
111111

Arithmetic Packages- Introduction

• It would be very painful if when building a counter we
had to think about all the internals
– We need an adder etc.

» How do we build the adder ?

– Would be much better if we could simply say
» Add 1 to the current counter value

» count <= count + 1

– And an (optimal) circuit was automatically generated for us

– Furthermore, if we work in this way the design is still
architecturally independent- A good thing !!

112112

Arithmetic Package Overview- I

• VHDL offers a number of packages which provide
common arithmetical functions
– Addition (+)

– Subtraction (-)

– Multiplication (*)

– Division (/)

– Comparison (=, >, <, <=, >=, /=)

• By simply adding in a ‘use’ clause at the top of your code
these become available
– Synthesis automatically generates the logic required !!

113113

Arithmetic Package Overview- II

• There are a number of different packages that exist for
historical reasons
– STD_LOGIC_ARITH, std_logic_signed, std_logic_unsigned

– NUMERIC_STD (IEEE)

• We will only consider ‘NUMERIC_STD’ as it is the only
standard package which is defined on all commercial
synthesis and simulation tools
– Tools must provide a common set of arithmetical functions

– Synthesis result (gates and how they are connected) will change
with synthesis tool, but functionality will not

114114

Declaring Arithmetic Signals & Variables

• NUMERIC_STD offers 2 data types

– SIGNED, UNSIGNED
– These are declared in a similar method to ‘std_logic_vector’

– Can be used to ‘declare’ signals, variables, even ports in an entity

• UNSIGNED
– Assumes that only positive values are going to be used

– Example declaration
 signal count: unsigned (3 downto 0)

– This creates a signal used for storing values 0 -> 15

115115

Declaring Arithmetic Signals & Variables

• SIGNED
– 2’s complement form, with MSB used as a sign bit

– Example declaration
 signal count: signed (3 downto 0)

– Creates a signal used for storing the values -8 -> +7

Integer Signed

-8 1000

-1 1111

0 0000

+7 0111

116116

Representation of Signed/ Unsigned

• Signed/ Unsigned values are represented using a subset of
std_logic_vector
– I.e. ‘0’, ‘1’ in each bit

• However, cannot perform comparisons, assignments etc.
directly with std_logic
– We need to use conversion functions (see later)

117117

Arithmetic Package Functions- I

• For a detailed list of functions (and their operations) see
the program listing from ‘NUMERIC_STD.VHD’ this is
the official IEEE package

• How do I read the package header ?

• Consider the function Id: A.6

function “+” (L: UNSIGNED; R: NATURAL) return UNSIGNED

UNSIGNED NATURAL UNSIGNED=+

118118

Arithmetic Package Functions- II

• Signed Arithmetic Functions:

• i.e. functions to add/ subtract signed numbers
– Note integer as a +ve/ -ve argument for signed op’s

Function Argument 1 Argument 2 Returns

signed signed signed

signed integer signed
+

signed signed signed

signed integer signed
-

119119

Arithmetic Package Functions- III

• Unsigned Arithmetic Functions:

• i.e. functions to add/ subtract unsigned numbers
– Note natural as a +ve only argument since no notion of sign

Function Argument 1 Argument 2 Returns

natural
+

natural
-

unsigned unsigned unsigned

unsigned unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

120120

Arithmetic Package Functions- IV

• Comparison functions:

Function Argument 1 Argument 2 Returns

=

boolean

/=
>
<

>=
<=

Name

Equal

Not equal

Greater than

Less than

Greater than/equal

Less than/equal

unsigned unsigned

signed signed

natural unsigned

integer signed

121121

Arithmetic Package Functions- V

• Resize functions
– Used for resizing a signed/ unsigned value

– Useful if we want to extract carry bit etc.

• Example
newvalue = resize(oldvalue, 5)

Function Argument 1 Argument 2 Returns

resize

Description

Resize argument
unsigned

natural
(new size)

signed
natural

(new size)

unsigned
(new size)

signed
(new size)

122122

Arithmetic Package Functions- VI

• Simple conversion functions
– Used to convert integer/ natural numbers to and from signed/

unsigned

Function Argument 1 Argument 2 Returns

to_integer
unsigned

signed

natural

integer

natural

integer

unsigned
(size)
signed
(size)

to_unsigned
natural
(size)

natural
(size)

Description

Convert to
integer

Convert to
unsigned

to_signed
Convert to

signed

123123

Arithmetic Package Functions- VII

• Conversion to/ from std_logic_vector
– Used to convert signed and unsigned values to and from

std_logic_vector
» Really just copies each bit

Function Argument ReturnsDescription

std_logic_vector unsigned

signed

unsigned
Convert to
unsigned

signed
Convert to

signed
std_logic_vector

std_logic_vectorstd_logic_vector
Convert to

std_logic_vector
unsigned

std_logic_vector std_logic_vector
Convert to

std_logic_vector
signed

124124

Making the Package Visible

• At the top of the VHDL source file, the line

• is added

• This makes the package (functions, data types, etc.)
‘visible’

Library Name Package Name

use ieee.numeric_std.all

125125

Arithmetic Package Example- I

• Some concrete examples of the use of the arithmetic
package !

• Simple counter
– Counts up to certain value then resets back

– Only increments if input ‘inc’ is set to ‘1’

INC

COUNT 0000 0001 0010 0011 0100 00000001

CLK

No change when inc = ‘0’

126126

Arithmetic Package Example- II

• VHDL process
 process (CLK,RESET)

 begin

 if RESET=‘1’ then -- reset (asynchronous)

 internal_count <= “0000”;

 elsif CLK’EVENT and CLK=‘1’ then -- clock

 if inc = ‘1’ then

 if internal_count = “0100” then

 internal_count <= “0000”;

 else

 internal_count <= internal_count + 1;

 end if;

 else null;

 end if;

 end process;

127127

Arithmetic Package Example- III

• Architecture definition

use ieee.numeric_std.all;

architecture BEHAVIOR of UPCOUNTER is

 signal internal_count : unsigned (3 downto 0);

begin

-- see previous slide for process

count <= std_logic_vector(internal_count);

end BEHAVIOR;

128128

Arithmetic Packages- Conclusion

• Have given an overview of the numeric package and the
functions which it contains

• These are widely use for counters etc.

• Can be used to generate many different arithmetic circuits
(e.g. multipliers etc.) though it may be better to design
these for the given application as the target after synthesis
may be inefficient

