
2019-02-04

1

 Identification and Authentication

 Access Control

 Other security related things:

◦ Devices, mounting filesystems

◦ Search path

◦ Race conditions

 NOTE: filenames may differ between OS/distributions

EITA25 - Computer Security 1

 Principals have unique UID

◦ System cares about ID, not name

◦ Several users can have different names but same ID. Then they are treated as the same.

 Superuser (root) has UID = 0

◦ There is only one superuser

 Stored in /etc/passwd

 Processes are subjects.

EITA25 - Computer Security 2

 Real user ID – The ID of the logged in principal

◦ Can only be changed by root (effective user ID = 0) → this is how login works

 Effective user ID – The ID used for access control

◦ Can be changed by root (effective user ID = 0) to anything

 Used by processes with effective user ID = 0 when they temporarily access files as a less

privileged user

◦ Can be changed by anyone (any effective user ID) to real user ID

 This process has to be able to get back to effective user ID = 0

 Same rules apply to group ID

EITA25 - Computer Security 3

 Can not associate multiple user IDs with one file
◦ We have to put users in groups if we want several users to have

access to the file

 Every user belongs to a primary group.

 Older Unix: Can only be in one group at a time

 Newer Unix and Linux: Can be in several groups at the
same time
◦ New files are associated with current group ID of user

◦ Process group ID is the current group ID of user running the process

 Change group (newgrp)

 Primary group given in /etc/passwd

 Other groups in /etc/group
◦ A group can not belong to a group

EITA25 - Computer Security 4

users:x:100:

Students:x:1000:alice,bob

1 2

3 4

2019-02-04

2

 Salt is always used

 Hash function and salt will depend on OS

 We look at three variants

EITA25 - Computer Security 5

Hash function
Password Hash’

Password file

=

Hash
Salt

Yes/No

 Design dates back to 1976

 Based on DES

 Password up to 8 characters, salt 12 bits

◦ Take least significant 7 bits → 56 bit key

◦ Encrypt zero string 25 times with DES

◦ If bit i = 1 in salt, swap bits i and i + 24 in E-box output

◦ Output 12 + 64 = 76 bits. Encode to 13 characters.

 Problems: Short passwords, short salts, constant cost (and fast function)

EITA25 - Computer Security 7

 MD5 crypt

◦ Developed for FreeBSD to avoid export restrictions and allow longer passwords (up to

264 bits)

◦ Algorithm uses 1000 iterations → slow

◦ Salt 12-48 bits

◦ Output: 1 ’salt’ $ 128 bit hash output

 Problem: Constant cost

EITA25 - Computer Security 9

 Based on block cipher blowfish

 Password up to 72 characters, 128 bit random salt

 Internal loop with variable cost

 Output $2a$cost$salt + 192 bit hash output

 Default in OpenBSD

 All problems solved

EITA25 - Computer Security 11

Bullshit!

5 7

9 11

2019-02-04

3

 Arch Linux SHA-512-crypt with 5000 rounds

 Ubuntu 18.04 SHA-512-crypt with 5000 rounds

 FreeBSD 12 SHA-512-crypt with 5000 rounds

 OpenBSD 6.4 bcrypt with cost 10

 macOS 10.8+ PBKDF2-SHA512 with ~40000 rounds

EITA25 - Computer Security 12

 Hashes/sec based on 3.4 GHz processor with 4 cores,
approximate values given

 The given performance for bcrypt with cost 10, and for
sha512crypt with 5000 rounds

EITA25 - Computer Security 13

DES crypt MD5 crypt bcrypt sha512crypt

Password length max 8 chars virtually any max 72 chars virtually any

Salt length 12 bits 12-48 bits 128 bits typically 48 bits

Variable cost No No Yes Yes

Hashes/sec 9 800 000 120 000 170 2 500

 ”All problems solved” is kind of bullshit

 Some devices can be really fast to a low cost

◦ With enough money they are really really really fast

◦ Several instances can be implemented in parallel

 Can no longer compare

◦ CPU – ”needed” when verifying password

◦ GPU, FPGA, ASIC – used by attackers

 Make this more fair by making hashing more difficult (costly)

for GPUs, FPGAs and ASICs

 Example: Argon2 – variable cost in both time and memory

EITA25 - Computer Security 14

GPU

FPGA/ASIC

alice:x:1004:100::/home/alice:/bin/bash

bob:x:1005:100::/home/bob:/bin/bash

 Store user (principal) information

Format:

Username:password:UID:GID:ID string:home directory:login shell

 File is world readable

 Example:

EITA25 - Computer Security 15

12 13

14 15

2019-02-04

4

 Save passwords in a non-world readable file
◦ Username

◦ (hashed) password

◦ Date of last change (days since Jan 1, 1970)

◦ Minimum days between password changes (0 means anytime)

◦ Maximum days of validity

◦ Days in advance to warn user about change

◦ Days account is active after password expired

◦ Date of account disabling (days since Jan 1, 1970)

◦ Last entry is reserved

EITA25 - Computer Security 16

alice:6Gar7uDv0$Ihuwd...wKGlNnWavx:17912:0:99999:7:::

bob:6q1/LoHbE$7Md2k...hAtXiw4hW.:17912:0:99999:7:::

 Discretionary access control – owner of file can change permissions

 Three categories: User (owner), Group, Other (world)

 Three access rights: Read, Write, Execute

EITA25 - Computer Security 17

Other info from ls -l

Link counter, owner, group, size, date of last change, name

alice@eita25:/data/1$ ls -l

total 8

drwxr-xr-x 1 alice Students 26 Jan 16 10:05 directory

-rw-r--r-- 1 alice Students 31 Jan 16 10:04 file1

-rw-r--r-- 1 alice Students 10 Jan 16 10:04 file2

1. Owner

2. Group

3. Other

Consequence:

if owner = r and other = rw then owner has no write permission

EITA25 - Computer Security 18

alice@eita25:/data/2$ ls -l

total 0

-r--rw-rw- 1 alice Students 0 Jan 16 10:06 file

alice@eita25:/data/2$ echo hello > file

bash: file: Permission denied

bob@eita25:/data/2$ ls -l

total 0

-r--rw-rw- 1 alice Students 0 Jan 16 10:06 file

bob@eita25:/data/2$ echo hello > file

bob@eita25:/data/2$

 Read = list the directory

 Write = Delete, rename and insert files in directory

 Execute = access directory and access files in directory

EITA25 - Computer Security 19

alice@eita25:/data/3$ ls -la

total 0

dr-xr-xr-x 1 alice Students 8 Jan 16 10:09 .

drwxr-xr-x 1 root root 36 Jan 16 10:33 ..

-rw-rw-rw- 1 alice Students 0 Jan 16 10:09 file

alice@eita25:/data/3$ rm -f file

rm: cannot remove 'file': Permission denied

alice@eita25:/data/4$ ls -la

total 0

drwxr-xr-x 1 alice Students 8 Jan 16 10:10 .

drwxr-xr-x 1 root root 36 Jan 16 10:33 ..

-rw-r--r-- 1 root root 0 Jan 16 10:10 file

alice@eita25:/data/4$ rm -f file

alice@eita25:/data/4$

16 17

18 19

2019-02-04

5

 Used to change permissions on files

 Mnemonics can be used: user, group, other, all, read write

execute.

 Examples:

chmod u+rw file

chmod u=r file

chmod a+rwx file

chmod u-w,g+r,o+r file

chmod a-rwx,u+r file1 file2

EITA25 - Computer Security 20

 Alternatively, numbers can be used.

 See each group of permissions as one number.

◦ Read = 4

◦ Write = 2 Sum gives permission

◦ Execute = 1

 Example:

chmod 754 file

EITA25 - Computer Security 21

Read permission for others

Read and execute for group

Read, write and execute for user

alice@eita25:/data/5$ chmod 754 file; ls -l file

-rwxr-xr-- 1 alice Students 0 Jan 16 10:12 file

 Controlled invocation

 Effective ID of process is ID of program owner (usually root)

◦ Here is the situation when RUID ≠ EUID

 Used to temporarily change access rights

 x is replaced by s

EITA25 - Computer Security 22

alice@eita25$ ls -l

total 40

-rwxr-sr-x 1 root root 16568 Jan 16 10:17 prog_setgid

-rwsr-xr-x 1 root root 16568 Jan 16 10:17 prog_setuid

alice@eita25$./prog_setuid &

[1] 249

alice@eita25$./prog_setgid &

[2] 250

alice@eita25$ ps -C prog_setgid,prog_setuid -o pid,ruser,euser,rgroup,egroup,args

PID RUSER EUSER RGROUP EGROUP COMMAND

249 alice root users users ./prog_setuid

250 alice alice users root ./prog_setgid

 Setuid on directory usually ignored

 Setgid on directory causes new files to get the same group as directory

EITA25 - Computer Security 23

Allows users to share files more easily

Without setgid, file would get the group which is current group ID

for user (set by newgrp and defaults to primary group).

alice@eita25:/data/7$ ls -l

total 0

drwxr-s--- 1 alice root 0 Jan 16 10:19 directory

alice@eita25:/data/7$ cd directory; touch file; ls -l

total 0

-rw-r--r-- 1 alice root 0 Jan 16 12:55 file

20 21

22 23

2019-02-04

6

 /usr/bin/passwd change password

 /bin/su change UID program

EITA25 - Computer Security 24

Setuid and setgid:

chmod u+s file or chmod 4XXX file

chmod g+s file or chmod 2XXX file

alice@eita25:/data$ ls -l /usr/bin/passwd /bin/su

-rwsr-xr-x 1 root root 44664 Jan 25 2018 /bin/su

-rwsr-xr-x 1 root root 59640 Jan 25 2018 /usr/bin/passwd

 Extremely important to write correct code, since it will run as root

 Anything you code will be used against you

 Example of vulnerability: CVE-2018-14665 from October 2018

◦ Affected most major Linux and BSD distributions

◦ Xorg-server, binary Xorg has setuid bit set, so regular users can launch X

◦ Launching X with Xorg –logfile /etc/shadow :1 overwrites /etc/shadow

with garbage (the output from X)

◦ Xorg –fp ”root::16431:0:99999:7:::” –logfile /etc/shadow

◦ The command above also adds an extra line to shadow, which sets a blank root

password

◦ Any user can now get root privileges simply by issuing su

EITA25 - Computer Security 25

 Historically used to keep program code in memory when exiting program

(still the case in, e.g. HP-UX)

 Now used to only let owner delete file

◦ directory owner and superuser can also delete it

 Typical example: the directory /tmp has sticky bit set

EITA25 - Computer Security 26

bob@eita25:/data/8$ ls -la

total 0

drwxrwxr-t 1 alice Students 8 Jan 16 10:26 .

drwxr-xr-x 1 root root 36 Jan 16 10:33 ..

-rw-rw-r-- 1 alice Students 0 Jan 16 10:26 file

bob@eita25:/data/8$ rm file

rm: cannot remove 'file': Operation not permitted

bob@eita25:/data/9$ ls -la

total 0

drwxrwxr-x 1 alice Students 8 Jan 16 10:26 .

drwxr-xr-x 1 root root 36 Jan 16 10:33 ..

-rw-rw-r-- 1 alice Students 0 Jan 16 10:26 file

bob@eita25:/data/9$ rm file

bob@eita25:/data/9$

 Control default permissions, stored in /etc/profile

 Override in ~/.profile or in prompt

 umask tells which permissions to exclude by default

 Access = full access AND NOT(umask)

◦ Full access for programs and directories: 0777

◦ Full access for files: 0666

EITA25 - Computer Security 27

alice@eita25:/data/a$ umask 0027; mkdir directory; touch file; ls -

l

total 0

drwxr-x--- 1 alice users 0 Jan 16 12:59 directory

-rw-r----- 1 alice users 0 Jan 16 12:59 file

24 25

26 27

2019-02-04

7

 chown is used to change the owner of a file (or directory)

 chgrp is used to change the group of a file (or directory)
◦ chown can set group also

 Possible problem: A user creates a suid program and owner gets changed to
root

 Common solution:
◦ Only root can change owner and setuid and setgid bits are removed when owner is

changed

◦ Anyone can change group to a group they are member of, but setuid and setgid bits are
removed when group is changed

 Other solutions possible
◦ Let only root use chown, but preserve setuid and setgid bits

◦ Let any user change owner on his/her own files, but remove setuid and setgid bits

EITA25 - Computer Security 28

alice@eita25:/data/b$ ls -i

25600573 file1 25600574 file2 25600575 file3 25600573 file4

 Stores file information

 Directory contains filename and inode number

 inode contains e.g.:

◦ Access rights

◦ Owner (UID)

◦ Group (GID)

◦ Time of latest access, modification and change

◦ Size of file

◦ Pointers to block of data

EITA25 - Computer Security 29

Note that file1 and file4

points to the same

inode

alice@eita25:/data/b$ stat file1

File: file1

Size: 30 Blocks: 8 IO Block: 4096 regular file

Device: 19h/25d Inode: 25600573 Links: 2

Access: (0644/-rw-r--r--) Uid: (1004/ alice) Gid: (1000/Students)

Access: 2019-01-16 10:34:10.995269889 +0000

Modify: 2019-01-16 10:34:49.137268710 +0000

Change: 2019-01-16 10:35:38.482208788 +0000

Birth: -

 Some information about an inode can be found using stat

EITA25 - Computer Security 30

Size in bytes Inode number

Last access

Last

modification of

fileLast

modification of

inode

Access rights

given to this file

Number of links

 Files can be copied in two ways

 cp src dest
◦ Creates a new inode and new physical file owned by user running cp

 ln target linkname
◦ Creates filename and pointer to target’s inode. No new file is created.

◦ When one filename is deleted the other is still there and the file is not deleted

◦ rm subtracts the number of links in the inode by 1. If it becomes zero the
corresponding data block is freed

 ln –s target linkname
◦ Creates a symbolic link, not a real link

◦ When opening symbolic link for reading or writing link is automatically dereferenced

◦ If target is deleted, the symbolic link remains, pointing to nothing

EITA25 - Computer Security 31

28 29

30 31

2019-02-04

8

 Assume process ”proc” with effective user ID = 0 writes to files in /tmp

directory

◦ Process creates e.g., /tmp/file and writes temporary data to this file

 What if malicious user creates /tmp/file as symbolic link to /etc/passwd?

◦ The file /etc/passwd will be overwritten since ”proc” has write access to this file

◦ System is damaged

 Race condition: Who creates the file first

EITA25 - Computer Security 32

 Create files with unpredictable

filenames in /tmp

◦ Still, attacker can try thousands of filenames

and will succeed with probability > 0

 Use O_CREAT and O_EXCL flag

when opening file

◦ Then open fails if file already exists

◦ Will not follow symbolic links during

creation either

EITA25 - Computer Security 33

Function mkstemp()

will do this

 Devices are treated as files

 Example: If you can read/write physical memory all access control is

overruled!

 /dev/mem is the physical memory

 /dev/sda is the first disk drive (in Linux)

EITA25 - Computer Security 34

 Different physical devices put under a single root “/”

 The mounted file system may contain unwelcome programs

◦ nosuid – turn off SUID and SGID bits

◦ noexec – no binaries can be executed

◦ nodev – no devices can be accessed

◦ ro – read-only

 UIDs and GIDs are local identifiers that need not be interpreted the same

on different Unix systems

◦ Need global unique identifiers on networks

EITA25 - Computer Security 35

32 33

34 35

2019-02-04

9

 When executing programs, system needs to know where to look for it → PATH tells

system where to look

 PATH=. : $HOME/bin:/usr/bin:/bin:

◦ Programs can be located in current directory + 3 bin directories

◦ Trojan horse

 Can be a bad idea to put your current directory in the search path

(especially for programs executed by root)

 Order matters, current directory last reduces risk

 Alternatively, call program by full name

EITA25 - Computer Security 36

 Labs start next week (yay!)

 Sign up if you haven’t already

◦ Lots of free spots Friday afternoon :D

 There are preparatory assignments for all labs

 Start preparations early for lab 2

 Also, start preparations early for lab 2

 Note that there are two question hours especially for lab 2

◦ Check course home page under Labs for exact hours

 You are not alone! You can ask me questions

EITA25 - Computer Security 37

36 37

