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Today we will place the following piece: 
Linear signal in non-Gaussian noise 
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MVU estimator exists 

Efficient estimator exists 

CRLB exists 

Today we will place the following piece: 
Linear signal in non-Gaussian noise 

Chapter 6 deals with non-Gaussian noise  
This is not very well pointed out 
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MVU:                                       = BLUE 
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MVU:                                       = BLUE 
 
 
German tank problem 
 
MVU: 
 
 
BLUE: (can be shown)  

 
BLUE ≠ MVU 
 

The MVU is often not linear, hence the name ”best linear” 
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The MVU is often not linear, hence the name ”best linear” 
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BLUE + ”cleverness” 

• Transform data as y[n] = x2[n] 

• Apply BLUE to y[n] 
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Optimization problem 

w[n] not Gaussian, but zero-mean 
This is the linear model, but with non-Gaussian noise 
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To compute the BLUE, we need 
 

• Know that E(x) = sθ 

• Know s 

• Know C 

 

 

Connections to the MVU estimator for the linear model will soon be made 
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Summary 
• For a model y=Hθ+n, a linear estimator has the same form no matter the 

distribution of the noise (for the same covariance C of it) 
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Optimal solution 

Summary 
• For a model y=Hθ+n, a linear estimator has the same form no matter the 

distribution of the noise (for the same covariance C of it) 
• If n is Gaussian, then a linear estimator is MVU 
• If n is not Gaussian, the BLUE is the best linear estimator, but not MVU 
• Performance of the BLUE for non-Gaussian noise is identical to the performance 

with Gaussian noise 



Chapter 6 – Best linear unbiased estimators 

Variance of 
linear estimator 

 Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 – Best linear unbiased estimators 

 Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variance of 
linear estimator 



Chapter 6 – Best linear unbiased estimators 

 Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variance of 
linear estimator 

Estimator is Optimal Estimator is not optimal 
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Variance of 
linear estimator 

Estimator is Optimal Estimator is not optimal 

Variance of non-
linear estimator 

The same ?? But smaller than 

Therefore, Gaussian noise is the worst noise possible 
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Variance of 
linear estimator 

Estimator is Optimal Estimator is not optimal 

Variance of non-
linear estimator 

The same ?? But smaller than 

Alternative proofs 
1. Based on calculus of the variations 
2. Based on link between Fisher information and 

Kullback-Leibler divergence (information theory) 
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Efficient estimator exists 

CRLB exists 

Where to put?? 
Linear signal in non-Gaussian noise 
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We do not have explicit info 

• With uniform noise, the CRLB doesn’t exist 
• For Laplace noise it does 
• No efficient estimator seems to exist – see my ”Italian proof” 
• Perhaps MVU does not always exist….?  

???? 
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Check point 2: Try Neyman-Fisher 
 
If                                       is complete, then an unbiased function of T(x) is MVU 
 
     Not clear what function 
     to choose 
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Asymptotically efficient 

We saw this notation 
before, when we claimed 
that as N grows, we can 
estimate a transformation 
of a variable as the 
transformation of the 
estimate 
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• By the CLT, we have that                           is Gaussian as N grows. 

 
     Asymptotically, one can show that the MLE is a linear transformation of 
     this Gaussian variable. Thus, the estimator is Gaussian distributed  

 
 

 
 
 
 
 

Asymptotically efficient 

Linearity is not easy to see, but possible….. 
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• By the CLT, we have that                           is Gaussian as N grows. 

 
     Asymptotically, one can show that the MLE is a linear transformation of 
     this Gaussian variable. Thus, the estimator is Gaussian distributed  
 
      But since the variance of the estimator is given by the CRLB (asympt.), 
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Proof of mean (conistency): 
 
 
 
 
Let θ0 be the true value of θ 
By the CLT, we have  
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Proof of mean (conistency): 
 
 
 
 
Let θ0 be the true value of θ 
By the CLT, we have  Maximized for θ= θ0  
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Proof of mean (conistency): 
 
 
 
 
Let θ0 be the true value of θ 
By the CLT, we have  Maximized for θ= θ0  

As N grows, the MLE is θ0 
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Neyman-Fisher factorization 
 
 
 
 
MLE 
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Neyman-Fisher factorization 
 
 
 
 
MLE 
 
 
 
 
 To find the ML, it is sufficient to optimize the function g(T(x),θ) 
 
 Hence, MLE can be made on the basis of the sufficient statistic(s) only 
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Transformation of parameters 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
• From before: The (non-linear) transformed estimate of an efficient estimator 

does not preserve efficiency     
        
        
        
   

efficient 
Not efficient 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
• From before: The (non-linear) transformed estimate of an efficient estimator 

does not preserve efficiency     
        
        
        
 This  argument  didn’t say that an efficient estimator for α does not exist 

 

efficient 
Not efficient 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
• From before: The (non-linear) transformed estimate of an efficient estimator 

does not preserve efficiency     
        
        
        
  This did not say that an efficient estimator for α does not exist 

 
• We can deduce: A non-linear function of a parameter that can be efficiently 

estimated cannot be efficiently estimated 

efficient 
Not efficient 

efficient 
Not efficient 
(but would  have been if an efficient existed since it is  
the transformed MLE) 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
• From before: The (non-linear) transformed estimate of an efficient estimator 

does not preserve efficiency     
        
        
        
  This did not say that an efficient estimator for α does not exist 

 
• We can deduce: A non-linear function of a parameter that can be efficiently 

estimated cannot be efficiently estimated 
• Due to previous linearization argument, the transformed estimate is 

asymptotically efficient.  

efficient 
Not efficient 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

Let us tie things together 
• The MLE of a transformed parameter is the transformed MLE of the parameter 
• The MLE is efficient if an efficient estimator exists 
• From before: The (non-linear) transformed estimate of an efficient estimator 

does not preserve efficiency     
        
        
        
  This did not say that an efficient estimator for α does not exist 

 
• We can deduce: A non-linear function of a parameter that can be efficiently 

estimated cannot be efficiently estimated 
• Due to previous linearization argument, the transformed estimate is 

asymptotically efficient.  
• This could also have been realized  by the observation that 
           transformed estimate = MLE = asymptotically efficient 

efficient 
Not efficient 
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Transformation of parameters 
 
 
 
 
 
 
 
 
  

What is this? 
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Transformation of parameters 
 
Consider the case 
 
For some value of α, there are two values of A that produces α, 
 
 
The likelihood of α, is the largest of the two likelihoods 
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MLE (linear) 
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MLE (dB) due to invariance 
MLE (linear) 
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MLE (dB) due to invariance 
MLE (linear) 

Efficient   (Var = 2σ4/N=CRLB) 

Efficient  ?    
Meaningful to compare with CRLB ? 
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MLE (dB) due to invariance 
MLE (linear) 

Efficient   (Var = 2σ4/N=CRLB) 

Efficient  ?  No! Asymptotically: Yes!  
Meaningful to compare with CRLB ? No! Not even unbiased 
Meets CRLB asymptotically 
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MLE (dB) due to invariance 
MLE (linear) 

Efficient   (Var = 2σ4/N=CRLB) 

Efficient  ?  No! Asymptotically: Yes!  
Meaningful to compare with CRLB ? No! Not even unbiased 
Meets CRLB asymptotically 

Set N=10. 
Let us anyway check the CRLB for the dB case: 1.8861 
 
Measured variance (Matlab): ≈ 4.17 
 

Var=2.21xCRLB 
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MLE (dB) due to invariance 
MLE (linear) 

Efficient   (Var = 2σ4/N=CRLB) 

Efficient  ?  No! Asymptotically: Yes!  
Meaningful to compare with CRLB ? No! Not even unbiased 
Meets CRLB asymptotically 

Set N=50. 
Let us anyway check the CRLB for the dB case: 0.3771 
 
Measured variance (Matlab): ≈ 0.77 
 

Var=2.04xCRLB 
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MLE (dB) due to invariance 
MLE (linear) 

Efficient   (Var = 2σ4/N=CRLB) 

Efficient  ?  No! Asymptotically: Yes!  
Meaningful to compare with CRLB ? No! Not even unbiased 
Meets CRLB asymptotically 

Set N=150. 
Let us anyway check the CRLB for the dB case: 0.126 
 
Measured variance (Matlab): ≈ 0.25 
 

Var=2xCRLB 
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Extension to vector parameter: Straightforward 
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MLE for linear model                               in Gaussian noise 
 
 
 
 
 
 
 
 
 
 
 

With no derivations: How should we argue in order to establish the MLE ? 
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MLE for linear model                               in Gaussian noise 
 
 
 
 
 
 
 
 
 
 
 

With no derivations: How should we argue in order to establish the MLE ? 
 
 
• In this case a linear estimator was optimal (Chapter 4) 
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MLE for linear model                               in Gaussian noise 
 
 
 
 
 
 
 
 
 
 
 

With no derivations: How should we argue in order to establish the MLE ? 
 
 
• In this case a linear estimator was optimal (Chapter 4) 

 
• This linear estimator was also efficient 
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MLE for linear model                               in Gaussian noise 
 
 
 
 
 
 
 
 
 
 
 

With no derivations: How should we argue in order to establish the MLE ? 
 
 
• In this case a linear estimator was optimal (Chapter 4) 

 
• This linear estimator was also efficient 

 
• An efficient estimator is always the MLE 
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MLE for linear model                               in Gaussian noise 
 
 
 
 
 
 
 
 
 
 
 

With no derivations: How should we argue in order to establish the MLE ? 
 
 
• In this case a linear estimator was optimal (Chapter 4) 

 
• This linear estimator was also efficient 

 
• An efficient estimator is always the MLE 

 
• MLE is the linear estimator from Chapter 4 
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Asymptotic MLE: some intuition 
 
 
 
 
 
 
 
 
 
 

 
 

With a stationary Gaussian process, the log-likelihood becomes 

Appears strange, but is not if one knows his linear algebra + Szegö’s Theorem 
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Asymptotic MLE: some intuition 
 
 
 
 
 
 
 
 
 
 

 
 

• Covariance matrix is Toeplitz 
• Elements of C are autocorrelation values of the process (of course) 
• Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ*  (Q=DFT) 
• PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course) 

 
• not exactly Szegö’s Thm, but a consequence thereof: 

Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges 
to Fourier transform of the autocorrelation sequence.  
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Asymptotic MLE: some intuition 
 
 
 
 
 
 
 
 
 
 

 
 

• Covariance matrix is Toeplitz 
• Elements of C are autocorrelation values of the process (of course) 
• Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ*  (Q=DFT) 
• PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course) 

 
• not exactly Szegö’s Thm, but a consequence thereof: 

Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges 
to Fourier transform of the autocorrelation sequence.  
 

• Consider now log det(C) 
 det(C) is the product of eigenvalues 
 So, log det(C) is the sum of the logarithm of the eigenvalues 
 But: eigenvalues = Fourier transform of autocorrelation = PSD 
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• Covariance matrix is Toeplitz 
• Elements of C are autocorrelation values of the process (of course) 
• Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ*  (Q=DFT) 
• PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course) 

 
• not exactly Szegö’s Thm, but a consequence thereof: 

Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges 
to Fourier transform of the autocorrelation sequence.  
 

• Consider now log det(C) 
 det(C) is the product of eigenvalues 
 So, log det(C) is the sum of the logarithm of the eigenvalues 
 But: eigenvalues = Fourier transform of autocorrelation = PSD 
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Asymptotic MLE: some intuition 
 
 
 
 
 
 
 
 
 
 

 
 

• Covariance matrix is Toeplitz 
• Elements of C are autocorrelation values of the process (of course) 
• Asymptotic Toeplitz matrix admits an Eigenvalue factorization as C=QSQ*  (Q=DFT) 
• PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course) 

 
• not exactly Szegö’s Thm, but a consequence thereof: 

Asymptotically and very loosely speaking, the Eigenvalues of C, i.e. S, converges 
to Fourier transform of the autocorrelation sequence.  
 

• Consider now -xTC-1x 
 xTC-1x = xTQS-1Q*x 
 Q*x is the Fourier transform of x 
 S-1 is ”one divided with the PSD” 
 xTQ  together with Q*x  is the periodogram  of x 


