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Chapter 12 – Linear Bayesian Estimation 

Summary of chapters 10 and 11 

 

• Bayesian estimators are injecting prior information into the estimation 

• Concepts from classical estimation breaks down 
– MVU 

– Efficient estimator 

– unbiasedness 

• Performance measure change: variance -> Bayesian MSE 

• Optimal estimator for Bmse: E(θ|x). This is the MMSE estimator 

• MMSE is difficult since 
– Posterior is hard to find p(θ|x) 

– If we can find p(θ|x), then E(θ|x) is still difficult due to integral 

• Conjugate priors simplify finding p(θ|x). Posterior has same distribution as prior (with other 
parameters). Useful when the posterior acts as prior in a sequential estimation process. 

• Other risk functions than the Bmse exists. 
– MAP estimation is solution to hit-and-miss risk 

– Conditional Median is solution to a linear risk function 

• Invariance does not hold for MAP 

• Bayesian estimators can be used for deterministic parameters, but work well only for parameter 
values that are close to the prior mean 
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When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator 

 

 

 

 

This is the same method as the BLUE, but we now make the following changes: 

 

Remove Unbiasedness constraint 

Change cost function from variance to Bmse 
 

 

 

 

An optimal estimator within this class is termed the 

 

 linear minimum mean square error (LMMSE) estimator 
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Finding the LMMSE estimator 

 

Cost function 
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Observe: a is not random, can be moved 
outside from expectation operator 
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   Collect the results using vector notation 
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Computing the Bmse cost 

Schur complement 
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Connections 

We have seen the expression for the BMSE before 
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X and θ jointly Gaussian X and θ not jointly Gaussian 

LMMSE estimator 
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MMSE estimator 
 
 
 
Bmse 
 
 

≠ 

LMMSE = MMSE 

Better than  

The LMMSE yields the same Bmse as if the variables are jointly Gaussian 
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Example 12.1 

Bayesian options:  
1. MMSE. Not possible in closed form 
2. MAP. Possible: truncated sample mean 
3. LMMSE. Doable 

 

=……= 
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Example 12.1 

Observations 
1. With no prior, the sample mean is MVU 
2. The LMMSE is a tradeoff between the MVU 
      and the sample mean 
3. We did not use the fact that A is uniform, only its 
     mean and variance comes in 
4. We do not need A and w to be independent,  
    only uncorrelated 
5. No integration is needed 
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Extension to vector parameter 

We can work with each parameter individually 
 
 
 
 
 
From before, we have that    collect in vector notation 

BMSE 
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1. Invariance holds for affine transformations 

 
 
 
 

2. LMMSE of a sum is a sum of the LMMSE 
 
 
 

3. Number of observations can be less than parameters to 
estimate a significant difference from linear classical 
estimation 
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Wiener filtering 
 
Data: x[0], x[1],x[2],… WSS with zero mean 
 
Covariance matrix = ?? 
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 Autocorrelation matrix 

 
(Toeplitz structure) 
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Wiener filtering 
 
Data: x[0], x[1],x[2],… WSS with zero mean 
 
Covariance matrix 
 

 
 
 
 
 

 
Parameter to be estimated: s[n], zero mean 
 
x[m] = s[m] +w[n] 
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Wiener filtering 
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Prediction 
 
Find s[n-1+L] given x[0],…,x[n-1] 
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Wiener filtering 
 
Four cases 
 
 
Interpolation 
 
Find x[n] given x[0],…,x[n-1],x[n+1],… 
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With 
 
 
We get  
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Wiener filtering 
 
Why is it a filtering? 
 

x[n] 

x[n-1] 

x[n-2] 

x[n-3] 

x[n-4] 

Find s[n] 
 
We do this as a weighted sum 
s[n] = a0x[n]+a1x[n-1]+ a2x[n-2] 
 
 
 
 
 
 
 
So, the weights {ak} can be seen as a FIR filter 
 
However, at the next time, the weights {ak} are 
not the same (edge effect) 

x[n+1] 
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Wiener filtering 
 
Why is it a filtering? 
 

x[n] 

x[n-1] 

x[n-2] 

x[n-3] 

x[n-4] 

x[n+1] 

To estimate s[n], we filter the 
recent observations with a filter 
that is dependent on n 
 
The filter is time-variant 

a is computed for a given n  
(not shown explicitly) 
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is a but flipped upside-down 
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Wiener filtering 
 
 

Wiener-Hopf equations 

These equations can be solved recursively by the Levinson algorithm 
 
Observe: The matrix is Toeplitz, but cannot be approximated as circulant 
as n grows. Therefore, Szegö theory does not apply.  
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Wiener filtering 
 
 

Wiener-Hopf equations 

As n grows, the filter converges to a stationary solution 
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Wiener filtering 
 
 

To find h[n], we can apply spectral factorization (= same method as is 
used to find a minimum phase version of a filter) 



Chapter 12 – Linear Bayesian Estimation 

Wiener smoothing 
 
 

Now consider asymptotic Wiener smoothing 

x[n] 

x[n-1] 

x[n-2] 

x[n-3] 

x[n-4] 

x[n+1] 

x[n+2] 

We can still express the estimation of s[n] as a filtering of {x[k]} 
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Wiener smoothing 
 
 

Now consider asymptotic Wiener smoothing 

x[n] 

x[n-1] 

x[n-2] 

x[n-3] 

x[n-4] 

x[n+1] 

x[n+2] 

We can still express the estimation of s[n] as a filtering of {x[k]} 
The filter is not causal 
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Wiener smoothing 
 
 

Filtering Smoothing 

??????? 

k 
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Wiener smoothing 
 
 

Filtering Smoothing 

k 

(12.61): Typo in book l 
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Wiener prediction 
 
 

Filtering equations….Filtering ”predicts” s[n] given x[n] 
 
 
 
 
 
 
 
In prediction x[n] is not available, therefore there is no h[0] coefficient. 
 
We are also predicting l steps into the future 
 
Wiener-Hopf prediction equations. For l=1 we obtain the Yule-Walker equations 
Solved by Levinson recursion or spectral factorization (not Szegö Theory) 


