Estimation Theory
Fredrik Rusek

Chapters 8-9 + a bit more



Chapter 8 — Least squares

Previous chapters: Probabilistic model of observations x[n]

Least squares:
* No probabilistic assumption
e Signal model needed

Model

8 Noise inaccuracies
. sin]
iigg:{ » Perturbation p———» z(n]

required Not required



Chapter 8 — Least squares

Definition of least squares

N-1
Choose ¢ sothat we minimize  J(8) = Y _(z[r] — s[n])*

n=fM
Model
8 Noise inaccuracies
Signal s{n]
€ » Perturbation ————» z(n]

model

required Not required
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Application areas of least squares

Observations are: deterministic signal + zero mean noise
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Chapter 8 — Least squares

Application areas of least squares

Observations are: deterministic signal + zero mean noise

Linear Least squares vs non-linear least squares ‘

A linear LS problemis one where the s[n] is linearin the parameterf to be estimated

s[n] = Acos 2w fon

Estimation of:

e AisalinearlLS problem

* fyisanon-linearestimation problem

* Both Aandf,islinearin A, but non-linearin fy (More about this later)
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Linear least squares: scalar case

Signal model

s[n] = 6h[n|

Optimization problem

N-1
min J(8) = Z(m[n] — Bh[n])?
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Linear least squares: scalar case

Signal model

s[n] = 6h[n|

Optimization problem

N-1
min J(8) = Z(m[n] — Bh[n])?

Z_:c[n]h[n] ) N-1 N-1
Solution 6= 232 Jain=J(@) = Y_2*[n] -8 zln]h|n]
Z h2[n] n=0 n=0

n=0



Chapter 8 — Least squares

Linear least squares: scalar case

Signal model

s[n] = 6h[n|

Optimization problem

N-1
min J(8) = Z(m[n] — Bh[n])?

Z_:c[n]h[n] ) N-1 N-1
Solution 6= 22— Jmin = J(0) = Z z*[n] - 6 Z z[n]
Z h2[n] n=0 n=0

n=0

Clearly:

N-1

0 g Jmin g Z m?[n]

n=0

h[n]
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Linear least squares: scalar case

Signal model

s[n] = 6h[n|

Optimization problem
N-1
min J(8) = 3 (z[n] — Oh[n])?
n=>0
N-1
Z-’U[”]h[”] N-1 N-1
Solution 6= 22— Join = J(0) = Z £*[n] — 0 Z z[n]
Zh2[n] n=0 n=0

n=0

No noise

Lots of

noise




Chapter 8 — Least squares

Linear least squares: multivariate case

Signal model

s = HO

Optimization problem

min J(8) = (x-HO) (x — HO)
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Linear least squares: multivariate case

Signal model

s = HO

Optimization problem

min J(8) = (x-HO) (x — HO)

Gradient %if) = -2H"x + 2H"HO Solution @ = (H'H)'H"x
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Linear least squares: multivariate case

Signal model

s = HO

Optimization problem

| . When is the LS
min J(@) = (x—HO) (x-HE) ||1hcpLuE?

Efficient?

Gradient %if) = -2H"x + 2H"HO Solution @ = (H'H)'H"x




Chapter 8 — Least squares

Linear least squares: multivariate case

Signal model

s = HO

Optimization problem

_ T When is the LS
min J(8) = (x—HO) (x - HO) The BLUE? Noise-cov is identity
Efficient? Noise is Gaussian

Gradient %if) = -2H"x + 2H"HO Solution @ = (H'H)'H"x




Chapter 8 — Least squares

Linear least squares: multivariate case

Minimum value Jmin = J(B)

= (x-— Hé)T(x - Hé)
= (x-H(HTH)"'Hx)" (x - H(HTH)~'H"x)
= xT (I-HHTH)'HT

(H H)" H7) (I_HH"H)'HT) x
(HTH)_IHT) X.

|= x" (I-H

Optimization problem

min J(@) =

T When is the LS
(x — HO)" (x — HO) The BLUE? Noise-cov is identity
Efficient? Noise is Gaussian

Gradient %if) = —-2H"x + 2HTHO

Solution @ = (HTH)'HTx
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Weighted Linear least squares: multivariate case

Optimization problem

min J(8) = (x - HO)"W(x — H8)

solution

6 = (HTWH)'H"Wx

Is the BLUE if W is taken as the noise covariance matrix



Chapter 8 — Least squares

Summary of linear LS

* Needs no probabilistic knowledge

* Needs observations that are linear in parameter + zero mean noise

* Is the BLUE if noise is uncorrelated

» If efficient if noise is white Guassian

 Weighted linear LS estimators are BLUE if the weights are properlyselected

Almost nothing new



Chapter 8 — Least squares

Tikhonov regularization

e If the matrix H is badly conditioned, the estimator tends to "blow up”

* To penalizelarge values of # (x below) Tikhonovregularizationis commonly applied

[Ax — b|? + [|ITx]?



Chapter 8 — Least squares

Geometrical interpretation
His (N x p) matrix

How to best approximatethe
N-dim observationx in the
p-dimensional space

P-dimensional Subspace spanned by H
X (observations) lie in an N-dimensional space
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Geometrical interpretation

How to best approximatethe
N-dim observationx in the
p-dimensional space

wn>

P-dimensional Subspace spanned by H
X (observations) lie in an N-dimensional space
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Geometrical interpretation
(x - é) 1 hl

(x - §) 1 hz
(x - Q)Thl = 0
(X - §)Th2 = 0

wn>

2-dimensional Subspace spanned by H
X (observations) lie in an 3-dimensional space
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Geometrical interpretation
(x - é) 1 hl

(x - §) 1 hz
(x - Q)Thl = 0
(X - §)Th2 = 0
X (X - HG)Thl
(x — HB)Th,

il
o o

A
S
2-dimensional Subspace spanned by H
§ = 6,h; + ;b X (observations) lie in an 3-dimensional space
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Geometrical interpretation
(x - é) 1 hl

(x - §) 1 hz
(x - Q)Thl = [
(X - §)Th2 = 0
X (x-HO)'h, = 0
(x — HB)T]].?_ = 0

(x —HO)"H =0"

A
S
2-dimensional Subspace spanned by H
§ = 6,h; + ;b X (observations) lie in an 3-dimensional space
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Geometrical interpretation
(x - é) 1 hl

(x - §) 1 hz
(x - Q)Thl = 0
(X - §)Th2 = 0

il
o

X (X - HG)Thl
(x — HB)T]].?_ = 0

(x—H8)"H=0"

//GTH — OT

A
S
2-dimensional Subspace spanned by H
§ = 6,h; + ;b X (observations) lie in an 3-dimensional space

Orthogonality principle
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Geometrical interpretation

Estimator g — (HTH) 'H x
Projected signal  § = HE = HH H) 'Hx

Projection matrix P = H(HTH) " 'HY
(projects a signal onto subspace spanned by H)

X3
L}

|
] Il

Properties:

1. PT=pP
2. P2=p /
3. Pissingular

[ e e e e
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Section 8.6 and 8.7: good to know about, but not much more
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Section 8.6 and 8.7: good to know about, but not much more

SeCtlon 8-6 30~ {a) Experimental data

4.5 -

4.0 -

3.5~
Fit this data to some :2
2.0 -
15- Y .
0., Tt
05«
0'0 T H T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Time, ¢t

Polynomial

Should it be 1st, 2nd, 3d, or even higher order??



Chapter 8 — Least squares

Section 8.6 and 8.7: good to know about, but not much more

Section 8.6

Result for some

Polynomial orders

100 —

E 50—

90 -3
80
70—
60 —

40 -
30
20
10 —
0

Constant
a

Line Parabola Cubic

4 /

1.0

1.5

2.0

1 f T !
2.5 3.0 3.5 4.0

Number of parameters, k

There is a recursive method that finds the solution for order n given that n-1 is already done

Hence, one can reuse the computations...not much more in this section
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Section 8.6 and 8.7: good to know about, but not much more

Section 8.7

Given the LS estimate for N-1 observations, how to find the LS estimate with one additional
observation?

A toolbox for this exist. Thisis in Section 8.7....not much more...

Scalar case (DC level in white noise)
1
N+1

Jmin[N] = Jmin[N - ]-] +

A[N] = A[N - 1] +

(m{N] ~ AN - 1)

N

T @lV] - AIN - 1))




Chapter 8 — Least squares

Section 8.8: constrained least squares

Suppose that the parameter vector is constrained to r<p constraints (A is rxp matrix, rank=r)

A6 =bD

Optimization problem

min J(@) = (x—H8) (x—HE)

suchthat A@ =b
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Section 8.8: constrained least squares

min J(@) = (x—HO) (x—HE)

suchthat A@ = b

Lagrangian | J. = (x— HO)T(x — H@) + AT(AG ~— b)
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Section 8.8: constrained least squares

min J(@) = (x—HO) (x—HE)

suchthat A@ = b

Lagrangian | J. = (x— HO)T(x — H@) + AT(AG ~— b)

aJ.

g = —9H x +2HTHO + AT
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Section 8.8: constrained least squares

min J(@) = (x—HO) (x—HE)

suchthat A@ = b

Lagrangian | J. = (x— HO)T(x — H@) + AT(AG ~— b)

aJ.
00

8

—~ —9H7x +2HTHO + AT

I

(HTH)~'HTx — %(HTH)‘IATA

6 - (HTH)“IAT%
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Section 8.8: constrained least squares

min J(@) = (x—HO) (x—HE)

suchthat A@ =Db

Lagrangian | J. = (x— HO)T(x — H@) + AT(AG ~— b)

A Ty -1 :!"A
%" = —9H"x + 2HTHO + ATA 0740 AEHTAS =0

8

| >

I

(H'H) "H'x — %(HTH)‘IAT,\ = [AHTH)AT] T (A8 - b).

6 - (HTH)“IAT%
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Section 8.8: constrained least squares

min J(@) = (x—HO) (x—HE)

suchthat A@ = b

Lagrangian | J. = (x— HO)T(x — H@) + AT(AG ~— b)

aJ.
00

—~ —9H7x +2HTHO + AT

8

I

(HTH)~'HTx — %(HTH)‘IATA
1

6 — (HTH)'AT [A(HTH)"'A”] " (A - b)




Chapter 8 — Least squares

Section 8.9: non-linear Least squares

If the signalis notlinearin § a non-quadratic optimization results, termed non-linearLS

J=(x—5(8))"(x —s(8))

Check-point: When is the non-linear LS also the MLE?



Chapter 8 — Least squares

Section 8.9: non-linear Least squares

Apart from numerical search, two methods are presented
1. Transformation of parameters

We try to find a fiunction ax = g(@) such that

s(8(a)) = Ha

Solve the linear LS problem & = (H'H)™'H"x
and plugback @ = g~'{a&)
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Section 8.9: non-linear Least squares

Example 8.9
Find Aand @, f, is known

s[n] = Acos(2n fon + @) n=01...,N—1

N-1
Problem is non-linearin the phase J = Z (z[n] — Acos(2rfon + ¢))°

n=0
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Section 8.9: non-linear Least squares

Example 8.9
Find Aand @, f, is known

s[n] = Acos(2n fon + @) n=01...,N—1

N-1

Problem is non-linearin the phase J = Z (z[n] — Acos(2rfon + ¢))°
n=0

but Acos(27fon + ¢) = Acos ¢ cos2r fon — Asin ¢sin 2w fon

dx; = ACOS ¢3 .
a0 = —Asind s[n] = a; cos 27 fon + a; sin 27 fyn
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Section 8.9: non-linear Least squares

Example 8.9
Find Aand @, f, is known

s[n] = Acos(2n fon + @) n=01...,N—1

N-1
Problem is non-linearin the phase J = Z (z[n] — Acos(2rfon + ¢))°

n=0

but Acos(27fon + ¢) = Acos ¢ cos2r fon — Asin ¢sin 2w fon

dx; = ACOS ¢3 .
a0 = —Asind s[n] = a; cos 27 fon + a; sin 27 fyn

Signal is linear in (; @
s = Ha H‘[

1 0
cos 27 fo sin 27 f, }

cos 21rf0.(N —1) sin 27ng-(N ~1)
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Section 8.9: non-linear Least squares

Example 8.9
Find Aand @, f, is known

s[n] = Acos(2n fon + @) n=01...,N—1

N-1

Problem is non-linearin the phase J = Z (z[n] — Acos(2rfon + ¢))°
n=0
but Acos(27fon + ¢) = Acos ¢ cos2r fon — Asin ¢sin 2w fon
dx; = ACOS ¢3 .
a0 = —Asiné s[n] = a1 cos 21 fon + a; sin 27 fyn

Estimatoris & = (HTH) " 'H x

8 =
A = /&2 +a3

o = arctan( —az)

&% + a
arctan (;ai)

Inverse mapping is a;




Chapter 8 — Least squares

Section 8.9: non-linear Least squares

Apart from numerical search, two methods are presented
2. Separable problems (half-linear, half non-linear)

With a signal model according to
/Matrix,non-linearin a

s = H(a)g

We get a linear problem in B, but non-linear in a.

J(a,B) = (x - H(a)8)" (x — H(a)B)
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Section 8.9: non-linear Least squares

Apart from numerical search, two methods are presented
2. Separable problems (half-linear, half non-linear)

With a signal model according to
/Matrix,non-linearin a

s = H(a)g

We get a linear problem in B, but non-linear in a.

(.8) = (x - H@p)" (x - B(@)8)

For given H(a), optimal B (in a LS sense) is

| 8=(H"(a)H(@) " H (a)x
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Section 8.9: non-linear Least squares

Apart from numerical search, two methods are presented
2. Separable problems (half-linear, half non-linear)

With a signal model according to
/Matrix,non-linearin a

s = H(a)g

We get a linear problem in B, but non-linear in a.

J(e, B) = x* [1 ~ H(a) (HT (@)H(a)) HT(a)] x

For given H(a), optimal B (in a LS sense) is

| 3= (0" (@)H(o) "B (@)x |
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Section 8.9: non-linear Least squares

Apart from numerical search, two methods are presented
2. Separable problems (half-linear, half non-linear)

With a signal model according to
/Matrix, non-linearin a

s = H(a)g

We get a linear problem in B, but non-linear in a.

J(e, B) = x* [1 ~ H(a) (HT (@)H(a)) HT(a)] x

For given H(a), optimal B (in a LS sense) is

‘9=(HT(a)H(a))“ HT (a)x ‘ ‘max xTH(a) (AT (a)H(a)) " H (a)x
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Section 8.9: non-linear Least squares

Example 8.10

Estimate {A1, A, As, T}

s[n] = Ayr® + Agr™ + Agr®®
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Section 8.9: non-linear Least squares
Example 8.10

Estimate {A1, Az, A3, T'} S[‘n] = Al'."n + AETZH + A3T‘3n

Signal is linearin A,, A,, A5, non-linear inr
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Section 8.9: non-linear Least squares
Example 8.10

Estimate {A1, Az, A3, T'} S[‘n] = Al'."n + AETZH + A3T‘3n

Signal is linearin A,, A,, A5, non-linear inr

1 1 1
r r? r3
H(r) = -
V- p2AN-1) BN-1)
LSE for the amplitudes LSE forr

3= (HT(MHH(#) ™ H (F)x max  x"H(r) (H(rH(r) " B ()x




Chapter 9 — method of moments

Consider a Gaussian mixture pdf

pzlnlie) = (1 - €)gs(zln]) + egs(z[n])

bi(z[n]) = —ﬁexp (-%“’i[m |

N(0,07) PDF with probability 1— ¢ and from a A'(0,0%) PDF with probability .



Chapter 9 — method of moments

Consider a Gaussian mixture pdf

1 z*[n]

2 of ) i V2mo2 exp( 2*—0?)
plz[n]ie) = (1 — €)p1(z[n]) + e¢(z[n])

bi(z[n]) = —ﬁexp (-%“’i[m |

N(0,07) PDF with probability 1— ¢ and from a A'(0,0%) PDF with probability .

Our methods to find MVU estimator for € will all fail
Options:

1. MLE

2. Method of moments (much simpler)




Chapter 9 — method of moments

Consider a Gaussian mixture pdf

pzlnlie) = (1 - €)gs(zln]) + egs(z[n])

bi(z[n]) = \/;r_afexp (-%“’i[m |

Second moment

B@) = [ #[l[0 - 9i(eln]) + cgalaln))] dein)

—o0
= (1—¢€)o? +eo?




Chapter 9 — method of moments

Consider a Gaussian mixture pdf

13:_2@)

2 of )+ V2mo2 exp( 2 o}
plzin];€) = (1 - €)¢1(z[n]) + eda(x[n])

bi(z[n]) = —ﬁexp (-%“’i[m |

Second moment. Replace with its estimator | Ne
1§ N- N sz[n] — 0o}
¥ 2 Ml = (1= o + o} ‘=

Not optimal, not unbiasedin general, but simple to find



Chapter 9 — method of moments

Consider a Gaussian mixture pdf

pzlnlie) = (1 - €)gs(zln]) + egs(z[n])

$i(aln]) = ——— exp (—1"’2[“]) .

V2rc? 2 o}
Second moment. Replace with its estimator | Ne
1§ N- N sz[n] — 0o}
< > 2*n] = (1~ €)a? + eo? =

lN-—l
As N—}m,'ﬁzmzfﬂ]ﬂE(mz[’n]) SO é—+cas N —

n=0
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Method of moments, scalar case

kth moment
px = E(z*[n])= h(6)
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Method of moments, scalar case

kth moment
px = E(z*[n])= h(6)

Find inverse function
0= h™ ()
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Method of moments, scalar case

kth moment
px = E(z*[n])= h(6)

Find inverse function

0= h"(ue)

Replace moment with estimate
1 N-=1

=5 2 =n

n=0

17




Chapter 9 — method of moments

Method of moments, scalar case

kth moment conclude

r = E(z* = h(6 . N-1
7 (z*[n])= h(6) 9=h"1(%’:zzk[ﬂ])

Find inverse function =
0 =h""(u)

Replace moment with estimate
1 N-=1
fy = N z*[n]

n=0




Chapter 9 — method of moments

Example 9.2: exponential pdf

Exponential pdf p(z[n]; ») :{ AGXP(BM[”]) ;‘[Lfrj] : UD

pr = Baln) =




Chapter 9 — method of moments

Example 9.2: exponential pdf

Exponential pdf p(z[n]; ») :{ AGXP(BM[”]) ;‘[Lfrj] : UD

pr = Baln) =

According to discussion yesterday, this is not MVU
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Method of moments, vector parameter

Find p moments find inverse
o= hy(61,8,,...,6,) 8 =h""(u)
H2 = h2(911 621 v agp)
L conclude
0 =h~!(z)

Hp = h-p(gl, 92._, “en ,9,,)
p = h(6)




Chapter 9 — method of moments

Method of moments, Performance
Definition of method of moments § = g(T) where E(T) =

Taylor expand around u

T

éig(T)ﬁg(uHE@—

(Ty — #k)
k=1 aTk

=L
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Method of moments, Performance
Definition of method of moments § = g(T) where E(T) =

Taylor expand around u

To the precision of the linearization E(6) = g(p)
2

) T A T 2
var(ﬂ)=E{ g(p)+%T=ﬁ(T—u)—E’(l9) }= E{ y(n)+ﬁgp (T—p-)—g(:-t)] }
B @T ~ z _@T 39
‘E{[BTT=p(T ‘”] }‘aTT_pCTa_TT:#
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Method of moments, exponential distribution continued

Recallestimator 3 _ ]
A= 1 N-1
N Z-’f?{ﬂ]
n=(}
. dg|” dg 5
var(§) = — Cr —= E(6) = g(u)
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Method of moments, exponential distribution continued

Recallestimator 3§ _ ]
1 N-1
N Z.‘r{n]
n=(}
Identify A= g(T))
1 M-l 1
T1 = ﬁ '; I[ﬂ] Q(Tl) = i
. dg|” dg 5
var(0) = 5|  Cr == E(6) = g{u)
@)= 3|y, T BTy
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Method of moments, exponential distribution continued

Recallestimator ~ § _ ]
1 N-1
N > z[n]
Identify A= g(Ty) We should do T.S.E at mean of T
1 N—-1 1 _ _ 1
S - i =E(T) = =
=g Xl o= \=E(T) = 5
. ﬂg T ﬁ‘g .
var(d) = 7| Cr — E(6) = g(p)
OTlr—p ~ OTlpep
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Method of moments, exponential distribution continued

Recallestimator ~ § _ ]
1 N-1
N > z[n]
Identify A= g(Ty) We should do T.S.E at mean of T
1 N—-1 1 _ _ 1
S - i =E(T) = =
=g Xl o= \=E(T) = 5

Now, to the precision of the linear approximation

E(R) = g(m) = + = A

1
A
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Method of moments, exponential distribution continued

Recallestimator ~ § _ ]
1 N-1
N > z[n]
Identify A= g(Ty) We should do T.S.E at mean of T
1 N—-1 1 _ _ 1
S - i =E(T) = =
=g Xl o= \=E(T) = 5

__ 1 99 L
=N | il @
. dg|T d \
var(d) = 5= G o E(0) = g(n)
_ »
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Method of moments, exponential distribution continued

Recallestimator ~ § _ ]
1 N-1
N > z[n]
Identify A= g(Ty) We should do T.S.E at mean of T
1 N—-1 1 _ _ 1
S - i =E(T) = =
=g Xl o= \=E(T) = 5

1 adg 1
== | 2 Loy
" il 0 ) = (W) —(-2) = X
var = —_
N,\E N
. dg|T d .
var(d) = 5= G =1 E(0) = g(n)
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Method of moments, exponential distribution continued

Recallestimator ~ § _ ]
1 N-1
N > z[n]
Identify A= g(Ty) We should do T.S.E at mean of T
1 N—-1 1 _ _ 1
S - i =E(T) = =
=g Xl o= \=E(T) = 5

1 adg 1
M=vg | | =-=-x
NAE aq-‘l Ti=m ’u? . ( }.2] ( }‘2 ;\2
v&r(r\) = Nz\z = E
R dg |T d R Fisher information
var(f) = 8T T=pt Cr c‘?i‘ n () = 9(w) Per sample: A2




Chapter 9 — method of moments

In practice it is common to use cumulants rather than moments.

Cumulants are compressing the moments effectively

Cumulant generating function is log of moment generating function, thus, a a bit
smaller in size and fluctuation” than the moments

Kg = 2

K3 = Ha

Rq = g — 31“22
K = pis — 10paps
Ko = fto — 15ptapts — 10p3” + 30,

Cumulants moments
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Example, PIMRC 2014

System model: y=x+n,
X is M-QAM, n is noise.

Task: estimate M

Con = My
Cao = Myo — 3M202
Used cumulants
Cay = My — 3MpoMy,
Cyg = Myy — abs(Myy)?* — Zle2
Cﬁg - MGD - 15M20M4D + 30M203

("61 = Mﬁl - 5M21M4-0 - 10M20M41 + 30M202M21

Cor = Mgy — 6MyoMyy — 8BMy My — Mpy My + 6M202M22
+ 24M,,%*M,,

Coz = Moz — IM; 1 My + 12M;,° — 3MpoMyz — 3Mp; My,
+ 18Myo My, M,s
3)

Solution: linear combination of cumulants

o
O
+ +
o 160AM
* +  B4-QAM

L

074 076 078 08 082 084 08 088
|Cyol
Figure 3: 200 realizations of 16-QAM and 64-QAM
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Generalized method of moments
Fairly new method. Nobel prize in economics 2013.

Find function g(, ) sothat m(fy) = E[g(Y;,6p)] =0

Replace function by its estimator  m(6) = %Zg(}'}.ﬁ)

t=1

Minimize the norm of m(8)  ||m(8)||5 = m(0) Wi (8),

Example: reciprocity calibration of MaMIMO......



Generalized method of moments
Fairly new method. Nobel prize in economics 2013.

Find function g(, ) sothat m(fy) = E[g(Y;,6p)] =0

T
Replace function by its estimator  m(6) = %Zg(}'}.ﬁ)

t=1

Minimize the norm of m(8)  ||m(8)||5 = m(0) Wi (8),

Optimal weights: |J7 o Q_l

Q = E[g(Y:,60)g(Y:, 0)']



