software tools) at lower levels

◦ Otherwise dirty subjects could use clean tools to alter clean objects

◦ But maybe this is what we want? Controlled invocation!

 Ring property

EITA25 - Computer Security 32

Subject s1 can invoke subject s2 only if fS(s2) ≤  fS(s1)

A subject s1 can read all objects. It can only modify objects with 

fO(o) ≤  fS(s1) and it can invoke subject s2 only if fS(s1) ≤  fS(s2)



2019-02-25

9

 Proposed by Brewer and Nash, 1989

 Aimed at consultancy business

 Based on avoiding conflicts of interest

 Motivation:

◦ A business consultant should not give advice to Volvo if he has insider knowledge 

about Scania.

◦ A business consultant can give advice to both Volvo and H&M since they are not 

competitors.

EITA25 - Computer Security 33

 Company denoted c ∈ C

 Subjects s ∈ S are the analysts having access to company information

 Objects o ∈ O are items of information, each belonging to a company

 Company dataset are all objects concerning a company

◦ Function y : O → C maps object to its company dataset

 Conflict of interest class indicates which companies are in competition

◦ Function x : O → P (C) maps object to its conflict of interest class, an element in the powerset of C

 Security label is a pair (x(o), y(o))

 Sanitized information is object with no sensitive information

◦ Label is (∅,y(o))

 Matrix NS,O records history of subjects actions (true or false)

EITA25 - Computer Security 34

 Access granted only if object belongs to

◦ A company data set already accessed by the subject or

◦ A different conflict of interest class than previous objects

 ss-property

EITA25 - Computer Security 35

A subject s is permitted to access an object o only if for 

all objects o’ with Nso’ = true, y(o)=y(o’) or y(o) ∉ x(o’)

Bank

A

Bank

B

CI class

An analyst with access to grey 

shaded areas, will have access 

to other objects in Bank A data 

set, but not Bank B dataset
 Analyst A updates bank information about company A

 Analyst B can read this bank information and write to an object in company B

EITA25 - Computer Security 36

Company

B Analyst B

Company

A Analyst A

Bank

read

read

write

write

CI class



2019-02-25

10

 *-property regulates write access

 Very restrictive: If you can read sensitive information in one company, you 

can not write to objects in any other company – ever

EITA25 - Computer Security 37

A subject s can write to an object o, only 

if s has no read access to an object o’ with 

y(o) ≠ y(o’) and x(o’) ≠ ∅

Other data set Unsanitized data

 Developed in 1987

 Security (integrity) in commercial systems

◦ Bank system will be used as example

 Differences between military and commercial applications (according to 

Clark and Wilson):

EITA25 - Computer Security 38

Military: Data item associated 

with a particular level.

Commercial: Data item 

associated by a set of programs 

permitted to manipulate it.

Military: Users constrained by 

what they can read or write.

Commercial: Users constrained 

by which programs they are 

allowed to execute.

 Consistency – data is consistent if it satisfies some given properties

◦ Balance day i = balance day i–1  + deposits – withdrawals 

 Two important concepts

◦ Well formed transactions – users can only change system through programs

◦ Separation of duties – User can only use a certain set of programs

 If you can create a well-formed transaction you may not be allowed to run it

 Users have to collaborate to manipulate data

EITA25 - Computer Security 39

 Two kinds of data items

◦ Constrained data items (CDI) – data items subject to integrity control. E.g., account balances.

◦ Unconstrained data items (UDI) – data items not subject to integrity control. E.g., unimportant text 

files

 Integrity verification procedures (IVP) – check the integrity of CDIs. E.g., check that 

account balance is what it should be

 Transformation procedures (TP) – changes the state of the system, i.e., manipulates 

CDIs. E.g., deposit money, withdraw money, transfer money

 Certification rules – How should the system behave

 Enforcement rules – How do we make the system behave the way we want

EITA25 - Computer Security 40



2019-02-25

11

 Certification rule 1: IVPs must ensure that all CDIs are in a valid state
 Certification rule 2: A TP has an associated set of CDIs. TP must transform 

these CDIs from valid states to valid states. 

CR2 implies that nonassociated CDIs can be corrupted by a TP.
 Enforcement rule 1: System must maintain list of CDIs associated to each TP. 

Only these CDIs can be manipulated by this TP.

Not everyone should be able to run any TP
 Enforcement rule 2: System must associate a list of TPs with each user. A TP 

can not be run by a user not associated with that TP.

Now we have a set of triples (user, TP, {CDI set}). These must be certified.
 Certification rule 3: All triples must meet the separation of duties 

requirements
EITA25 - Computer Security 41

Only certain users are allowed to run a certain TP. How do we know the user is who he 
claims to be?

 Enforcement rule 3: The system must authenticate each user trying to execute a TP.

Each operation must be logged

 Certification rule 4: All TPs must log information about all operations

An UDI entering the system may not be trusted

 Certification rule 5: A TP taking a UDI as input must either transform it to a valid 
CDI or reject it

No person should be able to both create and run a TP

 Enforcement rule 4: Only certifier of TP may change the list of entities associated 
with that TP. No certifier may ever execute the TP. (separation of duties)

EITA25 - Computer Security 42

EITA25 - Computer Security 43

Picture from D. Clark and D. Wilson – A comparison 

of commercial and military computer security 

policies, IEEE 1987.


