Fading Channels I: Characterization and Signaling Digital Communications

Jose Flordelis

June, 3, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Characterization of Fading Multipath Channels

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Characterization of Fading Multipath Channels

- In addition to the *time spread* introduced by the multipath medium, in this chapter we consider *variations in time* of the nature of the multipath.
- Each path n has an associated propagation delay τ_n and attenuation factor α_n.
- The time-variant impulse response of the equivalent lowpass channel is given by

$$c(\tau;t) = \sum_{n} \alpha_{n}(t) e^{-j2\pi f_{c}\tau_{n}(t)} \delta[\tau - \tau_{n}(t)]$$

for the discrete-time channel, and

$$c(\tau;t) = \alpha(\tau;t)e^{-j2\pi f_c t}$$

for the continuous-time channel.

Characterization of Fading Multipath Channels

► The received signal to an unmodulated carrier transmission s_l(t) = 1 is given by

$$r_{l}(t) = \sum_{n} \alpha_{n}(t) e^{-j2\pi f_{c}\tau_{n}(t)}$$
$$= \sum_{n} \alpha_{n}(t) e^{j\theta_{n}(t)}$$

where $\theta_n(t) = -2\pi f_c \tau_n(t)$ and f_c is the carrier frequency.

- $\theta_n(t)$ changes much faster than $\alpha_n(t)$.
- ► Signal fading is a result of the time variations in the phases {θ_n(t)}.
- A statistical treatment of the channel is suitable. Some models are
 - Rayleigh fading channel.
 - Rice fading channel.
 - Nakagami-*m* fading channel.

► Assume that c(τ; t) is wide-sense-stationary. The associated autocorrelation function is

$$R_c(\tau_2, \tau_1; \Delta t) = E[c^*(\tau_1; t)c(\tau_2; t + \Delta t)]$$
$$= R_c(\tau_1; \Delta t)\delta(\tau_2 - \tau_1)$$

where, in the last step, uncorrelated scattering is assumed.

- R_c(τ) ≡ R_c(τ; 0) is called the *multipath intensity profile* or the *power delay spectrum* of the channel.
- ► The support of R_c(τ) is called the *multipath spread of the channel* and is denoted by T_m.

 Equivalently, in the Fourier domain we have the time-variant transfer function C(f; t) defined as

$$C(f;t) = \int_{-\infty}^{\infty} c(\tau;t) e^{-j2\pi f \tau} d\tau$$

We define the autocorrelation function

$$R_C(f_2, f_1; \Delta t) = E[C^*(f_1; t)C(f_2; t + \Delta t)]$$
$$= R_C(\Delta f; \Delta t)$$

- ► R_C(\Delta f; \Delta t) is called the spaced-frequency, spaced-time correlation function of the channel.
- The spaced-frequency correlation function is defined as $R_C(\Delta f) \equiv R_C(\Delta f; 0)$, and can also be computed as $R_C(\Delta f) = \int_{-\infty}^{\infty} R_c(\tau; t) e^{-j2\pi\Delta f\tau} d\tau$
- ► $R_C(\Delta f)$ provides a measure of the *coherence bandwidth* of the channel, $(\Delta f)_c \approx \frac{1}{T_m}$.

FIGURE 13.1-7

Cost 207 average power delay profiles: (a) typical delay profile for suburban and urban areas; (b) typical "bad"-case delay profile for hilly terrain. [*From Cost 207 Document 207 TD (86)51 rev 3.*]

イロト 不得 トイヨト イヨト

э

In order to characterize time variations we define

$$S_C(\Delta f;\lambda) = \int_{-\infty}^{\infty} R_C(\Delta f;\Delta t) e^{-j2\pi\lambda\Delta t} d\Delta t.$$

- Furthermore, $S_C(\lambda) \equiv S_C(0; \lambda)$ is called the *Doppler power* spectrum of the channel.
- The support of $S_C(\lambda)$ is called the *Doppler spread* B_d of the channel.
- ► The coherence time $(\Delta t)_c \approx \frac{1}{B_d}$ is related to the spaced-time correlation function $R_C(\Delta t) \equiv R_C(0; \Delta t)$.
- Finally, we define the scattering function of the channel S(τ; λ) as

$$S(\tau;\lambda) = \int_{-\infty}^{\infty} S_C(\Delta f;\lambda) e^{j2\pi\tau\Delta f} d\Delta f.$$

FIGURE 13.1–8 Model of Doppler spectrum for a mobile radio channel.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

FIGURE 13.1-6

Scattering function of a medium-range tropospheric scatter channel. The taps delay increment is 0.1 μ s.

イロト イ団ト イヨト イヨト 二日

FIGURE 13.1-5

Relationships among the channel correlation functions and power spectra. [From Green (1962), with permission.]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Statistical Models for Fading Channels

• Large number of scatterers contributing $\sum_n X_n$, with $X_n \sim N(0, \sigma^2)$ i.i.d, then, by the central limit theorem, phase uniformly distributed in $[0, 2\pi]$ and envelope follows a Rayleigh probability distribution

$$p_R(r) = rac{2r}{\Omega} e^{-r^2/\Omega}, \quad r \ge 0$$

where $\Omega = E(R^2)$.

- ► Nakagami-*m* distribution, which includes the Rayleigh distribution as a special case (*m* = 1).
- Rice distribution, which includes the power of the non-fading, specular components.

Propagation Models for Mobile Radio Channels

э

The Effect of Signal Characteristics on the Choice of a Channel Model

- ► The effect of the channel c(τ; t) on the transmitted signal s_l(t) is a function of our choice of signal bandwidth W and signal duration T.
- $W \gg \frac{1}{T_m} \approx (\Delta f)_c$, frequency-selective channel.
- $W \ll \frac{1}{T_m} \approx (\Delta f)_c$, frequency-nonselective channel or flat fading.

- Signaling interval $T \ll \frac{1}{B_d} \approx (\Delta t)_c$, slowly fading channel.
- Signaling interval $T \gg \frac{1}{B_d} \approx (\Delta t)_c$, fast fading channel.
- For a frequency-nonselective channel r_l(t) = C(0; t)s_l(t), with C(0; t) = α(t)e^{jφ(t)}. E.g. C(0; t) zero-mean complex-valued Gaussian stochastic process.
- ▶ Define the spread factor of the channel T_mB_d. Channel is underspread if T_mB_d < 1.</p>

Frequency-Nonselective, Slowly Fading Channel

Channel modeled as a one-tap filter, with filter coefficient C(0; t) = α(t)e^{jφ(t)} constant for at least T. Therefore,

$$r_l(t) = \alpha e^{j\phi} s_l(t) + z(t), \quad 0 \le t \le T.$$

 Assume phase shift \u03c6 estimated withour error, hence, coherent detection at the output of a matched filter demodulator applies. For PSK (4.3-13),

$$P_b(\gamma_b) = Q(\sqrt{2\gamma_b})$$

where $\gamma_b = \alpha^2 \mathcal{E}_b / N_0$ and α is fixed. Similarly, for FSK (4.2-42),

$$P_b(\gamma_b) = Q(\sqrt{\gamma_b}).$$

► Finally,

$$P_b = \int_0^\infty P_b(\gamma_b) p_b(\gamma_b) \, d\gamma_b.$$

Frequency-Nonselective, Slowly Fading Channel, with Rayleigh Statistics

 Assume α is Rayleigh-distributed. Thus, γ_b is chi-square-distributed with

$$p(\gamma_b) = rac{1}{ar{\gamma}_b} e^{-\gamma_b/ar{\gamma}_b}, \quad \gamma_b \geq 0$$

and $\bar{\gamma}_b = \frac{\mathcal{E}_b}{N_0} E(\alpha^2)$ is the average signal-to-noise ratio. • The bit error probability is then (see problem 4.44-1)

$$P_{b} = \begin{cases} \frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma}_{b}}{1 + \bar{\gamma}_{b}}} \right), & \text{for BPSK} \\ \\ \frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma}_{b}}{2 + \bar{\gamma}_{b}}} \right), & \text{for BFSK} \end{cases}$$

Frequency-Nonselective, Slowly Fading Channel, with Rayleigh Statistics

• The error probabilities for high SNR, i.e. $\bar{\gamma}_b \gg 1$ become

$$P_b pprox egin{cases} 1/4ar{\gamma}_b, & ext{for coherent PSK} \ 1/2ar{\gamma}_b, & ext{for coherent, orthogonal FSK} \ 1/2ar{\gamma}_b, & ext{for DPSK} \ 1/ar{\gamma}_b, & ext{for noncoherent, orthogonal FSK} \end{cases}$$

- The error rate P_b decreases only inversely with SNR. Compare to a nonfading channel (exponential decrease with SNR).
- DPSK performs in pair with coherent, orthogonal FSK.

Frequency-Nonselective, Slowly Fading Channel, with Rayleigh Statistics

FIGURE 13.3-1

Performance of binary signaling on a Rayleigh fading channel.

Frequency-Nonselective, Slowly Fading Channel, with Nakagami-*m* Statistics

When envelope α is characterized by the Nakagami-m distribution, the distribution of γ = α²ε_b/N₀ is

$$p(\gamma) = \frac{m^m}{\Gamma(m)\bar{\gamma}^m}\gamma^{m-1}e^{-m\gamma/\bar{\gamma}},$$

where $\bar{\gamma} = \mathcal{E}/N_0 E(\alpha^2)$.

- m = 1 corresponds to Rayleigh fading.
- m > 1 corresponds to fading less severe than Rayleigh.
- m < 1 corresponds to fading more severe than Rayleigh.

- ► The idea is to supply to the receiver several replicas of the same information transmitted over independently fading channels. For *L* independently fading replicas with probability *p*, the probability of all replicas being in a fading deep is *p^L*.
- How to achieve diversity?
 - Frequency diversity, by transmitting on L carriers with separation between successive carriers greater than (Δf)_c.
 - Time diversity, by transmitting on L time slots with separation between successive time slots greater than (Δt)_c.
 - Space diversity, by transmitting on L antennas with minimum separation between antennas greater than $(\Delta d)_c$.
 - Angle-of-arrival diversity.
 - Polarization diversity.
- Frequency diversity can also be obtained by using a wideband signal such that W > (Δf)c. The achievable diversity order is L ≈ W/(Δf)c, which corresponds to the number of resolvable signal components.

Diversity Techniques for Fading Multipath Channels with Binary Signals

• Determine the bit error probability P_b for a binary digital communication system with L diversity channels, each frequency-nonselevtive and slowly fading. The fading processes $\{C_k(0; t)\}$ are assumed mutually independent. The noise processes $\{z_k(t)\}$ are assumed mutually independent, with identical autocorrelation functions.

$$r_{lk}(t) = \alpha_k e^{j\phi_k} s_{km}(t) + z_k(t), \quad k = 1, 2, \dots, L, m = 1, 2$$

< = > < = > = <<<<

FIGURE 13.4–1 Model of binary digital communication system with diversity.

Diversity Techniques for Fading Multipath Channels with Binary Signals

The optimum demodulator consists of a bank of matched filters and a maximal ratio combiner (MRC).

$$b_{k1}(t) = s_{k1}^*(T-t)$$

 $b_{k2}(t) = s_{k2}^*(T-t)$

- Compensate for the phase shift in the channel.
- Weight the signal by a factor proportional to the signal strenght.
- For PSK, at the output of the MRC we have

$$U = \operatorname{Re}\left(2\mathcal{E}\sum_{k=1}^{L}\alpha_{k}^{2} + \sum_{k=1}^{L}\alpha_{k}N_{k}\right) = 2\mathcal{E}\sum_{k=1}^{L}\alpha_{k}^{2} + \sum_{k=1}^{L}\alpha_{k}\operatorname{Re}(N_{k})$$

and $N_{k} = e^{-j\phi_{k}}\int_{0}^{T}z_{k}(t)s_{k}^{*}(t) dt.$

• For PSK modulation and a fixed set of $\{\alpha_k\}$ we have that

$$P_b(\gamma_b) = Q(E^2(U)/\sigma_U^2) = Q(\sqrt{2\gamma_b}),$$

where the SNR per bit, γ_b , is given as

$$\gamma_b = \frac{\mathcal{E}}{N_0} \sum_{k=1}^{L} \alpha_k^2 = \sum_{k=1}^{L} \gamma_k$$

and $\gamma_k = \mathcal{E} \alpha_k^2 / N_0$ is the instantaneous SNR on the kth channel.

► The probability density function p(γ_b) is that of a chi-square-dsitributed r.v. with 2L degrees of freedom:

$$\rho(\gamma_b) = \frac{1}{(L-1)!\bar{\gamma}_c^L} \gamma_b^{L-1} e^{-\gamma_b/\bar{\gamma}_c}$$

where $\bar{\gamma}_c = E(\alpha_k^2) \mathcal{E}/N_0$ is the average SNR per channel.

Finally, we need to average over the fading channel statistics

$$P_b = \int_0^\infty P_b(\gamma_b) p_b(\gamma_b) \, d\gamma_b.$$

The closed-form solution to this integral is

$$P_b = \left[\frac{1}{2}(1-\mu)\right]^L \sum_{k=0}^{L-1} \binom{L-1+k}{k} \left[\frac{1}{2}(1+\mu)\right]^k$$

where, by definition
$$\mu = \sqrt{rac{ar{\gamma}_c}{1+ar{\gamma}_c}}$$

We note that

$$P_{b,\mathsf{PSK}} = rac{1}{2}(1-\mu), \quad 1-P_{b,\mathsf{PSK}} = rac{1}{2}(1+\mu)$$

where $P_{b,PSK}$ is the probability error for a single fading channel.

▶ When the average SNR per channel $\bar{\gamma}_c$ is greater that 10 dB, we have that

$$P_b \approx (rac{1}{4 ar{\gamma}_c})^L {2L-1 \choose L}.$$

- The error rate decreases inversely with the *L*th power of the SNR.
- Actually

$$P_b \approx \begin{cases} (\frac{1}{4\bar{\gamma}_c})^L \binom{2L-1}{L}, & \text{for BPSK} \\ (\frac{1}{2\bar{\gamma}_c})^L \binom{2L-1}{L}, & \text{for BFSK} \\ (\frac{1}{2\bar{\gamma}_c})^L \binom{2L-1}{L}, & \text{for DPSK} \\ (\frac{1}{\bar{\gamma}_c})^L \binom{2L-1}{L}, & \text{for noncoherent BFSK} \end{cases}$$

FIGURE 13.4–2 Performance of binary signals with diversity.

Diversity Techniques for Fading Multipath Channels, Nakagami Fading

A K-channel system transmitting in a Nakagami fading channel with independent fading is equivalent to an L = Km channel diversity in a Rayleigh fading channel.

A Tapped Delay Line Model

The W-bandlimited, time-variant frequency-selective channel can be modeled as a tapped delay line with tap spacing 1/W and tap weight coefficients c_n(t)

$$c(\tau;t) = \sum_{n=-\infty}^{\infty} c_n(t)\delta(\tau - n/W) \quad (13.5-8)$$

with $c_n(t) = \frac{1}{W} c(\frac{n}{W}; t)$, and the corresponding time-variant transfer function is

$$C(f;t) = \sum_{n=-\infty}^{\infty} c_n(t) e^{-j2\pi fn/W}.$$

- ▶ For all practical purposes truncation can be applied at $L = \lfloor T_m W \rfloor + 1$ taps.
- c_n(t) are complex-valued stationary, mutually uncorrelated
 (US) random processes.

A Tapped Delay Line Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FIGURE 13.5–1

Trapped delay line model of frequency-selective channel.

The RAKE Demodulator

• Assume binary signaling with $T \gg T_m$, then

$$egin{aligned} r_l(t) &= \sum_{k=1}^L c_k(t) s_{li}(t-k/W) + z(t) \ &= v_i(t) + z(t), \quad 0 \leq t \leq T, \quad i=1,2. \end{aligned}$$

The optimal demodulator consists of two filters matched to v₁(t) and v₂(t), and has decision variables

$$U_{m} = \operatorname{Re}\left[\int_{0}^{T} r_{l}(t)v_{m}^{*}(t) dt\right]$$

=
$$\operatorname{Re}\left[\sum_{k=1}^{L} \int_{0}^{T} r_{l}(t)c_{k}^{*}(t)s_{m}^{*}(t-k/W) dt\right], \quad m = 1, 2.$$

The tapped delay line demodulator attempts to collect the signal energy from all received signal paths that fall within the span of the delay line and carry the same information.

The RAKE Demodulator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The RAKE Demodulator

FIGURE 13.5-3

Optimum demodulator for wideband binary signals (delayed received signal configuration).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that {c_k(t)} are estimated perfectly, and are constant within any one signaling interval. The decision variables are

$$U_m = \operatorname{Re}\left[\sum_{k=1}^{L} c_k^* \int_0^T r_l(t) s_{lm}(t-k/W) dt\right], \quad m = 1, 2$$

with the received signal (assume, say, $s_{l1}(t)$ is transmitted)

$$r_l(t)=\sum_{n=1}^L c_n s_{l1}(t-n/W)+z(t), \quad 0\leq t\leq T.$$

This gives

$$U_{m} = \operatorname{Re}\left[\sum_{k=1}^{L} c_{k}^{*} \sum_{n=1}^{L} c_{n} \int_{0}^{T} s_{l1}(t - n/W) s_{lm}^{*}(t - k/W) dt\right] + \operatorname{Re}\left[\sum_{k=1}^{L} c_{k}^{*} \int_{0}^{T} z(t) s_{lm}^{*}(t - k/W) dt\right]_{*} = m = 1, 2, \quad \text{and} \quad m = 1, \dots, 1, \dots, 1, \quad \text{and} \quad m = 1, \dots, 1, \dots, 1, \quad \dots, 1, \dots, 1$$

► For pseudorandom sequences s_{l1}(t) and s_{l2}(t), the decission variables simplify to

$$U_{m} = \operatorname{Re}\left[\sum_{k=1}^{L} |c_{k}|^{2} \int_{0}^{T} s_{l1}(t - k/W) s_{lm}^{*}(t - k/W) dt\right] + \operatorname{Re}\left[\sum_{k=1}^{L} c_{k}^{*} \int_{0}^{T} z(t) s_{lm}^{*}(t - k/W) dt\right], \quad m = 1, 2.$$

 When the binary signals are antipodal, a single decision variable suffices

$$U_1 = \operatorname{Re}\left(2\mathcal{E}\sum_{k=1}^{L}\alpha_k^2 + \sum_{k=1}^{L}\alpha_k N_k\right)$$

くしゃ (雪) (雪) (雪) (雪) (雪) (

where $\alpha_k = |c_k|$ and $N_k = e^{-j\phi_k} \int_0^T z(t) s_l^*(t-k/W) dt$.

We have already seen this expression!

- The RAKE demodulator, with perfect (noiseless) estimates of the channel tap weights is equivalent to a maximal ratio combiner in a system with Lth order diversity.
- Let's consider this time binary antipodal signals subjected to distinct {E(α²_k)}. The error probability is given by

$$P_{b} = \frac{1}{2} \sum_{k=1}^{L} \pi_{k} \left[1 - \sqrt{\frac{\bar{\gamma}_{k}(1-\rho_{r})}{2+\bar{\gamma}_{k}(1-\rho_{r})}} \right]$$

with $\pi_k = \prod_{i=1}^L \frac{\bar{\gamma_k}}{\bar{\gamma_k} - \bar{\gamma_i}}$ and $\bar{\gamma_k} = \frac{\mathcal{E}}{N_0} E(\alpha_k^2)$.

• For large values of the average SNR for all k taps, i.e., $\bar{\gamma}_k \gg 1$

$$P_b \approx \binom{2L-1}{L} \prod_{k=1}^{L} \frac{1}{2\bar{\gamma}_k(1-\rho_r)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

How to estimate {c_k(t)}? Assume sufficiently slow channel fading, e.g. (Δt)_c/T ≥ 100.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• See Fig. 13.5-4 to Fig. 13.5-7.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

FIGURE 13.5-4

Channel tap weight estimation with binary orthogonal signals.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE 13.5–5

Channel tap weight estimation with binary antipodal signals.

Generalized RAKE Demodulator

- Addresses communication scenarios in which additive interference from other users of the channels results in coloured additive Gaussian noise.
- See Fig. 13.5-8 and Fig. 13-5.9.
- ► Assumes knowledge of the channel coefficients {c_i} and the time delays {τ_i}. In CDMA systems, an unmodulated spread spectrum signal is used.
- ► Our problem is to estimate the weights {w_i} at the L_g fingers, with L_g > L.

$$U = \mathbf{w}^H \mathbf{y}$$
$$\mathbf{y} = \mathbf{g}b + \mathbf{z}$$

and ${\bf z}$ contains additive Gaussian noise plus interference from other users plus ISI from channel multipath.

The ML detection solution is given by (linear MMSE estimator)

$$\mathbf{w} = \mathbf{R}_z^{-1} \mathbf{g}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

FIGURE 13.5–8

Model for the downlink transmission of a CDMA cellular communication system.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE 13.5–9 Structure of generalized RAKE demodulator.

Receiver Structures for Channels with Intersymbol Interference

- In the event that T_b ≫ T_m does not hold, the RAKE demodulator output will be corrupted by ISI.
- An equalizer in needed.
 - RAKE sampled at bit rate T_b, followed by equalizer, i.e., MLSE or DFE (Fig. 13.5-10).
 - Chip equalizer at chip rate T_c , with $LT_c = T_b$ (Fig. 13.5-11).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Receiver Structures for Channels with Intersymbol Interference

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

FIGURE 13.5-10

Receiver structure for processing wideband signal corrupted by ISI.

Receiver Structures for Channels with Intersymbol Interference

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

FIGURE 13.5-11

Alternative receiver structure for processing wideband signal corrupted by ISI.

Multicarrier Modulation (OFDM)

- OFDM is especially vulnerable to Doppler spread, which results into intercarrier interference (ICI).
- We analyze the performance degration due to Doppler spread in such a system, and some ICI suppression techniques.

► OFDM system with N subcarriers $\{e^{j2\pi f_k t}\}$, M-ary QAM or PSK, symbol duration T and $f_k = k/T$, k = 1, 2, ..., N with

$$\frac{1}{T} \int_0^T e^{j2\pi f_i t} e^{-j2\pi f_k t} dt = \begin{cases} 1 & k = i \\ 0 & k \neq i \end{cases}$$

► Frequency-selective time-varying channel with impulse response c(τ; t), but non-selective for within each subcarrier band, i.e.

$$c_k(\tau; t) = \alpha_k(t)\delta(t), k = 0, 1, \dots, N-1,$$

and $\{\alpha_k(t)\}\$ complex-valued, jointly stationary, Gaussian stochastic processes with zero mean and cross-covariance

$$R_{\alpha_k\alpha_i}(\tau) = E[\alpha_k(t+\tau)\alpha_i^*(t)].$$

Furthermore

$$R_{\alpha_k\alpha_i}(\tau)=R_1(\tau)R_2(k-i).$$

► $R_1(\tau) = J_0(2\pi f_m \tau)$, with $J_0(x)$ the zero-order Bessel function of the first kind. Equivalenty,

$$S(f) = egin{cases} rac{1}{\pi f_m \sqrt{1-(f/f_m)^2}} & |f| \leq f_m \ 0 & ext{otherwise} \end{cases}$$

as is Jakes (1974). • $R_2(k) = R_C(k/T)$ and,

$$R_C(f) = rac{eta}{eta + j2\pi f} \longleftrightarrow R_c(au) = eta e^{-eta au}$$

• Use the two-term Taylor series expansion on $\{\alpha_k(t)\}$, i.e.

$$lpha_k(t) = lpha_k(t_0) + lpha'_k(t_0)(t-t_0), \quad t_0 = \frac{1}{2}, 0 \le t \le T.$$

Results in channel

$$c_k(au;t) = lpha_k(t)\delta(t) = lpha_k(t_0)\delta(t) + (t-t_0)lpha_k'(t_0)\delta(t).$$

The baseband signal

$$s(t)=rac{1}{\sqrt{T}}\sum_{k=0}^{N-1}s_ke^{j2\pi f_kt}, \quad 0\leq t\leq T$$

with $E[|s_k|^2] = 2\mathcal{E}_{avg}$ is filtered with $c(\tau; t)$.

The received signal is

The output of the *i*th correlator at the sampling instant is

$$\hat{s}_i = \frac{1}{\sqrt{T}} \int_0^T r(t) e^{-j2\pi f_i t} dt$$
$$= \alpha_i(t_0) s_i + \frac{T}{2\pi j} \sum_{k=0, k\neq i}^{N-1} \frac{\alpha'(t_0) s_k}{k-i} + n_i,$$

where the terms are the desired signal, ICI and additive noise, resp.

・ロト・日本・モート モー うへぐ

After some computation we arrive at

$$\frac{S}{I} = \frac{1}{\frac{(Tf_m)^2}{2} \sum_{k=0, k \neq i}^{N-1} \frac{1}{(k-i)^2}}.$$

 For a large number of subcarriers N the distribution of ICI is approximately Gaussian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ICI severely degrades the performance of an OFDM system.

Suppression of ICI in OFDM Systems

- ICI in an OFDM system analogous to ISI in a single-carrier system: apply (linear) MMSE criterion.
- Estimate symbol s_k(m) as

$$\hat{s}_k(m) = \mathbf{b}_k^H(m)\mathbf{R}(m), \quad k = 0, 1, \dots, N-1$$

in order to minimize

$$E[|s_k(m) - \hat{s}_k(m)|^2] = E[|s_k(m) - \mathbf{b}_k^H(m)\mathbf{R}(m)|^2]$$

where $\mathbf{R}(m)$ denotes the output of the DFT processor.

Suppression of ICI in OFDM Systems

The optimum coefficient vector is

$$\mathbf{b}_k(m) = [\mathbf{G}(m)\mathbf{G}^H(m) + \sigma^2 \mathbf{I}_N]^{-1}\mathbf{g}_k(m), \quad k = 0, 1, \dots, N-1$$

where

$$E[\mathbf{R}(m)\mathbf{R}^{H}(m)] = \mathbf{G}(m)\mathbf{G}^{H}(m) + \sigma^{2}\mathbf{I}_{N}$$
$$E[\mathbf{R}(m)s_{k}^{*}(m)] = \mathbf{g}_{k}(m)$$

and $\mathbf{G}(m) = \mathbf{W}^{H}\mathbf{H}(m)\mathbf{W}$, and \mathbf{W} is the orthonormal IDFT transformation matrix.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Knowledge of the channel impulse response is required.