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If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
to deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
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Recall the form of the Bayesian estimator for DC-levels in WGN 
 
 
 

    

α<1 

Variance smaller than classical estimator Large bias for large A 
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If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
To deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
 
 
 

    

α<1 

MSE for Bayesian is smaller for A close to the prior mean, but larger far away 
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To deterministic parameters 
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Risk Functions 

To arameters 
 
 
 
 

    

p(θ) p(x|θ) 
θ x 

Estimator 
θ 

Error:  ε = θ -   θ 

The MMSE estimator minimizes Bayes Risk                          where the cost function is 

An estimator that minimizez Bayes risk, for some cost, is termed a Bayes estimator 
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To arameters 
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Minimize this to minimize Bayes risk 
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We need              , but the limits of the integral  
 
depends on          Not standard differential 
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θ 

Lower limit does  
not depend on u: 
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 θ  = arg max 
Let δ->0:    θ  = arg max                    (maximum a posterori (MAP))  
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Gausian posterior 

 

What is relation between mean, median and max ?  
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Gausian posterior 

 

What is relation between mean, median and max ? 

 

 

 

 

 

 

 

 

 

Gaussian posterior makes the three risk functions identical 
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In vector form   
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Classical approach (non-Bayesian): 
We must estimate all unknown paramters jointly,  except if…..what holds???? 
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Extension to vector parameter 

 

Observations 
 
Classical approach (non-Bayesian): 
We must estimate all unknown paramters jointly,  except if Fisher information is diagonal 
 
 

Vector MMSE estimator minimizes the MSE for each component of the unknown 
vector parameter θ, i.e., 
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Bayes rule 

MMSE estimator 
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Independent observations x1,x2 
Estimate θ 
Assume that x1,x2, θ are jointly Gaussian  
 
 
 

Independent observations 

Typo in book, should  
include means as well 
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Additive property 
 
Independent observations x1,x2 
Estimate θ 
Assume that x1,x2, θ are jointly Gaussian  
 
 
 

MMSE estimate can be updated sequentially !!! 
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MAP estimator 
 

n 

Benefits compared with MMSE 

Not needed (typically hard to find) 

Optimization generally easier than 
finding the conditional expectation 
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ML rule: Aljechin takes title (although he died in 1946) 
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MAP vs ML estimator 
 

Alexander Aljechin (1882-1946) became world chess champion 1927  
(by defeating Capablanca) 
 
Aljechin defended his title twice, and regained it once 
 
Magnus Calrsen became world champion 2013, and defended the title  
Once in 2014 
 
Now consider a title game in 2015. Observe Y=y1, where y1=win 
Two hypotheses:  
• H1: Aljechin defends title 
• H2: Carlsen defends title 
 
Given the above statistics 
   f(y1|H1)>f(y1|H2) 
 
 
 
 
 
 
 
 
 

MAP rule: f(H1)=0, -> Carlsen defends title 
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Example DC-level in white noise, uniform prior U[-A0,A0] 
 

The posterior is 

We got stuck here:  
Cannot put the denominator in closed form 
Cannot integrate the nominator 
 
Lets try with the MAP estimator 
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Example DC-level in white noise, uniform prior U[-A0,A0] 
 

The posterior is 

Denominator: Does not depend on A -> irrelevant 
We need to maximize the nominator 
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Example DC-level in white noise, uniform prior U[-A0,A0] 
 

MAP estimator can be found! 
 
Lesson learned (generally true) 
MAP is easier to find than MMSE 
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Element-wise MAP for vector-valued parameter 
 

“No-integration-needed” benefit gone 

The estimator 
 
Minimizes the “hit-or-miss” risk                                              for each I, where δ->0  
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Element-wise MAP for vector-valued parameter 
 

“No-integration-needed” benefit gone 

Let us now define another risk function 
 
 
 
 
Easy to prove that as δ->0, Bayes risk is minimized by the vector-MAP-estimator 
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Element-wise MAP and vector valued MAP are not the same 
 

Vector-valued MAP solution Element-wise MAP solution 
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Two properties of vector-MAP 
 
• For jointly Gaussian x and θ, the conditional mean E(θ|x) coincides with 

the peak of p(θ|x). Hence, the vector-MAP and the MMSE coincide. 
 

• Invariance does not hold for MAP (as opposed to MLE) 
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Invariance 
 
 
Why does invariance hold for MLE? 
 
With α=g(θ), it holds that p(x|α) = pθ(x|g-1(α)) 
 
 
However, MAP involves the prior, and it doesn’t hold that pα(α)=pθ(g-1(α)), since the two 
distributions are related through the Jacobian 
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