
Lab and
Exercise 2

Computer Organization

EITF70
EITA15

I/O Handling

Goals
• To understand what an I/O device is
• To be able to interface internal and external I/O devices
• To understand communication protocols
• To get an understanding of practical problems and how to

solve them

Christoffer Cederberg
Jonathan Sönnerup

2020

Contents

Introduction 3
Lab Equiment . 3

1 I/O Ports 7
1.1 Exercises . 9
1.2 Lab Exercises . 10

1.2.1 Oh, You Again... 10
1.2.2 Keep It Simple . 11
1.2.3 State Machine, once Moore . 11

2 USART - A Serial Communication Protocol 13
2.1 Data register . 14
2.2 USART control and status . 14
2.3 USART Baud Rate Register UBRR0H and UBRR0L . 15
2.4 Exercises . 17
2.5 Lab Exercises . 18

2.5.1 Communicating with the World - Part I . 18
2.5.2 Optional: Communicating with the World - Part II . 19

3 Pulse Width Modulation 21
3.1 PWM with an AVR Timer/Counter . 21
3.2 Fast PWM Mode . 22
3.3 Exercises . 25
3.4 Lab Exercises . 26

3.4.1 Controlling the Intensity of a LED Using Pulse Width Modulation 26

4 Volts to Bits - Analog-to-Digital Conversion 28
4.1 ADC Configuration . 29
4.2 Exercises . 31
4.3 Lab Exercises . 32

4.3.1 Setting the LED Intensity from an Input . 32

5 Optional: Ultrasonic Sensor - Measuring Distances 34
5.1 Time measurement using the AVR Timer/Counter 1 . 34
5.2 Exercises . 36
5.3 Lab Exercises . 37

5.3.1 Setting the LED Intensity with an Ultrasonic Sensor 37

6 Answers to Exercise Questions 39
6.1 Exercise 1 . 39

1

6.2 Exercise 2 . 40
6.3 Exercise 3 . 41
6.4 Exercise 4 . 42
6.5 Exercise 5 . 42

2

Introduction

The purpose of this laboratory exercise is to learn how to write programs that interact with the different I/O
devices available both inside and outside of the microcontroller. There are some parts that are optional, i.e.
parts that is not necessary to do in order to pass the lab. The following sections and chapters are optional
Section 2.5.2 and Chapter 5.

Lab Equiment

During this laboratory exercise, several I/O devices will be used. The external device that will be interfaced
is shown in Figure 1 and 2. In Figure 1, the I/O devices used are encapsulated in a red rectangle and labeled
with a number In Figure 2, the corresponding blocks are colored black.

3

1

2 3

5

6

4

Figure 1: A picture of the circuit board with the used I/O devices marked.

1 - LED’s Eight LEDs that are connected to Port B. By setting a pin high (3.3 V), the corresponding LED
emits photons with the energy 2.8−19 J ;).

2 - Potentiometers Two potentiometers are connected to Port A on the microcontroller (PA0 and PA1).
A potentiometer can be seen as a voltage divider where the resistance of the two resistors is changed
when the button is turned.

3 - Buttons There are six buttons on the circuit broad. They are connected to Port A on the microcon-
troller. If a button is pressed, the corresponding pin will be set high (high = 1 in software or 3.3 V in
the real world).

4 - Spare button This is a spare button, nothing fancy.

5 - Ultrasonic sensor This piece of hardware can be used to measure the distance to an object. This is
done by measuring the time of flight of a burst of sound waves (from the sensor to an obstacle and
back). This time is proportional to the distance to the object the sound reflects on.

6 - USB-UART interface This integrated circuit translates UART to USB (and vice versa) and enables
the microcontroller to communicate with a PC. In order to send data back and forth to a PC, a USB
cable needs to be connected between the USB mini connector on the circuit board and the PC.

4

T8/XCK0/T0)1
2
3
4
5
6
7
8

P1 P2

OLED-Display

Hello world

Addressable
RGB-LEDs

Ultrasonic sensor

Trig

Echo

USB-UART
interface

Opto interrupter, S1

Opto interrupter, S2

Button 1

Button 2

Button 3

Button 4

Button 5

Button 6

Button

MCU

PB1 (PCINT9/CLKO/T1)
PB0 (PCIN

PB2 (PCINT10/INT2/AIN0)
PB3 (PCINT11/OC0A/AIN1)
PB4 (PCINT12/OC0B/SS)
PB5 (PCINT13/ICP3/MOSI)
PB6 (PCINT14/ /MISO)
PB7 (PCINT15/

OC3A
OC3B/SCK)

PD0 (PCINT24/RXD0/T3*)
PD1 (PCINT25/TXD0)
PD2 (PCINT26/RXD1/INT0)
PD3 (PCINT27/TXD1/INT1)
PD4 (PCINT28/XCK1/OC1B)
PD5 (PCINT29/OC1A)
PD6 (PCINT30/OC2B/ICP)
PD7 (OC2A/PCINT31) (SCL/PCINT16) PC0

(SDA/PCINT17) PC1
(TCK/PCINT18) PC2
(TMS/PCINT19) PC3
(TDO/PCINT20) PC4
(TDI/PCINT21) PC5

(TOSC1/PCINT22)PC6
(TOSC2/PCINT23)PC7

(ADC7/PCINT7) PA7
(ADC6/PCINT6) PA6
(ADC5/PCINT5) PA5
(ADC4/PCINT4) PA4
(ADC3/PCINT3) PA3
(ADC2/PCINT2) PA2
(ADC1/PCINT1) PA1
(ADC0/PCINT0) PA01

2
3
4
5
6
7
8

14
15
16
17
18
19
20
21 22

23
24
25
26
27
28
29

33
34
35
36
37
38
39
40

1
2

3

5

4

6

Figure 2: Block schematic of the circuit board with the used I/O blocks coloured black.

Some of the I/O units need to be interfaced in a way that requires more finesse than what a simple, general-
purpose I/O pin can achieve. For instance, the outputs of the potentiometers are analog signals. An I/O pin,
when configured as an input, can only tell if a signal is above or below a certain threshold. For this reason,
it lacks the ability to measure the actual amplitude of an analog signal. In case of the AVR microcontroller
(and microcontrollers in general), each I/O pin can be connected (inside the microcontroller) to a couple of
different sources. The name of the alternative sources can be seen in Figure 2. It is the text between the
parentheses. When it comes to Port A, all of the I/O pins can be connected to the built-in analog-to-digital
converter. See the name of the alternative source in Figure 2, ADC0, ADC1 and ADC2 and so on.

During the lab, two other internal I/O devices will be used, namely one of the two serial communication
units and a timer. All of the used I/O devices, coloured black, can be seen in Figure 3.

5

TC 3
(16-bit)

USART 0

ADC

I/O
PORTS

Figure 3: Block diagram for an ATmega1284P.

6

Chapter 1

I/O Ports

In the previous laboratory exercise, two out of four 8-bit, bi-directional I/O ports were used. The name of
the ports are Port A, B, C, and D. With this piece of hardware it is possible to change the state (high or
low) of an individual I/O pin. This was done when turning an LED on and off. The I/O ports can also be
configured to be an input. This function was utilized when checking the state of a button.

Each port has three different registers. For Port A the name of these registers are DDRA, PINA and PORTA.
Each port contains 8 pins and thus the corresponding registers have the same length. In Table 1.1 below,
their functionalities are described.

Table 1.1: I/O port registers and their corresponding functionality.

Register Description
DDRx Specifies the data direction (input or output)
PINx Read the state of the port, if it is an input
PORTx Read and write to the port, if it is an output

To set the first pin on Port B, PB0, as an output and the pin high, follow the steps below.

• Set the data direction register to 0x01 (hexadecimal) or 0b00000001 (binary).

• Set the pin PB0 to high by writing 0x01 or 0b00000001 to the port register.

When writing to a I/O port register (or any other register, for that matter) it is important to use the logic
operator, OR (|), instead of directly assigning a value. By using the “|” operator, a bitwise OR operation
is performed with the content of the register and the value 0b00000001. By doing so, it is ensured that
only the specified bit is changed. This is good, since in the majority of cases there will be different types of
devices connected to the same port.

As mentioned earlier, the microcontroller has four I/O ports. See Table 1.2 for their addresses.

7

Table 1.2: I/O registers and their corresponding addresses.

Address Register
0x20 PINA
0x21 DDRA
0x22 PORTA
0x23 PINB
0x24 DDRB
0x25 PORTB
0x26 PINC
0x27 DDRC
0x28 PORTC
0x29 PIND
0x2A DDRD
0x2B PORTD

8

1.1 Exercises

Answers to the questions can be found in Appendix 6.1.

C Programming

Assume you store the results in an 8 bit register.

1.1 What is 12 | 1?

1.2 What is 12 & 1?

1.3 What is 1 � 3?

1.4 What is 3 � 1?

1.5 What is 3 � 4?

1.6 What is 11 | (1 � 2)?

1.7 What is ~(1 � 2)?

1.8 What is 255 & ~(1 � 5)?

1.9 Using the pointer, char *p, how do you read the value on address 0x1337?

1.10 Using the pointer, char *p, how do you read the value from an input port on address 0x1337?

1.11 Using the pointer, char *q, how do you write the value 42 to address 0x0666?

1.12 You have declared a variable, int a. What is the address of variable a?

I/O Devices

1.13 Assume you have 8 LEDs connected to a port, Port G. How would you configure the data direction
register (DDRG) for that port?

1.14 Assume the configuration as above, which register (PING and PORTG) would you read from / write
to?

1.15 Assume that a pacemaker is connected to the H port, using the 4 most significant pins, sending an
A/D converted value 4 bits at a time, how would you read the numerical value from it, the lowest value
being 0? Remember that the port is configured as an input.

1.16 The medical company manufacturing the pacemaker realizes that 4 bits is not enough for transmitting
data, and now wants to use 8 bits instead. However, we only have 4 available pins on the microcontroller.
Assume that the pacemaker now first sends the lower half of an 8 bit number, then sends the upper
half of that number (using the same pins as before). How do you, in two consecutive reads, read and
store the full 8 bit value?

1.17 You are controlling a servo motor for an Amazon drone to open a hatch for releasing packages. The
servo motor expects a pulse every 20 ms. The angle of the servo motor is proportional to the pulse
width. Sending a pulse with a width of 2 ms fully opens the hatch, whereas a pulse width of 1 ms
closes the hatch. A global variable release is set to 1 when you should open the hatch. You should
send the pulse to open the hatch for as long as the variable is equal to 1, and send the pulse for closing
the hatch when the variable returns to 0. The servo motor is connected to Pin 3 (counting from 0) on
Port M. Implement a program controlling the hatch on the drone.

9

1.2 Lab Exercises

1.2.1 Oh, You Again...

As may be remembered from the first laboratory exercise a state machine, see Figure 1.1, was implemented.
In this assignment the same state machine should be implemented, but this time usage of the provided
functions in the course library are not allowed. Each port’s corresponding register addresses should be used
instead. The addresses for the port registers can be found in Table 1.2. There are no restrictions regarding
which LEDs or buttons (B1 to B6) to choose.

Button press

Button press

LED off LED on

Figure 1.1: State diagram of the program.

Tasks:

• Create a new C project in Atmel Studio.

Home Assignment 1.1
The LEDs are connected to Port B. The address to the output register is as shown in Table 1.2.
Using a pointer to the address, how do you turn LED number 3 (only) on?

Home Assignment 1.2
The buttons are connected to Port A. The address to the input register is as shown in Table 1.2.
Using a pointer to the address, how do you read the value of (only) button 4?

 Use the schematic in Figure 2 to see where the the button is connected.

10

• Implement the state machine with the provided register addresses.

You are now done with this part, show your work to a lab assistant!

1.2.2 Keep It Simple

To make life a bit more easy, Atmel has provided macros for all the memory-mapped I/O register addresses.
Instead of writing the actual address and then type cast the number to a volatile uint8_t (or any other
suitable data type) and then use it as a pointer, it is possible to just use the macro PINA instead.

Tasks:

• Create a new project in Atmel Studio.

• Copy and paste the code from the previous assignment and replace all the pointers with their corre-
sponding macros, and verify that it works. Please refer to Table 1.2 if needed.

1.2.3 State Machine, once Moore

Here, we will investigate some of the physical properties of buttons.

Tasks:

• Now we will spice things up a bit. Change the currently used button to the spare button connected
to PD7 (Port D). It is labeled with B_Btn and can be found on the left hand side of the MCU, see
Figure 1. This button is of the same kind as button B1-B6. And remember to configure PD7 as an
input only. There are other components connected to port D.

 The correct macro for the pin labeled PD7 in the schematic and the datasheet, is PORTD7.
Note that the macros are just numbers. PORTD7 is simply equal to 7. To set the bit that
corresponds to pin PD7, left shift a one PORTD7 positions. (Do not forget that you should
only affect the state of the specified pin.)

Lab Question 1.1
Is the application working as expected? Press the button several times. Do you notice anything
strange? (There is most likely nothing wrong with the code.)

Home Assignment 1.3
When pressing a mechanical button, do you get a perfectly clean signal? If no, how do we
handle such situations?

The origin of the problem comes from the mechanical properties of a button. When it is pressed the
contact plate inside the button is bouncing up and down before settling, and thus a clean transition

11

from zero to one is not obtained. See Figure 1.2. It has been taken by an oscilloscope and shows the
button voltage as a function of time. Each horizontal division is equal to 1 ms.

Figure 1.2: A picture of the button voltage taken by an oscilloscope.

Home Assignment 1.4
Create a function, uint8_t button_read_reliably(), that reads the button and excludes the
bounces, shown in Figure 1.2.

• Test the code written you created in the previous home assignment.

You are now done with this part, show your work to a lab assistant!

12

Chapter 2

USART - A Serial Communication
Protocol

A microcontroller is often used to gather some sort of information and then send it to a computer for
analysis. Another typical application is that a computer send commands to a microcontroller, which then
performs an action that corresponds to the received command. This can be done with the USART peripheral
device inside the microcontroller. The abbreviation USART stands for Universal Synchronous Asynchronous
Receiver and Transmitter. With this device, the data is sent bit by bit. The transfer rate, that is, bits/s, is
referred to as the baud rate. Each data package consists of one start bit, a number of data bits, a parity bit
(which is optional), and one or two stop bits. See Figure 2.1.

LSB
bit

MSB
bit PStart Sp1 Sp2Idle

Idle

Start

Figure 2.1: UART data package.

There are two versions of this type of communication, one is asynchronous and one is synchronous. The
synchronous version requires that a clock signal is connected between the two devices. The more common
is the asynchronous version, which is usually referred to as UART (Universal Asynchronous Receiver and
Transmitter). This is the version that is going to be used during the laboratory exercises. Each UART
device consists of a transmitter and a receiver. The receiver is often labeled Rx and the transmitter Tx. See
Figure 2.2.

Device 1

Tx

Rx

Device 2

Rx

Tx

Figure 2.2: UART communication between two devices.

13

Before the communication starts, the devices needs to be configured, that is, the mode of operation, baud
rate, the number of data bits, stop bits, and parity1 mode has to be selected. This is done by setting bits
in the status and control registers of the USART device that corresponds to these options. The registers of
the USART device for the used microcontroller can be seen in Table 2.1. For a detailed version, please refer
to page 257-265 in the data sheet.

Table 2.1: Registers of the USART 0 unit.

Register Description
UDR0 USART I/O Data Register 0
UCSR0A USART Control and Status Register 0 A
UCSR0B USART Control and Status Register 0 B
UCSR0C USART Control and Status Register 0 C
UBRR0L USART Baud Rate 0 Register Low byte
UBRR0H USART Baud Rate 0 Register High byte

2.1 Data register

TXB/
RXB 7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TXB/
RXB 6

TXB/
RXB 5

TXB/
RXB 4

TXB/
RXB 3

TXB/
RXB 2

TXB/
RXB 1

TXB/
RXB 0

Figure 2.3: UART data Register.

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same I/O
address referred to as USART Data Register or UDRn2. The Transmit Data Buffer Register (TXB) will be
the destination for data written to the UDR1 Register location. Reading the UDRn Register location will
return the contents of the Receive Data Buffer Register (RXB).

2.2 USART control and status

Control and status register A - UCSR0A:
Only two bits in this register is important for the laboratory exercises, UDRE0 and RXC0. They can be used
while transmitting and receiving data.

Control and status register B - UCSR0B:
The only important bits in this register are the bits that enable the USART transmitter and receiver.

Control and status register C - UCSR0C:
The default value of UMSEL0[1:0], UPM0[1:0], USBS0 and UCSZ0[2:0] initializes the USART unit as following:

1The parity is used as an error detection feature, but it will not be used during the lab exercise.
2When coding, the n in UDRn should be replaced with 0 since it is USART0 that will be used. This goes for all names

containing an n.

14

• USART mode is asynchronous,

• parity mode is disabled,

• one stop bit and

• the frame size is 8-bits.

During the laboratory exercises there is no need to change this configuration.

2.3 USART Baud Rate Register UBRR0H and UBRR0L

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0

UBRR11 UBRR10 UBRR9 UBRR8

Figure 2.4: UART data Register.

Bits 11:0 – UBRR011:0: USART Baud Rate This is a 12-bit register which contains the USART baud
rate. The UBRR0H contains the four most significant bits and the UBRR0L contains the eight least signif-
icant bits of the USART n baud rate. Ongoing transmissions by the Transmitter and Receiver will be
corrupted if the baud rate is changed. Writing UBRR0L will trigger an immediate update of the baud
rate prescaler.

Baud Rate
[bps] fosc = 16.0000MHz and U2X = 0 Error rate

2400 416 -0.1%
4800 207 0.2%
9600 103 0.2%
14.4k 68 0.6%
19.2k 51 0.2%
28.8k 34 -0.8%
38.4k 25 0.2%
57.6k 16 2.1%

To write a value to both UBRR0L and UBRR0H “simultanously” use the macro in the listing below.

15

UBRR0 = 103;
// alternatively
UBRR0H = (103 >> 8);
UBRR0L = 103;

Listing 2.1: Test.

16

2.4 Exercises

Answers to the questions can be found in Appendix 6.2.

Communication

2.1 The maximum transfer speed in the Atmega is 2.5 Mbit/s. What is the fastest transfer speed of the
SATA protocol used for SSD drives in a modern computer? What about USB 3.0?

2.2 Using UART with 1 start bit and 1 stop bit, sending data 8 bits, how much overhead do you get?

2.3 Using the UART above, transmitting bits at 1 Mbit/s (including start and stop bits), what is the
effective transmission rate (excluding control bits)?

2.4 You recently bought a remote switch for controlling the lights and the TV in your apartment. Being
an engineer, you find it a tad boring controlling it manually, hence you decide to use a microcontroller
(MCU) to do it for you. You attach a WiFi circuit both to the MCU, and the switches. The WiFi
circuits use a serial protocol (UART) for transmitting data. You have the following functions at your
disposal. set_baud(char val) takes a char argument, val. The value of val is calculated as

val =
⌊

fosc

16 · baud rate
− 1

⌋
.

The function set_control(char val) takes an argument, val. Bit 0 determines the number of parity
bits (0 - 1), bit 1 determines the number of stop bits (1 - 2), and bits 2 to 4 determine how many data
bits (5 - 9) are used. 5 data bits are encoded as “000” and so on. Bits 5 - 7 are not used. The last
function is send_char(char c) that sends a single character over WiFi using UART.

To control the lights and the TV, you send an identifier along with a value in the following format:

L1:<on/off>, for light 1
L2:<on/off>, for light 2
TV:<channel>, for the TV

For example, sending

“TV:5”

turns on the TV and changes it to channel 5. Send a zero (0) to turn the TV off.

There are two global variables, hours and minutes that you may use. You want the following func-
tionality:

• At 06:30, turn on light 1 and the TV on channel 4

• At 07:15, turn off the TV, and turn on light 2

• At 07:45, turn off all lights

• At 12:00, turn on light 2

• At 17:30, turn on the TV on channel 6, and both lights

• At 22:00, turn off everything

The UART communicates at a baud rate of 9600 using 1 parity bit, 8 data bits, and 1 stop bit. The
MCU is running at 16 MHz.

17

2.5 Lab Exercises

2.5.1 Communicating with the World - Part I

In this assignment the computer will be used to send a command that toggles a LED.

In order to receive data from the computer, the USART hardware inside the microcontroller needs to be
initialized. On the computer side, a serial terminal has to be used to send and receive data. For this purpose
a software called YAT (Yet Another Terminal) should be utilized. Instructions on how to use this software
will be given later. There are two USART units in the Atmega1284, USART 0 and USART 1. In this
assignment the USART 0 will be used. In the data sheet there are some useful tables when selecting the
baud rate (page 255-256). Just remember that the CPU frequency is 16 MHz.

Tasks:

• Create a new C project in Atmel Studio.

 During this exercise the data sheet may need to be consulted, specifically the pages 258-264.
Do not worry, you will not need to read everything.

Home Assignment 2.1
How do you enable the transmitter and receiver for USART0?

Home Assignment 2.2
How do you set the data length to 8 bits and 1 stop bit for USART0?

Home Assignment 2.3
How do you set the baud rate for USART0? You are free to choose any applicable value.

• Implement a “void usart0_init()” function using the answers to the above home assignments.

Home Assignment 2.4
How do you read the received data from the USART0? Remember that you need to wait until
there is data to read.

• Implement a “uint8_t usart0_receive()” function.

Home Assignment 2.5
How do you transmit data via USART0?

18

• Implement a “void usart0_transmit(uint8_t)” function.

 Maybe there are some examples in the data sheet (page 244 and 247) for receiving and
transmitting data. But remember, a correct explanation of all code is required to pass the
laboratory exercises.

• Watch the following video to configure YAT properly: https://youtu.be/qrL23q0g4VU. Make sure
that all the boxes are marked/unmarked according to the video.

• In YAT, enter your baud rate, the number of data bits, and how many stop bits that are going to be
used.

• At this point, it is time to check if the transmit and receive functions work as intended. This can be
done by sending back (echo) the data that is received (from the microcontroller’s point of view). Write
an application that echoes back the received data, using your implemented functions.

• Run the application on the microcontroller and send a character from YAT. You should see the character
printed twice in YAT (why?).

Lab Question 2.1
What happens if the baudrate setting in YAT is changed?

• Modify your application to turn an LED on and off based on the character sent from YAT. Choose
any characters of your liking.

Lab Question 2.2
Try sending a non-printable character, such as “\x00” or similar. Is it still working?

You are now done with this part, show your work to a lab assistant!

2.5.2 Optional: Communicating with the World - Part II

In this assignment, a simple protocol will be created. With this protocol it should be possible to turn on or
off each LED on Port B individually. By sending a frame containing a header, a number of data bytes, and
a trailer, the state of each LED should be fully determined. See Figure 2.5 below. The header and trailer is
used for synchronizing the transmission of data (marking the start and the end of transmission).

Tasks:

Home Assignment 2.6
Develop a simple protocol that can be used to turn one or several LED’s, connected to PORTB,
on or off. There should be 8 bytes of data, that is, one byte per LED.

19

https://youtu.be/qrL23q0g4VU

Header
Trailer

Data
byte 1

Data
byte n

Figure 2.5: A frame from the LED protocol containing the header, n bytes of data, and the trailer.

 A good idea is to select the header and trailer in such a way that they will never have the
same value as the payload, that is, the bytes containing the data.

• Create a new C project in Atmel Studio. Copy and paste the receive and transmit functions from the
previous assignment.

• Write an application that utilizes the protocol from the home assignment. Remember to use Atmel
Studio’s debug capabilities, such as break points and watches (where it is possible to see variables
values), if any problem arises.

 Of course there are many different ways to solve the given problem. But one thing that
needs to be done for all of them is that the received byte has to be be examined. If it is the
header of the frame, then it is marking the start of a transmission and the next bytes are
data. If the trailer is received, it is the end of transmission and no more data belonging to
this frame is expected.

Lab Question 2.3
How could the protocol in this particular case be simplified?

Lab Question 2.4
Why was it not done in the simplified way from the beginning? (Believe it or not, but the
authors do not just want to torment you...)

20

Chapter 3

Pulse Width Modulation

A pulse width-modulated (PWM) signal is a pulse train where the pulse width is modulated but the period
is, in most cases constant. See Figure 3.1. The relationship between the active time and the period is referred
to as the duty cycle, see Equation 3.1 below.

D = PW

T
, where D is the duty cycle, PW is the pulse width and T is the period (3.1)

Time [s]

Amplitude
Period

Pulse width

Figure 3.1: Pulse width modulation.

Such a signal can be used for a variety of things. For example it can be used to produce audio, controlling
the rpm of a DC motor, or to adjust the intensity of an LED.

3.1 PWM with an AVR Timer/Counter

A timer/counter is a hardware peripheral that essentially counts pulses. The most common used input
to a timer is the CPU clock signal. The counter value will be incremented once every clock cycle. The
timer/counter unit that is used in the AVR family contains a prescaler (among other things). With the
prescaler the input to the timer, that is, the clock signal, can be divided with a selectable factor ranging
from 1 to 1024. During the laboratory exercises the CPU clock frequency is 16 MHz. This results in that
the time between a counter increment can range from 62.5 ns to 64 µs. The count limit of the timer is given
by its word length. The Atmega1284 has two 8-bit and two 16-bit timers and thus, it can count from 0 to
255 or from 0 to 65535.

21

The timer/counter units can, as the section title implies, be used to produce a pulse width modulated (PWM)
signal that will be available on certain I/O pins. Each timer/counter unit can control at least two I/O pins
individually. Each pin is called a channel. The channels are labeled A, B, and so on. The pins associated with
the timer/counter PWM functionality are named OC (Output Compare) followed by a suffix that denotes
which timer/counter unit and channel it is connected to. For timer/counter 3 Channel A is named OC3A and
thus OC3B for Channel B.

The registers associated with timer/counter 3 can be seen in Table 3.1. Not all of them are need during the
laboratory exercises.

Table 3.1: Timer 3 registers.

Register Description
TCCR3A Control Register A
TCCR3B Control Register B
TCCR3C Control Register C
TCNT3 Counter Value
ICR3 Input Capture Register 3
OCR3A Output Compare Register A
OCR3B Output Compare Register B
TIMSK3 Interrupt Mask Register
TIFR3 Interrupt Flag Register

For detailed information, please refer to page 187-198 in the data sheet.

3.2 Fast PWM Mode

There are several varieties of a PWM signal that can be generated with an AVR timer/counter. Here is a
description on how to initialize timer/counter 3 to generate “fast PWM” with ICR3 as top. For that purpose
an output compare register, OCR3A or OCR3B, is used together with the counter value register. The desired
behaviour is as follows. When the counter value register is zero, the selected OCR3 pin is set to high. As the
timer increments the value, it is constantly compared with the value of the output compare register. When
they match, the OCR3 pin is cleared (set to low). When the counter value is the same as the value in register
ICR3 the timer/counter overflows and the output pin is set to high. After this the procedure starts again.
See Figure 3.2 and 3.3.

22

Count

Time

Amplitude

Time
Compare match

Count register zeroed

ICR3

Figure 3.2: Pulse width modulation with an AVR timer/counter.

TCNT3++ TCNT3 = OCR3?

Set OCR-pin low

TCNT3 = ICR3? Set OCR-pin high
and reset TCNT3

yes

no yes

no

Figure 3.3: Flowchart describing how the timer/counter creates a “fast PWM” signal.

By following the steps below the timer/counter unit will be initialized as described. The timer/counter
registers can be seen in Table 3.2.

• In control register A, TCCR3A, the Compare Output Mode for Channel A is selected by bit COM3A1 and
COM3A0. For Channel B the corresponding bits are COM3B1 and COM3B0. The bits should be set so that
the OC3A or OC3B pin gets cleared on a compare match. For more details, please refer to Table 17-9 for
B on page 187-189 in the data sheet. Both channels can be found on Port B. For this reason it does

23

not matter which one you choose, since all I/O pins are connected to LEDs. The two I/O pins that
are connected to Channel A and B are highlighted with red in Figure 2.

• Select Fast PWM with ICR3 as top by setting the Waveform Generation Mode Bits WGM30, WGM31,
WGM32 and WGM33 accordingly. See Table 17-11 on page 188-189 in the data sheet. Having ICR3 as top
means that at this value the timer will restart, that is, clearing the counter register and start from zero
again. See Figure 3.2. The Waveform Generation Mode Bits can be found in control register A and B.

• Configure the data direction register so that the OC3A or OC3B becomes an output.

• Set the prescaler bits, CS30, CS31 and CS32 in the timer/counter control register TCCR3B so that an
appropriate division factor is used. See Table 17-12 on page 190-191 in the datasheet.

Table 3.2: Timer 3 registers.

Register Description
TCCR3A Control Register A
TCCR3B Control Register B
TCCR3C Control Register C
TCNT3 Counter Value
ICR3 Input Capture Register 3
OCR3A Output Compare Register A
OCR3B Output Compare Register B
TIMSK3 Interrupt Mask Register
TIFR3 Interrupt Flag Register

24

3.3 Exercises

Answers to the questions can be found in Appendix 6.3.

Signals

3.1 You have a continuous stream of pulses. The pulses are high (5V) for 20 ms, and low (0V) for 60 ms.

(a) What is the period time of the signal?

(b) From above, what is the frequency of the signal?

(c) From above, what is the duty cycle?

3.2 The RMS value is defined as the amount of AC (alternating current) power that produces the same
effect as DC (direct current) power. For an AC signal, u(t), it can be calculated as,

uRMS =

√
1
T

∫ T

0
u(t)2dt,

where T is the period. Use the above formula to calculate the RMS value for the pulse signal from the
above exercises.

3.3 What is the RMS value for a general square wave with amplitude Vp and duty cycle D? Use the
integral formula above.

3.4 Suppose you have a heater at home that you want to control using PWM. You measured the voltage to
the heater when it has a comfortable temperature. The measured value is 10V DC. You have a relay
capable of handling 25V, which you can control using PWM. What do you need to set the duty cycle
to in order to get the same power to the heater, thus the same temperature?

25

3.4 Lab Exercises

3.4.1 Controlling the Intensity of a LED Using Pulse Width Modulation

In previous assignments, the LED’s intensity has been either 0% or 100%. Since LED’s are non-linear devices
(the relation between the current and the emitted light is not linear), a simple way of controlling the intensity
is to periodically turn the LED on and off (the light intensity is proportional to the amount of photons per
unit area per unit time). This is a perfect occasion to use a PWM signal. If the period of the signal is
short enough the human brain will not perceive it as individual blinks. This is similar to still pictures being
displayed in a sequence fast enough to create a motion picture, that is, a movie clip. To produce a PWM
signal, Timer 3 of the microcontroller can used.

Tasks:

• Create a new project in Atmel Studio.

Home Assignment 3.1
How do you configure Timer 3 to generate a Fast PWM signal with ICR3 as top? Look at
TCCR3A and TCCR3B register in the datasheet.

 See section 3.2 for help on how to configure the timer/counter.

Home Assignment 3.2
How do you configure Timer 3 to use a prescaler value of 1024? Look at the description of
TCCR3B register in the datasheet.

Home Assignment 3.3
How can Pin PB6 in Port B be configured to be an output? This pin is connected to the timer’s
output compare logic which generates the PWM signal.

• Implement a “void timer3_init()” function using your answers to the above home assignments.

• Implement a “void set_pulse(uint16_t)” function that sets the output compare register, OCR3A, to
a value between 0-65535 (0x0000-0xFFFF) passed in as an argument. You should also implement a
“void set_period(uint16_t)” which sets the the input capture register, ICR3, to the value specified
by the input argument.

Lab Question 3.1
What is the period of the generated clock signal from the prescaler? (The frequency of the
clock signal to the timer/counter unit is 16 MHz.)

26

Lab Question 3.2
Write an application that initializes timer/counter 3 to generate a PWM signal. The period
should be set to 0xFFFF. Set the pulse time to 0xFF.

Lab Question 3.3
What is the PWM period when the timer is configured as above?

Lab Question 3.4
What is the duty cycle for the generated PWM signal?

Now it is time to investigate how short the PWM period time needs to be in order to perceive the light
emitted by the LED as continuous. Throughout this task a duty cycle of 50% should be kept.

• Change the period of the PWM signal until the light from the LED looks continuous (the output
compare register has to be changed as well).

Lab Question 3.5
How short is the required period time?

When the period time is found, it is possible to modulate the light intensity by changing the duty
cycle.

Lab Question 3.6
The way the 16-bit timer/counter was used here is not good. Why is that?

Lab Question 3.7
What is the effective resolution of the PWM signal?

You are now done with this part, show your work to a lab assistant!

27

Chapter 4

Volts to Bits - Analog-to-Digital
Conversion

An analog-to-digital converter (or ADC) is, as the name implies, used to convert a analog signal1 to a digital
value that represents its magnitude. A key property of an ADC is the resolution. The resolution determines
how many quantization levels the magnitude of the analog signal can be encoded in. A digital value from
ADC with the resolution of 10-bits can range from 0 to 1023 (210 − 1). The resolution can also be directly
translated to a voltage. With a 10-bit resolution and a reference voltage2 at 3.3 V each bit equals 3.22
mV (3.3V

210). A conversion is often repeated, at equidistant time steps, to form a discrete-time and discrete-
amplitude digital signal, see Figure 4.1. The rate at which the signal is converted, or sampled at, is referred
to as the sampling rate or sampling frequency.

Am
pl

itu
de

Time

analog
digital

Figure 4.1: An illustration of an analog signal and its digital counterpart.

The reference voltage of the ADC inside the AVR can be set to a variety of things. A common source is
AVcc. This is the power supply to the analog parts of the microcontroller. In this case, it is the same as
Vcc, which is the power supply to the digital part and is equal to 3.3 V. The separation between the two

1A continuous-time and continuous-amplitude signal. An example of an analog signal could be audio signal picked up by a
microphone or the output voltage from a potentiometer.

2The highest allowed voltage that can be converted.

28

power supplies is done to reduce noise on the ADC value. Almost all digital circuits are considered to be
noisy.

See Table 4.1 for the ADC status, control and data registers.

Table 4.1: ADC registers.

Register Description
ADMUX ADC Multiplexer Selection Register
ADCSRA ADC Control and Status Register A
ADCL ADC Data Register Low Byte
ADCH ADC Data Register High Byte
ADCSRB ADC Control and Status Register B
DIDR0 Digital Input Disable Register 0

For more information regarding the associated registers, please refer to page 330-339 in the data sheet.

4.1 ADC Configuration

ADC0
ADC1
ADC2
ADC3
ADC4
ADC5
ADC6
ADC7

ADC data register

MUX[4:0]

ADCH7

ADCH

ADCL

ADCH6 ADCH5 ADCH4 ADCH3 ADCH2 ADCH1 ADCH0

ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0

Conversion
logic

Figure 4.2: Pulse width modulation with an AVR timer/counter.

By completing the bullet points below the ADC will be configured.

• Enable the ADC by setting the enable bit in the ADC Control and Status Register A, ADCSRA.

• Furthermore the ADC prescaler should be set to produce a signal (which drives the ADC unit) that
has a frequency between 50kHz - 200KHz. This will ensure that the ADC unit performs the conversion
with good reliability. See Table 25-5 on page 334 and 335

• In the ADC Multiplexer Selection Register, ADMUX, set the MUX-bits to select the desired channel. See
Table 25-4 on page 332. The ADC should be used in the Single Ended Input configuration.

• In the same register, ADMUX, choose the AVcc as the reference voltage. This is done with the REFS1
and REFS0 bits.

29

• With the ADLAR bit in ADMUX register it is possible to choose how the converted ADC value will be
stored in the result register, ADCH and ADCL. For details see page 336-337. By setting this bit to zero,
the most significant bit is placed at index 1 and the next most significant at 0, in the high byte of ADC
result register ADCH. The remaining part is placed in the low byte of the ADC result register. The way
the data is aligned is called right adjusted. See Figure 4.3.

ADC data register
ADCH

ADCL

ADCH9 ADCH8

ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0

Figure 4.3: The ADC value is stored in the result registers.

• To start a conversion, set the ADSC bit to one. This bit is found in the ADC Control and Status
Register A, ADCSRA. When this is done, the ADC unit performs a conversion. This will take several
CPU clock cycles. The result should not be read before the conversion has been completed. The ADSC
bit (the same bit that starts a conversion) can be used to check if the conversion has completed. Use
a loop that breaks if the ADSC bit is set to zero. When the loop breaks, it is safe to read the data from
the ADC Data Register, ADC, and another conversion can be started.

Table 4.2: ADC registers.

Register Description
ADMUX ADC Multiplexer Selection Register
ADCSRA ADC Control and Status Register A
ADCL ADC Data Register Low Byte
ADCH ADC Data Register High Byte
ADCSRB ADC Control and Status Register B
DIDR0 Digital Input Disable Register 0

30

4.2 Exercises

Answers to the questions can be found in Appendix 6.4.

4.1 Assume you have signal with 5V amplitude. Assume you AD convert the signal, using a 5V reference
and 10 bit resolution.

(a) How many millivolts (mV) per bit do we get?

(b) What is the largest conversion error (in mV)?

4.2 Given the following signal,
v(t) = 5 sin (15

11πt),

at time t = 2, what is the AD converted value (0 - 1023) with 10 bit resolution?

4.3 The Amazon drone from before seems to be crashing form time to time, destroying expensive piece of
equipment. To mitigate the damages, you installed an accelerometer, ADXL335, along with a parachute
in order to detect when the drone is about to crash to save it from breaking.

The accelerometer has an x, y and a z channel to measure movement in 3D. You have a function
to get the value from an 8-bit ADC (3 V reference), uint8_t read_adc(uint8_t channel), where
the channel value is 0 to 2 for the x to z channels. The accelerometer is powered with 3 V, with
a “zero g bias level” (no acceleration) of 1.5 V on all channels. Then, for every additional g force
(up to 3g), the voltage increases with ±300 mV. That is, for every channel, the voltage ranges from
[1.5 − 0.9, 1.5 + 0.9] = [0.6, 2.4].

(a) How many distinct values can we measure with the ADC?

(b) What voltage does the maximum ADC value correspond to?

(c) What is the voltage range, per channel, from the accelerometer if we remove the constant offset?

(d) Experiments show that a resultant vector with a magnitude of 0.346 (no offset) results in a crash.
Recall the Pythagorean theorem in 3 dimensions,√

x2 + y2 + z2 = d,

implement a program that calls the function release_parachute(), if magnitude exceeds 0.346.
Note that the square-root function is expensive in a microcontroller and should be avoided if
possible.

31

4.3 Lab Exercises

4.3.1 Setting the LED Intensity from an Input

In the previous exercise, the intensity was hard coded. It was not possible to change the intensity after the
application was transferred to the microcontroller. In this exercise, an input device will be used to change
the intensity while the microcontroller executes the application code. The input device that will be used is
a potentiometer. There are two potentiometers on the circuit board, see Figure 1, and the box labeled with
2. With a potentiometer it is possible to change the output voltage. The voltage is an analog signal and
needs to be converted to a digital value. This can be achieved with the microcontroller’s analog-to-digital
converter (ADC). The result should then be used to set the duty cycle of the PWM signal which drives the
LED. The timer/counter 3 will still be used to generate the PWM signal.

Tasks:

• Create a new C project in Atmel Studio.

• Copy the timer_init() “void set_pulse(uint16_t)” and“void set_period(uint16_t)” functions
from the previous assignment.

Home Assignment 4.1
How do you enable the ADC?

Home Assignment 4.2
In order to get reliable conversion, the frequency of the ADC should lie between 50kHz and
200kHz. How do you configure the prescaler to meet this requirement?

Home Assignment 4.3
The left and right potentiometers are connected to Channel 0 and 1, respectively. How do you
configure the ADC to select one of these two? (Hint x 2! Check the schematic to see where the
potentiometers are connected. Also, the ADC should in Single Ended Input configuration.)

Home Assignment 4.4
How do you configure the ADC to have AVCC as the reference voltage?

• Implement a “void adc_init()” function using the answers to the above home assignments.

Home Assignment 4.5
How do you start a conversion and read the converted signal from the ADC? Remember that
you need to wait until the conversion is done.

• Implement a “uint16_t adc_read()” function using the answer to the above home assignment.

32

• Set the timer/counter prescaler to generate a signal with a frequency that allows the period to be
65535 counts but the light from the LED is still perceived as continuous. Test different duty cycles to
validate that the frequency is suitable.

Lab Question 4.1
Which prescaling factor was selected and what is the frequency of the generated signal?

• Use the result from the ADC to set the pulse time of the PWM signal that drives the LED.

Lab Question 4.2
When turning the potentiometer, you do not get the full intensity range. Why is that and how
could this problem be solved?

• Do the necessary changes to the your code?

Lab Question 4.3
What is the effective resolution of the PWM signal after the scaling?

You are now done with this part, show your work to a lab assistant!

33

Chapter 5

Optional: Ultrasonic Sensor -
Measuring Distances

The ultrasonic sensor is a device used to measure the distance to an obstacle. It has four pins, Vcc, GND,
Trig, and Echo. By supplying a pulse that last for 10 µs the sensor generates a set of sound pulses at 40
kHz. After the sound pulses have been transmitted, the Echo pin goes high. If an obstacle is present (in the
path of the sound pulses), the sound reflects back to the sensor. When the sensor has detected the reflected
sound pulses the Echo pin goes low. Thus the pulse width of the signal from the Echo pin is equal to the
time of flight of the sound pulses, see Figure 5.1. Note that the sensor requires at least 60 ms between each
measurement to work properly.

Trig

Pulses

Echo

Figure 5.1: Signals to and from ultrasonic sensor.

5.1 Time measurement using the AVR Timer/Counter 1

In order to measure time with the timer/counter, the prescaler bits (CS10, CS11 and CS12) need to be set.
They are found in the timer/counter control register TCCR1B. These bits control how fast the timer/counter
will increment the counter value register, that is, TCNT1. For time measurement, this is all that has to
be done to start the timer, that is, the counter value register will be incremented at every pulse from the

34

prescaler. Before a time measurement is done, the counter value register needs to be set to a known value
(preferably zero). To stop the timer from incrementing the counter value register, the prescaler bits should
be set to zero. This action disconnects the clock signal from the timer prescaler.

35

5.2 Exercises

Answers to the questions can be found in Appendix 6.5.

5.1 Assume a 16-bit timer running at 1 MHz,

(a) What is the timer value after 64 ms?

(b) What is the timer value after 67 ms? Why is this? Can we solve the problem?

36

5.3 Lab Exercises

5.3.1 Setting the LED Intensity with an Ultrasonic Sensor

Previously, we controlled the intensity of an LED with a potentiometer. While this is useful in real life, it
is not really that exciting. Being engineering students, we want control the LED intensity using something
way cooler. Therefore, in this assignment, the input device is a ultrasonic sensor (US) which measures the
distance to an obstacle using sound waves. The ultrasonic sensor does not output an analog signal, hence
the ADC will not be used. However, the sensor returns a digital pulse with a width proportional to the
distance. In order to calculate the distance, the time of the pulse needs to be measured, and a timer does the
trick. For this purpose the timer/counter 1 will be utilized. The distance value will then be used to set the
pulse width of the PWM signal connected to the LED. As in the previous exercise the timer/counter 3 will
be used to produce the PWM that drives the LED. See Section 5.1 on how to configure the timer/counter 1.

Tasks:

• Copy the timer/counter 3 functions from the previous assignment.

• Create a new C project in Atmel Studio.

• Assume the maximum distance to measure is 0.5m, a timer needs to be configured to be able to count
the time corresponding to 0.5m.

Home Assignment 5.1
How long does it take for the sound to travel to an obstacle at 0.5m (and back!)? Assume that
the sound travels 340m/s.

Home Assignment 5.2
Using timer/counter 1, what is the best prescaler value? Hint! The goal is to take advantage
of the timer/counter resolution.

• In order to measure the distance, a trig pulse is sent to the ultrasonic sensor for a duration of 10 µs.
Next, wait for the output from the US to go high. When it does, the timer should be started and
should continue until the input goes low again. The timer has now counted the number of clock cycles
it took for the ultrasonic signal to make a round trip. The trig pin of the ultra sonic sensor
is connected to PC1 and the echo to PC0.

Home Assignment 5.3
Assume the timer value TCNT1 is 13337, how far away is the obstacle?

• Add code to the application that creates a trig pulse, starts the timer when the echo pin goes high,
and stops it as soon as it goes low. (Hint: Use a loop that breaks when the Echo pin goes low. Also,
do not forget that the sensor needs 60 ms of break between two measurements)

 The timer/counter unit is started by setting the prescaler bits to something else than all
zeroes. To stop the timer, set all the prescaler bits to zero.

37

Lab Question 5.1
Holding an obstacle 10 cm above the sensor, what is the value of the counter? Use the debugger
in Atmel Studio and check.

• Use the measured time value to drive the LED. The LED should increase as the distance to the obstacle
increases.

Lab Question 5.2
What happens if the the distance to the obstacle becomes too large?

That’s it folks. The lab is over. You done did it!

You are now done with this part, show your work to a lab assistant!

38

Chapter 6

Answers to Exercise Questions

6.1 Exercise 1

Click here to fast travel back to Section 1.1, price: 1 bit.

1.1 13

1.2 0

1.3 8

1.4 6

1.5 0

1.6 15

1.7 251

1.8 223

1.9 char *p;
p= char * 0x1337;
char val = *p;
or char val = *((char *) 0x1337)

1.10 char val = *((volatile char *) 0x1337)

1.11 *((char *) 0x0666) = 42

1.12 int *addr = &a

1.13 All outputs, DDRG |= 0xFF

1.14 Read and write from/to PORTG, since it is an output.

1.15 char val = (PINH & 0xF0) >> 4

1.16 char val = ((PINH & 0xF0) >> 4) | (PINH & 0xF0)

1.17 See code in Listing 6.1.

39

#define F_CPU 16000000UL
#include <util/delay.h>

uint8_t release;

int main()
{

DDRM |= (1 << 3); // pin 3 as output

while (1) {
if (release) {

// send pulse to keep hatch open
PORTM |= (1 << 3); // pin high
_delay_ms(2);
PORTM &= ~(1 << 3); // pin low
_delay_ms(18);

} else {
// send pulse to keep hatch closed
PORTM |= (1 << 3);
_delay_ms(1);
PORTM &= ~(1 << 3);
_delay_ms(19);

}
}

}

Listing 6.1: Program for controlling the drone hatch.

6.2 Exercise 2

Click here to fast travel back to Section 2.4, price: 1 bit.

2.1 SATA 3.2 has a maximum speed of 16 Gbit/s, while USB 3.1 reaches 10 Gbit/s.

2.2 20% overhead

2.3 800 kbit/s or 100 kB/s

2.4 See code in Listing 6.2.

40

#define F_CPU 16000000UL
#include <util/delay.h>

void send_message(char *);

uint8_t hours;
uint8_t minutes;

int main()
{

set_baud(103);
set_control(0x0D);

while (1) {
if ((hours == 6) && (minutes == 30)) {

send_message("L1:on");
send_message("TV:4");

} else if (hours == 7) {
if (minutes == 15) {

send_message("TV:off");
send_message("L2:on");

} else if (minutes == 45) {
send_message("L1:off");
send_message("L2:off");

}
} else if ((hours == 12) && (minutes == 00)) {

send_message("L2:on");
} else if ((hours == 17) && (minutes == 30)) {

send_message("TV:6");
send_message("L1:on");
// light 2 is already on

} else if ((hours == 22) && (minutes == 0)) {
send_message("TV:off");
send_message("L1:off");
send_message("L2:off");

}
}

}

void send_message(char *msg)
{

// loop until end of string
while (*msg != '\0') {

// send a char and move on to the next
send_char(*msg++);

}
}

Listing 6.2: Program for controlling lights and the TV.

6.3 Exercise 3

Click here to fast travel back to Section 3.3, price: 1 bit.

3.1 (a) T = 80 ms

(b) f = 12.5 Hz

(c) D = 20
80 = 0.25

41

3.2 The function is not continuous, hence we must separate the integral as

uRMS =

√
1

0.08(
∫ 0.02

0
52dt +

∫ 0.08

0.02
02dt) =

√
1

0.08

∫ 0.02

0
25dt

=
√

1
0.08 [25t]0.02

0 =
√

1
0.08 [25 · 0.02 − 25 · 0]

=
√

25 · 0.02
0.08 =

√
6.25 = 2.5V

3.3 In the general case, the RMS value for a square wave is calculated to be

uRMS = Vp

√
D.

3.4 Using the general formula, we get
uRMS = Vp

√
D,

where Vp = 25V and uRMS = 10V. Solve for D, and we get D = (10
25)2 = 0.16. The duty cycle should

be around 16%.

6.4 Exercise 4

Click here to fast travel back to Section 4.2, price: 1 bit.

4.1 (a) 5V
210 ≈ 4.88mV

(b) The largest error is half the value per bit, 2.44 mV.

4.2 The voltage at time t = 2 is
v(2) = 5 sin (15

11π · 2) = 3.778V,

resulting in a value of
3.778

0.00488 ≈ 774.

4.3 Answer

(a) 28 = 256

(b) 3V
256 · 255 = 2.988V

(c) Removing the 1.5 V offset, we get [−0.9, 0.9]

6.5 Exercise 5

Click here to fast travel back to Section 5.2, price: 1 bit.

5.1 (a) Each clock cycle takes 1 µs. 64 ms is 64000 clock cycles.

(b) We are counting mod 216, hence the timer value is 67000 mod 216 = 1464. We solve this by
another counter increasing every timer overflow.

42

	Introduction
	Lab Equiment

	I/O Ports
	Exercises
	Lab Exercises
	Oh, You Again...
	Keep It Simple
	State Machine, once Moore

	USART - A Serial Communication Protocol
	Data register
	USART control and status
	USART Baud Rate Register UBRR0H and UBRR0L
	Exercises
	Lab Exercises
	Communicating with the World - Part I
	Optional: Communicating with the World - Part II

	Pulse Width Modulation
	PWM with an AVR Timer/Counter
	Fast PWM Mode
	Exercises
	Lab Exercises
	Controlling the Intensity of a LED Using Pulse Width Modulation

	Volts to Bits - Analog-to-Digital Conversion
	ADC Configuration
	Exercises
	Lab Exercises
	Setting the LED Intensity from an Input

	Optional: Ultrasonic Sensor - Measuring Distances
	Time measurement using the AVR Timer/Counter 1
	Exercises
	Lab Exercises
	Setting the LED Intensity with an Ultrasonic Sensor

	Answers to Exercise Questions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

