
Estimation Theory 
Fredrik Rusek 

  

Chapters 8-9 + a bit more 



Chapter 8 – Least squares 

Previous chapters: Probabilistic model of observations x[n] 

 

Least squares:  

• No probabilistic assumption 

• Signal model needed 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not required required 



Chapter 8 – Least squares 

Definition of least squares 

 

Choose     so that we minimize 
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Chapter 8 – Least squares 

Application areas of least squares 
 

Observations are: deterministic signal + zero mean noise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Application areas of least squares 
 

Observations are: deterministic signal + zero mean noise 

 

 

Linear Least squares vs non-linear least squares 

 

A linear LS problem is one where the s[n] is linear in the parameter     to be estimated  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Application areas of least squares 
 

Observations are: deterministic signal + zero mean noise 

 

 

Linear Least squares vs non-linear least squares 

 

A linear LS problem is one where the s[n] is linear in the parameter     to be estimated  

 

 

 

Estimation of: 

• A is a linear LS problem 

• f0 is a non-linear estimation problem 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Application areas of least squares 
 

Observations are: deterministic signal + zero mean noise 

 

 

Linear Least squares vs non-linear least squares 

 

A linear LS problem is one where the s[n] is linear in the parameter     to be estimated  

 

 

 

Estimation of: 

• A is a linear LS problem 

• f0 is a non-linear estimation problem 

• Both A and f0 is linear in A, but non-linear in f0  (More about this later) 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Linear least squares: scalar case 
 

Signal model 

 

 

 

 

Optimization problem 
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Linear least squares: scalar case 
 

Signal model 
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Clearly: 

No noise 

Lots of 
noise 



Chapter 8 – Least squares 

Linear least squares: multivariate case 
 

Signal model 

 

 

 

 

Optimization problem 
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Chapter 8 – Least squares 

Linear least squares: multivariate case 
 

Signal model 
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Gradient     Solution 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Linear least squares: multivariate case 
 

Signal model 
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When is the LS  
The BLUE? 
Efficient? 
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Linear least squares: multivariate case 
 

Signal model 
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When is the LS  
The BLUE?  Noise-cov is identity 
Efficient? Noise is Gaussian 



Chapter 8 – Least squares 

Linear least squares: multivariate case 
 

Minimum value 

 

 

 

 

Optimization problem 
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Gradient     Solution 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When is the LS  
The BLUE?  Noise-cov is identity 
Efficient? Noise is Gaussian 



Chapter 8 – Least squares 

Weighted Linear least squares: multivariate case 
 

 

Optimization problem 

 

   

  min 

 

 

  

solution     

 

 

 

Is the BLUE if W is taken as the noise covariance matrix 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Summary of linear LS 
• Needs no probabilistic knowledge 

• Needs observations that are linear in parameter + zero mean noise 

• Is the BLUE if noise is uncorrelated 

• If efficient if noise is white Guassian 

• Weighted linear LS estimators are BLUE if the weights are properly selected 
 

Almost nothing new 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Tikhonov regularization 
• If the matrix H is badly conditioned, the estimator tends to ”blow up” 

 

• To penalize large values of     (x below) Tikhonov regularization is commonly applied 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Geometrical interpretation 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

P-dimensional Subspace spanned by H 
X (observations) lie in an N-dimensional space 

How to best approximate the 
N-dim observation x in the  
p-dimensional space 

H is (N x p) matrix 
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Geometrical interpretation 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 s 
P-dimensional Subspace spanned by H 
X (observations) lie in an N-dimensional space 

How to best approximate the 
N-dim observation x in the  
p-dimensional space 



Chapter 8 – Least squares 

Geometrical interpretation 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 s 
2-dimensional Subspace spanned by H 
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Geometrical interpretation 
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 s 
2-dimensional Subspace spanned by H 
X (observations) lie in an 3-dimensional space 

Orthogonality principle 
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Geometrical interpretation 
 

 

 

 
 

 

 

 

 

 

 

Properties: 

1. PT=P 

2. P2=P 

3. P is singular 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimator 
 
Projected signal 
 
 
Projection matrix   
(projects a signal onto subspace spanned by H) 



Chapter 8 – Least squares 

Section 8.6 and 8.7: good to know about, but not much more 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.6 and 8.7: good to know about, but not much more 
 

Section 8.6 

 

Fit this data to some  

Polynomial 

 

 

 

Should it be 1st, 2nd, 3d, or even higher order?? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.6 and 8.7: good to know about, but not much more 
 

Section 8.6 

 

Result for some  

Polynomial orders 

 

 

 

 

 

There is a recursive method that finds the solution for order n given that n-1 is already done 

 

Hence, one can reuse the computations…not much more in this section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.6 and 8.7: good to know about, but not much more 
 

Section 8.7 

 

Given the LS estimate for N-1 observations, how to find the LS estimate with one additional 
observation? 

 

A toolbox for this exist. This is in Section 8.7….not much more… 

 

Scalar case (DC level in white noise) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.8: constrained least squares 
Section 8.7 

 

Suppose that the parameter vector is constrained to r<p constraints   (A is rxp matrix, rank=r) 

 

 

 

Optimization problem 
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Chapter 8 – Least squares 

Section 8.8: constrained least squares 
Section 8.7 
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Section 8.8: constrained least squares 
Section 8.7 
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Section 8.8: constrained least squares 
Section 8.7 
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Section 8.8: constrained least squares 
Section 8.7 
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Section 8.8: constrained least squares 
Section 8.7 
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Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
If the signal is not linear in      a non-quadratic optimization results, termed non-linear LS  

 

 

 

 

Check-point: When is the non-linear LS also the MLE? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Apart from numerical search, two methods are presented 

1. Transformation of parameters 

 

We try to find a fiunction                        such that 

 

 

 

 

 

Solve the linear LS problem 

and plug back 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Example 8.9 

Find A and     , f0 is known 

 

 

 

Problem is non-linear in the phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Example 8.9 

Find A and     , f0 is known 
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Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Example 8.9 

Find A and     , f0 is known 

 

 

 

Problem is non-linear in the phase 

 

but 

 

 

 

Signal is linear in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Example 8.9 

Find A and     , f0 is known 

 

 

 

Problem is non-linear in the phase 

 

but 

 

 

 

Estimator is 

 

Inverse mapping is   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Apart from numerical search, two methods are presented 

1. Transformation of parameters 

2. Separable problems (half-linear, half non-linear) 

 

With a signal model according to 

 

 

 

We get a linear problem in β, but non-linear in α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix, non-linear in α 
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Section 8.9: non-linear Least squares 
Apart from numerical search, two methods are presented 
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2. Separable problems (half-linear, half non-linear) 

 

With a signal model according to 

 

 

 

We get a linear problem in β, but non-linear in α. 

 

 

For given H(α), optimal β (in a LS sense) is 
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Section 8.9: non-linear Least squares 
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Matrix, non-linear in α 
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Section 8.9: non-linear Least squares 
Example 8.10 

 

Estimate 
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Section 8.9: non-linear Least squares 
Example 8.10 

 

Estimate 

 

 

  Signal is linear in A1, A2, A3, non-linear in r 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 – Least squares 

Section 8.9: non-linear Least squares 
Example 8.10 

 

Estimate 

 

 

  Signal is linear in A1, A2, A3, non-linear in r 
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LSE for r 



Chapter 9 – method of moments 

Consider a Gaussian mixture pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9 – method of moments 

Consider a Gaussian mixture pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our methods to find MVU estimator for ε will all fail  
Options: 
1. MLE 
2. Method of moments (much simpler) 
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Consider a Gaussian mixture pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second moment 
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Consider a Gaussian mixture pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second moment. Replace with its estimator 

Not optimal, not unbiased in general, but simple to find 
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Second moment. Replace with its estimator 

As                    ,                                                    so   
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Method of moments, scalar case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kth moment 



Chapter 9 – method of moments 

Method of moments, scalar case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kth moment 
 
Find inverse function 
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Method of moments, scalar case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kth moment 
 
Find inverse function 
 
Replace moment with estimate 
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Method of moments, scalar case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kth moment  conclude 
 
Find inverse function 
 
Replace moment with estimate 
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Example 9.2: exponential pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exponential pdf 
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Example 9.2: exponential pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exponential pdf 
 
 
 
 
 
 
 
According to discussion yesterday, this is not MVU 
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Method of moments, vector parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find p moments  find inverse 
 
 
   conclude  
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Method of moments, Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of method of moments                           where                          
 
Taylor expand around μ 
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Method of moments, Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of method of moments                           where                          
 
Taylor expand around μ 
 
 
 
 
 
 
To the precision of the linearization 
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall estimator 
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify  
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify     We should do T.S.E at mean of T  
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

Now, to the precision of the linear approximation 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify     We should do T.S.E at mean of T  
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

Now, to the precision of the linear approximation 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify     We should do T.S.E at mean of T  



Chapter 9 – method of moments 

Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

Now, to the precision of the linear approximation 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify     We should do T.S.E at mean of T  
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Method of moments, exponential distribution continued 

 

 

 

 

 

 

 

Now, to the precision of the linear approximation 

 

 

 

 

 

 

 

 

Recall estimator 
 
 
 
Identify     We should do T.S.E at mean of T  

Fisher information 
Per sample:  



Chapter 9 – method of moments 

 

 

In practice it is common to use cumulants rather than moments. 

 

Cumulants are compressing the moments effectively 

 

Cumulant generating function is log of moment generating function, thus, a a bit 
smaller in size and fluctuation” than the moments 

 

 Cumulants                             moments 

 

 

 

 

 



Chapter 9 – method of moments 

Example, PIMRC 2014 

 

System model:    y=x+n, 

X is M-QAM, n is noise. 

 

Task: estimate M 

 

 

 

 

 

Used cumulants 

Solution: linear combination of cumulants 



Generalized method of moments 

Fairly new method. Nobel prize in economics 2013. 

 

Find function g( , ) so that  

 

Replace function by its estimator 

 

 

Minimize the norm of                  

 

 

 

Example: reciprocity calibration of MaMIMO…… 



Generalized method of moments 

Fairly new method. Nobel prize in economics 2013. 

 

Find function g( , ) so that  

 

Replace function by its estimator 

 

 

Minimize the norm of                  

 

 

Optimal weights:  


