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 Identification and Authentication

 Access Control

 Other security related things:

◦ Devices, mounting filesystems

◦ Search path

◦ Race conditions

 NOTE: filenames may differ between OS/distributions
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 Principals have unique UID

◦ System cares about ID, not name

◦ Several users can have different names but same ID. Then they are treated as the same.

 Superuser (root) has UID = 0

◦ There is only one superuser

 Stored in /etc/passwd

 Processes are subjects.
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 Real user ID – The ID of the logged in principal

◦ Can only be changed by root (effective user ID = 0) → this is how login works

 Effective user ID – The ID used for access control

◦ Can be changed by root (effective user ID = 0) to anything

 Used by processes with effective user ID = 0 when they temporarily access files as a less 

privileged user

◦ Can be changed by anyone (any effective user ID) to real user ID

 This process has to be able to get back to effective user ID = 0 

 Same rules apply to group ID
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 Can not associate multiple user IDs with one file
◦ We have to put users in groups if we want several users to have 

access to the file

 Every user belongs to a primary group.

 Older Unix: Can only be in one group at a time

 Newer Unix and Linux: Can be in several groups at the 
same time
◦ New files are associated with current group ID of user

◦ Process group ID is the current group ID of user running the process

 Change group (newgrp)

 Primary group given in /etc/passwd

 Other groups in /etc/group
◦ A group can not belong to a group
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users:x:100:

Students:x:1000:alice,bob
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 Salt is always used

 Hash function and salt will depend on OS

 We look at three variants
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Hash function
Password Hash’

Password file

=

Hash
Salt

Yes/No

 Design dates back to 1976

 Based on DES

 Password up to 8 characters, salt 12 bits

◦ Take least significant 7 bits → 56 bit key

◦ Encrypt zero string 25 times with DES

◦ If bit i = 1 in salt, swap bits i and i + 24 in E-box output

◦ Output 12 + 64 = 76 bits. Encode to 13 characters.

 Problems: Short passwords, short salts, constant cost (and fast function)
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 MD5 crypt

◦ Developed for FreeBSD to avoid export restrictions and allow longer passwords (up to 

264 bits)

◦ Algorithm uses 1000 iterations → slow

◦ Salt 12-48 bits

◦ Output: $1$ ’salt’ $ 128 bit hash output

 Problem: Constant cost
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 Based on block cipher blowfish

 Password up to 72 characters, 128 bit random salt

 Internal loop with variable cost

 Output $2a$cost$salt + 192 bit hash output

 Default in OpenBSD

 All problems solved
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Bullshit!
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 Arch Linux SHA-512-crypt with 5000 rounds

 Ubuntu 18.04 SHA-512-crypt with 5000 rounds

 FreeBSD 12 SHA-512-crypt with 5000 rounds

 OpenBSD 6.4 bcrypt with cost 10

 macOS 10.8+ PBKDF2-SHA512 with ~40000 rounds
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 Hashes/sec based on 3.4 GHz processor with 4 cores, 
approximate values given

 The given performance for bcrypt with cost 10, and for 
sha512crypt with 5000 rounds
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DES crypt MD5 crypt bcrypt sha512crypt

Password length max 8 chars virtually any max 72 chars virtually any

Salt length 12 bits 12-48 bits 128 bits typically 48 bits

Variable cost No No Yes Yes

Hashes/sec 9 800 000 120 000 170 2 500

 ”All problems solved” is kind of bullshit

 Some devices can be really fast to a low cost

◦ With enough money they are really really really fast

◦ Several instances can be implemented in parallel

 Can no longer compare

◦ CPU – ”needed” when verifying password

◦ GPU, FPGA, ASIC – used by attackers

 Make this more fair by making hashing more difficult (costly) 

for GPUs, FPGAs and ASICs

 Example: Argon2 – variable cost in both time and memory
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GPU

FPGA/ASIC

alice:x:1004:100::/home/alice:/bin/bash

bob:x:1005:100::/home/bob:/bin/bash

 Store user (principal) information

Format:

Username:password:UID:GID:ID string:home directory:login shell

 File is world readable

 Example:
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 Save passwords in a non-world readable file
◦ Username

◦ (hashed) password

◦ Date of last change (days since Jan 1, 1970)

◦ Minimum days between password changes (0 means anytime)

◦ Maximum days of validity

◦ Days in advance to warn user about change

◦ Days account is active after password expired

◦ Date of account disabling (days since Jan 1, 1970) 

◦ Last entry is reserved
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alice:$6$Gar7uDv0$Ihuwd...wKGlNnWavx:17912:0:99999:7:::

bob:$6$q1/LoHbE$7Md2k...hAtXiw4hW.:17912:0:99999:7:::

 Discretionary access control – owner of file can change permissions

 Three categories: User (owner), Group, Other (world)

 Three access rights: Read, Write, Execute
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Other info from ls -l 

Link counter, owner, group, size, date of last change, name

alice@eita25:/data/1$ ls -l

total 8

drwxr-xr-x 1 alice Students 26 Jan 16 10:05 directory

-rw-r--r-- 1 alice Students 31 Jan 16 10:04 file1

-rw-r--r-- 1 alice Students 10 Jan 16 10:04 file2

1. Owner

2. Group

3. Other

Consequence:

if  owner = r and other = rw then owner has no write permission
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alice@eita25:/data/2$ ls -l

total 0

-r--rw-rw- 1 alice Students 0 Jan 16 10:06 file

alice@eita25:/data/2$ echo hello > file

bash: file: Permission denied

bob@eita25:/data/2$ ls -l

total 0

-r--rw-rw- 1 alice Students 0 Jan 16 10:06 file

bob@eita25:/data/2$ echo hello > file

bob@eita25:/data/2$ 

 Read = list the directory

 Write = Delete, rename and insert files in directory

 Execute = access directory and access files in directory
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alice@eita25:/data/3$ ls -la

total 0

dr-xr-xr-x 1 alice Students  8 Jan 16 10:09 .

drwxr-xr-x 1 root  root 36 Jan 16 10:33 ..

-rw-rw-rw- 1 alice Students  0 Jan 16 10:09 file

alice@eita25:/data/3$ rm -f file

rm: cannot remove 'file': Permission denied

alice@eita25:/data/4$ ls -la

total 0

drwxr-xr-x 1 alice Students  8 Jan 16 10:10 .

drwxr-xr-x 1 root  root 36 Jan 16 10:33 ..

-rw-r--r-- 1 root  root 0 Jan 16 10:10 file

alice@eita25:/data/4$ rm -f file

alice@eita25:/data/4$ 
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 Used to change permissions on files

 Mnemonics can be used: user, group, other, all, read write 

execute.

 Examples:

chmod u+rw file

chmod u=r file

chmod a+rwx file

chmod u-w,g+r,o+r file

chmod a-rwx,u+r file1 file2
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 Alternatively, numbers can be used. 

 See each group of permissions as one number. 

◦ Read = 4

◦ Write = 2                Sum gives permission     

◦ Execute = 1

 Example:

chmod 754 file
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Read permission for others

Read and execute for group

Read, write and execute for user

alice@eita25:/data/5$ chmod 754 file; ls -l file

-rwxr-xr-- 1 alice Students 0 Jan 16 10:12 file

 Controlled invocation

 Effective ID of process is ID of program owner (usually root)

◦ Here is the situation when RUID ≠ EUID

 Used to temporarily change access rights

 x is replaced by s
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alice@eita25$ ls -l

total 40

-rwxr-sr-x 1 root root 16568 Jan 16 10:17 prog_setgid

-rwsr-xr-x 1 root root 16568 Jan 16 10:17 prog_setuid

alice@eita25$ ./prog_setuid &

[1] 249

alice@eita25$ ./prog_setgid &

[2] 250

alice@eita25$ ps -C prog_setgid,prog_setuid -o pid,ruser,euser,rgroup,egroup,args

PID RUSER    EUSER    RGROUP   EGROUP   COMMAND

249 alice root     users    users ./prog_setuid

250 alice alice users    root     ./prog_setgid

 Setuid on directory usually ignored

 Setgid on directory causes new files to get the same group as directory
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Allows users to share files more easily

Without setgid, file would get the group which is current group ID 

for user (set by newgrp and defaults to primary group).

alice@eita25:/data/7$ ls -l

total 0

drwxr-s--- 1 alice root 0 Jan 16 10:19 directory

alice@eita25:/data/7$ cd directory; touch file; ls -l

total 0

-rw-r--r-- 1 alice root 0 Jan 16 12:55 file
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 /usr/bin/passwd change password

 /bin/su change UID program
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Setuid and setgid:

chmod u+s file or chmod 4XXX file

chmod g+s file or chmod 2XXX file

alice@eita25:/data$ ls -l /usr/bin/passwd /bin/su

-rwsr-xr-x 1 root root 44664 Jan 25  2018 /bin/su

-rwsr-xr-x 1 root root 59640 Jan 25  2018 /usr/bin/passwd

 Extremely important to write correct code, since it will run as root

 Anything you code will be used against you

 Example of vulnerability: CVE-2018-14665 from October 2018

◦ Affected most major Linux and BSD distributions

◦ Xorg-server, binary Xorg has setuid bit set, so regular users can launch X

◦ Launching X with Xorg –logfile /etc/shadow :1 overwrites /etc/shadow

with garbage (the output from X)

◦ Xorg –fp ”root::16431:0:99999:7:::” –logfile /etc/shadow

◦ The command above also adds an extra line to shadow, which sets a blank root

password

◦ Any user can now get root privileges simply by issuing su
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 Historically used to keep program code in memory when exiting program 

(still the case in, e.g. HP-UX)

 Now used to only let owner delete file

◦ directory owner and superuser can also delete it

 Typical example: the directory /tmp has sticky bit set
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bob@eita25:/data/8$ ls -la

total 0

drwxrwxr-t 1 alice Students  8 Jan 16 10:26 .

drwxr-xr-x 1 root  root 36 Jan 16 10:33 ..

-rw-rw-r-- 1 alice Students  0 Jan 16 10:26 file

bob@eita25:/data/8$ rm file

rm: cannot remove 'file': Operation not permitted

bob@eita25:/data/9$ ls -la

total 0

drwxrwxr-x 1 alice Students  8 Jan 16 10:26 .

drwxr-xr-x 1 root  root 36 Jan 16 10:33 ..

-rw-rw-r-- 1 alice Students  0 Jan 16 10:26 file

bob@eita25:/data/9$ rm file

bob@eita25:/data/9$ 

 Control default permissions, stored in /etc/profile

 Override in ~/.profile or in prompt

 umask tells which permissions to exclude by default

 Access = full access AND NOT(umask)

◦ Full access for programs and directories: 0777

◦ Full access for files: 0666
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alice@eita25:/data/a$ umask 0027; mkdir directory; touch file; ls -

l

total 0

drwxr-x--- 1 alice users 0 Jan 16 12:59 directory

-rw-r----- 1 alice users 0 Jan 16 12:59 file
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 chown is used to change the owner of a file (or directory)

 chgrp is used to change the group of a file (or directory)
◦ chown can set group also

 Possible problem: A user creates a suid program and owner gets changed to 
root

 Common solution:
◦ Only root can change owner and setuid and setgid bits are removed when owner is 

changed

◦ Anyone can change group to a group they are member of, but setuid and setgid bits are 
removed when group is changed

 Other solutions possible
◦ Let only root use chown, but preserve setuid and setgid bits

◦ Let any user change owner on his/her own files, but remove setuid and setgid bits
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alice@eita25:/data/b$ ls -i

25600573 file1  25600574 file2  25600575 file3  25600573 file4

 Stores file information

 Directory contains filename and inode number

 inode contains e.g.:

◦ Access rights

◦ Owner (UID)

◦ Group (GID)

◦ Time of latest access, modification and change

◦ Size of file

◦ Pointers to block of data
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Note that file1 and file4 

points to the same 

inode

alice@eita25:/data/b$ stat file1

File: file1

Size: 30        Blocks: 8          IO Block: 4096   regular file

Device: 19h/25d Inode: 25600573    Links: 2

Access: (0644/-rw-r--r--)  Uid: ( 1004/  alice)  Gid: ( 1000/Students)

Access: 2019-01-16 10:34:10.995269889 +0000

Modify: 2019-01-16 10:34:49.137268710 +0000

Change: 2019-01-16 10:35:38.482208788 +0000

Birth: -

 Some information about an inode can be found using stat
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Size in bytes Inode number

Last access

Last 

modification of 

fileLast 

modification of 

inode

Access rights 

given to this file

Number of links

 Files can be copied in two ways

 cp src dest
◦ Creates a new inode and new physical file owned by user running cp

 ln target linkname
◦ Creates filename and pointer to target’s inode. No new file is created.

◦ When one filename is deleted the other is still there and the file is not deleted

◦ rm subtracts the number of links in the inode by 1. If it becomes zero the 
corresponding data block is freed 

 ln –s target linkname
◦ Creates a symbolic link, not a real link

◦ When opening symbolic link for reading or writing link is automatically dereferenced

◦ If target is deleted, the symbolic link remains, pointing to nothing
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 Assume process ”proc” with effective user ID = 0 writes to files in /tmp 

directory

◦ Process creates e.g., /tmp/file and writes temporary data to this file

 What if malicious user creates /tmp/file as symbolic link to /etc/passwd?

◦ The file /etc/passwd will be overwritten since ”proc” has write access to this file

◦ System is damaged

 Race condition: Who creates the file first
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 Create files with unpredictable 

filenames in /tmp

◦ Still, attacker can try thousands of filenames 

and will succeed with probability > 0

 Use O_CREAT and O_EXCL flag 

when opening file

◦ Then open fails if file already exists

◦ Will not follow symbolic links during 

creation either
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Function mkstemp() 

will do this

 Devices are treated as files

 Example: If you can read/write physical memory all access control is 

overruled!

 /dev/mem is the physical memory

 /dev/sda is the first disk drive (in Linux)
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 Different physical devices put under a single root “/”

 The mounted file system may contain unwelcome programs

◦ nosuid – turn off SUID and SGID bits

◦ noexec – no binaries can be executed

◦ nodev – no devices can be accessed

◦ ro – read-only

 UIDs and GIDs are local identifiers that need not be interpreted the same 

on different Unix systems

◦ Need global unique identifiers on networks
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 When executing programs, system needs to know where to look for it → PATH tells 

system where to look

 PATH=. : $HOME/bin:/usr/bin:/bin:

◦ Programs can be located in current directory + 3 bin directories

◦ Trojan horse

 Can be a bad idea to put your current directory in the search path 

(especially for programs executed by root)

 Order matters, current directory last reduces risk

 Alternatively, call program by full name
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 Labs start next week (yay!)

 Sign up if you haven’t already

◦ Lots of free spots Friday afternoon :D

 There are preparatory assignments for all labs

 Start preparations early for lab 2

 Also, start preparations early for lab 2

 Note that there are two question hours especially for lab 2

◦ Check course home page under Labs for exact hours

 You are not alone! You can ask me questions
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