
Solutions, exercises, set 1

Computer Security

Exercise 1.1
As preventative measures, one would check id and authentication of every-

body wanting to use (log in) to the application. All the communication between
the clients and the server should be encrypted and authenticated. Different user
levels could give different access levels, although it might be appreciated with
some sort of override system for emergencies.

Detection means finding out when someone has broken into the system and
what they have done, but also when a legitimate user has been overriding their
rights to look at something not intended for them.

To recover, we need good and frequent backups to be able to restore the
data after a technical problem or an illwilling person. Broadening the scope, we
might react to a system misuse by taking legal actions against the suspect data
thieves or “curious George”.

Exercise 1.2
a) With 2n possible hash values we need to try, according to the birthday
paradox, 2n/2 different inputs before we find a collision. Using this fact we
can create about 2n/2 “evil” documents and 2n/2 “good” documents. This
gives roughly 2n/2 documents in total and it is likely that two hash values will
collide. With probabilty 1/2 the collision will be between a “good” and an “evil”
document. We let the victim sign the good document. After that we move the
signature to the evil document since it is valid for both.

Some may find it more intuitive to see this attack from a different point
of view: With 2n/2 “evil” documents, we cover a fraction 2−n/2 of the total
number of hash values. Any newly created hash value has a probability 2−n/2

of colliding with one of the hash values from the “evil” documents. Thus, the
expected number of “good” documents needed is geometrically distributed with
an expected value of 2n/2.

This attack gives a lower bound on n when creating a hash function.
b) Since SHA-1 produces hash values consisting of n = 160 bits, we need to
create about 280 contracts during our attack.

Exercise 1.3
Let’s use some small numbers. The hint suggests that q = 23 and p =

2q + 1 = 47 is a good choice. Choosing α = 2 gives g = 4. For the private key,
let’s try a = 13. It yields y = 413 mod p = 8.

(If you have trouble calculating 413 mod p by hand, break it up: 42 mod p =
16, 44 mod p = 21 and 48 mod p = 18. This gives 413 mod p = 48+4+1 mod p =
48444 mod p = 8. This way, all you need to do are some squarings and some
multiplications modulo p where all calculations will be doable by hand.)

We are now ready to publish our public key (p, q, g, y) = (47, 23, 4, 8) while
keeping our private key a = 13 to ourselves. We sign some message m with

1



h = h(m) = 11. Choosing k = 3 we find r = (43 mod p) mod q = 17.
We need to find k−1 = 3−1 mod q and might find ourselves tempted to claim

that 3−1 mod q = 1
3 . This is however not true as we only have the integers to

play with. In short, we need to find an integer such that 3 · 3−1 mod q = 1.
The interested reader may read up on Euclid’s algorithm, but we can resort to a
brute force search or some thinking. Anyway, we soon realize that 3 ·8 = 24 ≡ 1
(mod 23) so k−1 mod q = 8.

Using this, we find s = 8(11 + 13 · 17) mod q = 16 and the signature is
published as (r, s) = (17, 16).

To verify the signature we do the following (note that a is not needed).
w = s−1 mod q = 13 by brute force and we get the two1 help variables as
u1 = wh mod q = 5 and u2 = rw mod q = 14. Using square and multiply
as above, we find that 82 mod p = 17, 84 mod p = 7, 88 mod p = 2 and thus
814 mod p = 3. 45 mod q = 37 is simple enough to find at once and we finally
arrive at v = (45814 mod p) mod q = 17 = r which verifies the signature.

Exercise 1.4
The private key is (p, q, e) and the public one is (n, d) where we assume that

you know the relations between, and properties of, these numbers. Let’s say
an attacker acquires two messages and their corresponding signatures. Thus,
she has si,mi such that sdi ≡ mi (mod n), i = 1, 2 (this is the check someone
would do to verify the signatures). What happens if the attacker publishes
(m, s) = (m1m2 mod n, s1s2 mod n)? An attempt to verify the signature would
give

sd mod n = (s1s2 mod n)d mod n

= sd1 mod n · sd2 mod n

= m1m2 mod n = m mod n,

tricking the reciever into accepting the signature! Convince yourself that the
use of a hash function means the attacker needs to perform a preimage attack
on the hash function in order to utilize the above attack idea.

Exercise 1.5
a) Two blocks that are identical will be encrypted the same. This preserves
some of the structure in the plaintext.
b) Since two identical blocks will only be encrypted into the same cryptotext
if the previous blocks of cryptotext match, there is a very small probability of
such a “collision”.
c) Together with an IV, a counter is encrypted in order to create a stream cipher-
like application where the plaintext is XOR-ed with the output of the block
cipher. The key is the same for all invocations of the block cipher. Without
the IV and always restarting the counter at 0 for a new message, we would
reproduce keystream used for a previous plaintext, which is bad.

Exercise 1.6
Let’s study this system from Eve’s point of view: She first sees

X = M + SA

flying by from Alice to Bob. Then Bob responds with

Y = X + SB = M + SA + SB

1There’s a typo in the book here. There are of course two variables u1 and u2.

2



before the last transmission,

Z = Y + SA = M + SB .

Since the scheme is entirely based on XOR, Eve might start with trying just
that using some of the variables she has at hand:

X + Y = M + SA +M + SA + SB = SB .

Oops, she now has Bob’s secret key! This means she can find

Z + SB = M + SB + SB = M.

So it seems as if all Eve needs to do is add up all three messages on the channel:

X + Y + Z = M + SA +M + SA + SB +M + SB = M.

Eve will be able to decrypt the transmission in real-time in all senses of the
word since she can do it just as fast as Bob. Clearly, there is a problem with
this protocol.

Exercise 1.7
a) With p = 13 and q = 17, we get n = 11 · 17 = 187 and φ(n) = φ(p)φ(q) =
(p−1)(q−1) = 160. We compute d such that e·d ≡ 1 mod 160→ e·d = 1+k·160.
With k = 5 we get d = 801/9 = 89.
b) To encrypt we compute 149 mod 187 ≡ 148+1 mod 187. We can use the fact
that 142x mod n = (14x mod n)(14x mod n) and construct the following table:
141 ≡ 14 mod 187
142 ≡ 196 ≡ 9 mod 187
144 ≡ 92 ≡ 81 mod 187
148 ≡ 812 ≡ 16 mod 187
So 149 ≡ 14 · 16 ≡ 37 mod 187. The encryption of m = 14 is given by c = 37.

Exercise 1.8
A MAC takes a key as input and only the parties with knowledge of the key

will be able to compute the MAC. Thus it will protect against both accidental
and intentional changes to the message. A hash value does not take a secret key
as input and anyone with knowledge of the algorithm will be able to calculate
the hash of a message. Thus it will protect against accidental changes but not
intentional changes.

Exercise 1.9
In a Merkle-Damg̊ard construction the internal variable hi is computed as

hi = f(xi‖hi−1) and the MAC is given by MAC(x) = hm. The MAC of
the message x = x1 . . . xm is the hash of the message k, x1, . . . , xm. If we
know this, we can find the MAC of another message x′ = x1 . . . xmxm+1 as
f(xm+1‖MAC(x)). (By Kerckhoffs’ principle we assume that the function f(·)
is known.)

3


