Estimation Theory Fredrik Rusek

Chapters 6-7

Summary

Summary

Summary

Summary All estimation problems **MVU** estimator exists **Efficient estimator exists CRLB** exists Linear signal model, Gaussian noise

Today we will place the following piece: Linear signal in non-Gaussian noise

Summary All estimation problems **MVU** estimator exists **Efficient estimator exists CRLB** exists Linear signal model, Gaussian noise **Chapter 6 deals with non-Gaussian noise**

This is not very well pointed out

Today we will place the following piece: Linear signal in non-Gaussian noise

Definition of the BLUE

Linear in received data

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n]$$

Many possible estimators possible.

The BLUE is the one that is:

- Unbiased
- Smallest possible variance over all {a_n}

Definition of the BLUE

Linear in received data

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n]$$

Many possible estimators possible.

The BLUE is the one that is:

- Unbiased
- Smallest possible variance over all {a_n}

Optimal when

- MVU is linear in the data
- Suboptimal otherwise

Definition of the BLUE

Linear in received data

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n]$$

Examples:

DC level in white noise

MVU:
$$\hat{\theta} = \bar{x} = \sum_{n=0}^{N-1} \frac{1}{N} x[n] = \mathsf{BLUE}$$

Many possible estimators possible.

The BLUE is the one that is:

- Unbiased
- Smallest possible variance over all {a_n}

Optimal when

- MVU is linear in the data
- Suboptimal otherwise

Definition of the BLUE

Linear in received data

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n]$$

Examples:

DC level in white noise

MVU:
$$\hat{\theta} = \bar{x} = \sum_{n=0}^{N-1} \frac{1}{N} x[n] = \mathsf{BLUE}$$

$$\frac{\text{German tank problem}}{\text{MVU:}} \quad \hat{\theta} = \frac{N+1}{2N} \max x[n]$$

$$\text{BLUE: (can be shown)} \quad \hat{\theta} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

BLUE ≠ MVU

Many possible estimators possible.

The BLUE is the one that is:

- Unbiased
- Smallest possible variance over all {a_n}

Optimal when

- MVU is linear in the data
- Suboptimal otherwise

Definition of the BLUE

Linear in received data

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n]$$

Examples:

DC level in white noise

MVU:
$$\hat{\theta} = \bar{x} = \sum_{n=0}^{N-1} \frac{1}{N} x[n] = \mathsf{BLUE}$$

$$\frac{\text{German tank problem}}{\text{MVU:}} \quad \hat{\theta} = \frac{N+1}{2N} \max x[n]$$

BLUE: (can be shown)
$$\hat{\theta} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

BLUE ≠ MVU

Many possible estimators possible.

The BLUE is the one that is:

- Unbiased
- Smallest possible variance over all {a_n}

Optimal when

- MVU is linear in the data
- Suboptimal otherwise

The MVU is often not linear, hence the name "best linear"

The MVU is often not linear, hence the name "best linear"

Definition of the BLUE

Sometimes LE is very bad

<u>Noise power estimation</u> (x[n]=w[n])

MVU
$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$

BLUE
$$\hat{\sigma^2} = \sum_{n=0}^{N-1} a_n x[n]$$

$$E(\hat{\sigma^2}) = \sum_{n=0}^{N-1} a_n E(x[n]) = 0$$

0

Definition of the BLUE

Sometimes LE is very bad

Noise power estimation

(x[n]=w[n])

MVU
$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$
 BLUE $\hat{\sigma^2} = \sum_{n=0}^{N-1} a_n x[n]$
 $E(\hat{\sigma^2}) = \sum_{n=0}^{N-1} a_n E(x[n]) =$

BLUE + "cleverness"

- Transform data as y[n] = x²[n]
- Apply BLUE to y[n]

Finding the BLUE

Constraint

$$E(\hat{ heta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = heta$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

$$\operatorname{var}(\hat{\theta}) = E\left[\hat{\theta} - E(\hat{\theta})\right]$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

$$\operatorname{var}(\hat{\theta}) = E\left[\hat{\theta} - E(\hat{\theta})\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Variance

$$\operatorname{var}(\hat{\theta}) = E\left[\hat{\theta} - E(\hat{\theta})\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$

Use vector notation

$$\sum_{n=0}^{N-1} a_n x[n] = \mathbf{a}^T \mathbf{x}$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Variance

$$\operatorname{var}(\hat{\theta}) = E\left[\hat{\theta} - E(\hat{\theta})\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T E(\mathbf{x})\right)^2\right]$$

Use vector notation

$$\sum_{n=0}^{N-1} a_n x[n] = \mathbf{a}^T \mathbf{x}$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

$$\operatorname{var}(\hat{\theta}) = E\left[\left(\hat{\theta} - E(\hat{\theta})\right)\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T E(\mathbf{x})\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T (\mathbf{x} - E(\mathbf{x}))\right)^2\right]$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

$$\operatorname{var}(\hat{\theta}) = E\left[\left(\hat{\theta} - E(\hat{\theta})\right)\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T E(\mathbf{x})\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T (\mathbf{x} - \mathbf{E}(\mathbf{x}))\right)^2\right]$$
$$= E\left[\mathbf{a}^T (\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))^T \mathbf{a}\right]$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

$$\operatorname{var}(\hat{\theta}) = E\left[\left(\hat{\theta} - E(\hat{\theta})\right)\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T E(\mathbf{x})\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T (\mathbf{x} - \mathbf{E}(\mathbf{x}))\right)^2\right]$$
$$= E\left[\mathbf{a}^T (\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))^T \mathbf{a}\right]$$
$$= \mathbf{a}^T \mathbf{C} \mathbf{a}.$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

$$\operatorname{var}(\hat{\theta}) = E\left[\left(\hat{\theta} - E(\hat{\theta})\right)\right]$$
$$= E\left[\left(\sum_{n=0}^{N-1} a_n x[n] - E\left(\sum_{n=0}^{N-1} a_n x[n]\right)\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T E(\mathbf{x})\right)^2\right]$$
$$= E\left[\left(\mathbf{a}^T (\mathbf{x} - \mathbf{a}^T E(\mathbf{x}))\right)^2\right]$$
$$= E\left[\mathbf{a}^T (\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))^T \mathbf{a}\right]$$
$$= \mathbf{a}^T \mathbf{C} \mathbf{a}.$$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \mathbf{ heta}$$
 we must have $E(x[n]) = s[n]\mathbf{ heta}$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \boldsymbol{\theta}$$
 we must have $E(x[n]) = s[n]\boldsymbol{\theta}$

Now write x[n] = E(x[n]) + [x[n] - E(x[n])]

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \theta$$
 we must have $E(x[n]) = s[n]\theta$

Now write
$$x[n] = E(x[n]) + [x[n] - E(x[n])]$$

Define w[n] = [x[n] - E(x[n])]

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \theta$$
 we must have $E(x[n]) = s[n]\theta$

Now write x[n] = E(x[n]) + [x[n] - E(x[n])]

Define w[n] = [x[n] - E(x[n])]

Which yields x[n] = heta s[n] + w[n]

w[n] not Gaussian, but zero-mean This is the linear model, but with non-Gaussian noise

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

Optimization problem $\begin{array}{l} \min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a} \\ E\left[\mathbf{a}^T \mathbf{x}\right] = \theta
\end{array}$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \theta$$
 we must have $E(x[n]) = s[n]\theta$

Now write
$$x[n] = E(x[n]) + [x[n] - E(x[n])]$$
 We have $E[\mathbf{a}^T \mathbf{x}] = \mathbf{a}^T \mathbf{s} \theta$
Define $w[n] = [x[n] - E(x[n])]$
Which yields $x[n] = \theta s[n] + w[n]$

Finding the BLUE

Constraint

$$E(\hat{\theta}) = \sum_{n=0}^{N-1} a_n E(x[n]) = \theta$$

To satisfy
$$E\left[\mathbf{a}^T\mathbf{x}\right] = \theta$$
 we must have $E(x[n]) = s[n]\theta$

Now write
$$x[n] = E(x[n]) + [x[n] - E(x[n])]$$
 We have $E[\mathbf{a}^T \mathbf{x}] = \mathbf{a}^T \mathbf{s} \theta$
Define $w[n] = [x[n] - E(x[n])]$
Which yields $x[n] = \theta s[n] + w[n]$

Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

$$\frac{\partial J}{\partial \mathbf{a}} = 2\mathbf{C}\mathbf{a} + \lambda \mathbf{s}$$
 $\mathbf{a} = -\frac{\lambda}{2}\mathbf{C}^{-1}\mathbf{s}$

Optimization problem $\min_{\mathbf{a}} \mathbf{a}^T \mathbf{C} \mathbf{a}$ $\mathbf{a}^T \mathbf{s} = 1$

Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

$$rac{\partial J}{\partial \mathbf{a}} = 2\mathbf{C}\mathbf{a} + \lambda \mathbf{s}$$
 $\mathbf{a} = -rac{\lambda}{2}\mathbf{C}^{-1}\mathbf{s}$

To find λ , use the constraint function $\mathbf{a}^T \mathbf{s} = 1$ with $\mathbf{a} = -\frac{\lambda}{2} \mathbf{C}^{-1} \mathbf{s}$.

Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

$$\frac{\partial J}{\partial \mathbf{a}} = 2\mathbf{C}\mathbf{a} + \lambda \mathbf{s}$$
 $\mathbf{a} = -\frac{\lambda}{2}\mathbf{C}^{-1}\mathbf{s}$

To find λ , use the constraint function $\mathbf{a}^T \mathbf{s} = 1$ with $\mathbf{a} = -\frac{\lambda}{2} \mathbf{C}^{-1} \mathbf{s}$.

$$\mathbf{a}^T \mathbf{s} = -\frac{\lambda}{2} \mathbf{s}^T \mathbf{C}^{-1} \mathbf{s} = 1$$
$$-\frac{\lambda}{2} = \frac{1}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}$$

Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

$$\frac{\partial J}{\partial \mathbf{a}} = 2\mathbf{C}\mathbf{a} + \lambda \mathbf{s}$$
 $\mathbf{a} = -\frac{\lambda}{2}\mathbf{C}^{-1}\mathbf{s}$

To find λ , use the constraint function $\mathbf{a}^T \mathbf{s} = 1$ with $\mathbf{a} = -\frac{\lambda}{2} \mathbf{C}^{-1} \mathbf{s}$.

$$\mathbf{a}^T \mathbf{s} = -\frac{\lambda}{2} \mathbf{s}^T \mathbf{C}^{-1} \mathbf{s} = 1$$
$$-\frac{\lambda}{2} = \frac{1}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}$$

Plug back: $\mathbf{a}_{opt} = \frac{\mathbf{C}^{-1}\mathbf{s}}{\mathbf{s}^{T}\mathbf{C}^{-1}\mathbf{s}}$
Finding the BLUE

Lagrangian $J = \mathbf{a}^T \mathbf{C} \mathbf{a} + \lambda (\mathbf{a}^T \mathbf{s} - 1)$

$$\frac{\partial J}{\partial \mathbf{a}} = 2\mathbf{C}\mathbf{a} + \lambda \mathbf{s}$$
 $\mathbf{a} = -\frac{\lambda}{2}\mathbf{C}^{-1}\mathbf{s}$

1

To find λ , use the constraint function $\mathbf{a}^T \mathbf{s} = 1$ with $\mathbf{a} = -\frac{\lambda}{2} \mathbf{C}^{-1} \mathbf{s}$.

$$\mathbf{a}^T \mathbf{s} = -\frac{\lambda}{2} \mathbf{s}^T \mathbf{C}^{-1} \mathbf{s} =$$
$$-\frac{\lambda}{2} = \frac{1}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}$$

Plug back: $\mathbf{a}_{opt} = \frac{\mathbf{C}^{-1}\mathbf{s}}{\mathbf{s}^T \mathbf{C}^{-1}\mathbf{s}}$

Variance
$$\operatorname{var}(\hat{\theta}) = \mathbf{a}_{\operatorname{opt}}^T \mathbf{C} \mathbf{a}_{\operatorname{opt}}$$

$$= \frac{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{C} \mathbf{C}^{-1} \mathbf{s}}{(\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s})^2}$$
$$= \frac{1}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}.$$

To compute the BLUE, we need

- Know that $E(\mathbf{x}) = \mathbf{s}\theta$
- Know **s**
- Know **C**

Connections to the MVU estimator for the linear model will soon be made

BLUE for vector parameter

$$\hat{\theta}_i = \sum_{n=0}^{N-1} a_{in} x[n]$$
 $i = 1, 2, \dots, p$
 $\hat{\theta} = \mathbf{A} \mathbf{x}$

BLUE for vector parameter

$$\hat{\theta}_i = \sum_{n=0}^{N-1} a_{in} x[n]$$
 $i = 1, 2, \dots, p$
 $\hat{\theta} = \mathbf{A} \mathbf{x}$

Constraint

$$E(\hat{\theta}) = \mathbf{A}E(\mathbf{x}) = \boldsymbol{\theta}$$
$$E(\mathbf{x}) = \mathbf{H}\boldsymbol{\theta}$$

BLUE for vector parameter

$$\hat{\theta}_i = \sum_{n=0}^{N-1} a_{in} x[n]$$
 $i = 1, 2, \dots, p$
 $\hat{\theta} = \mathbf{A} \mathbf{x}$

Constraint

$$E(\hat{\theta}) = \mathbf{A}E(\mathbf{x}) = \boldsymbol{\theta}$$
$$E(\mathbf{x}) = \mathbf{H}\boldsymbol{\theta}$$

Which becomes

BLUE for vector parameter

$$\hat{\theta}_i = \sum_{n=0}^{N-1} a_{in} x[n]$$
 $i = 1, 2, \dots, p$
 $\hat{\theta} = \mathbf{A} \mathbf{x}$

Constraint

$$E(\hat{\theta}) = \mathbf{A}E(\mathbf{x}) = \boldsymbol{\theta}$$
$$E(\mathbf{x}) = \mathbf{H}\boldsymbol{\theta}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_p^T \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \dots & \mathbf{h}_p \end{bmatrix}$$

Which becomes

BLUE for vector parameter

$$\hat{\theta}_{i} = \sum_{n=0}^{N-1} a_{in} x[n] \qquad i = 1, 2, \dots, p$$

$$\hat{\theta} = \mathbf{A} \mathbf{x}$$

$$E(\hat{\theta}) = \mathbf{A} E(\mathbf{x}) = \theta$$

$$E(\mathbf{x}) = \mathbf{H} \theta$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{p}^{T} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_{1} \quad \mathbf{h}_{2} \quad \dots \quad \mathbf{h}_{p} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_{1} \quad \mathbf{h}_{2} \quad \dots \quad \mathbf{h}_{p} \end{bmatrix}$$

Constraint

Which becomes

BLUE for vector parameter

$$\hat{\theta}_{i} = \sum_{n=0}^{N-1} a_{in} x[n] \qquad i = 1, 2, \dots, p$$
$$\hat{\theta} = \mathbf{A} \mathbf{x}$$
$$E(\hat{\theta}) = \mathbf{A} E(\mathbf{x}) = \theta$$
$$E(\mathbf{x}) = \mathbf{H} \theta$$
$$Cost function to optimize
$$var(\hat{\theta}_{i}) = \mathbf{a}_{i}^{T} \mathbf{C} \mathbf{a}_{i}$$$$

Which becomes

Constraint

$$\mathbf{a}_i^T \mathbf{h}_j = \delta_{ij}$$
 $i = 1, 2, \dots, p; j = 1, 2, \dots, p$

BLUE for vector parameter

Optimal solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

BLUE for vector parameter

Optimal solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Summary

• For a model **y=Hθ+n**, a linear estimator has the same form no matter the distribution of the noise (for the same covariance **C** of it)

BLUE for vector parameter

Optimal solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Summary

- For a model y=H0+n, a linear estimator has the same form no matter the distribution of the noise (for the same covariance C of it)
- If **n** is Gaussian, then a linear estimator is MVU

BLUE for vector parameter

Optimal solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Summary

- For a model y=H0+n, a linear estimator has the same form no matter the distribution of the noise (for the same covariance C of it)
- If **n** is Gaussian, then a linear estimator is MVU
- If **n** is not Gaussian, the BLUE is the best linear estimator, but not MVU

BLUE for vector parameter

Optimal solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Summary

- For a model y=H0+n, a linear estimator has the same form no matter the distribution of the noise (for the same covariance C of it)
- If **n** is Gaussian, then a linear estimator is MVU
- If **n** is not Gaussian, the BLUE is the best linear estimator, but not MVU
- Performance of the BLUE for non-Gaussian noise is identical to the performance with Gaussian noise

Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise

Variance of linear estimator

Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise

Variance of linear estimator

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Est. Problem with Gaussian noise

Est. Problem with Non-Gaussian noise

Variance of linear estimator

$$\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Estimator is Optimal

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Estimator is not optimal

Est. Problem with Gaussian noise

Est. Problem with Non-Gaussian noise

Variance of linear estimator

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Estimator is Optimal

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Estimator is not optimal

Variance of nonlinear estimator

The same

?? But smaller than $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Therefore, Gaussian noise is the worst noise possible

Est. Problem with Gaussian noise

Est. Problem with Non-Gaussian noise

Variance of linear estimator

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Estimator is Optimal

 $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Estimator is not optimal

Variance of nonlinear estimator

?? But smaller than $\mathbf{C}_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$

Alternative proofs

- 1. Based on calculus of the variations
- 2. Based on link between Fisher information and Kullback-Leibler divergence (information theory)

Summary All estimation problems **MVU** estimator exists **Efficient estimator exists CRLB** exists Linear signal model, Gaussian noise Where to put??

Linear signal in non-Gaussian noise

Summary ????

• Perhaps MVU does not always exist....?

٠

٠

٠

Summary ????

• Perhaps MVU does not always exist....?

٠

٠

٠

$$\hat{\theta} = arg \max_{\theta} p(\mathbf{x}; \theta)$$

 $\hat{\theta} = arg \max_{\theta} p(\mathbf{x}; \theta)$

Theorem. If an efficient estimator exists, then it is given by the MLE

 $\hat{\boldsymbol{\theta}} = arg \max_{\boldsymbol{\theta}} p(\mathbf{x}; \boldsymbol{\theta})$

Theorem. If an efficient estimator exists, then it is given by the MLE

Proof.

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta)(g(\mathbf{x}) - \theta)$$

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{x}; \boldsymbol{\theta})$$

Theorem. If an efficient estimator exists, then it is given by the MLE

Proof.

$$0 = \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \bigg|_{\substack{\theta \in \mathcal{H}_{\mathsf{ML}}}} I(\theta) (g(\mathbf{x}) - \theta) \bigg|_{\substack{\theta \in \mathcal{H}_{\mathsf{ML}}}}$$

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Check point 1: Try the CRLB
$$\frac{\partial \ln p(\mathbf{x}; A)}{\partial A} = I(A)(\hat{A} - A)$$

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Check point 2: Try Neyman-Fisher

$$p(\mathbf{x}; A) = \underbrace{\frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2}\left(\frac{1}{A}\sum_{n=0}^{N-1}x^2[n] + NA\right)\right]}_{g\left(\sum_{n=0}^{N-1}x^2[n], A\right)} \underbrace{\exp(N\bar{x})}_{h(\mathbf{x})}$$

Example 7.3. DC level in white Gaussian noise with variance = DC-level

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Check point 2: Try Neyman-Fisher

If $T(\mathbf{x}) = \sum_{n=0}^{N-1} x^2[n]$ is complete, then an unbiased function of $T(\mathbf{x})$ is MVU

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Check point 2: Try Neyman-Fisher

If
$$T(\mathbf{x}) = \sum_{n=0}^{N-1} x^2[n]$$
 is complete, then an unbiased function of $T(\mathbf{x})$ is MVU

$$E\left[\sum_{n=0}^{N-1} x^2[n]\right] = NE[x^2[n]]$$

$$= N\left[\operatorname{var}(x[n]) + E^2(x[n])\right]$$

$$= N(A + A^2)$$
Not clear what function to choose

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\frac{\partial \ln p(\mathbf{x};A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

No more strategies to find the MVU – proceed to MLE

$$\hat{A} = -rac{1}{2} + \sqrt{rac{1}{N}\sum_{n=0}^{N-1} x^2[n] + rac{1}{4}}$$

Example 7.3. DC level in white Gaussian noise *with variance = DC-level*

Possible to show:

Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

- As $N \to \infty$, $E(\hat{A}) \to A$ As $N \to \infty$, $var(\hat{A}) \to CRLB$
- Asymptotically efficient

We saw this notation before, when we claimed that as N grows, we can estimate a transformation of a variable as the transformation of the estimate

Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

- As $N \to \infty$, $E(\hat{A}) \to A$ As $N \to \infty$, $var(\hat{A}) \to CRLB$ Asymptotically efficient
- By the CLT, we have that $\frac{1}{N}\sum_{n=0}^{N-1}x^2[n]$ is Gaussian as N grows.

Asymptotically, one can show that the MLE is a linear transformation of this Gaussian variable. Thus, the estimator is Gaussian distributed

$$\hat{A} = -\frac{1}{2} + \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} x^2[n] + \frac{1}{4}}$$

Linearity is not easy to see, but possible.....

Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

- As $N \to \infty$, $E(\hat{A}) \to A$ As $N \to \infty$, $var(\hat{A}) \to CRLB$ Asymptotically efficient

 - By the CLT, we have that $\frac{1}{N}\sum_{n=0}^{N-1}x^2[n]$ is Gaussian as N grows.

Asymptotically, one can show that the MLE is a linear transformation of this Gaussian variable. Thus, the estimator is Gaussian distributed

But since the variance of the estimator is given by the CRLB (asympt.),

$$\hat{ heta} \stackrel{a}{\sim} \mathcal{N}(heta, I^{-1}(heta))$$

"Effect of N"

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta))$$
Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

- The first-order and second-order derivatives of the log-likelihood function are well defined.
- 2.

$$E\left[\frac{\partial \ln p(x[n];\theta)}{\partial \theta}\right] = 0.$$

Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

Proof of mean (conistency):

$$\frac{1}{N}\ln p(\mathbf{x};\theta) = \frac{1}{N}\sum_{n=0}^{N-1}\ln p(\boldsymbol{x}[n];\theta)$$

Let θ_0 be the true value of θ

Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

Proof of mean (conistency):

$$\frac{1}{N}\ln p(\mathbf{x};\theta) = \frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta)$$

Let θ_0 be the true value of θ By the CLT, we have

$$rac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n]; heta)
ightarrow\int\ln p(x[n]; heta)p(x[n]; heta_0)\,dx[n]$$

Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

Proof of mean (conistency):

$$\frac{1}{N}\ln p(\mathbf{x};\theta) = \frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta)$$

Let θ_0 be the true value of θ By the CLT, we have

$$\frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta) \to \int \ln p(x[n];\theta)p(x[n];\theta_0) dx[n]$$
$$\int \ln \left[p(x[n];\theta_1)\right]p(x[n];\theta_1) dx[n] \ge \int \ln \left[p(x[n];\theta_2)\right]p(x[n];\theta_1) dx[n]$$

Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

Proof of mean (conistency):

$$\frac{1}{N}\ln p(\mathbf{x};\theta) = \frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta)$$

Let θ_0 be the true value of θ By the CLT, we have

Maximized for $\theta = \theta_0$

$$\frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta) \to \int \ln p(x[n];\theta)p(x[n];\theta_0)\,dx[n]$$

 $\int \ln\left[p(x[n]; heta_1)
ight]p(x[n]; heta_1)\,dx[n] \geq \int \ln\left[p(x[n]; heta_2)
ight]p(x[n]; heta_1)\,dx[n]$

Theorem 7.1 (Asymptotic Properties of the MLE) If the PDF $p(\mathbf{x}; \theta)$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter θ is asymptotically distributed (for large data records) according to

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)) \tag{7.11}$$

where $I(\theta)$ is the Fisher information evaluated at the true value of the unknown parameter.

Proof of mean (conistency):

$$\frac{1}{N}\ln p(\mathbf{x};\theta) = \frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta)$$

As N grows, the MLE is θ_0

Let θ_0 be the true value of θ By the CLT, we have

Maximized for $\theta = \theta_0$

$$\frac{1}{N}\sum_{n=0}^{N-1}\ln p(x[n];\theta) \rightarrow \int \ln p(x[n];\theta)p(x[n];\theta_0) dx[n]$$
$$\int \ln \left[p(x[n];\theta_1)\right] p(x[n];\theta_1) dx[n] \ge \int \left[\ln \left[p(x[n];\theta_2)\right] p(x[n];\theta_1) dx[n]\right]$$

Neyman-Fisher factorization

 $p(\mathbf{x}; \theta) = g(T(\mathbf{x}), \theta)h(\mathbf{x})$

MLE

 $\max_{\theta} p(\mathbf{x}; \theta)$

Neyman-Fisher factorization

$$p(\mathbf{x}; \theta) = g(T(\mathbf{x}), \theta) h(\mathbf{x})$$
$$max \ p(\mathbf{x}; \theta)$$
$$\theta$$

MLE

To find the ML, it is sufficient to optimize the function $g(T(x),\theta)$

Hence, MLE can be made on the basis of the sufficient statistic(s) only

Transformation of parameters

Theorem 7.2 (Invariance Property of the MLE) The MLE of the parameter $\alpha = g(\theta)$, where the PDF $p(\mathbf{x}; \theta)$ is parameterized by θ , is given by

$$\hat{lpha}=g(\hat{ heta})$$

where $\hat{\theta}$ is the MLE of θ . The MLE of $\hat{\theta}$ is obtained by maximizing $p(\mathbf{x}; \theta)$. If g is not a one-to-one function, then $\hat{\alpha}$ maximizes the modified likelihood function $\bar{p}_T(\mathbf{x}; \alpha)$, defined as

 $\bar{p}_T(\mathbf{x};\alpha) = \max_{\{\theta:\alpha=g(\theta)\}} p(\mathbf{x};\theta).$

Transformation of parameters

Let us tie things together

• The MLE of a transformed parameter is the transformed MLE of the parameter

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists
- From before: The (non-linear) transformed estimate of an efficient estimator does not preserve efficiency

$$\hat{\alpha} = g(\hat{\theta})$$

 \nearrow efficient
Not efficient

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists
- From before: The (non-linear) transformed estimate of an efficient estimator does not preserve efficiency

$$\hat{\alpha} = g(\hat{\theta})$$

 \nearrow efficient

Not efficient

This argument didn't say that an efficient estimator for α does not exist

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists
- From before: The (non-linear) transformed estimate of an efficient estimator does not preserve efficiency

$$\hat{\boldsymbol{\alpha}} = \boldsymbol{g}(\hat{\boldsymbol{\theta}})$$

$$\boldsymbol{\nearrow} \quad \text{efficient}$$
Not efficient

• We can deduce: A non-linear function of a parameter that can be efficiently estimated *cannot be efficiently estimated*

$$\hat{\alpha} = g(\hat{\theta})$$

$$\neq \text{ efficient}$$
Not efficient
but would have been if an efficient existed since it is
the transformed MLE)

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists
- From before: The (non-linear) transformed estimate of an efficient estimator does not preserve efficiency

- We can deduce: A non-linear function of a parameter that can be efficiently estimated *cannot be efficiently estimated*
- Due to previous linearization argument, the transformed estimate is asymptotically efficient.

Transformation of parameters

Let us tie things together

- The MLE of a transformed parameter is the transformed MLE of the parameter
- The MLE is efficient if an efficient estimator exists
- From before: The (non-linear) transformed estimate of an efficient estimator does not preserve efficiency

$$\hat{\alpha} = g(\hat{\theta})$$

 \nearrow efficient
Not efficient

- We can deduce: A non-linear function of a parameter that can be efficiently estimated *cannot be efficiently estimated*
- Due to previous linearization argument, the transformed estimate is asymptotically efficient.
- This could also have been realized by the observation that transformed estimate = MLE = asymptotically efficient

Transformation of parameters

Theorem 7.2 (Invariance Property of the MLE) The MLE of the parameter $\alpha = g(\theta)$, where the PDF $p(\mathbf{x}; \theta)$ is parameterized by θ , is given by

$$\hat{lpha}=g(\hat{ heta})$$

where $\hat{\theta}$ is the MLE of θ . The MLE of $\hat{\theta}$ is obtained by maximizing $p(\mathbf{x}; \theta)$. If g is not a one-to-one function, then $\hat{\alpha}$ maximizes the modified likelihood function $\bar{p}_T(\mathbf{x}; \alpha)$, defined as

 $\bar{p}_T(\mathbf{x};\alpha) = \max_{\{\theta:\alpha=g(\theta)\}} p(\mathbf{x};\theta).$

What is this?

Transformation of parameters

Consider the case $\alpha = A^2$

For some value of α , there are two values of A that produces α , $A = \pm \sqrt{\alpha}$

The likelihood of α , is the largest of the two likelihoods

$$\max_{\{\theta:\alpha=g(\theta)\}} p(\mathbf{x};\theta)$$

Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance σ^2 whose power in dB is to be estimated. To do so we first find the MLE of σ^2 . Then, we use the invariance principle to find the power P in dB, which is defined as

$$P = 10 \log_{10} \sigma^2.$$

The PDF is given by

$$p(\mathbf{x};\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n]\right].$$

Differentiating the log-likelihood function produces

$$\begin{aligned} \frac{\partial \ln p(\mathbf{x}; \sigma^2)}{\partial \sigma^2} &= \frac{\partial}{\partial \sigma^2} \left[-\frac{N}{2} \ln 2\pi - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n] \right] \\ &= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=0}^{N-1} x^2[n] \end{aligned}$$

Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance σ^2 whose power in dB is to be estimated. To do so we first find the MLE of σ^2 . Then, we use the invariance principle to find the power P in dB, which is defined as

$$P = 10 \log_{10} \sigma^2.$$

The PDF is given by

$$p(\mathbf{x};\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n]\right].$$

Differentiating the log-likelihood function produces

$$\frac{\partial \ln p(\mathbf{x}; \sigma^2)}{\partial \sigma^2} = \frac{\partial}{\partial \sigma^2} \left[-\frac{N}{2} \ln 2\pi - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n] \right]$$
$$= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=0}^{N-1} x^2[n]$$
$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$

Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance σ^2 whose power in dB is to be estimated. To do so we first find the MLE of σ^2 . Then, we use the invariance principle to find the power P in dB, which is defined as

$$P = 10 \log_{10} \sigma^2.$$

The PDF is given by

$$p(\mathbf{x};\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n]\right].$$

Differentiating the log-likelihood function produces

$$\frac{\partial \ln p(\mathbf{x}; \sigma^2)}{\partial \sigma^2} = \frac{\partial}{\partial \sigma^2} \left[-\frac{N}{2} \ln 2\pi - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n] \right]$$
$$= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=0}^{N-1} x^2[n]$$
$$MLE \text{ (linear)}$$
$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$
$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$
$$HLE \text{ (dB) due to invariance}$$
$$\hat{P} = 10 \log_{10} \hat{\sigma^2}$$
$$= 10 \log_{10} \frac{1}{N} \sum_{n=0}^{N-1} x^2[n].$$

Set N=10.

Let us anyway check the CRLB for the dB case: 1.8861

Measured variance (Matlab): ≈ 4.17

Var=2.21xCRLB

Set N=50.

Let us anyway check the CRLB for the dB case: 0.3771

Measured variance (Matlab): ≈ 0.77

Var=2.04xCRLB

Set N=150.

Let us anyway check the CRLB for the dB case: 0.126

Measured variance (Matlab): ≈ 0.25

Var=2xCRLB

Extension to vector parameter: Straightforward

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

Theorem 7.3 (Asymptotic Properties of the MLE (Vector Parameter)) If the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ of the data \mathbf{x} satisfies some "regularity" conditions, then the MLE of the unknown parameter $\boldsymbol{\theta}$ is asymptotically distributed according to

$$\hat{\boldsymbol{\theta}} \stackrel{a}{\sim} \mathcal{N}(\boldsymbol{\theta}, \mathbf{I}^{-1}(\boldsymbol{\theta}))$$
 (7.36)

where $I(\theta)$ is the Fisher information matrix evaluated at the true value of the unknown parameter.

Theorem 7.4 (Invariance Property of MLE (Vector Parameter)) The MLE of the parameter $\alpha = \mathbf{g}(\boldsymbol{\theta})$, where \mathbf{g} is an r-dimensional function of the $p \times 1$ parameter $\boldsymbol{\theta}$, and the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ is parameterized by $\boldsymbol{\theta}$, is given by

 $\hat{\boldsymbol{\alpha}} = \mathbf{g}(\hat{\boldsymbol{\theta}})$

for $\hat{\theta}$, the MLE of θ . If g is not an invertible function, then $\hat{\alpha}$ maximizes the modified likelihood function $\bar{p}_T(\mathbf{x}; \alpha)$, defined as

$$\bar{p}_T(\mathbf{x}; \boldsymbol{lpha}) = \max_{\{\boldsymbol{ heta}: \boldsymbol{lpha} = \mathbf{g}(\boldsymbol{ heta})\}} p(\mathbf{x}; \boldsymbol{ heta}).$$

MLE for linear model $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$ in Gaussian noise

MLE for linear model $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$ in Gaussian noise

With no derivations: How should we argue in order to establish the MLE ?

• In this case a linear estimator was optimal (Chapter 4)

MLE for linear model $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$ in Gaussian noise

- In this case a linear estimator was optimal (Chapter 4)
- This linear estimator was also efficient

MLE for linear model $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$ in Gaussian noise

- In this case a linear estimator was optimal (Chapter 4)
- This linear estimator was also efficient
- An efficient estimator is always the MLE

MLE for linear model $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$ in Gaussian noise

- In this case a linear estimator was optimal (Chapter 4)
- This linear estimator was also efficient
- An efficient estimator is always the MLE
- MLE is the linear estimator from Chapter 4 $\hat{\theta} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$

Asymptotic MLE: some intuition

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{N}{2}} \det^{\frac{1}{2}}(\mathbf{C}(\boldsymbol{\theta}))} \exp\left[-\frac{1}{2}\mathbf{x}^{T}\mathbf{C}^{-1}(\boldsymbol{\theta})\mathbf{x}\right]$$

With a stationary Gaussian process, the log-likelihood becomes

$$\ln p(\mathbf{x}; \boldsymbol{\theta}) = -\frac{N}{2} \ln 2\pi - \frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[\ln P_{xx}(f) + \frac{I(f)}{P_{xx}(f)} \right] df$$

$$I(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j2\pi f n) \right|^2$$

Appears strange, but is not if one knows his linear algebra + Szegö's Theorem

Asymptotic MLE: some intuition

- Covariance matrix is Toeplitz
- Elements of C are autocorrelation values of the process (of course)
- Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ* (Q=DFT)
- PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)
- not exactly Szegö's Thm, but a consequence thereof:

Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges to Fourier transform of the autocorrelation sequence.

Asymptotic MLE: some intuition

- Covariance matrix is Toeplitz
- Elements of C are autocorrelation values of the process (of course)
- Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ* (Q=DFT)
- PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)
- not exactly Szegö's Thm, but a consequence thereof: Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges to Fourier transform of the autocorrelation sequence.
- Consider now log det(C)
 - det(C) is the product of eigenvalues
 - So, log det(C) is the sum of the logarithm of the eigenvalues
 - But: eigenvalues = Fourier transform of autocorrelation = PSD

Asymptotic MLE: some intuition

- Covariance matrix is Toeplitz
- Elements of C are autocorrelation values of the process (of course)
- Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ* (Q=DFT)
- PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)
- not exactly Szegö's Thm, but a consequence thereof: Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges to Fourier transform of the autocorrelation sequence.
- Consider now log det(C)
 - det(C) is the product of eigenvalues
 - So, log det(C) is the sum of the logarithm of the eigenvalues
 - But: eigenvalues = Fourier transform of autocorrelation = PSD

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{N}{2}} \det^{\frac{1}{2}}(\mathbf{C}(\boldsymbol{\theta}))} \qquad \qquad \ln p(\mathbf{x}; \boldsymbol{\theta}) = -\frac{N}{2} \ln 2\pi - \frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \ln P_{xx}(f) \, df$$
Chapter 7 – Maximum Likelihood

Asymptotic MLE: some intuition

- Covariance matrix is Toeplitz
- Elements of C are autocorrelation values of the process (of course)
- Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ* (Q=DFT)
- PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)
- not exactly Szegö's Thm, but a consequence thereof: Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges to Fourier transform of the autocorrelation sequence.
- Consider now -x^TC⁻¹x
 - $x^{T}C^{-1}x = x^{T}QS^{-1}Q^{*}x$
 - Q*x is the Fourier transform of x
 - S⁻¹ is "one divided with the PSD"
 - x^TQ together with Q*x is the periodogram of x

$$p(\mathbf{x};\boldsymbol{\theta}) = \exp\left[-\frac{1}{2}\mathbf{x}^T \mathbf{C}^{-1}(\boldsymbol{\theta})\mathbf{x}\right] \qquad \qquad \ln p(\mathbf{x};\boldsymbol{\theta}) = -\frac{N}{2}\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{I(f)}{P_{xx}(f)} df$$