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1. Introduction

In this chapter we give a systematic exposition of the transformation properties of
three commonly used sets of stationary wave fields, namely the plane, the spherical
and the cylindrical waves. The resulting formulas are given in a form intended to be
directly useful for applications in scattering of stationary acoustic, electromagnetic
and elastic waves. However, the results are equally relevant for more general classical
and quantum-mechanical potential scattering problems.

The scalar wave functions to be considered are solutions of the reduced wave
equation, i.e. the Helmholtz equation:

(V2 + k2 = 0. (1.1)

For the vector wave functions we give a formulation which is appropriate for
elastodynamics. Thus, the vector wave functions are solutions to the reduced wave
equation of elastodynamics:

k7 2V(V-y) — kT2 x (VX y) + v =0, (1.2)

where k, and k, are the longitudinal and transverse wavenumbers, respectively. By
putting k, = k, = k (which is unphysical in elastodynamics) we obtain the vector
Helmholtz equation and, by further deleting the longitudinal part, we arrive at the
reduced wave equation of electromagnetics:

(V2 + k) y = 0. (1.3)

First of all, it is obvious that the plane, spherical and cylindrical waves are very
useful when the scattering surface is exactly a plane, a sphere, or a circular cylinder,
respectively. Their usefulness is, however, by no means limited to such cases. They
form complete sets over more general surfaces, and they can, therefore, be used as sets
of basis functions for the expansion of wave fields in more general situations. For
instance, the scalar spherical waves are complete and orthogonal over a sphere but
they are also complete, although nonorthogonal, for a much larger class of closed
surfaces (see, e.g. Millar 1973, 1983). Analogous properties hold for the plane and
cylindrical waves. Furthermore, for nonsphericai but finite scatterers one usually
expands the scattered field in terms of outgoing spherical waves in regions not too
close to the scatterer, and similarly one uses outgoing cylindrical waves to describe the
scattering from a straight but noncircular cylinder.

The need to have a fairly complete knowledge of the transformation properties
which will be given here, arises also in large classes of scattering problems involving
two or more scattering surfaces. Consider, for instance, the case of two finite scat-
terers. The field which is scattered off one of the scatterers is then naturally described
in terms of outgoing (irregular) spherical waves emanating from that scatterer. When
these waves hit the second scatterer, they are regular everywhere in the vicinity of this
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Transformation properties of wave-functions 167

scatterer, i.e. what is needed in this case is an expansion of an outgoing spherical wave
in terms of regular spherical waves referred to a different origin. On the other hand, at
some distance away from the two scatterers, one may sometimes wish to refer the
scattered field to an origin within one of the scatterers and sometimes to an origin
somewhere outside the two scatterers. In this case the relevant transformation is one
where outgoing spherical waves are transformed into outgoing spherical waves
referred to a new origin. If, instead, one of the two scatterers is a cylinder, correspond-
ing expansions between irregular and regular, spherical and cylindrical waves are
needed.

Thus, it is evident that in applications of this kind, the transformation properties of
both the regular and irregular waves are equally important and they will both be
treated in the same detail. On the other hand, we shall limit ourselves to the case of
lossless media, i.e. to real wave numbers k. However, it is expected that most of the
results can be extended to some region in the complex k plane, but considerable
detailed analysis remains to be carried out concerning this problem.

Although we give a fairly complete review of existing results, we must, in order to
keep the length of this chapter within reasonable bounds, omit many proofs. The
reader can find most of the basic facts concerning the different sets of wave functions
which we shall consider in well-known textbooks such as Stratton (1941), Morse and
Feshbach (1953) and Felsen and Marcuwitz (1973). Concerning particular aspects of
the transformation properties we call attention to the very useful expository articles
by Devaney and Wolf (1974), and Danos and Maximon (1965). They both consider the
expansion of spherical waves in terms of plane waves, while the article by Danos and
Maximon (1965) also treats the translation of spherical waves. Both articles contain
very readable accounts of the history of their subjects, including numerous references.
The transformations between the spherical and cylindrical waves are treated by
Stratton (1941), Pogorzelski and Lun (1976), Bostrom (1980b) and Bostrém and Olsson
(1981), and those between the cylindrical and plane waves are treated by Stratton
(1941). Translation of plane waves is, of course, trivial and translation of regular
cylindrical waves is essentially given by the well-known Graf’s addition theorem for
Bessel functions. Rotation of the spherical waves reduces to a rotation of the spherical
harmonics, a subject which is thoroughly covered in textbooks like those of Rose
(1957), Edmonds (1957) (in the language of the orbital angular momentum formalism)
and Gelfland et al. (1963). Rotation of the plane waves is also essentially trivial. It is
included here for completeness and because it can be used as an auxiliary tool,
particularly when one considers rotation of the cylindrical waves.

We note that, for example, in electrostatics, magnetostatics and elastostatics
involving several bodies, one encounters analogous transformation problems for sets
of solutions to the Laplace equation. Many of the results required for this case can be
obtained by studying the limit kK — 0 in the corresponding transformation formulas for
solutions to the Helmholtz equation. We shall not pursue this matter here, and we
refer to Sack (1964a, b, ¢, 1967) for a discussion of transformation properties of
solutions to the Laplace equation.

Besides the sets of wave functions which are treated in this chapter there are, of
course, several other sets which are used in scattering theory, such as spheroidal
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waves, conical waves, etc. However, the three sets treated here are distinguished in
a definite sense that is instructive to dwell upon briefly. We are interested in wave
functions which are solutions to the (scalar or vector) Helmholtz equation. This
equation is closely related to the representation theory of the three-dimensional
Euclidean group E(3) of rotations and translations, inasmuch as the Helmholtz
equation corresponds to the eigenvalue equation for the Casimir operator in an
irreducible representation of E(3) (see, e.g. Miller 1964, 1968). In view of this, the
theory of Lie-group representations provides a very useful and, from a more funda-
mental point of view, a very natural framework for the subject matter of the present
chapter. Therefore, we have included a few remarks on this connection, but the main
text does not rely on any knowledge of the group-theoretical background.

For real values of k the representations of E(3) are unitary and considerable
simplifications occur in this case. One can choose different sets of basis functions
which can, furthermore, be chosen as simultaneous eigenfunctions of various sets of
commuting operators [in the enveloping algebra of E(3)]. These operators are, in
turn, related to specific transformations in the three-dimensional space. A separate
index, the eigenvalue, corresponds to each of the operators. The collection of these
eigenvalues will then characterize the basis functions and they will also appear in the
functions which describe the transformation properties of this basis. Simple trans-
formation properties are obtained when the indices characterizing a basis are ordered
in a definite hierarchy. Hierarchies of this kind are naturally obtained by choosing the
sets of commuting operators as the subgroup invariants in a decomposition of E(3)
into a sequence of subgroups. The bases with the simplest transformation properties
are then those for which the chain of subgroups is as long as possible, i.e. starts with as
large a subgroup as possible. All the Lie-subgroup decompositions of E(3) are known
and one finds that there are only three such decompositions which start with a three-
or four-parameter subgroup (see, e.g. Kalnins et al. 1973). The corresponding three
basis systems are closely related to the plane, spherical and cylindrical waves.

Thus, a systematic treatment of the relevant properties of the regular plane,
spherical, and cylindrical waves can be based on the E(3) representation theory which
gives a systematic and unified approach to a large body of results. The wave functions
treated in this chapter are the most useful ones in the sense that any other set will have,
on the whole, more complicated transformation properties. When working with other
wave functions it is consequently often advantageous to go over to one of the three
distinguished sets, perform the transformation in that set, and then go back to the
original set. This is illustrated in the literature, e.g. by the fact that when one wishes to
translate the spheroidal functions, this is usually done by means of a transformation to
the spherical waves, where the translation is performed (King and van Buren 1973).

As was indicated above, the irregular waves are equally important in scattering
theory and in order to treat these one employs analytic techniques. Some of the results
concerning the irregular waves, such as some of the transformations between the
spherical and cylindrical waves, in both the scalar and vector cases (Bostrom 1980%
Bostrém and Olsson 1981), were not available in the literature until fairly recently.
Taking these into account, we now have a fairly complete picture of the transforma-
tion properties of all the relevant functions (regular and irregular, scalar and vector),
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and, therefore, a review of these properties, using systematic and condensed notations
and normalizations, seems appropriate at this time, as no effort has been made to
present the results in such a way that they can be used directly in acoustic, electromag-
netic, and elastic wave scattering. The notations for the vector wave functions are
chosen so as to be suitable for applications in elastodynamics. However, the formulas
relevant for the electromagnetic case are obtained by means of simple specializations
as is explained above and in Section 2. The normalizations are chosen so that the
expansion formulas for the Green’s function take a simple form.

The chapter is organised as follows. In Sections 2 and 3 we introduce the notations
and conventions for the wave functions and the (free space) Green’s function in three
and two dimensions, respectively. Several relevant Green’s function and Green’s
dyadic expansions are listed. Sections 26 are divided into two parts for convenience.
The first part treats the scalar waves and the second the vector waves. A reader
interested only in the scalar case may thus read just the first part of these sections. In
Section 4 we give the transformations between the three sets of wave functions.
Completeness relations and relations between the transformation functions are also
listed. A graphical representation of the various transformations which are available is
presented in Fig. 3. The treatment of the properties of the wave functions under
general transformations of the coordinate system starts in Section 5, which contains
the transformations brought about by a translation of the origin. A general trans-
formation can always be described as a combination of rotations and a translation
along a specific axis, e.g. the z axis. The simplifications which appear in the translation
formulas in this particular case are pointed out. The possibility of using the plane
waves in an intermediate stage is also exemplified. Rotations are treated in Section 6,
with due attention to the particular features of the vector case. Section 7 illustrates the
application of some of the formulas to a multiple-scattering problem with two
scattering surfaces, one of which is an infinite cylinder and the other a bounded
surface outside the cylinder. Two appendices conclude the chapter. In Appendix A we
discuss the proofs of some of the formulas for the transformation between the different
wave functions. Appendix B contains some additional remarks on the connection to
the E(3) representation theory, with references to the relevant literature in that field.

2. Definition of three-dimensional wave functions;
expansions of the Green’s function

In this section we define spherical, cylindrical, and plane scalar and vector wave
functions in three dimensions. When one wants to establish a precise definition of
these wave functions, one is faced with several choices concerning notations, normal-
izations, and phase conventions. The choices made will be reflected in the explicit form
of the transformation formulas for the waves. Sometimes these choices are arbitrary,
but, on the other hand, in several instances physical interpretation and/or mathemat-
ical or computational convenience favour specific choices.

Our conventions, and the motivation for them, are as foliows. The first choice
concerns the time factor, which we take to be exp{ — iwt}, in view of its predominance
in the current classical wave scattering literature. As usual, it will be omitted from all
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subsequent formulas. The spherical and cylindrical waves considered will be of the
regular and outgoing kind since we have in mind applications to typical scattering
situations. Thus, they contain Bessel functions and Hankel functions of the first kind.

The three coordinate systems to be considered are the spherical coordinates (r, 6, ¢),
the cylindrical coordinates (p, ¢, z), and the rectangular coordinates (x, y, z). We
employ a caret to denote unit vectors, e.g. # for the unit vector in the radial direction.

The dependence of the azimuthal angle ¢ is often described by complex functions
exp{im¢}. However, we have chosen to depart from this common practice and,
instead, we use real combinations {cos m¢, sin m¢}. Some relevant facts supporting
this choice are the following. The decomposition of exp {im¢} into {cos m¢, sinm¢}
gives, at the same time, a decomposition into the real and imaginary parts and
a decomposition into even and odd functions of ¢. This is a convenient feature since
both decompositions are often useful in the implementation of one and the same
problem. Two-dimensional models are frequently considered and for such models the
even and odd combinations {cosm¢, sinm¢} are useful, particularly when the scat-
terer has some mirror symmetry. Furthermore, in three-dimensional axially symmet-
ric problems the decomposition into the even and odd parts of the azimuthal
dependence is often a simplification. In this context the great dominance of axially
symmetric models in actual computations, as opposed to formal developments,
should be noted.

In general, it is advantageous to use notations which are suitable in as many
situations as possible. The use of complex functions in classical scattering theory is
tied to the use of a complex time factor exp{ + iot} for time-harmonic problems. This
then entails the use of complex radial functions, but not necessarily complex functions
of ¢. Thus, when using exp{im¢} together with Hankel functions of the first or second
kind, these complex functions have different origins: the complex Hankel functions are
a consequence of the time factor exp{ + iwt}, whereas the use of exp {im¢} represents
an independent arbitrary choice. As a consequence, one needs separate notations for
switching between ingoing and outgoing waves (i.e. complex conjugation of the
Hankel functions only) and for total complex conjugation. With the conventions used
in the present chapter, this is avoided. In transient scattering problems treated by
methods other than integration in the frequency domain, there is no similar wide-
spread use of complex functions.

Finally, we have chosen all wave functions to be dimensionless and normalized so
that the expansions of the Green’s function and dyadic become simple. A consequence
of our choice is that each of the outgoing spherical waves and each of the outgoing
two-dimensional cylindrical waves carry an equal amount of energy through a sphere
and a cylinder, respectively. Furthermore, the scattering matrix referred to these wave
functions will be unitary and the scattering and transition matrices will be symmetric.

2.1. Scalar wave functions

It is convenient to consider the spherical system first. The spherical wave function is
given as a product of a spherical Bessel or Hankel function and a spherical harmonic.
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We define the outgoing function y,,.(r) by
lpo’ml(r) = h}”(kr) Yaml(i’)’ (21)

where h{" is the spherical Hankel function of the first kind (we employ the definitions
of Morse and Feshbach (1953) for the Bessel and Legendre functions), and Y, is the
normalized real spherical harmonic function.

2 1 (1 — m)\12
Y,,m,(i')=<§—nT+ ﬁ%) m(cos 6) C:n':‘j) 2.2)

Here, PT" is the Legendre function and the Neumann factor ¢,, = 2 — 8,,0,{ = 0,1,. . .,
m=40,...,[, and o0 = e, 0 (even, odd). Furthermore, we need the regular function
Re ¥/, (r), which is obtained by taking the spherical Bessel rather than the spherical
Hankel function in Eq. (2.1). For real wave numbers k the regular function is then just
the real part of the outgoing one. In the following we usually employ a multi-index
n instead of the three indices ¢, m and I.

The cylindrical wave function is a product of a Bessel or Hankel function, a trigo-
nometric function, and an exponential. We define the outgoing function (in the
p direction)

Xam (%5 7) = (& /87)'/2 HYP (kp sin o) <°.°S m¢> gitz e, (2.3)
sin m¢
where HV is the Hankel function of the first kind, m = 0,1,. . . and ¢ = e, 0. We also
define the regular function Re y,..(a; ¥} which contains a Bessel instead of a Hankel
function, and we further need the functions y},(«; r) and Re y},(«; r), which have a sign
change in the exponential, which is thus exp( — ikzcos ). We introduce the multi-
index k instead of ¢ and m (there should be no confusion between this k and the wave
number k).
The continuous real or complex parameter o belongs to the interval [0, ©] or to the
contours C, C,, C_ given in Fig. 1. According to Fig. 1, one has

Imsino > 0, cosae(— oo, o), aeC,
sinae[0, 0), Imcosa =0, aeC,, 24)
sinae[0, o0), Imcosa <0, aeC._.
Im o Im o Im o
A 1}
C_
0 T 0 /2 0 nl
Re a — Rea Re a
C C+

Fig. 1. Integration contours in the complex o plane.
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When aeC, k, = kcosa is the Fourier transform variable corresponding to the
z coordinate. On C, and C_, |kZ + kZ|"* = ksinae(0, oo) is the radial Hankel
transform variable corresponding to the radius p in the (x,y) plane. Since,
Imcosa >0 on C, and Imcosa < 0 on C_, the function exp {ikzcos«} is bounded
for a fixed « on C, or C_ when z > 0 or z < 0, respectively. Conversely, exp {ikz cos o}
is bounded for a fixed z > 0 (z < 0) when 0 e C; (e C_).

In the rectangular coordinates the wave function is just a simple plane wave
exp(ik - r). To bring out the similarities between the scalar and vector wave functions
more clearly we define

@G;r) = (1/4m)eitt, (2.5)

where % = (sin acos B, sina sin , cosa) is the direction of propagation of the plane
wave, and « and f are the spherical angles of this direction. Here, a is the same as for
the cylindrical case, i.e. it belongs to [0, ), C, C,, or C_, and f belongs to the real
interval [0, 2n]. The quantities k, = ksin« cos f and k, = ksin« sin § are the Fourier
transform variables corresponding to the x and y coordinates, respectively. In analogy
with the cylindrical case we also need the function ¢'(§; r), which has a sign change in
the exponential.
A scalar Green’s function for the Helmholtz operator (V2 + k?) satisfies

V2G(r,r) + K2G(r,r') = — 8(r — r'). (2.6)

We shall consider the free-space Green’s function which satisfies the radiation condi-
tion at infinity. It is given by
eik|r — 7|
G(r,r)= ————. 2.7
4r|r — r'|

[Note that a Green’s function in three dimensions has dimension (length)™!].

The expansion of the Green’s function in the spherical wave functions is given, e.g.
by Morse and Feshbach (1953). In our notation it is

G(r,r')=ikY Rey,(r ), (r>), (2.8)

where the summation over n, of course, indicates a triple sum over /, m, and ¢. Further,
r. (r.) denotes the radius vector with the smallest (greatest) value of r or r'.

For the cylindrical set we have two simple expansions of the Green’s function, one
when separating in p. and p ., and one when separating in z.. and z. . Of course, we
may also separate in ¢, and ¢ . [as we may separate in 6, and 8. or ¢ and ¢« in
the spherical system (Felsen and Marcuwitz 1973)], but this leads to a much more
complicated expansion which is of less practical value. We thus give the following two
expansions (which may be found in Felsen and Marcuwitz 1973, Morse and Feshbach
1953, respectively; cf. also-Appendix A)

G(r,r) = ika do sino Re y (o5l (o5rs ), 2.9

G(r,¥) = 2ik2f da sin o Re y, (o, ) Re Xl (or), z2Z. (2.10)
ct

k
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Here a summation over k, of course, indicates a double summation over ¢ and m;
while r. (r- ) as an argument in a cylindrical wave function denotes the radius vector
with the smallest (greatest) value of p or p". The dagger in Eq. (2.9) can be moved to the
other function. The choice of C,. or C_ in Eq. (2.10) is dependent on the values of the
z coordinate as indicated. We note that Eq. (2.10) can be obtained from Eq. (2.9) (and
vice versa) by a contour deformation and use of some properties of Hankel and Bessel
functions (cf. Appendix A). Usually, Eq. (2.9) will be the more useful of the two
expansions, as a separation into z 2z’ can be effected more easily in the plane waves
[cf. Eq. (2.11) below].

A commonly used expansion of the Green’s function in terms of plane waves is
given, e.g. by Devaney and Wolf (1974). This expansion is

Gr,r) = 2ik J di(i;n ¢ (3;r), z2z. 2.11)
Cy

Here we have introduced a short-hand notation for the double integral appearing in

this expansion: fc, dj=[3"dB fc, sin « do. We note the great similarities between

Egs. (2.11) and (2.10).

2.2. Vector wave functions

Turning to the vector wave functions, we emphasize the great similarities between
the scalar and vector waves — the vector waves are obtained from the scalar ones
essentially by applying gradient or curl operators. To emphasize the similarities we
employ similar notations, thus writing y,,, x(%), etc.

We will employ a notation for the wave functions which is appropriate for
elastodynamics. The vector wave functions must then satisfy the equation of motion
for the displacement in elastodynamics, Eq. (1.2). By putting k, = k, we obtain the
vector Helmholtz equation and the corresponding wave functions. Further, by delet-
ing all longitudinal terms we arrive at source-free electromagnetics: its wave equation,
Eq. (1.3), and wave functions. Thus, we emphasize that the formulas given below
contain all the necessary results for the electromagnetic case.

The outgoing spherical vector wave functions are defined as

Wiom(r) = [I0 + DIV x {rhf (ker) Yom(P)}

= hi(ksr) A 1 om(?), (2.12)
Waom(t) = (10 + D172 (1/k)V x V x {rhfD(ksr) Yom(P)}

= [(ksrh{V (kgr)) [kor] Azgm () + (10 + DIV2(RED (k1) ksr) Asam (),
Waami(r) = (ko [k (1/k )V (Y (ko) Yo (P)}

= (ko ks> 2{fY (ko?) Azgm(®) + (I + D2 (WP (kyr) /kpr) A zom(P) }-

These wave functions will collectively be denoted g, (r). The multi-index n now stands
for t, o, m, I, where the first (mode) index 7 (= 1, 2, 3) describes the three vector degrees
of freedom. We also need the corresponding regular functions, denoted by Re w,(r), in
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analogy with the scalar case. In Eq. (2.12) a prime denotes the derivative with respect
to the whole argument. The 4,(#) are the normalized real vector spherical harmonics:

Aom(® = [0+ D172V x {r Yo ()}

-1/2 ;0 ; 1 0 p
=[(+ 1] /{— 60+0sinea¢}y”'"’(r)’

A2aml(";) = [l(l + 1)]-1/27‘V Ya’ml(f) (213)

=[1(1+1)]—1/2{éi+ ;L O

69 m@})’aml(")a

A3aml(i') =7 Yo‘ml(;.)'

They constitute a complete orthonormal set on the unit sphere [the definition of
Y, (F) is given in Eq. (2.2)]. We note that w,, 7 = 1,2, 3 are essentially the wave
functions denoted by M, N and L in Morse and Feshbach (1953). Similarly, the 4,
correspond to C, B and P in Morse and Feshbach (1953).

We define the outgoing cylindrical vector wave functions as follows:

X1am(5 1) = (& /87)2(1 /K, sin @)V % {ww(kspsin ) ("."S mé >e}
sin mg

Laoml0 1) = (60 /8T)2(1/KZ sin @)V X V X {zHﬁ,})(ks psin ) (C.OS mo >e“‘sz°m }
sin m¢p

Lsom(s¥) = (em/sn)1’2(kp/k5)3/2(1/k,,>v{Hs;)(kppsma)Cf:;"j>eikpzcos«},

(2.14)

where a belongs to [0,7],C,C,, or C_. The mode index is denoted by 7, and the
multi-index k now stands for 7,o, m. The functions Re y,(a), x1 (), and Rey} () are
defined in the obvious ways (note that the sign change in the exponential should be
made before the differential operators are applied). More explicitly, the expressions

(2.14) read
HW(k, psi — si )
Xla'm((x;r) = (8,,,/87!)1/2 ﬁw m Sin m¢ elksz cos «
kypsina cosmo

— $HY" (k, psin o) (Cf’smd’)eiksz cos ,}’
sinma¢

L2om(05 ) = (£, /8T) 12 {ii) cos o HY (k, psin &) (c.os md))e“‘“ cos
sinma¢

+i¢;cosawm — sinmg gihsz cosa
ke p sin a cosmae

. . cosme\ .
~ H;}) ks ) iksz cos a , 215
+ Zsina ( ps1nac)<smm¢>e } (2.15)
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L3om (@ 1) = (m/8T) 72 (K [k )2

. . cosmo\ .
x {pmnocHi,})’(kppsmoc)( , ¢>e"‘““"”
sin

me
M oa ; —sinme \ ;oo
+¢—H, (k,psina) e'r
kyp cos m¢

ia . cosm .
+1zcosaH§'})(kppsma)< ‘ d’)e,kpzcosa}
sinm¢

Finally, we define the plane vector wave functions
$1(5;0) = (1/4nk,sin o)V x {Zeiir} = — f(i/dm)ei7r,
$2(5;1) = (1/4nk2sina)V x V x {gekdr} = — a(1/4m)eih?™, (2.16)
$3(5:1) = (ky /k)¥2(1/4mk, )V {77} = Jik,, [k, )2 (1/dm)eis?,
where 9, @, and ﬁ are the spherical unit vectors given by
7 = (sina cos B, sin a sin f3, cos ),

& = (cosa cos f§, cosa sin ff, — sina), (2.17)

ﬁ = (—sin B, cos §, 0).
Here « and f belong to the same intervals as in the scalar case. We denote the mode
index by j, and thus write ¢;(7). The function ¢} () has a sign change in the exponential
(made before the curl or gradient is applied).
We shali consider the free space Green’s dyadic Gi(r, r') corresponding to Eq. (1.2),
which satisfies (/ is the unit dyadic):

(1/K2)VV G(r, r') — (I/k2V x V x Gr, ) + G(r,¥') = — (1/k2)15(r — r')
(2.18)

plus the radiation conditions at infinity. An explicit expression for G(r, ') in Cartesian
coordinates is

(2.19)

G, ) = (am {20, + 8,00 — a5
ij(",")—(/ﬂ) s (ks ij + ij)lr—r’l_ ii|,._r/| :

The spherical wave expansion of G(r, r') is (see, e.g. Morse and Feshbach 1953)

G(r,r')=i) Rey,(r<)w.(r>), (2.20)
where the summation over n now stands for a summation over t, 6, m and I. The factor
(ko/kg)*? in y3,,, was included so as to make Eq. (2.20) simple.

The expansions of G(r, ) analogous to Egs. (2.9) and (2.10) are (Bostrém and
Olsson 1981, Ben-Menahem and Singh 1968)

G(r,r)= 12[ dasina Re g0 r <) xf (7> ), (2.21)
k C



176 Bostrom et al.

o
G(r,r') =2iy, dasina Re g (o r) Regf (o r'), z27, (2.22)
k JCy
and an expansion in terms of plane waves is (Bostrom and Kristensson 1980)
r

Gr,r) =21y | dig;(:ng}(;r), 227 (2.23)

Cy

3. Definition of two-dimensional wave functions;
expansions of the Green’s functions

As two-dimensional models are often considered, we define in this section cylin-
drical and plane scalar and vector wave functions in two dimensions. We can then rely
heavily on the previous section as the discussion about the time factor, the choice of
angular functions, etc., is valid here also.

The two-dimensional wave functions can, in fact, be obtained from the correspond-
ing three-dimensional ones by simply putting o = 4n and multiplying by (2n)'/>. The
factor (2m)~ V2 exp(ikz cos «) then becomes unity, and the z dependence is suppressed
in this way. We also get sin o = 1, which means that the wave vector lies entirely in the
xy plane. It is convenient to remove the factor (2rr)~ /2, since this leads to very simple
expansions of the two-dimensional Green’s function and dyadic. We use the same
notations for the two-dimensional wave functions as for the three-dimensional ones,
with the obvious change that the « and z dependence is absent.

From what has just been stated, it follows that all the relevant transformation
formulas in the following sections — which are written for the three-dimensional case
— can be used also for the two-dimensional wave functions. With a slight change of
notation, the formulas giving the transformations between cylindrical and plane wave
functions, and their translational and rotational properties are still applicable. In the
following sections all the equations that have two-dimensional versions are marked
with an asterisk (*).

3.1. Scalar wave functions

We consider the cylindrical system first. The wave function is then a product of
a Bessel or Hankel function and a trigonometric function. The outgoing function is

defined as
Xam(r) = (Em/4)1/2 Hinl)(kp) (C'OS m¢>’
sin m¢

3.1)
and the corresponding regular function Re y,.,(r) contains a Bessel instead of a Hankel
function. We introduce the multi-index k instead of ¢ and m (there should be no
confusion between this k and the wave number k).

In the rectangular coordinates the wave function is simply a plane wave, which we
normalize according to

d(B;r) = (1/8m)!12eikdr, (3.2)
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Im 3 Im
A A

— Re 3 — Re B
I+ T-

Fig. 2. Integration contours in the complex f plane.

where $ = (cos f, sin f§) is the direction of propagation (which may be complex). The
angle B belongs to I'; or I'_ (see Fig. 2), where cos fe(— o0, c0) and Imsin f = 0 when
perly, and Imsinf <0 when fel'_. This means that k, = kcos f is the Fourier
transform variable corresponding to the x coordinate. It also means that the function
exp(iky sin ff) is bounded for a fixed f on I'y or I'_ when y = 0 or y < 0, respectively.
Conversely, exp(iky sin ) is bounded for a fixed y > O(y < O) when eI’y (BeI_). As
in the three-dimensional case we also need the function ¢'(8; ) which has a sign
change in the exponential.
The free-space Green’s function for the Helmholtz equation satisfies

V2G(r, ¥) + K2G(r,r) = — 6(r — 1), (3.3)
and the radiation condition. Its explicit form is
G(r,r') = 3iHG (k|r — r'|), (34

and we note that it is dimensionless. In cylindrical coordinates we have the expansion
(Morse and Feshbach 1953)

G(r, r') = i) Re yi(r <) suclr>)s (3.5)
k
where r. (- ) denotes the radius vector with the smallest (largest) value of p or p’, and

where summation over k indicates a summation over both ¢ and m. In rectangular
coordinates we have the expansion (Morse and Feshbach 1953)

G(r,r)=2i jﬁ dpoB; ot (Bir), yzv, (3.6)
where I', (I'_) is chosen when y > y' (y < y') as indicated.
3.2. Vector wave functions
We first note that two-dimensional vector wave functions are relevant only in

elastodynamics — in electrodynamics a two-dimensional problem always reduces to
scalar problems. In two dimensions we only have two vector degrees of freedom, so we
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have only two different modes, one transverse and one longitudinal (the remaining
transverse mode, in the Z direction, decouples from these two).
The outgoing cylindrical vector wave functions are

Tiom®) = e/ (1/k)V % [éHw(ksw(COSM >]

sin m¢
afem o —sinmé¢ A cos m¢
= (/4 {p@H‘m)(ksP)< cosm¢> —$H wsp)(sinmd))}’
Haom(®) = (em/4)”2(1/I<S)V[H£..“(kpp)(c.osmq5 )] 3.7
sinm ¢
- (gm/4)1/2(kp/ks){ﬁH‘,i”(kpp)Cf;Zf>
- m . —sinm¢
+¢EBH$")(kpp)< cosm(p)}’

and the corresponding regular function Re x,(r) contains a Bessel instead of a Hankel
function. Now the multi-index k contains also the mode index 7 (=1, 2). The factor
k,/k, is included in the longitudinal wave function so as to give the expansion of the
Green’s dyadic a simple form.

The plane vector wave functions are defined as

$1(B: 1) = (181 (1K) V x [£e™7] = — if(1/8m) 2 7",
$2(B; 1) = (1/8T)12(1/k)V [ 7] = i5(ky k) (1/8 )12 o7,
where
7 = (cos f3, sin f), B = (— sinp, cos p). (3.9)

The angle f belongs to I'y or I'_ as in the scalar case. We denote the mode index
j (=1, 2), and introduce the function ¢;( B) which has a sign change in the exponential
(made before the curl or gradient is applied).

The two-dimensional free-space Green’s dyadic associated with the reduced wave
equation of elastodynamics satisfies

k;2VV - G(r,¥) — k7 2V xV x G(r, ¥') + Glr,r) = — (1/k2)15(r — ¥'),  (3.10)

(3.8)

and the radiation condition. Its explicit form in rectangular coordinates is
Gy, v') = (i/4)ks? {(ks25ij + aiaj)H(()”(ks|r —r)— aiajHE)l)(ka —r}.
(3.11)

In analogy with the scalar case we then have the expansions [which can be obtained
from the corresponding scalar expansions and Eq. (3.11)]

G(r,r')=1Y Re g (r)xlrs), (3.12)
P

J

Glr,r)=2i ), Jﬁ dB e/ B; NG (Bsr) yZ V. (3.13)
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4. Transformations between the wave functions

Having defined the wave functions, we now turn to the transformations between the
different sets of wave functions. We can always transform back and forth between the
regular waves without restrictions. But, when the outgoing waves are involved, there
are either geometrical limitations or else the expansion does not seem to exist at all.
Thus, it is believed that there is no expansion of a plane wave in the outgoing spherical
ones, at least not in any region of interest.

We will not give any proofs of the transformations considered here. However, as
some of them do not seem to be found in the literature, we discuss their derivations in
Appendix A, especially those involving the irregular scalar wave functions.

4.1. Scalar wave functions
We start with the transformations between the spherical and cylindrical scalar
waves. The transformation function is essentially a normalized Legendre function

2+ 1(1 — m)!
2 (I+m)!

The transformations between the regular functions are then (Stratton 1941)

1/2
Coer () = ™85 Sy [ } Pl'(cosa). 4.1)

Rey,(r) =) J" dosin a Cp (@) Re yi (a5 1), 4.2

kK Jo

Re (25 1) = Y, Cun(@)Re e (r). 4.3)

The summation over #’ is essentially over I' = m, m + 1,... Cl, () is obtained from
C,i(2) simply by changing the first factor to i' ™™ (for real « this is then the same as
taking the complex conjugate). Furthermore, we can expand the outgoing spherical
waves in the regular or the outgoing cylindrical waves (Bostrom 1980b)

) =2Y J dasin o Cpe (@) Re g (a; 1), z 20, (4.4)
k’ C.

AGEDY L dasina Cpe (@) ya- (s 7), p > 0. 4.5)
"
As mentioned above we have geometrical restrictions on these expansions. The
restriction in Eq. (4.4) is due to the conditions at infinity (boundedness and radiation
conditions). In Eq. (4.5), on the other hand, it is the location of the singularities that
put a natural limit on the region of validity.

The transformation function for the spherical and plane waves is essentially a nor-
malized spherical harmonic

T 24 1(1—m)
Bn‘”“"[%%iugz] Pr(cosa)ci":;"l/j). (4.6)
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We then have the transformations (Stratton 1941, Morse and Feshbach 1953, Danos
and Maximon 1965)

mmm=ﬁ@mmwﬁa 4.7
$(5:1) = T BI(IRey,(v) 48)
mm=2ﬁ¢mm@¢mw,zzo 49)

The short-hand notation for the integrations was explained following Eq. (2.11).
Bl () is obtained from B,(j) by changing i~/ to i’.

The transformations between the cylindrical and plane waves are the simplest ones.
The transformation function is just a trigonometric function

Di(f) = i ™(en/2m)"2 (;‘:;"5 ) (4.10)
The transformations are (Stratton 1941) (cf. also Appendix A)
2n
Re yula; r) = L dBDi(B) P (F: ), (4.11)*
oF;r) = Z Dl (P)Re yi(o; v), (4.12)*
Xl r) =2 L dDi(B) o), y20; «el0,n]. (4.13)*

D} (p) is obtained from D,( ) by changing i~™ to i". By changing the contour in Eq.
(4.13) we may obtain a transformation valid, e.g. for x 2 0.

Using the relations between the regular wave functions twice we obtain the
orthogonality and completeness relations

> L dasin o Cop () C e (0) = Spurs (4.14)
"ZC,, (@ CL (@) = S S(cosa — cosa’), a,a €[00, ], (4.15)
L d$B.(7) B} (5) = Ouw> (4.16)
Y Bu(§)Bi(7") = d(cosa — cosa')6(f — f'), «,«'€[0,n]; B, B e[0,2n],
@.17)
.ﬁwmmmm=M, @.18)

;Dk(ﬁ)Di(ﬂ’) =0(B—F) B pel02n] (4.19)
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In fact, these relations are simply the orthogonality and completeness relations for the
Legendre and trigonometric functions. Furthermore, we get relations between the
transformation functions:

B#) = T, Cae @Dy (B 4.20)
Cour(@) = f 0" dB B,(5)DL(P) (4.21)
DB =Y J docsin o By (5) Clul0). 4.22)

It is now natural to ask if there are any transformations involving the outgoing
functions in addition to those already given. Apart from the possibility of obtaining
additional expansions of the outgoing spherical and cylindrical waves, with other
geometrical restrictions, we strongly believe that we have listed all possible trans-
formations. Indications of this are obtained by considering the radiation condition or
by assuming an expansion and looking at the implications of this. Let us, e.g. assume
an expansion of a plane wave in the outgoing spherical waves, and then expand the
plane wave in the regular spherical waves employing Eq. (4.8). Multiplying by the
transformation function B,($), integrating, and using Eq. (4.16), we would then obtain
an expansion of a regular spherical wave in the outgoing ones. But this would be
a very peculiar expansion, which seems impossible to realize in any domain of interest.

The wave functions can in fact be said to be ordered in a definite hierarchy, so that
a function with a more discrete (less continuous) spectrum can be expanded in
functions with a less discrete (more continuous) spectrum. This may also be expressed
by saying that a more singular function can be expanded in less singular ones (under
suitable geometrical restrictions). The hierarchy is illustrated in Fig. 3, where an arrow
from one wave function to another means that the former can be expanded in terms of
the latter.

' !

PN Rex fail=—s Rew (1)

yzO\_ 220 220

Xk(a‘ﬁ) ‘; \Pn(r)

Fig. 3. Existing transformations between the wave functions; an arrow from one function to another means
that the former can be expanded in terms of the latter.
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4.2. Vector wave functions

All the remarks concerning the existence of transformations involving the outgoing
wave functions are valid for the vector case as well. The completeness relations will
also have the same appearance, so we will not reproduce them.

The transformation function for the spherical and cylindrical waves is

an’(a) = Craml, t’a’m’(a)
— m)! /2
_ 5mmri"‘"[2l +1( m).:l

2 (Il+m)

10 =

— iA] (@) 0 0 ) (o) 0 0 le

0 —iAMa)  — (o) 0 0 0 lo

0 (o) — A7 (2) 0 0 0 2e

X

— () 0 0 — AP () 0 0 20

0 0 0 0 PP(cosa) 0 3e

0 0 0 0 0 P (cos ) 30
g = le lo 2e 20 3e 3o (4.23)

where
m -1/2 d m

AlMo) =[I(1 + 1)] @P’ (cos ),

(@) = [I(I + 1)]~Y* mPP(cos a)/sin a. 4.24)
Cli-(o) has all the explicit “i” changed to “ — i”. The transformations analogous to
Eqgs. (4.2)—(4.5) are (Pogorzelski and Lun 1976, Bostrom and Olsson 1981)

Rey,(r) =) j dosin o Cpr () Re jrie (o5 7), 4.25)

kK JO

Re zi(o; 1) = Y. Chi(@)Re w,. (1), (4.26)

war) =2 f dasina C, (@)Re yi (s 7), z 20, (4.27)

k JCy

war) =Y J dasin o Cpe (@) (3 7), p > 0. (4.28)
v Je
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For the transformations between the spherical and plane waves the transformation
function is

an(ﬁ) = mel j(aa B)

et —mt ]2
Ul 2 Ut m)

o =
_ iA:"(a)(;"rfn’f,f ) - n:"(a)( - iﬁ';@) o |
‘| — ni"(a)( B zlons'fn‘;) —iap a)(j’jnff > 0 %,
] 0 0 Pp(cos a) <;Onsn':’ lf >— 3¢

j= 1 2 3 4.29)

where A7"(2) and n}*(«) are given in Eq. (4.24). B};(7) has all the explicit “i” changed to
“ —i”. We note that B,;($) is essentially one of the spherical components of the vector
spherical harmonic A4,(§) [cf. Eq. (2.13)]. The transformations analogous to Egs.
(4.7)—(4.9) are (Morse and Feshbach 1953, Devaney and Wolf 1974)

Rew, () = ¥ f 45 B, (5)8,5: ) (430)
137 = T B3 Re i), 431)
i) =2 f 4§ By (D, r), 220, (432)

The transformations between the cylindrical and plane waves are the same for the
calar and vector cases, since both these vector waves are constructed in exactly
the same manner from the corresponding scalar waves. Thus, the transformation
function is

Dif(B) = Deom,(B) = 81" Lem/ 271" (jf’;;"g ) (433
and analogous to Eqgs. (4.11)—(4.13) we have
2n
Rexe(osr) = 3 f RENCICE! (434"
) = X Dl B Re e 1), @35y*
k

wln)=2Y L dBDy(BY¢;(7;r) y20; ael0,m]. (4.36)*
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In conclusion, we illustrate with one example how these three-dimensional trans-
formation formulas are used to construct their two-dimensional counterparts. Con-
sider, e.g. Eq. (4.34). According to the prescription given in Section 3, we use a = 37
and disregard the £ components. Thus, on the left-hand side of Eq. (4.34) there remains
Re f1om(37; X, ¥,0) and Re y3,. (37; x, y, 0). After applying the same prescription to
the right-hand side, there remains ¢,(5(x = 37, B); x, y, 0) and ¢3($(a =4m, )
x, y, 0). Note that these two modes are enumerated by = 1, 2 in the two-dimensional
wave functions. However, the only 7 and j dependence in the transformation function
Dy;(B) is a factor &,; [cf. Eq. (4.33)]. Therefore, since the change in the normalization is
the same, i.c.

Rel3am (%ﬂ:, X, Vs 0) = (2TE)_ 1z ( kp/ks)l/2 RelZo‘m(x, J/) (437)
and
$3(F(a=13m, B x, 5, 0) = Qm) 172 (Koo)' @25 X, ), (4.38)
weE get
2 2
Re zi(r) = Z, L dB Dyi(BYg;(B; 1), (4.39)

which is the desired two-dimensional version of Eq. (4.34).
5. Translations

In this section we will review the translation properties of both the scalar and vector
wave functions defined in Section 2. A general translation vector is denoted d and we
write ¥ = d + r. Here, we do not consider any rotation of the coordinate axes, i.e. they
are pointing in the same direction in both coordinate systems. A more general
transformation can be performed by introducing rotations.

5.1. Scalar wave functions

The plane waves have trivial translation properties. We have
PG r) =T P ). 5.1)*

This is just a phase adjustment for the plane wave, due to the shift of origin.

The translation properties of the spherical wave functions are well known and can
be found, e.g. in Danos and Maximon (1965), Miller (1964) and Peterson and Strém
(1974). Let (r, 8, ¢), (d, n, ¥) and (v, €', ¢’) be the spherical coordinates of v, d, and 7,
respectively, where as above ¥ = d + r. We then have

Re l//,,(l‘/) = Z Rnn’(d)Re Wn’(r)’ (52)
l//n(r/) = Z Rnn’(d)lpn’ ("), r>d (53)

l//,,(l") = Z Pnn’ (d) Re l//n’(r), r<d. (54)
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The matrices R, (d) and P, (d) are given by
Ry (d) = S,w(d; ), (5.5)
Py (d) = Sy (d; BD). (5.6)
The matrix S, (d; z;) may be written as

So'ml, am’l’(d; Zl) = (—' l)m} Bml, m’l’(d’ /N Z,l)COS (m - ml)l//

+ (— 1) By, ~mr(d, 1; 2;) cOS (M + m' ), 3.7
Somt, omr(d 21) = (= e Bot, v (d, 15 2;) sin(m — m' )y
+ By, —wr(d, mp; 2y)sin(m + m )y, o #0, (5.8)
where
1 o=e,
(~1)6={ —1 o=o,
and

Bml, m’l’(da 7”2).) = (— 1)m+m'(£m8m’/4)1/2

Y e @1+ DI + D — (m — m/))!:|1/2
A2 4
g TR )[ G+ m—m)
NOAYERN ,
X<000><m W mrf,,,)““‘fi)l"i”'”(cosn) (5.9)

In Egs. (5.7)-(5.9) z, stands for j; or h{V. The 3 — j symbol (: : ;) can be found, e.g. in
Edmonds (1957). Since (44 %) is zero when | + ' + 4 is an odd integer, the factor
(=) ~1*4V2 is real. A translation along the z axis leads to considerable simplifi-
cations (Peterson and Strém 1974). In this case # = 0, 7 and S, (+dZ; z;) is diagonal
in the ¢ and m indices.

The translation of the cylindrical wave functions in the z direction is a trivial phase
shift, while a translation in the x—y plane is more complicated but well known. Let
(p, &, 2), (A, ¥, ) and (p’, @', ') be the cylindrical coordinates of r, d, and ¥/, respect-
ively, where, as above, ¥ = d + r. We then have (see, e.g. Danos and Maximon 1965,
Miller 1968, Peterson and Stréom 1974)

Re yil; ') = kZ Ry (o; d) Re ype(a; v), (5.10)*

Al ¥) = ;Rkk’(‘x; d)yie (o5 1), p >4 (5.11)*

Xeloasr') = ;Pkk’(a; d)Re g, (; ), p < (5.12)*
where

Ry (s d) = S0, 5 J,), (5.13)

Py (0 d) = Sy (s d; HD). (5.14)
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The matrix S (; d; Z,) may be written
Somom (€ & Z,) = (Emem [8)? { Z - (kA sin @) cos(m — m' )Y
+ (= 1"+ Z (kA sina)cos(m + m' )y } e™co® (5.15)
Som. am (6 & Zy) = Emem /D2 {(= 1) Zp - (kAsina)sin(m — m')y
+ (=™ Z o (kisina)sin(m + m' )} e*c=?, g #d. (516

In Egs. (5.15) and (5.16) Z, stands for J, or H{".

The simple translation properties of the plane waves can be used in translating both
the spherical and cylindrical wave functions using the interrelating formulas from
Section 3. The translation of the regular spherical waves may serve as an example.
Thus, we get from Egs. (4.7), (5.1) and (4.8) (cf. also Appendix B)

Rey, () = f 45 B, () b(5: r) = f 45 B,(7) &4 $(:1) = T R d)Re Y 1)
(5.17)

where

Row(d) = J dj B.(7)e" BL(9), (5.18)
0

provided the interchange of summation and integration can be justified. That Eq.
(5.18) is identical to Egs. (5.7)-(5.9) can be shown by reducing the product of the
spherical harmonics in B,(7)B} () to a single spherical harmonic (note that this
reduction involves a finite sum), and then by using Eq. (4.7). This justifies the
interchange of summation and intergration in Eq. (5.17) since we know that Eq. (5.2)is
convergent everywhere. In the same manner we can obtain

Po(d) = 2[ df B,()e™ “BL(), £:d20, (5.19)
G
2r
Ry (o; d) = J dB Di(B)e™* DL.( ), (5.20)
0
Pye(a; d) = ZJ dB Du(p) e “Di(f), p-dZ0; ael0,x]. (521
I

5.2. Vector wave functions

The formulas found in the preceding subsection for the scalar waves can be
extended to the vector case in a rather straightforward way. In this subsection we use
notations which are analogous to those for the scalar case.

The plane vector waves have translation properties similar to Eq. (5.1):

93 r) = g5, j=1,2

) (5.22)*
$3(5;r) = "7 g3(5; ).
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The translation properties of the spherical vector wave functions, as defined in Eq.
(2.12), are similar to those for the scalar waves. However, in the vector case a coupling
in the mode index 1 occurs for the transverse modes (z = 1, 2). Viewed as a matrix in
the mode indices, the translation matrix has the structure

Riy Ry, O
(Re)=| Rai Ry 0 (5.23)

and similarly for (P, ). We observe that the longitudinal mode (t = 3) does not couple
to the transverse modes (t = 1, 2). In analogy to Egs. (5.2)—(5.4) we have

Re ‘/’n(r’) = z Rnn’(d)Re l/l,,«(l‘), (524)

Wn(r/) = Z Rnn'(d) '/In’(r)’ r> d7 (525)

Yalr') = 3 Puw(d)Re y, (1), r<d, (5.26)
and, as before,

Ry (d) = S (d; J1), (5.27)

Py (d) = S, (d; D). (5.28)

However, S, (d:z;) is now more complicated than the scalar case and we have
(Bostrom 1980a, Peterson and Strom 1973, Danos and Maximon 1965)

S1omi, tomv(ds 2;) = (— l)ml Cot, mr(d, 15 2;) cOS (m — m' )Y

+ (= 1) Cpy, —mrr(d, 15 z2) cOS (M + M)y, (5.29)
S1omt, 1amr (@5 23) = (= V)" 77 Co, e (d, 15 23) sin(m — m' )¢

+ Cot —r(d, m; z3)sin(m + m' )Y, o #o0, (5.30)
S1omt, 20m1(d 23) = (= 1" "7 Dyt e (d, 15 23) cOS(m — m' )Y

— Dy, —r(d, 5 2;)cos(m + m' )Y, o #0d', (5.31)
Stomt, 20m1 (@ 23) = (= 1™ Dot pre(dy 15 23) sin(m — m' )

+(—1° Dy, — v (d,y; z3)sin(m + m' )y, (5.32)
Soomt, varmr(d 21) = Stomt, wmir(d 23), T#T =1,2, (5.33)
S3omt, 3om(d; 22) = (= 1) By, mrr(d, 11; 2;) cOS(m — m' )y

+ (=1’ By, —per(dy 13 23) cOs(m + m' ), (5.34)

Saemt, 30mr(d; 23) = (— l)m,”' Bt mr(d, m; 2;) sin(m — W' )Y
+ Bml, —m’l’(da ’1, Z).)Sin(m + m/)l//’ g # OJ! (535)
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where
Cont, mv(ds 1 22) = (= )" ™ (€ /4)!

iy - QL+ DRI+ D(A— (m—m)\"?
x} ¥ (=pTTTReL+ ”( T+ DIT + DA +m—m) )

A={-r
x(z v /1)(1 I /}tm>[l(l+1)+[’(l’+1)—ﬂv(l+1)]

00 0/)\m —m m-—

x z,(ked) PT~™ (cos n), (5.36)

Dml, m’l’(da " Zl) = (_ 1)m+"'l(£m8m’/4)1/2

@1+ DHEL + 1) — (m — m))! )1/2
I+ DI + DA +m—m)

LroA—t\/l I i , N
X(O 0 0 ><m —m’m’—m)” (=17

x[(1+ 1+ 1)2 = 2212z, (kd)PT ™™ (cos 1), (5.37)

I+

X% Z il—l+/l+1(2/1+1)<

A=ji—1]+1

Bml, m’l'(d’ /B Z}.) = (_ 1)m+m'(8m£m’/4)1/2
1+

x Y (=120 1)[

A=)1-1]

QI+ DRI+ 1D)(A—(m—m)) ]2
A+m—m)!
I AN/ r A .
X k. d)P7 ™ (cosn). (5.38
(0 o 0><m . m,_m>z1( od) P} " (cos ). (5.38)
As in the preceding subsection, (:::) is the 3 —j symbol. A translation along the
z axis will lead to simplifications. Thus, S, (+dZ; z,) is diagonal in the m index, and in
the (to, T'0’) indices only the terms (z0, 10), t=1, 2, 3, 0 =¢, 0 and (1e, 20), (10, 2¢), (2¢,
10) and (20, le) are different from zero.

Finally, we consider the cylindrical vector wave functions, whose translation
properties are almost identical to those for the scalar ones. This can be seen from their
definitions in Eq. (2.14). The transverse wave functions are obtained by taking the
curl (once or twice) of the scalar wave function times the constant vector Z, and the
longitudinal wave function is just the gradient of the scalar wave function. Since the

gradient, the curl and the 2 vector are the same in both the original and the translated
coordinate systems we have

Re zi(a; ') = ) Ruw(o; d)Re i (25 ), (5.39)*
L
225 ¥') = Y Rue (o d) i (25 1), p >4 (5.40)*
&

1@ ¥) =Y Pulw dRege@n,  p<i (541)*
Kk’ .



Transformation properties of wave-functions 189

The definitions of Ry, (2; d) and Py (a; d) are almost identical to those for the scalar
case, cf. Egs. (5.13)—(5.16):
Ry (s d) = S (o3 &5 J,), (5.42)
Pye(o; d) = Spe(o; d H), (5.43)

and
Scom. vam (0 d; Z,) = (EmEm /8?60 { Z - (ks Asina)cos(m — m' )y
+ (= 1" *°Z, s (ks Asin a) cos(m + m' )y Jeikst o052
(5.44)
Seom vom (06 d; Z,) = (Emem /8280 {(— 1) Z o e (kA sina) sinm — m')y
+ (= 1" Z s (ks Asina)sin(m + m' ) } etsbooss,
(5.45)
where 6 #¢' and 1, 7' = 1,2 and
Saom, 3om (@ & Z,)) = (embm /8 ?{Z py— (kA sIn ) cOS(M — M)y
+ (=1 Z s (kyAsina) cos(m + m')y } e*eteose,
(5.46)
Saom, 30m (@ d; Zy) = (Emlm /B {(—= 1) Zpy— e (kpAsin @) sin(m — m' )y
+ (=™ Zprm (kpAsino)sin (m + m' )y} e¥ecs?,
(5.47)

where g # g’

Integral representations of the translation matrices R,,- and P, can be obtained in
analogy to the scalar case [cf. Egs. (5.18) and (5.19)]. The integral representations of
the transiation matrices for the cylindrical vector waves are essentially the same as in
the scalar case and are not repeated here. For the spherical vector waves we have

Rnn’(d) = Z J‘ dﬁ an(f)eiks’;}'dBIl’j(f)’ T, 7:’ = 1, 29

Joe (5.48)
Rnn'(d) = ZJ‘ d?an(ﬁ)eikpi.dBI’j(?)s = T/ = 3’
i Jo
Pnn’(d) = 2 z j d};an(?)eiks’}).dB;'j(?)’ T, T, = 1: 2, zA'd 2 0’
jra (5.49)

Pu(d)=2Y j df Byy(5) e 4B;(5), t=1=38d20.
jJa
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6. Rotations

We now turn to the relation between the wave functions in an original (x, y, z) and
a rotated (x, y, z') coordinate system. The rotation can be parametrized by the
conventional Euler angles (i, n,0) (ie. an azimuthal rotation y about the z axis,
succeeded by a rotation # about the rotated y axis). The most general rotation also
includes a final azimuthal rotation about the rotated y axis, but since this rotation is
a trivial shift in the azimuthal angle no generality is lost by putting it equal to zero.
The spherical angles of both r and # (the direction of the plane wave) in the rotated
system are denoted by a prime (i.e. (8, ¢') and («, '), respectively) (see Fig. 4). The
relation between the original and rotated coordinate systems can be found e.g. in
Edmonds (1957):

¥ =Rr, $ =Rj. 6.1)

Here r, ¥, § and §’ are interpreted as column vectors and R as a matrix:

X X sinacos 8 sina’ cos f'
r=|y |, r=_y |, = sinasinf |, §'=| sina'sinff’ |,
z z Cos & cos o
. _ (6.2)
cosy 0 —singy cosyy siny O
R= 0 1 0 —siny cosy O
siny 0 cosp 0 0 1

6.1. Scalar wave functions

First we consider the plane wave functions, since a rotation of these is more or less
trivial. This is a consequence of the fact that the argument in the exponential is

|
i
|/

% N

XS N

Fig. 4. Angles involved in a rotation of the coordinate system.
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invariant under a rotation of the coordinate system. More explicitly, we obtain [for
the definition of the plane waves, see Eq. (2.5)]

¢G5 r) = ¢(7'; Rr) = ¢(R'F";r) = $(; 1), (6.3)*

where R' is the transpose of R.
The relation between the spherical waves in the rotated and the original system is
well known. The rotation does not affect the absolute value of r and this implies no

coupling in the I index. We refer, e.g. to Rose (1957) and Edmonds (1957) for more
details. We have

Rey,(r') = Z Do (1, Y)RE Y (), (6.4)
Un(t') = 2 Do (1, Y)Y (). (6.5)

The rotation matrix 2,, (4, ¥) is diagonal in the ! index and can be expressed in
a number of ways. We use the form (with matrices in the ¢ index)

gnn'(rla (l/) = 5”'(£m8m'/4)1/2(— 1)m+m' <A£nm’(n) 0 > < COS m,lp sin m'l// >’

0 B, —sinm'y cosm'y
(6.6)
where
A:nm'(ﬂ) = dinm’(r’) + (_l)m,din—m/(rl)a
! 1 m’ gl (67)
Bmm(rl) = dmm(n) - (_1) dm—m’(n)’
with
1 _ (l+m)'(l_m)' 12 m+m’ ram—n’ (m—m',m+m’)
A (1) = ((l Tt —my ) 7/2sin™ "™ 5/2 x P{" (cosn),

= (1) = (= )" " dppe (0~ 17). (6.8)

Here P> # (cos#) is the Jacobi polynomial [for a definition see Edmonds (1957)]. It
should be noted that we use a slightly different normalization of the spherical
harmonics as compared to Edmonds (1957) [cf. Eq. (2.2)].

It may also be illustrative to consider another way of finding the rotation matrices
D (1, ). In a preceding paragraph we noted the simple rotation properties of the
plane waves, and from Section 4.1 we know the transformations between the spherical
and plane waves. Thus, we obtain from Egs. (4.7), (6.3) and (4.8),

Re, () = f d7’ B,(3)$(3':¥) = J 47’ GRS )

4]
- [ a7 B B Rep 0
= Z @nn'(na W)Re 'Z’n'(r)a (69)
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where
Dow(, Y) = '[ dj’'B,(7") B} (R'$"). (6.10)
0

This expression is an integral representation of the rotation matrix and can be verified
by means of group-theoretical results and the orthogonality of the spherical har-
Monnics.

We observe that the singularity of the outgoing spherical wave function ¥, at the
origin is invariant under a rotation (s, ). This is not the case for the outgoing
cylindrical wavefunction y,(«) (except for n = 0). The singular z axis does not coincide
with the rotated z’ axis, and this property suggests that no simple expression for the
rotation of the outgoing cylindrical wave functions exists (no cylinder exists which
circumscribes both the z and 7’ axes). In this chapter we will not pursue these aspects
any further, but concentrate on the regular cylindrical waves, for which these prob-
lems do not appear.

The rotation of Re y,(«) can be obtained by means of an intermediate transforma-
tion either to the plane or spherical waves. Thus by using Eqgs. (4.11), (6.3) and (4.12)
we find

2n 2n
Reyl@;r)=| dB'DB)P(55¢)=| dB Du(f)Y DI (B)Re (e r).
0 0 k'
(6.11)*

In this expression o, § are functions of the angles n, ¥ and o/, B’ [cf,, Egs. (6.1) and
(6.2)]. In the alternative way of expressing the rotation we employ the spherical wave
functions. Equations (4.3), (6.3) and (4.2) yield

Re pi(o'sr') = ) ClLu(@)Rey,, ()

=Y Cru(@) Dum(m, lﬁ)Z[ dacsina Cy, (W) Re e (o3 1)
k¥ Jo

=) J dasin a Dy (1, ¥; o, o YRe i (o 7). (6.12)

K Jo

Here we have introduced
@kk'(rl’ lpa &, a/) = Z Clxk(a/) @nlnz("’ l//) ank'((x)' (613)

Equations (6.11) and (6.12) are believed to be of limited value in applications, and they
are included mainly for completeness.

6.2. Vector wave functions

The relations found in the preceding subsection for the scalar wave functions can be
used to obtain the corresponding formulas for the vector case. However, we have to
pay proper attention to the vector character of the wave functions.
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For convenience we treat the spherical waves first in this subsection, since in some
respects this set has the simplest rotation properties. We notice that the definition of
the spherical vector wave functions [see Eq. (2.12)] contains the curl of the position
vector r times the scalar wave function or just the gradient of the scalar wave function.
Since the gradient, the curl and the position vector transform as vectors under
a rotation, we obtain

Wenlr') = LI+ DI7V2(Q/kV XY (Rt Y1)
= [I(1+ DI7V2(1/kV x) < VZ%,. ", w)wnm)
= Z 9nn‘(']a lp)"’tn'(r)s T = 1’ 2’ (614)

Yinlt') = (ki k)2 (1 ko) V' g ()
= (kp/ks)s/z(l/kp)v Z @nn'(”’ l//)l//,,(l’)

= Z @nn’(”l, '//)'/’m'("), T=3.

Here the prime on the vector wave functions on the left-hand side remmds us that the
vector components are with respect to the primed spherical unit vectors # '8, ¢'. The
definition of the rotation matrix 2,, (1, ¥) is found in Eqgs. (6.6)—(6.8).

As a consequence of the vector operations used in the definition of the spherical
vector waves we have obtained fairly simple transformation properties under a rota-
tion of the coordinate system. For the plane vector waves the situation is different,
since a specific direction 7 appears in their definition. Therefore, they possess more
complicated transformation properties under a rotation. Nevertheless, it is most
convenient to work with the definition found in Eq. (2.16) (a definition analogous to
the spherical one inevitably leads to complications in various respects).

The rectangular coordinates of j are transformed according to Eq. (6.1), but this is
not the case for the vectors @ and ﬂ The two right-handed trlplets (@, B, 7)and (&', ﬂ

7') are both orthogonal and they are linearly dependent; i.e. (€, ,6” 7') can be expressed
in terms of the triplet (4, §, ) and vice versa. Due to the fact that the vector 7 is not
changed under the rotation of the coordinate system only 4, ﬂ and d ﬂ couple, and
this transformation is a rotation with an angle Q around the vector . We thus have

cos —isin2 0O
o Z@” ¢y, (Ry)=| —isinQ cos 0 | (6.15)
0 0 1

Note that the matrix £ describes the coupling in the mode index j, and should not be
confused with the matrix R, c¢f. Eq. (6.2), which effects the transformation of the
rectangular coordinates under the rotation. As above, the prime on the left-hand side
in Eq. (6.15) reminds us that the components of the plane vector wave are with respect
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to the primed unit vectors. The matrix #;; that performs the rotation of the unit
vectors is a function of the angles of rotation (», ¥) and the angles («, f), and we prefer
to write the elements of # as

sinocosn — cosasinycos(f — y)

cos2 = — , sin 2
sina

__singsin(f — V)
B sin o

£l

(6.16)

where sin o' is determined from cos «’ = sinasing cos(f — ) + cosacos .

The cylindrical vector waves are defined in analogy to the plane vector waves, cf.
Egs. (2.14) and (2.16). In the scalar case we only discussed the regular cylindrical waves
and this is also the case in this subsection. Thus we obtain, either by transforming to
the plane waves or to the spherical waves, the following formulas, cf. Eqs. (4.34), (6.15),
(4.35) and (4.26), (6.14), (4.25):

2n
Reyi(o;r) =), L df Dii(B) ;5 Z Dj (B)Re pi (o5 1), (6.17)*

Ji’

Reyi(o;r) = Z J dasin o @y (n, ; o, )Re i (o r). (6.18)
kK JO

Here «, f are functions of #, ¥ and o, #, and analogously to the scalar case we have

defined

D3 o, 0) = 3 Coal0) Dy, (1, ) Coie (). (6.19)

nins

7. An illustrative problem

As already pointed out in the introduction, the transformation properties discussed
in this chapter are relevant in solving a large number of scattering problems with more
than one diffracting surface. This is true for most of the approaches usually employed,
exceptions being many approximate and purely numerical methods. Some examples
of multiple-scattering problems where transformation properties have been applied
include two and several bounded obstacles (see, e.g. Peterson and Strém 1973, 1974,
Bostrom 1980a, Twersky 1967, Van Buren and King 1972, Cooray and Ciric 1989),
a plane interface and a boundeq obstacle (see, e.g. Bostrom and Kristensson 1980,
Yakonov 1959, Hollinger and Ziegler 1979, Kristensson and Strém 1978, Kristensson
1980, Bostrdom and Karlsson 1984, 1987), and a sphere or spheroid in a cylindrical
waveguide (Bostrém 1980b, Bostrom and Olsson 1981, Morita et al. 1979). Trans-
formation properties are also needed, e.g. when considering scattering of a beam
(Pogorzelski and Lun 1976) and multiple-scattering in quantum mechanics (Agassi
and Gal 1973).

To further exemplify the use of the transformation properties we will consider in
this section a complex scattering geometry, namely an infinite cylinder and a bounded
obstacle outside the cylinder. This will also give us an opportunity to discuss another
aspect. Namely, if we have reason to expand, e.g. a cylindrical wave function in the
spherical waves about a different origin, which should be performed first, the transla-
tion or the transformation between the two sets of wave functions?
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The method we will employ in the above-mentioned problem is the null-field
approach (the T-matrix method), introduced by Waterman (1969, 1971, 1976). Con-
sider the geometry as depicted in Fig. 5. Requirements on the cylinder S, and the
obstacle S; are that there exist inscribed and circumscribed circular cylinders and
spheres, respectively. Our coordinate systems are then chosen accordingly, see Fig. 5
(the separation vector d between the origins is pointing towards O, ). Furthermore, the
cylinder and the obstacle must not be too close. We remark that it is not necessary in
principle that the cylinder S, has a constant cross section (although in practice this
will probably be the only manageable case). Our starting point is the following
integral representation for the scalar field u:

. a a
i [0 gy Gtero = 060 (groate ) o

0
+ L |:u+("1)6_an(r’ r1) = Gl r1)<ai;lu(r,)>+ :|dSI

B {u(r) r outside S, and §,,

7.1
0 r inside S, or S, 7.

where u' is the prescribed incoming field with sources outside S, and S,, 0/0n is the
normal derivative (outward-pointing normal) and G is the free-space Green’s function
defined in Section 2.1. For simplicity we take the boundary conditions on S, and S, to
be the homogeneous Neumann conditions so that the second term in the integrals
vanishes.

We first employ Eq. (7.1) for r inside the inscribed cylinder of S,. In the first integral
we expand the Green’s function in cylindrical wave functions about O [Eq. (2.9)]:

G(rg, ro) = 1k ZJ dasin aRe g (o r <) xh (o 75 ), (7.2)
k C
%o
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Fig. 5. Geometry for a cylinder-like and a bounded obstacle.
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and in the second integral we expand in spherical wave functions about O, [Eq. (2.8)]:
G(ry, r1) =ik ) Rey,(r<)¥,(rs). (7.3)

Inside the inscribed cylinder of S, we can further expand the incoming field in regular
cylindrical wave functions about O:

ui(ro) = Zj dasin a a,(2)Re i (2 o). (7.4)
K JC
From Eq. (7.1) we then have (here we must demand that max,, .5, 71 < d)
ZJ dosin o ag (@) Re (o ro)
k C
. . 0
+ ik Y, | dasinaRey(a;ro) | u+(ro) = xa(a; ro)dSy
kK JC So Ong
b a / ’
+ lkZlﬁn(h)J us(ry) = Rey,(r)dS, = 0. (7.5)

’
Sy on}

As the regular cylindrical wave functions with ae C form a complete and linearly
independent set inside a cylinder, we clearly want to expand ¥,(r,) in Re y(a; ro) in
Eq. (7.5). This can be accomplished, e.g. by using Eqgs. (4.5) and (5.12);

Yalry) = Z Jc doesin o Cpge (o) ae (005 71)
"

=y J dosin o Cp () Py (ot; — dI)Re yp (2 79),  po < d. (7.6)
C

kK"

Employing Eq. (7.6) in Eq. (7.5) and equating coefficients of Re y,(a; ro) yields

a () + ik J‘

0
u+(V0)5_XI(a;"o)dSo
So L)
. 0
+ ik Z ConA) Pl — d)f “+(V1)a Rey, (r;)dS; = 0. (7.7)
n'k’ Sh 1

Next we apply Eq. (7.1) for r inside the inscribed sphere of §;. We still use the
expansions of the Green’s function Egs. (7.2) and (7.3) (with the dagger on Re y,(«) in
Eq. (7.2)), but this time we expand the incoming field in regular spherical waves

u'(ry) =3 a,Re,(ry). (7.8)

Equation (7.1) then gives (here we must demand that max,, s, po < d)

0
Y a,Re,(r) + ik Y f dasinaxk(a;r())f 4 (ro) = Re ¢ (a; #6) dSo
n k JC So Onp

+ik ) Rey,(ry) f uy(ry) ai Yalrh)dS; = 0. (7.9)
n St ny
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We now want to expand y,(a; #o) in Re ,,(r;). This is done by means of Eqs. (5.12) and
(4.3):

X0t vo) = Z P (o; d)Re ype- (25 1y)
-
= Z Py (0; d) Clo (@) Re o (ry), py < d. (7.10)
k'n"’
Using Eq. (7.10) in Eq. (7.9) and equating coefficients of Re,(r,) we get

a, + ik Y J dasinaPk/kn(az;d)C,T,kn(oz)f
C

0
u,(ry) e Re x!. (a; ro)dS,
k'k” So no
. 0
+i1k | ui(ry) =— Y, (ry)dS, = 0. (7.11)
St on,
Finally, we employ Eq. (7.1) to obtain the scattered field. Outside a cylinder

centered at O and circumscribing both S, and the circumscribing sphere of S, , we can
expand the scattered field in the outgoing cylindrical wave functions

u(ro) = ZL dousin a fi () (2t 7o). (7.12)
k

Inserting the expansions of the Green’s function in Eq. (7.1) then gives

iij docsinaxk(oz;ro)f
x Jc

S

0
Re yi (% r5)dS,

u+(ro)
o Ong

+ik ) () f uy(ry) —6?7 Rey,(r1)dS; =) L dasin o fi () xx(a; ro)-
n Sh k

on}
(7.13)
Expanding y,(r,) in y(a; ro) by means of Egs. (4.5) and (5.11),
Ynlry) =3 f dasin o Cype (00) 2 (05 #1)
K Jc
= Y | dasinaCp (@) Rex (05 — d) i (@5 70), po > d. (7.14)
Kk JC

Equation (7.13) becomes

ik f u(ro) i Re yi (o5 r)dS,
So anO

+ik Y Cuer (@ Renlo; — d)f u+(r1)aiRe Y (r)dSy = fil).  (7.15)
nk’ Sy ny

In some suitable manner we now have to eliminate the two surface fields between
Eqs. (7.7), (7.11) and (7.15). As the expansion coefficients a,(«) and a, of the incoming
field are assumed to be known, this then determines the expansion coefficients f(a) of
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the scattered field. The procedure usually employed in the null-field approach is to
expand the surface fields in an appropriate set of wave functions, e.g. to expand the
field on S, in the regular spherical waves. However, as we are mainly interested in
exemplifying the use of the various transformations from the preceding sections, we
will not pursue the present scattering problem any further here.

Instead, we turn to a short discussion of the transformations used above. The first
transformation we used was Eq. (7.6), an expansion of an outgoing spherical wave in
the origin-shifted regular cylindrical waves. The region of validity of this formula is
po < d, which follows immediately from Egs. (4.5) and (5.12). Since we only needed the
formula inside the inscribed cylinder, this was quite adequate. Another similar
transformation is obtained by first translating the outgoing spherical wave function
and then transforming to the regular cylindrical ones. Thus, Egs. (5.4) and (4.2) yield

Yalry) = ) J dasina P, (—d) C, - (@)Re yp(a; ¥g), 1o <d. (7.16)
Wk JO

From the derivation we have the more stringent restriction ro<d on this trans-
formation, which means that we cannot equate the coefficients of Re y,(«; ) in order
to obtain a coefficient relation corresponding to Eq. (7.7). In fact, the requirement that
one shall be able to extract equations for the coefficients of members of a complete and
linearly independent set usually restricts the available choices of transformations.
Indeed, it is nontrivial to show (except by just retracing the derivations above) that
Eqgs. (7.6) and (7.16) agree in their common region of validity, the most apparent
difficulty being perhaps the different ranges of integration.

The second transformation we employed in the example above was the expansion
of an outgoing cylindrical wave in the origin-shifted regular spherical waves, Eq.
(7.10). However, it is now impossible to perform the transformation to the spherical
system before the translation, since there is no expansion of an outgoing cylindrical
wave in the (regular or outgoing) spherical waves.

In the above we have encountered many examples of the use of the transformations
between the wave functions and of their translations, but we have not employed any
rotations of the coordinate systems. Rotations will, in fact, mostly enter as a useful
computational tool. As an example, let us consider again the scattering by a cylinder
and a bounded obstacle, and let us assume that the obstacle is rotationally symmetric
about the y, axis (see Fig. 5). If the scattering from the bounded obstacle is expressed
in terms of its transition matrix, it is definitely advantageous to employ a rotated
system about O, with the new z, axis in the direction of the old y, axis.

As is illustrated by the discussion above, different paths may be used in order to
reach the solution of a given multiple-scattering problem. In practice, it is normally
not too difficult to realize what the available alternatives and their relative merits are.

8. Conclusion

It has been our aim to present the basic formulas concerning the transformations
between spherical, cylindrical, and plane wave functions, as well as the translations
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and rotations of these functions in a systematic and readily accessible form. In
particular, it should be possible for the reader to get an insight into the structure of the
formulas that exist, before going into the full details of the various functions that are
involved. The formulas that have been given are relevant tools for the treatment of
wide classes of multiple scattering problems in acoustics, electrodynamics and elas-
todynamics. They usually provide succinct and efficient ways of expressing the salient
features of the multiple-scattering problem, as is illustrated by the example in Section
7. Further examples can be found in the cited literature.
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Appendix A: Mathematical comments on the transformations
of the outgoing scalar waves

This appendix contains some mathematical remarks on the transformations given
in Section 4 between the different sets of wave functions. We discuss only the
equations involving the irregular wave functions, since the regular counterparts are
assumed to be more familiar. Furthermore, only the scalar transformations are given
in some detail, as the proofs in the vector case require essentially no new analytic tools
(Devaney and Wolf 1974).

The simplest of the transformations treated in this appendix is the expansion of an
irregular cylindrical wave function in terms of the plane waves, see Eq. (4.13). Let
o€ [0, ©] and consider the following expression for ¢ (0, n):

J dﬂ eimﬂ+ik7~r — eikzcosaz Jﬂ_lw eimﬂ+ikpsinacos(ﬁ—¢) dﬁ
I+ ico
n—¢—icwo
— eikz cosa+ime J‘ eimli +ikp sina cos § dﬁ (A 1)
—¢pt+iwo
The contour I'; is defined in Section 3 (see Fig. 2). The change of integration variable
in Eq. (A.1) is a simple rotation in two dimensions, such that the new azimuthal angle
B is measured with respect to the p direction of r. The following integral representation
of the Hankel function of the first kind (Watson 1966) will be useful [cf., Eq. (A.1)]:
/2 — i
HYZ) = (1/m)i ™ J gimbrizesbdp  |argz| < 4T (A.2)
—n/2+icw
Since the integrand in the integral on the right-hand side of Eq. (A.1) is an analytic
function, we can deform the contour arbitrarily provided the contour starts and ends
in the region where the integrand is small. For e [0, n] this region is the hatched
region in Fig. A.1. We conclude that for ¢ € (0, ) the contour on the right-hand side of
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Fig. A.1. Integration contours in the complex 8 plane; for the hatched region: Imcos § > 0.

Eq. (A.1) can be deformed to the contour given in Eq. (A.2), and we thus have
J dﬂ eimﬂ+ik’;7~r = eikzcosa+im¢ i Hgnl)(kp sin O(). (A3)
I+

The case when ¢ € (r, 27) can be obtained from the one considered above. We make
an auxiliary transformation ¢’ = ¢ — &, combined with §' = § — n. We then have
¢’ €(0, ), and we easily obtain

J dﬁ eimﬂ+ik’;?-r — eikzc;osaz f dﬂ/ eimﬂ’+imn+ikpsin acos(f’ —¢’)
I- Iy

— TCim Hﬁ,})(kp sin 0() eim:j)’ +imn+ikzcos a. (A4)

The contour I'_ is defined in Section 3, and furthermore, we have used Eq. (A.3) in Eq.
(A.4). Thus, we can conclude that

J dﬁ eimﬂ+ik’;)-r = i"‘nHﬁ,,”(kpsin Ot)eim¢+ik“°s az, y z 0. (AS)
L

By, respectively, adding and subtracting this equation for positive and negative
m values we finally obtain Eq. (4.13):

Xelos 7) =2 f dBDUSGin, 20, (A6)
Iy
The expansion of an outgoing spherical wave in terms of the plane waves, Eq. (4.9),
can be derived in an analogous way. In this case we rely on a rotation in three
dimensions. Thus consider, for z > 0, the following expression (for notations see
Sections 2 and 4):

2n
J dﬂf Y,(5)e* " sin a do.. (A7)
C+

0
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In this equation we can put ¢ = 0 without loss of generality. The case ¢ # 0 contains
an extra azimuthal rotation, and this can be treated in analogy to the derivation of Eq.
(4.13), but we omit the details. In Eq. (A.7) we now make a coordinate transformation
(rotation):

coso’ = sinfsinacos f + cosfcosa,
sina’ cos i’ = cos f@sinacos ff — sinfBcos a, (A.8)
sina’sin f’ = sin asin f.

This transformation implies that the new z’ axis is pointing in the #’ direction, and this
simplifies the evaluation of the integral considerably. We also have (Edmonds 1957)

V() =X Zun(0,0) Y (), (A.9)

where 2,,(0, ¢) is defined in Eqgs. (6.6)—(6.8). Thus, we can write

2n
J‘ dBJ‘ Y, (y)e*" " sinada
o

0
=Y Zual6,0) J dp J Y, (5') e sin o dor. (A.10)
n' v’ Cy

Here y and C’;, are the transformed contours of [0, 2n] and C., respectively. Note
that the measure on the unit sphere is invariant under the transformation (A.8). An
analysis of " and C’; is found in Danos and Maximon (1965), and that paper should
be consulted for further details. The next step in the proof is a deformation of the
contours y' and C’; back to the original ones (' € [0, 2n] and o' € C ). We again refer
here to Danos and Maximon (1965), who proved that it is possible to deform the
contours y' and C', back to the original ones, and that no singularities are crossed,
provided z > 0. Thus, we can write

2rn
J dﬁf Y, (p)e* " sin o da
0 C+

n

2n
=Y. D0al0. $) J dp f Yoo (7)€% sin o dor. (A1)
0 C+

In this last equation we have returned to the more general situation when ¢ # 0. By
performing the integrations we get

2n
f dﬁf Y,($)e*™ " sin a da
c.

0
1

= 9eOl, a‘ml(gs ¢)[(2l + l)njl/z J Pl(t)eik" dt

i

B em 20+ 1(1=m V2 cosme \ ., 4 il
= [E 2 (= m)!] P (cos®) <sinm¢ >llh§ 0 = 2m00 0
(A12)
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In the above equation we have used the following expression, which can be obtained
from Egs. (6.6)—(6.8):

I — m) 2
I e R G (.13

Furthermore, we have used the integral representation of h{"(z) (Watson 1966):
1
M@ =i" J P(t)ei#dt, ve(argz, n — argz). (A.14)
expiv

We consider now the case when z < 0. As for the two-dimensional case, we make
a combined transformation, ie. @ = n — 6 and o = = — a. Denote the transformed
arguments of  and r by 7’ and r/, respectively, and we have from Eq. (A.12),

2x 2n
J dﬁ_[ dasina Y,(§) e = J dﬁf dosina'(— )" Y, (7)) e
0 c- 0 c:

= (= 1) 2ty () = 2miyn(r). (A.15)

We have thus verified the transformation between the scalar irregular spherical and
plane waves, Eq. (4.9),

Ynlr) =2 L djB.(7)o(;r), z20. (A.16)

Equation (4.4), the expansion of an outgoing spherical wave in the regular cylin-
drical ones, can be verified immediately from Eq. (A.16) by using the following integral
representation (Watson 1966)

2n
Ja(2) = (1/21t)i""J dpeimpizeosh (A.17)
4]
By performing the f integration we obtain from Eq. (A.16)

i = 0| 2L ["ap [ ansinaprcos oSt

_me &m 20+ 1 (1 —m)! 12 [ cos m¢
B 2 2 (I+m)! sinma¢

ikzcos a

C:

X J dasin « PT'(cos ) J,,(kp sina)e
=

j dasina Cu () Re yi- (o5 ), z 20, (A.18)
C.

which is just Eq. (4.4).

Consider next the corresponding relation with the irregular cylindrical waves, Eq.
(4.5). We start with Eq. (A.18) and deform the contours C to the contour C. In order
to do this we have to study the singularities of the integrand in greater detail.
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Consider the following expression for z > 0 and p > O:

j dosin o P;"(COS O() Jm(kp sin CX) gikzcosa
C+

1 .
= ZJ dasin o PP (cos o) [H P (kpsina) + H P (kpsina)]e* . (A.19)
Ce

The second term in the sum is now transformed by changing a to — o« This
transformation gives HY - — H{ and we get

J dasin o P7'(cos ) J (kp sin o) €™ °5¢
ot

1 )
=5 J docsin o PP (cos o) H{V (kp sin a) g2 cos (A.20)
¢

The contour C’ in Eq. (A.20) is depicted in Fig. A.2. This contour can be deformed to
any contour in the complex « plane, provided the endpoints of the contour remain
within the region where the integrand is small, and provided no singularities are
crossed. The region where the integrand is small is crosshatched in Fig. A.2. This
region is the one where Im cos « > 0 and Imsin« > 0 hold. The branch cut of HY for
negative real values of sin« is also shown in Fig. A.2. Due to the construction, the
contour C’ passes the cut on the right and upper side, respectively. Furthermore, the
integrand in Eq. (A.20) has two more branch points, viz. cosae = + 1 from P{*(cos a).
We observe that a deformation of the contour C’ to the contour C defined in Section
2 can be made without crossing any singularities, and that the integrand stays small at
the endpoints. Thus, we have

Yalr) =23, f dasin o Cpp () Re xie (0 )
k' JC+

Zj dasina Cpe (@) e (;7), p>0, z>0. (A.21)
v Jc

For z < 0.and p > 0 we can go through the same analysis as above or we can make
a combined transformation, 6 - — 0 and @ > n — a (the proper contour to start
with in this case is, of course, C _). In this case we will end up with the same expression
as in Eq. (A.21) and we thus have

Y

Yalr) =) L dasin o Cope () xir (s #), p > 0. (A.22)

This expression thus holds for z 2 0, and furthermore, since the limits z — 0* in Eq.
(A.22) from both sides of zero give the same finite expression, we can conclude that Eq.
(A.22) holds for all z and p > 0. This completes the proof of Eq. (4.5).

In this context it is also illustrative to discuss the various expansions of the Green’s
function (see Section 2). The scalar Green’s function is, apart from normalization,
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Fig. A.2. The integration contour C’ in the complex o plane; \\\: I sin« > 0; ///: Imcosa > 0.

a spherical wave (I = 0, m = 0, ¢ = ¢) and this fact can be used to derive some of the
expansions found in Section 2. Thus, Eq. (2.11) is obtained immediately from Eq.
(A.16) with a position vector ¥ — r’. Furthermore, Egs. (2.9) and (2.10) can be derived
from Egs. (A.22) and (A.18), respectively, and by using the translation properties of the
cylindrical waves, see Eqgs. (5.10)-(5.12).

The vector wave transformations can all be derived from the corresponding scalar
ones. As a consequence of the way in which the vector waves are defined in terms of
vector operations on the scalar waves, the derivations are quite analogous to the
scalar case, and we do not give any details here (cf,, e.g. Devaney and Wolf 1974).

Appendix B: Some remarks on the connection to the representation theory for E(3)

In this appendix we have collected some remarks on the connection between the
transformation properties of the three-dimensional functions treated in this chapter
and the theory of the unitary irreducible representations of the group E(3) [there is
a similar connection between the transformation properties of the two-dimensional
wave functions and the unitary irreducible representations of the two-dimensional
Euclidean group E(2)]. These remarks are included mainly in order to provide the
reader with a glimpse of this fundamental and very useful background to the relations
concerning, in the first place, the sets of regular scalar wave functions. The extension
of these relations to the irregular case and to the vector case can, to a large extent, also
be treated using the group-theoretical concepts (although considerations of analytic
continuation also plays an important role), but we will not go into these aspects here.
For further details concerning the facts touched upon here we refer to books (Miller
1968, Talman 1968, Vilenkin 1968) as well as to several articles (Miller 1964, Kalnins
et al. 1973, Boyer et al. 1976) from which the vast literature in this field can be traced.
Some familiarity with the basic concepts of the theory of Lie algebras, Lie groups, and
their representations will be helpful in the following.
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Very briefly, the relation between the sets of wave functions treated in this chapter
and the representation theory of E(3) can be described in the following way: the
regular wave functions can be identified with specific matrix elements of a general
translation r in a unitary representation. The same translation r can be represented by
its matrix elements in different bases in the representation space and, in this way, the
relations between different sets of wave functions can be expressed in terms of
similarity transformations between these bases. Some of the bases which we shall
consider will be eigenfunctions belonging to eigenvalues in a continuous spectrum, i.e.
they are nonnormalizable (generalized) eigenfunctions which, strictly speaking, lie
outside the representation space. However, the relevant results can be presented
formally in a simplified fashion. Furthermore, general translations and rotations of
the wave functions are determined as soon as they have been identified with specific
matrix elements.

Let L=(L,,L,,L3) and P=(P,, P,, P3) be the generators of rotations and
translations, respectively. L and P form a basis of the Lie algebra of E(3) (Miller 1964,
1968). Two invariant second-order operators are P2 = P? + P2+ P2 and
P-L=P,L, + P,L, + P3yL; = L-P.Ina unitary irreducible representation of E(3),
these operators take the values k* and kl,, respectively, where k >0 and
lo =0,1,2,...The unitary representations which correspond to [, = 0 admit a partic-
ularly simple realization as operators on functions of a vector k with fixed absolute
value k, i.e. functions of k. In order to describe the relevant properties of the regular
scalar wave functions it suffices to consider the case lo = 0. As a starting point, we
consider a proper basis of square-integrable functions of k. The representation space
can be constructed as a direct sum of finite-dimensional spaces which are spanned by
the common eigenvectors of L? and L, with eigenvalues I(/ + 1) and m, respectively
(see, e.g. Miller 1964, 1968). Since P? and P-L have the eigenvalues k? and O,
respectively, a suitable notation for a member of this angular momentum basis is
|1, m; k, 0>. However, since the eigenvalues of P?> and P- L will not change often, we
shall also use the abbreviated notation |, m).

If d; and R;, i = 1,2 (cf. Sections 5 and 6) denote two general translations and
rotations, respectively, in three-dimensional space, the composition law for successive
E(3) transformations {d; R} is (Miller 1964, 1968)

{d;;R,}{d:;R,} = {d, + R d,; RiR,}, (B.1)
i.e. the operators U(d; R) in a unitary representation of E(3) satisfy
Uld,; R\)U(d,; R;)=U(d; + Rid;; R{R3). (B.2)

. According to the definition of the basis |/, m)>, the matrix elements of the operator
U(R) = U(0, R) representing a general rotation R = R(y, 1, x) are

A m | UR)|L, my = 8y Dy, 1, %), (B.3)
where
DhmlWs 1, 1) = €™ 2 dly () €™,

[cf. Eq. (6.6); in order to conform with the literature referred to in this appendix, and
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since only formal developments will be presented, we will, for convenience, use the
exponential notation for the azimuthal angles]. An operator U(d) = U(d; 1) repres-
enting a general translation 4 has nonzero matrix elements for [ # I', several methods
for the computation of D%, (see, e.g. Gelfand et al. 1963), as well as the general
translation matrix elements I, m'|U(d)|l, m> (see, e.g. Miller 1964). In particular, one
obtains integral representations for these functions from the theory of induced
representations, and a host of difference—differential relations from the Lie algebra
representations.

The connection with the regular wave functions considered in this chapter is
obtained by noting the fact that they can be identified with particular matrix elements
of the operator U(r). For instance, the special matrix elements 0, 0|U(r)|l, m) are
nothing but the regular spherical waves (Miller 1964, 1968) (apart from a normaliz-
ation constant). It follows immediately that the translation properties of the regular
spherical waves are determined by the functions I, m|U(d}|I,m'>. If r, = r + d, we
have in general

v

I, m' |U(r)|l,m)y = i Y ) A, w'\U, m"y U, m" | Ud)|], m), (B4)

'=0m'=-1

i.e. by specializing to I' = m’ = 0, we get
0,0{U(r )L my = Y <0,01UM|I", m") I, m"|U(d)|l, m), (B.5)
'm"”

which is nothing but Eq. (5.2) in a different notation.

In the same way as the properties of the spherical waves can be derived by referring
to properties of matrix elements in an angular momentum basis of a representation
(k, 0), the properties of the plane and cylindrical waves can be discussed in terms of
properties of matrix elements in two other (generalized) bases. Consider first the linear
momentum basis |k; k, 0> = |k), where the operators P;, i = 1, 2, 3, have the eigen-
values k; € (— oo, o0). The orthonormality relation for this basis reads <{k|k') =
0(k — k') and we have

Ck\UP)| Ky =explik-r){k|k') = exp(ik-r)o(k — K'). (B.6)

Note that since k = |k| is taken to be fixed, the basis |k is determined by two
parameters, but it is sometimes convenient to use the redundant notation |k ). The
two parameters are naturally chosen as the spherical angles of k and they are referred
to by the symbol k. Thus, we write {(k'|k) = k™2 S(k— k) |k> =k 2x
d(k — k')d(k — k’). Translations as well as rotations are simple to express in this basis
[cf. Egs. (5.1) and (6.3)], but this advantage is partially off-set by the fact that one has
to deal with continuous variables, which is a disadvantage from a computational
point of view.

The transformations between the plane and spherical waves appear naturally when
we consider transitions back and forth between the bases |, m) and |k). The
transformation coefficients are (k'; k', 0|, m; k,0) = k=26(k — K'Y k'|l,m)>, where
(K|, my = Y, (k') (see, e.g. Messiah 1961). Consider first the effect of introducing the
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angular momentum basis into <I€’| U(r)|l€ >. Ong has
fdk"<k‘/| Uk = fdlf’é(lg — k'yeir = gk (B.7)
(jdkA’ implies integration over the unit sphere I;’). On the other hand,

fdk'<k/lu WIk) = z dk" R\, m'y 1, m (U@L, m)y (L mlk)
=Y | k" Yy (KU, m U@L, m) Yi(K)

=Y Sordom (I, M |U@|L m> Yi(K)

U'm’

—Z<0 O[U ML m) Yip(K),

(where the bar denotes complex conjugate) which gives

et = Z 0,0 UL, m Yin(K), (B.9)

i.e. the expansion of a plane wave in spherical waves, Eq. (4.8).
The inverse of this transformation is obtained simply by introducing the linear
momentum basis into the matrix elements <0, 0| U (r)|l, m>. We get

0,0|U®)|l, m> = fdk”fdléxo, 01k Ck|U@ K>S Ck'|T, md

Jdk Jdk’é e Y (k') = jdléeik" Yiu(k), (BY9)

which corresponds to Eq. (4.7).

By reference to the linear momentum basis we obtain an integral representation for
the general translation matrix element <!, m'|U(#)|l, m», which occurs in Egs. (B.4)
and (B.5) [ie. in Eq. (5.2)]. We get

I, m |\ Ud))l, m) = Jdléfdk"a', m |k kU@ k"> k'L m)

= j Ak Yy (K) Yi(K) 4, (B.10)

which corresponds to Eq. (5.18).

In order to obtain corresponding relations for the regular cylindrical wave func-
tions, we consider a new basis which is connected to the two-dimensional Euclidean
subgroup formed by translations and rotations in the x—y plane. The Lie algebra of
this subgroup is spanned by L, P, and P,. Let |q, m; k, 0> = |q, m) be a (generalized)
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basis of eigenfunctions of P? + P} and L;, with eigenvalues g and m, respectively.
Sometimes we shall write the basis functions as |q, m; h), where h is the eigenvalue of
P,, in order to emphasize that, since they are eigenfunctions of both P? and P} + P2,
they are in fact also eigenfunctions of P;. According to (P%+ P3)lg, m; h> =

q*lq, m; h> and P3|q, m; h) = hlq, m; h), and with k = k(sin« cos 8, sin a sin f, cos o) we
then have (k cos « — h)|q, m; h) = 0. Here |q, m; h is realized as a function of « and B,

ie of k and to emphasize this fact we write the functions |g, m; h), in the symbolic
notation {k|g, m; h> (Messiah 1961). From (k cosa — h)< k|q, m; h> = 0 we then have
(with a suitable normalization)

Ck|g, m; by = S(cosa — h/k) ™ (B.11)

[i.e. using this notation, it becomes evident that these functions at the same time give
the transformation coefficients between the bases |k> and |q, m; h), cf. Eq. (4.10)]. The
transformation coefficients between the bases |/, m)» and |q, m) are

Lmlgm'y = fdk" ComiK'y K lg,m'y = Jdk" Yim(K')3(cOs 2 — h/k)em™

= O N1 (I, m)PT(h/k), (B.12)

where N, (I, m) is a normalization constant which is of no concern to us here. Thus,
Eq. (B.12) corresponds to Eq. (4.1).

In the basis |g, m) the matrix elements of a translation 4, in the x—y plane, with
polar coordinates (p;, ¢;) is given by (Miller 1968)

g, m\Udy)lg,m'> =i""™ Jp_w(gpy)e” =m0 (B.13)
For a translation z, in the z direction we have
{q,m; h\U(z,2)|g, m; by = 6(h — h)e*=1, (B.14)

In complete analogy with what was found for the spherical and plane waves, we now
get the regular cylindrical waves as special matrix elements in the |q, m; h) basis of
a general translation r, with cylinder coordinates (p, ¢, z). From Egs. (B.13) and (B.14)
we have

{a,0; h|U(¥)|g, m; > = i""3(h — k') J(qp)e™” ™. (B.15)
The transition from spherical to cylindrical waves is obtained as

0,01UMI, m>
=) th jdh’<0, Olg, m's h> (g, m'; h|U ()l q, m"; 'y {q, m"; H'|l, m)

= Na(l, m) th Jm(gp)e'™® e PP'(h/k), (B.16)

which corresponds to Eq. (4.2). The inverse relation is derived in an analogous way.
This concludes our brief exposition of how the transformation properties of the
wave functions can be related to group-theoretical concepts and results. We have seen
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that the relevant transformation properties of the regular scalar wave sets can be
obtained by considering matrix elements in various bases of unitary operators
representing general E(3) transformations. Additional wave functions have been
considered in the literature (see, e.g. Boyer et al. 1976 for an extensive discussion) but,
as was remarked in the introduction, they will, on the whole, have more complicated
transformation properties.
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