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Characterization of Fading Multipath Channels

I In addition to the time spread introduced by the multipath
medium, in this chapter we consider variations in time of the
nature of the multipath.

I Each path n has an associated propagation delay τn and
attenuation factor αn.

I The time-variant impulse response of the equivalent lowpass
channel is given by

c(τ ; t) =
∑
n

αn(t)e−j2πfcτn(t)δ[τ − τn(t)]

for the discrete-time channel, and

c(τ ; t) = α(τ ; t)e−j2πfc t

for the continuous-time channel.

I Note that c(τ ; t) represents the response of the channel at
time t due to an impulse applied at time t − τ .



Characterization of Fading Multipath Channels

I The received signal to an unmodulated carrier transmission
sl(t) = 1 is given by

rl(t) =
∑
n

αn(t)e−j2πfcτn(t)

=
∑
n

αn(t)e jθn(t)

where θn(t) = −2πfcτn(t) and fc is the carrier frequency.

I θn(t) changes much faster than αn(t).

I Signal fading is a result of the time variations in the phases
{θn(t)}.

I A statistical treatment of the channel is suitable. Some
models are

I Rayleigh fading channel.
I Rice fading channel.
I Nakagami-m fading channel.



Channel Correlation Functions and Power Spectra

I Assume that c(τ ; t) is wide-sense-stationary. The associated
autocorrelation function is

Rc(τ2, τ1; ∆t) = E [c∗(τ1; t)c(τ2; t + ∆t)]

= Rc(τ1; ∆t)δ(τ2 − τ1)

where, in the last step, uncorrelated scattering is assumed.

I Rc(τ) ≡ Rc(τ ; 0) is called the multipath intensity profile or
the power delay spectrum of the channel.

I The support of Rc(τ) is called the multipath spread of the
channel and is denoted by Tm.



Channel Correlation Functions and Power Spectra
I Equivalently, in the Fourier domain we have the time-variant

transfer function C (f ; t) defined as

C (f ; t) =

∫ ∞
−∞

c(τ ; t)e−j2πf τ dτ

I We define the autocorrelation function

RC (f2, f1; ∆t) = E [C ∗(f1; t)C (f2; t + ∆t)]

= RC (∆f ; ∆t)

I RC (∆f ; ∆t) is called the spaced-frequency, spaced-time
correlation function of the channel.

I The spaced-frequency correlation function is defined as
RC (∆f ) ≡ RC (∆f ; 0), and can also be computed as
RC (∆f ) =

∫∞
−∞ Rc(τ ; t)e−j2π∆f τ dτ

I RC (∆f ) provides a measure of the coherence bandwidth of
the channel, (∆f )c ≈ 1

Tm
.



Channel Correlation Functions and Power Spectra



Channel Correlation Functions and Power Spectra

I In order to characterize time variations we define

SC (∆f ;λ) =

∫ ∞
−∞

RC (∆f ; ∆t)e−j2πλ∆t d∆t.

I Furthermore, SC (λ) ≡ SC (0;λ) is called the Doppler power
spectrum of the channel.

I The support of SC (λ) is called the Doppler spread Bd of the
channel.

I The coherence time (∆t)c ≈ 1
Bd

is related to the spaced-time
correlation function RC (∆t) ≡ RC (0; ∆t).

I Finally, we define the scattering function of the channel
S(τ ;λ) as

S(τ ;λ) =

∫ ∞
−∞

SC (∆f ;λ)e j2πτ∆f d∆f .
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Channel Correlation Functions and Power Spectra



Statistical Models for Fading Channels

I Large number of scatterers contributing
∑

n Xn, with
Xn ∼ N(0, σ2) i.i.d, then, by the central limit theorem, phase
uniformly distributed in [0, 2π] and envelope follows a
Rayleigh probability distribution

pR(r) =
2r

Ω
e−r

2/Ω, r ≥ 0

where Ω = E (R2).

I Nakagami-m distribution, which includes the Rayleigh
distribution as a special case (m = 1).

I Rice distribution, which includes the power of the non-fading,
specular components.



Propagation Models for Mobile Radio Channels



The Effect of Signal Characteristics on the Choice of a
Channel Model

I The effect of the channel c(τ ; t) on the transmitted signal
sl(t) is a function of our choice of signal bandwidth W and
signal duration T .

I W � 1
Tm
≈ (∆f )c ,

frequency-selective channel.

I W � 1
Tm
≈ (∆f )c ,

frequency-nonselective
channel or flat fading.

I Signaling interval
T � 1

Bd
≈ (∆t)c , slowly

fading channel.

I Signaling interval
T � 1

Bd
≈ (∆t)c , fast

fading channel.

I For a frequency-nonselective channel rl(t) = C (0; t)sl(t), with
C (0; t) = α(t)e jφ(t). E.g. C (0; t) zero-mean complex-valued
Gaussian stochastic process.

I Define the spread factor of the channel TmBd . Channel is
underspread if TmBd < 1.



Frequency-Nonselective, Slowly Fading Channel

I Channel modeled as a one-tap filter, with filter coefficient
C (0; t) = α(t)e jφ(t) constant for at least T . Therefore,

rl(t) = αe jφsl(t) + z(t), 0 ≤ t ≤ T .

I Assume phase shift φ estimated withour error, hence,
coherent detection at the output of a matched filter
demodulator applies. For PSK (4.3-13),

Pb(γb) = Q(
√

2γb)

where γb = α2Eb/N0 and α is fixed. Similarly, for FSK
(4.2-42),

Pb(γb) = Q(
√
γb).

I Finally,

Pb =

∫ ∞
0

Pb(γb)pb(γb) dγb.



Frequency-Nonselective, Slowly Fading Channel, with
Rayleigh Statistics

I Assume α is Rayleigh-distributed. Thus, γb is
chi-square-distributed with

p(γb) =
1

γ̄b
e−γb/γ̄b , γb ≥ 0

and γ̄b = Eb
N0

E (α2) is the average signal-to-noise ratio.

I The bit error probability is then (see problem 4.44-1)

Pb =


1
2

(
1−

√
γ̄b

1 + γ̄b

)
, for BPSK

1
2

(
1−

√
γ̄b

2 + γ̄b

)
, for BFSK



Frequency-Nonselective, Slowly Fading Channel, with
Rayleigh Statistics

I The error probabilities for high SNR, i.e. γ̄b � 1 become

Pb ≈


1/4γ̄b, for coherent PSK

1/2γ̄b, for coherent, orthogonal FSK

1/2γ̄b, for DPSK

1/γ̄b, for noncoherent, orthogonal FSK

I The error rate Pb decreases only inversely with SNR.
Compare to a nonfading channel (exponential decrease with
SNR).

I DPSK performs in pair with coherent, orthogonal FSK.



Frequency-Nonselective, Slowly Fading Channel, with
Rayleigh Statistics



Frequency-Nonselective, Slowly Fading Channel, with
Nakagami-m Statistics

I When envelope α is characterized by the Nakagami-m
distribution, the distribution of γ = α2Eb/N0 is

p(γ) =
mm

Γ(m)γ̄m
γm−1e−mγ/γ̄ ,

where γ̄ = E/N0E (α2).

I m = 1 corresponds to Rayleigh fading.

I m > 1 corresponds to fading less severe than Rayleigh.

I m < 1 corresponds to fading more severe than Rayleigh.



Diversity Techniques for Fading Multipath Channels

I The idea is to supply to the receiver several replicas of the
same information transmitted over independently fading
channels. For L independently fading replicas with
probability p, the probability of all replicas being in a fading
deep is pL.

I How to achieve diversity?
I Frequency diversity, by transmitting on L carriers with

separation between successive carriers greater than (∆f )c .
I Time diversity, by transmitting on L time slots with separation

between successive time slots greater than (∆t)c .
I Space diversity, by transmitting on L antennas with minimum

separation between antennas greater than (∆d)c .
I Angle-of-arrival diversity.
I Polarization diversity.

I Frequency diversity can also be obtained by using a wideband
signal such that W > (∆f )c . The achievable diversity order is
L ≈W /(∆f )c, which corresponds to the number of
resolvable signal components.



Diversity Techniques for Fading Multipath Channels with
Binary Signals

I Determine the bit error probability Pb for a binary digital
communication system with L diversity channels, each
frequency-nonselevtive and slowly fading. The fading
processes {Ck(0; t)} are assumed mutually independent. The
noise processes {zk(t)} are assumed mutually independent,
with identical autocorrelation functions.

rlk(t) = αke jφk skm(t) + zk(t), k = 1, 2, . . . , L,m = 1, 2



Diversity Techniques for Fading Multipath Channels with
Binary Signals

I The optimum demodulator consists of a bank of matched
filters and a maximal ratio combiner (MRC).

bk1(t) = s∗k1(T − t)

bk2(t) = s∗k2(T − t)

I Compensate for the phase shift in the channel.
I Weight the signal by a factor proportional to the signal

strenght.

I For PSK, at the output of the MRC we have

U = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αkNk

)
= 2E

L∑
k=1

α2
k +

L∑
k=1

αkRe(Nk)

and Nk = e−jφk
∫ T

0 zk(t)s∗k (t) dt.



Diversity Techniques for Fading Multipath Channels

I For PSK modulation and a fixed set of {αk} we have that

Pb(γb) = Q(E 2(U)/σ2
U) = Q(

√
2γb),

where the SNR per bit, γb, is given as

γb =
E

N0

L∑
k=1

α2
k =

L∑
k=1

γk

and γk = Eα2
k/N0 is the instantaneous SNR on the kth

channel.

I The probability density function p(γb) is that of a
chi-square-dsitributed r.v. with 2L degrees of freedom:

p(γb) =
1

(L− 1)!γ̄Lc
γL−1
b e−γb/γ̄c

where γ̄c = E (α2
k)E/N0 is the average SNR per channel.



Diversity Techniques for Fading Multipath Channels

I Finally, we need to average over the fading channel statistics

Pb =

∫ ∞
0

Pb(γb)pb(γb) dγb.

I The closed-form solution to this integral is

Pb = [
1

2
(1− µ)]L

L−1∑
k=0

(
L− 1 + k

k

)
[
1

2
(1 + µ)]k

where, by definition µ =

√
γ̄c

1 + γ̄c
I We note that

Pb,PSK =
1

2
(1− µ), 1− Pb,PSK =

1

2
(1 + µ)

where Pb,PSK is the probability error for a single fading
channel.



Diversity Techniques for Fading Multipath Channels

I When the average SNR per channel γ̄c is greater that 10 dB,
we have that

Pb ≈ (
1

4γ̄c
)L
(

2L− 1

L

)
.

I The error rate decreases inversely with the Lth power of the
SNR.

I Actually

Pb ≈



(
1

4γ̄c
)L
(2L−1

L

)
, for BPSK

(
1

2γ̄c
)L
(2L−1

L

)
, for BFSK

(
1

2γ̄c
)L
(2L−1

L

)
, for DPSK

(
1

γ̄c
)L
(2L−1

L

)
, for noncoherent BFSK



Diversity Techniques for Fading Multipath Channels



Diversity Techniques for Fading Multipath Channels,
Nakagami Fading

A K -channel system transmitting in a Nakagami fading channel
with independent fading is equivalent to an L = Km channel
diversity in a Rayleigh fading channel.



A Tapped Delay Line Model

I The W -bandlimited, time-variant frequency-selective channel
can be modeled as a tapped delay line with tap spacing 1/W
and tap weight coefficients cn(t)

c(τ ; t) =
∞∑

n=−∞
cn(t)δ(τ − n/W ) (13.5− 8)

with cn(t) =
1

W
c(

n

W
; t), and the corresponding time-variant

transfer function is

C (f ; t) =
∞∑

n=−∞
cn(t)e−j2πfn/W .

I For all practical purposes truncation can be applied at
L = bTmW c+ 1 taps.

I cn(t) are complex-valued stationary, mutually uncorrelated
(US) random processes.



A Tapped Delay Line Model



The RAKE Demodulator
I Assume binary signaling with T � Tm, then

rl(t) =
L∑

k=1

ck(t)sli (t − k/W ) + z(t)

= vi (t) + z(t), 0 ≤ t ≤ T , i = 1, 2.

I The optimal demodulator consists of two filters matched to
v1(t) and v2(t), and has decision variables

Um = Re

[∫ T

0
rl(t)v∗m(t) dt

]
= Re

[
L∑

k=1

∫ T

0
rl(t)c∗k (t)s∗m(t − k/W ) dt

]
, m = 1, 2.

I The tapped delay line demodulator attempts to collect the
signal energy from all received signal paths that fall within the
span of the delay line and carry the same information.



The RAKE Demodulator



The RAKE Demodulator



Performance of RAKE Demodulator
I Assume that {ck(t)} are estimated perfectly, and are constant

within any one signaling interval. The decision variables are

Um = Re

[
L∑

k=1

c∗k

∫ T

0
rl(t)slm(t − k/W ) dt

]
, m = 1, 2

with the received signal (assume, say, sl1(t) is transmitted)

rl(t) =
L∑

n=1

cnsl1(t − n/W ) + z(t), 0 ≤ t ≤ T .

I This gives

Um = Re

[
L∑

k=1

c∗k

L∑
n=1

cn

∫ T

0
sl1(t − n/W )s∗lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗k

∫ T

0
z(t)s∗lm(t − k/W ) dt

]
, m = 1, 2.



Performance of RAKE Demodulator

I For pseudorandom sequences sl1(t) and sl2(t), the decission
variables simplify to

Um = Re

[
L∑

k=1

|ck |2
∫ T

0
sl1(t − k/W )s∗lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗k

∫ T

0
z(t)s∗lm(t − k/W ) dt

]
, m = 1, 2.

I When the binary signals are antipodal, a single decision
variable suffices

U1 = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αkNk

)

where αk = |ck | and Nk = e−jφk
∫ T

0 z(t)s∗l (t − k/W ) dt.

I We have already seen this expression!



Performance of RAKE Demodulator

I The RAKE demodulator, with perfect (noiseless) estimates of
the channel tap weights is equivalent to a maximal ratio
combiner in a system with Lth order diversity.

I Let’s consider this time binary antipodal signals subjected to
distinct {E (α2

k)}. The error probability is given by

Pb =
1

2

L∑
k=1

πk

[
1−

√
γ̄k(1− ρr )

2 + γ̄k(1− ρr )

]

with πk =
∏L

i=1

γ̄k
γ̄k − γ̄i

and γ̄k =
E

N0
E (α2

k).

I For large values of the average SNR for all k taps, i.e., γ̄k � 1

Pb ≈
(

2L− 1

L

) L∏
k=1

1

2γ̄k(1− ρr )
.



Performance of RAKE Demodulator

I How to estimate {ck(t)}? Assume sufficiently slow channel
fading, e.g. (∆t)c/T ≥ 100.

I See Fig. 13.5-4 to Fig. 13.5-7.
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Generalized RAKE Demodulator

I Addresses communication scenarios in which additive
interference from other users of the channels results in
coloured additive Gaussian noise.

I See Fig. 13.5-8 and Fig. 13-5.9.

I Assumes knowledge of the channel coefficients {ci} and the
time delays {τi}. In CDMA systems, an unmodulated spread
spectrum signal is used.

I Our problem is to estimate the weights {wi} at the Lg fingers,
with Lg > L.

U = wHy

y = gb + z

and z contains additive Gaussian noise plus interference from
other users plus ISI from channel multipath.

I The ML detection solution is given by (linear MMSE
estimator)

w = R−1
z g



Performance of RAKE Demodulator



Performance of RAKE Demodulator



Receiver Structures for Channels with Intersymbol
Interference

I In the event that Tb � Tm does not hold, the RAKE
demodulator output will be corrupted by ISI.

I An equalizer in needed.
I RAKE sampled at bit rate Tb, followed by equalizer, i.e.,

MLSE or DFE (Fig. 13.5-10).
I Chip equalizer at chip rate Tc , with LTc = Tb (Fig. 13.5-11).



Receiver Structures for Channels with Intersymbol
Interference



Receiver Structures for Channels with Intersymbol
Interference



Multicarrier Modulation (OFDM)

I OFDM is especially vulnerable to Doppler spread, which
results into intercarrier interference (ICI).

I We analyze the performance degration due to Doppler spread
in such a system, and some ICI suppression techniques.



Performance Degradation of an OFDM System due to
Doppler Spreading

I OFDM system with N subcarriers {e j2πfk t}, M-ary QAM or
PSK, symbol duration T and fk = k/T , k = 1, 2, . . .N with

1

T

∫ T

0
e j2πfi te−j2πfk t dt =

{
1 k = i

0 k 6= i

I Frequency-selective time-varying channel with impulse
response c(τ ; t), but non-selective for within each subcarrier
band, i.e.

ck(τ ; t) = αk(t)δ(t), k = 0, 1, . . . ,N − 1,

and {αk(t)} complex-valued, jointly stationary, Gaussian
stochastic processes with zero mean and cross-covariance

Rαkαi (τ) = E [αk(t + τ)α∗i (t)].



Performance Degradation of an OFDM System due to
Doppler Spreading

I Furthermore
Rαkαi (τ) = R1(τ)R2(k − i).

I R1(τ) = J0(2πfmτ), with J0(x) the zero-order Bessel function
of the first kind. Equivalenty,

S(f ) =


1

πfm
√

1− (f /fm)2
|f | ≤ fm

0 otherwise

as is Jakes (1974).

I R2(k) = RC (k/T ) and,

RC (f ) =
β

β + j2πf
←→ Rc(τ) = βe−βτ .



Performance Degradation of an OFDM System due to
Doppler Spreading

I Use the two-term Taylor series expansion on {αk(t)}, i.e.

αk(t) = αk(t0) + α′k(t0)(t − t0), t0 =
T

2
, 0 ≤ t ≤ T .

I Results in channel

ck(τ ; t) = αk(t)δ(t) = αk(t0)δ(t) + (t − t0)α′k(t0)δ(t).

I The baseband signal

s(t) =
1√
T

N−1∑
k=0

ske j2πfk t , 0 ≤ t ≤ T

with E [|sk |2] = 2Eavg is filtered with c(τ ; t).



Performance Degradation of an OFDM System due to
Doppler Spreading

I The received signal is

r(t) =
1√
T

N−1∑
k=0

αk(t0)ske j2πfk t+
1√
T

N−1∑
k=0

(t−t0)α′k(t0)ske j2πfk t+n(t).

I The output of the ith correlator at the sampling instant is

ŝi =
1√
T

∫ T

0
r(t)e−j2πfi t dt

= αi (t0)si +
T

2πj

N−1∑
k=0,k 6=i

α′(t0)sk
k − i

+ ni ,

where the terms are the desired signal, ICI and additive noise,
resp.



Performance Degradation of an OFDM System due to
Doppler Spreading

I After some computation we arrive at

S

I
=

1

(Tfm)2

2

∑N−1
k=0,k 6=i

1

(k − i)2

.

I For a large number of subcarriers N the distribution of ICI is
approximately Gaussian.

I ICI severely degrades the performance of an OFDM
system.



Performance Degradation of an OFDM System due to
Doppler Spreading



Suppression of ICI in OFDM Systems

I ICI in an OFDM system analogous to ISI in a single-carrier
system: apply (linear) MMSE criterion.

I Estimate symbol sk(m) as

ŝk(m) = bHk (m)R(m), k = 0, 1, . . . ,N − 1

in order to minimize

E [|sk(m)− ŝk(m)|2] = E [|sk(m)− bHk (m)R(m)|2]

where R(m) denotes the output of the DFT processor.



Suppression of ICI in OFDM Systems

I The optimum coefficient vector is

bk(m) = [G(m)GH(m) +σ2IN ]−1gk(m), k = 0, 1, . . . ,N − 1

where
E [R(m)RH(m)] = G(m)GH(m) + σ2IN

E [R(m)s∗k (m)] = gk(m)

and G(m) = WHH(m)W, and W is the orthonormal IDFT
transformation matrix.

I Knowledge of the channel impulse response is required.


