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Chapter 10 + brief info on 
• Conjugate priors 
• Jeffrey’s priorllll l    
• Reference priors 



Chapter 10 – Bayesian Estimation 

Previous chapters: No assumptions were made on θ 

 

Chapter 10+ : We assume a prior distribution for θ 

 

Benefits:  

More info -> better estimation precision 

Optimal estimator (MSE sense) always exists  

Performance is measured by a single value 

Problems:  

Problematic to choose a prior distribution 

Erroneous prior -> worse performance 
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Consider the problem of producing a radar to monitor a country’s airspace 

• France is about 500 km in diameter 
 

• A reasonable prior for the distance from 
CDG to the airplane is U[0,600km] 
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Consider the problem of producing a radar to monitor a country’s airspace 

• France is about 500 km in diameter 
 

• A reasonable prior for the distance from 
CDG to the airplane is U[0,600km] 
 

• However, Belgium is about 90 km in 
diameter, reasonable prior is 
U[0,100km] 
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• France is about 500 km in diameter 
 

• A reasonable prior for the distance from 
CDG to the airplane is U[0,600km] 
 

• However, Belgium is about 90 km in 
diameter, reasonable prior is 
U[0,100km] 

France and Belgium cannot buy the same equipment to monitor  
their airspaces if the manufacturer is using Bayesian estimation. 
With classical estimation they can since the estimator is 
optimized for all distances 
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Chapter 10 – Bayesian Estimation 

Consider DC-level estimation in white noise again 

 
• We know that the sample mean estimator                 is MVU 

 

• We know that  
– Unbiased, i.e. E(    )=A    

– has variance Var(    ) = σ2/N 

• Therefore, the sample mean is distributed as 
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Now assume that we know that  
 
 
The MVU estimator fails to 
incorporate this info 
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Define new estimator 
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Define new estimator 

Checkpoint 
Can we say that the new estimator is MVU given the prior info? 
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Consider DC-level estimation in white noise again 

 
 

MSE of new estimator (depends on A) 
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Consider DC-level estimation in white noise again 
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(-A0-A)2  with probability p(                  ) =  
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Bigger than 
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Consider DC-level estimation in white noise again 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10 – Bayesian Estimation 

Lessons learned 

 
• With prior information available, the MVU estimator can produce values that we 

know cannot be true 

 

• With prior information, we can find an estimator that reduces the MSE 
compared with the MVU estimator for any A 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10 – Bayesian Estimation 

Bayesian MSE 

 
• In classical estimation, the MSE is defined as 

 

 

which is a function of A 

 

• In a Bayesian estimation, we can average this over the distribution of A 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expectation is over both x and A (since A is random) 



Chapter 10 – Bayesian Estimation 

Bayesian MSE 

 
• In classical estimation, the MSE is defined as 

 

 

which is a function of A 

 

• In a Bayesian estimation, we can average this over the distribution of A 
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Derivation of optimal Bayesian estimator 
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Derivation of optimal Bayesian estimator 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To minimize the BMSE, we should minimize this  
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Derivation of optimal Bayesian estimator 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To minimize the BMSE, we should minimize this 
The optimizer is not a function of A, since we integrate over A  
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Derivation of optimal Bayesian estimator 
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Derivation of optimal Bayesian estimator 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean of the posterior distribution minimizes the BMSE 
This is the MMSE estimator 
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Baye’s rule allows us to evaluate the posterior distribution 

 

 

 

 

 

 

From which we can evaluate the MMSE estimator 
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From which we can evaluate the MMSE estimator 

 

Usually, one gets stuck either here or here 
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In DC level in WGN with uniform 
prior we get stuck at both places 
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Rationale of MMSE estimator 

 

 

DC-level, uniform prior [-A0,A0] 
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Rationale of MMSE estimator 
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Checkpoint: Why is the posterior maximized at the sample mean ? 
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Rationale of MMSE estimator 
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Checkpoint: Why is the posterior maximized at the sample mean ? 
 
1. Sample mean is efficient 
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Checkpoint: Why is the posterior maximized at the sample mean ? 
 
1. Sample mean is efficient 
2. Therefore, the sample mean coincides with the MLE 
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Checkpoint: Why is the posterior maximized at the sample mean ? 
 
1. Sample mean is efficient 
2. Therefore, the sample mean coincides with the MLE 
3. But due to the uniform prior 
    

arg maxA p(A|x) = arg maxA p(x|A)p(A) = arg maxA p(x|A) = MLE  
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Rationale of MMSE estimator 

 

 

DC-level, uniform prior [-A0,A0] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where is the posterior mean? 
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Rationale of MMSE estimator 

 

 

DC-level, uniform prior [-A0,A0] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why does the MMSE shrink the sample mean towards zero ?  
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Rationale of MMSE estimator 

 

 

DC-level, uniform prior [-A0,A0] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because in the absence of data, the MMSE estimator is  
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Rationale of MMSE estimator 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MMSE estimator compromises between the information in the 
prior (A = zero) and the information in the data (A = sample mean) 

Estimator is biased towards the prior mean 
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Rationale of MMSE estimator 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With lots of data and/or good SNR, the MMSE ignores the prior 
Bias of estimator is low 
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Rationale of MMSE estimator 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With a very bad SNR, the MMSE basically ignores the data 
Bias of estimator is high 
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Bernstein - von Mises Theorem   (A.k.a. Bayesian central limit theorem) 

 

 

 
 

 

 

 

  Given some mild regularity conditions 

    

   p(θ|X) -> N (θ,I-1(θ)),     N-> ∞ 
 

 

Or in other words, 

• The prior is not important asymptotically 

• Posterior coincides with MLE estimate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given a prior p(θ) and IID observations X1,…,XN 
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Remaining problems 

 

• Select a prior that models the nature of the parameter well 

• Make sure that the prior allows for computations of 

 

    and 

 

The second problem is, e.g.,  solved with Gaussian priors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10 – Bayesian Estimation 

Conditional Gaussian distribution 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  Note that conditional variance does not depend on x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y x 
x 

θ|x 

θ 
θ 

θ, x 

θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 

x - E(x) 
 

θ – E(θ) 

x - E(x) 
 

θ – E(θ) 

θ 

Cxx   Cxθ 
 

Cθx   Cθθ 

 



Chapter 10 – Bayesian Estimation 

”Bayesian” Linear model 

 

        Consider a model according to  x=Hθ+w, w ~  
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”Bayesian” Linear model 

 

        Consider a model according to  x=Hθ+w, w ~  
 

 

         Assign a normal prior to θ: 

 

         We are interested in computing p(θ|x), and in particular E(θ|x)  
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”Bayesian” Linear model 

 

        Consider a model according to  x=Hθ+w, w ~  
 

 

         Assign a normal prior to θ: 

 

         We are interested in computing p(θ|x), and in particular E(θ|x)  

 

         Make observation that x and θ are jointly Gaussian   Theorem 2 Applies 
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Conditional Gaussian distribution 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  Note that conditional variance does not depend on x 
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x=Hθ+w 

We need to compute 
 
E(θ), but this is μθ by assumption   

θ|x θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 
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We need to compute 
 
E(θ), but this is μθ by assumption 
 
E(x), but this is easy: Hμθ 

 
x=Hθ+w θ|x θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 
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x=Hθ+w θ|x θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 

We need to compute 
 
E(θ), but this is μθ by assumption 
 
E(x), but this is easy: Hμθ 

 

Cθθ, but this is Cθ by assumption 
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We need to compute 
 
E(θ), but this is μθ by assumption 
 
E(x), but this is easy: Hμθ 

 

Cθθ, but this is Cθ by assumption 
 
Cxx,,easy as well: HCθHT+Cw 

 
x=Hθ+w θ|x θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 
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We need to compute 
 
E(θ), but this is μθ by assumption 
 
E(x), but this is easy: Hμθ 

 

Cθθ, but this is Cθ by assumption 
 
Cxx,,easy as well: HCθHT+Cw 

 

Cθx, which is CθHT 

 
x=Hθ+w θ|x θ x x θy xx 

θ|x θθ  xx θx xθ 

θ|x 
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Collect everything to get 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  
1. H can be of reduced rank 
2. Estimator is linear in observation x  
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

Apply Theorem 10.3 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  



Chapter 10 – Bayesian Estimation 

DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  

Estimator with no data 

Correction term accounting 
for observed data 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  

If sample mean agrees 
with prior mean, then 
there is no update 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  

If N is very large, or σ2 very 
small, estimator is the 
sample mean  
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  

If prior is very ”un-informative” 
σ2

A≈∞, estimator is the sample 
mean  
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

……..  

If prior distribution is very 
precise σ2

A≈0, then 
E(A|x)=μA 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

This is not the Bmse ! 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

This is not the Bmse ! 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

This is not the Bmse  in general, but happens to be in this case…..! 
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DC-level estimation with Gaussian prior. x[n]=A+w[n] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model (linear) Noise covariance  Prior 
 

            Cw=Iσ2 

This is not the Bmse  in general, but happens to be in this case…..! 

With no prior info  
BMSE = σ2/N 
With prior info 
BMSE < σ2/N 
 

σ2
A≈∞ 

σ2
A<∞ 
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Reproducing property and conjugate priors 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice what happened 
 
 
Prior p(θ) = Uniform    ->    p(x|θ)     ->     Posterior p(θ|x) = not Uniform 
 
 
 
Prior p(θ) = Gaussian   ->    p(x|θ)     ->     Posterior p(θ|x) = Gaussian 
 

    

Second case is much easier to work with as we do not have to compute the pdf 
of the posterior, only its parameters. Reproducing property 
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Reproducing property and conjugate priors 

 

 

 

 

 

 

 Very desirable property for analytically establishing the MMSE estimator 

 

 Long tables of conjugate priors exist 

 

 Conditional pdfs from the exponential family have conjugate priors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conjugate prior 
 
For a conditional pdf p(x|θ), a prior p(θ)  with the property that the posterior 
p(θ|x) has the same form as p(θ) is said to be a conjugate prior 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC-level in white noise 
 
If we know that  1 < A < 2, then it is reasonable with a uniform prior U[1,2] 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC-level in white noise 
 
If we know that  1 < A < 2, then it is reasonable with a uniform prior U[1,2] 
 
But, one could also say that it is the power that should be uniform, so p(A2) is U[1,4] 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC-level in white noise 
 
If we know that  1 < A < 2, then it is reasonable with a uniform prior U[1,2] 
 
But, one could also say that it is the power that should be uniform, so p(A2) is U[1,4] 
 
Maybe power in dBs is uniform, so p(log A2) is U(0,0.6) 
 
Maybe there is some other parametrization of space that makes sense? 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now note what happens 
 
 
 
 
 

    

p(x|A) p(A) = U[1,2] p1(A|x) 

p(x|A) p(A2) = U[1,4] p2(A2|x) 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now note what happens 
 
 
 
 
 

    

p(x|A) p(A) = U[1,2] p1(A|x) 

p(x|A) p(A2) = U[1,4] p2(A2|x) 𝐴 = 𝐴2 

Variable change 

p3(A|x) 

Do p1(A|x) and p3(A|x) match? That is, does the two 
different priors represent the same thing? 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now note what happens 
 
 
 
 
 

    

p(x|A) p(A) = U[1,2] p1(A|x) 

p(x|A) p(A2) = U[1,4] p2(A2|x) 𝐴 = 𝐴2 

Variable change 

p3(A|x) 

Do p1(A|x) and p3(A|x) match? That is, does the two 
different priors represent the same thing? 

NO!!! 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jeffrey’s prior is invariant under re-parameterization of space 
 
 
 
 
 

    

p(x|A) p(A) = Jeffrey’s p1(A|x) 

p(x|A) p(A2) = Jeffrey’s p2(A2|x) 𝐴 = 𝐴2 

Variable change 

p1(A|x) 

With Jeffrey’s prior it does not matter what 
parameterization we use, the results are invariant 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jeffrey’s prior is invariant under re-parameterization of space 
 
 
 
 
 

    

p(x|A) p(A) = Jeffrey’s p1(A|x) 

p(x|A) p(A2) = Jeffrey’s p2(A2|x) 𝐴 = 𝐴2 

Variable change 

p1(A|x) 

Jeffrey’s prior: 
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Jeffrey’s prior 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jeffrey’s prior is invariant under re-parameterization of space 
 
 
 
 
 

    

p(x|A) p(A) = Jeffrey’s p1(A|x) 

p(x|A) p(A2) = Jeffrey’s p2(A2|x) 𝐴 = 𝐴2 

Variable change 

p1(A|x) 

Jeffrey’s prior: 

Nobody said that Jeffrey’s is alwyas representing the nature of the  
Parameter well, but it is a decent choice if the scale of the 

parameter is not known/understood 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

In order for the data observation to be 
meaningful, it should provide information of A 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

In order for the data observation to be 
meaningful, it should provide information of A 
 
The prior should not dominate, it should be ”un-
informative” 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

In order for the data observation to be 
meaningful, it should provide information of A 
 
The prior should not dominate, it should be ”un-
informative” 
 

The posterior and the prior should be 
far from each other 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

This is measured by the Kullback Leibler distance 
 
 
 
 
 

The posterior and the prior should be 
far from each other 

 𝑝 𝐴 𝑥 𝑙𝑜𝑔
𝑝(𝐴|𝑥)

𝑝(𝐴)
𝑑𝐴 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

This is measured by the Kullback Leibler distance 
 
 
 
Take expectation over x 
 
 
 
 
 

 𝑝 𝐴 𝑥 𝑙𝑜𝑔
𝑝(𝐴|𝑥)

𝑝(𝐴)
𝑑𝐴 

 𝑝(𝑥) 𝑝 𝐴 𝑥 𝑙𝑜𝑔
𝑝(𝐴|𝑥)

𝑝(𝐴)
𝑑𝐴𝑑𝑥 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

This is measured by the Kullback Leibler distance 
 
 
 
THIS IS MUTUAL INFORMATION BETWEEN A AND X 
 
 
 
 
 

 𝑝 𝐴 𝑥 𝑙𝑜𝑔
𝑝(𝐴|𝑥)

𝑝(𝐴)
𝑑𝐴 

 𝑝(𝑥) 𝑝 𝐴 𝑥 𝑙𝑜𝑔
𝑝(𝐴|𝑥)

𝑝(𝐴)
𝑑𝐴𝑑𝑥 I(A;X) = 
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Reference priors 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the situation once again 
 
 
 
 
 

    

Observe x Prior  p(A)   posterior p(A|x) 

             Reference prior 
 
 
 
 
 
 
Maximizes the contribution from the observed 
data. Provides the least information possible 
 

p*(A) = max p(A) I(A;X)  
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 

Compute the MSE for a given value of A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
To deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 

Compute the MSE for a given value of A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
To deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
 
 
 

    

α<1 
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 

Compute the MSE for a given value of A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
To deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
 
 
 

    

α<1 

Variance smaller than classical estimator Large bias for large A 
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 

Compute the MSE for a given value of A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If no MVU estimator exists, or is very hard to find, we can apply an MMSE estimator 
To deterministic parameters 
 
Recall the form of the Bayesian estimator for DC-levels in WGN 
 
 
 

    

α<1 

MSE for Bayesian is smaller for A close to the prior mean, but larger far away 
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the BMSE is smaller 
To deterministic parameters 
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However, the BMSE is smaller 
To deterministic parameters 
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However, the BMSE is smaller 
To deterministic parameters 
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Section 10.8 Bayesian estimators for deterministic parameters 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the BMSE is smaller 
To deterministic parameters 
 
 
 
 

    


