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s[n]=a0x[n]+a1x[n-1]+a2x[n-2]+…. 

We are basically done. It is not possible to improve  
(in a Bmse sense) over the Wiener filter 

Kalman Filters can gain 
NOTHING over Wiener  
Filters in performance 
 
Kalman filters is only  
clever ”book-keeping” 
to reduce complexity and 
to avoid matrix inversion 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

noise a.k.a. innovations 
Makes signal to be  
estimated random 

Transition model 
Not a from earlier 
slides 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

In order to statistically characterize s[n], we need s[n-1],…,s[n-p] 

These variables are termed the state of the process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

In order to statistically characterize s[n], we need s[n-1],…,s[n-p] 

These variables are termed the state of the process 

 

    At the next time, the state becomes 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

In order to statistically characterize s[n], we need s[n-1],…,s[n-p] 

Thus, the state process is given by 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

In order to statistically characterize s[n], we need s[n-1],…,s[n-p] 

Thus, the state process is given by 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

A linear dynamical model can includes, e.g., an AR(p) model 

         

 

 

 

In order to statistically characterize s[n], we need s[n-1],…,s[n-p] 

Thus, the state process is given by 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also have multiple innovations 



Chapter 13 – Kalman Filters 

Assume a linear dynamical state model for the signal 

 

AR(p) models are one example, but in general we consider systems of the form 

         

 

 

There can also be input signals that affect the state, but this is not used in the book. 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Used in the Extended Kalman filter (treated in the book) 
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In this lecture we deal with the scalar case 

a=Rs[n]xRxx
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Since we assume a linear estimator, does it play a role if things are Gaussian or not ? 
 
No, since we know that the optimal solution will be of the form 
and  this coincides with the solution for Gaussian variables 
 
 
 
 
In this lecture we deal with the scalar case 

Let                  denote the estimate of s[n] computed based on the obsrevations at time n 
V                   be the estimate of s[n] computed at time n-1 (prediction) etc etc 
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Define 
 
so that 

Note. Confusion in the book: 
ak are the estimation coefficients 
 
But a is the parameter defining the AR(1) process 
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Recall a slide from Lecture 7 
Additive property 
 
Independent observations x1,x2 
Estimate θ 
Assume that x1,x2, θ are jointly Gaussian  
 
 
 

MMSE estimate can be updated sequentially !!! 
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s[n] = as[n-1] + u[n] 
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Thus 

Summary so far: We seek to find              .   This equals                               , which we have, 
 
plus the term                         . Compute it and we are done!  
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We can add this term freely 
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Definition: 1-step prediction error 
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This parameter is from the model and must be known 
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Noise density 
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Summary so far 
 
 
The estimate of s[n] computed for all data x[0],…,x[n] is 

Error made when predicting s[n] from X[n-1] 
Remains to be computed 
 
M[n|n] is also of interest and should be  
computed as well 
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Summary so far 
 
 
The estimate of s[n] computed for all data x[0],…,x[n] is 

Computation of  

We can now get M[n|n-1] from M[n-1|n-1]  
In next time step, we need M[n+1|n] from M[n|n] 
Thus, we need M[n|n] from M[n|n-1] 
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Since  the boxed equation above can be written as  
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Expand the power of 2 
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Last lecture we discussed the Wiener filter and discussed that as time n grows, 
the Wiener filter converged to a stationary solution 
 
However, this solution required us to solve the Wiener-Hopf equations which 
are rather tough (requires spectral factorization) 
 
To do Wiener prediction, we need to solve the Yule-Walker equations. Rather 
tough as well 
 
With the Kalman model we can obtain the solutions much easier.  
 
Iterating the Kalman equation will force the Kalman gain to a stationary value 
(for WSS signals) 
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Delay operator 
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Thus, 
 
 

Transfer function of recursive filter becomes 
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Solve for   definition 
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IIR filter, one-pole for an AR(1) process 

Solve for 
 
 
Solve for   

Update formula from  
before 
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Solve for 
 
 
Solve for 
 
 
So:    

Fixed-point equation, 2nd order. Easy to solve. 
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Solve for 
 
 
Solve for 
 
 
So:    

The same solution would also result 
 if we solved 
 
 limn->∞  1 - Rs[n]xRxx

-1Rxs[n] 

 
This is the Schur complement, but is much  
Harder to evalaute 
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Solve for 
 
 
Solve for 
 
 
So:    

Which equation is the most important ? 

With the first equation, one can do or implement something 
With the second, one can understand something (the asymptotic Bmse) 
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• Not optimal 
• Not always very accurate 
• Hard to analyze asymptotic performance – not suitable for analytical work.  
• Good solutions if you dont know what to do, but can model the system as a non-linear dynamical system 

 
• Do not believe that extended Kalman filters have any optimality properties. They are just low-complex solutions to hard problems! 
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Mathematical model: 

a( ) and h( ) are non-linear  
(possibly vector valued) functions 

Recall the KF for a linear model 
We cannot do the prediction step 
since our case is non-linear 
 
Linearize the model! 
That is, linearize a( ) and h( ) 
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Extended Kalman Filters: used for non-linear models 
 
• Not optimal 
• Not always very accurate 
• Hard to analyze asymptotic performance – not suitable for analytical work.  
• Good solutions if you dont know what to do, but can model the system as a non-linear dynamical system 

 
• Do not believe that extended Kalman filters have any optimality properties. They are just low-complex solutions to hard problems! 

 
 
 

Mathematical model: 
 
 
 
 
 
First order Taylor series expansion around                                       which is available at time n-1  

Th These are known input signals 
The extended Kalman filter is identical to the normal Kalman  
filter with known input signals  


