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All estimation problems

MVU estimator exists

CRLB exists

Linearsignal model,
Gaussian noise

Chapter 6 deals with non-Gaussian noise
This is not very well pointed out

Today we will place the following piece:
Linear signal in non-Gaussian noise
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mal
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(b) Mean of uniform noise; BLUE is
suboptimal

The MVU is often not linear, hence the name "best linear”
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Definition of the BLUE

Sometimes LE is very bad

Noise power estimation (x[n]=w][n])
=
MVU o2 = - g z%[n] BLUE ¢?= ;anw[ﬂ]
) N-1
E(o?) = Z a, E(z[n]) =0
n=0

BLUE + "cleverness”
* Transform dataas y[n] = x3[n]
* Apply BLUE to y[n]
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Finding the BLUE

N-1
Constraint E@®)=)_ an.E(z[n]) =0
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Finding the BLUE
Optimization problem
Lagrangian J =a’Ca+ A(a’s—1) min a’Ca
a
5 \ als=1
— = —— -1 .
% 2Ca + s a 5 C's
To find A, use the constraint function a’s=1 with a= —%C_‘s.
als = —isTC“ls =1
2
A1 :
T9 T sTC-13 Variance var(6) = a;,,Caop
sTC1CC's
lue back: _Cs ~ T(sTC-is)?
Plug back: agp: = STC-1g |
T §7C-1s’
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To compute the BLUE, we need

* Know that E(x) = sB
* Knows
* KnowC

Connections to the MVU estimator for the linear model will soon be made
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BLUE for vector parameter

N-1
§£=Za;n:r[ﬂ.] i=1,2,...,p

n={

0 = Ax
Constraint E(0) =AE(x)=10 [ a
32
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BLUE for vector parameter

Constraint

Which becomes

. N-1
6; = Z ainzin]

n={

0 = Ax

-

E(@) =AE(x)=8
E(x) = H@

Cost function to optimize

var(d;) = a] Ca
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BLUE for vector parameter

Optimal solution

6 = (HTC'H)"'HTC'x

C;=(H'C'H)™".

Summary

* Fora model y=HO+n, a linear estimator has the same form no matter the
distribution of the noise (for the same covariance C of it)

* |f nis Gaussian, then a linear estimatoris MVU

* |f nisnot Gaussian, the BLUE is the best linear estimator, but not MVU

* Performance of the BLUE for non-Gaussian noise is identical to the performance
with Gaussian noise
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Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise
Variance of
linear estimator C; = (H'C'H)™. C; = (HTC'H)™.
Estimator is Optimal Estimator is not optimal

Variance of non-

] ) The same ?? But smaller than
linear estimator

C; = (HTCT'H)™.

Therefore, Gaussian noise is the worst noise possible
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Est. Problem with Gaussian noise Est. Problem with Non-Gaussian noise
Variance of
linear estimator C; = (H'C'H)™. C; = (HTC'H)™.
Estimator is Optimal Estimator is not optimal

Variance of non-

] ) The same ?? But smaller than
linear estimator

C; = (HTCT'H)™.

Alternative proofs

1. Based on calculus of the variations

2. Based on link between Fisher information and
Kullback-Leibler divergence (information theory)



Summary

All estimation problems

MVU estimator exists

CRLB exists

Linearsignal model,
Gaussian noise

Where to put??
Linear signal in non-Gaussian noise
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8 = arg maz p(x;6)
)

Theorem. If an efficient estimator exists, then it is given by the MLE

Proof.

2p0) - r6)(g(x) ~0)

6

0=

6

ML ML
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

+ 4) = 1 1 = A 2
F(I, )— (211'}-1.)% €xXp _ﬂ ;(m[n]— )

dlnp(x;4) N 1 - LN_I — A)?
oi  ~aatazlh-At g 2 (eln] = 4)

e={)
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

p(x; A) = ——5 exp ——I—N—I(ﬂw['n]—A)2
’ (27A) ¥ 24

dlnp(x; A) __N 1 2
g4 2474 nz (@lnl - 2A2 ;(‘”[”] 4)

Check point 1: Try the CRLB 9 mg(:;A) = I(A)A-4)
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

p(x; A) = ——5 exp ——I—N—I(ﬂw['n]—A)2
’ (27A) ¥ 24

dlnp(x; A) __N 1 2
g4 2474 nz (@lnl - 2A2 ;(‘”[”] 4)

Check point 2: Try Neyman-Fisher

p(x; A) = (Z’:ril) ¥ eXp [-—%(ﬂj—l El ’[n]+ N A)] exp(NZ)

n=>0
e —

g (Ni z?(n], A) "

n=0
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

1 1 —
- — — — 2
p(x; A) = ZnA) exp[ 24 : u(:r[n] A)

dlnp(x;A) N 1S 2
ngg )=_2A Anzm[”] 2A2 ;ﬂ(‘”[”] 4)

Check point 2: Try Neyman-Fisher

If T(x)= Zf—ul xz[n] is complete, then an unbiased function of T(x) is MVU
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

+ 4) = 1 1 = A 2
F(I, ) - (211'}-1.)% exp _ﬂ ﬂ=u($[n] - )
311125:; A) = -—; ‘];1 nz $[ﬂ] 2.14.2 ;(ﬂ?[ﬂ] A)z

Check point 2: Try Neyman-Fisher
If T(x)= Zf—ul xz[n] is complete, then an unbiased function of T(x) is MVU

E li xz[n]] = NE[z*[n]] Not clear what function
n=>0

= N [ﬁl‘(a:[n]} +Ez(1:[n])] to choose

= N(A+ 4%
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

* = -_—— - 2

dlnp(x;A) N 1S 2
ngg )=_2A Anzm[”] 2A2 ;ﬂ(‘”[”] A)

No more strategies to find the MVU — proceed to MLE

. 1 1 Y= 1
_ - 2 -
A= 2+ 1,,\1,;::&:.:'['n'.]+f_.t
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

* AsN oo, E(4) — A
Asymptotically efficient

* AsN >, var(A) — CRLB
We saw this notation
before, when we claimed
thatas N grows, we can
estimate a transformation
of a variableas the
transformation of the
estimate
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

© AsN->oo, E(A) — A
Asymptotically efficient
* AsN >, var(A) — CRLB
1 N=1
* BytheCLT, we havethat — > z*[n] - is Gaussian as N grows.
n={)
Asymptotically,one can show that the MLE is a linear transformation of
this Gaussian variable. Thus, the estimatoris Gaussian distributed

1 lN—l 1
A"'-—-— — 2 -
A=-3 an_z[n]l4
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Example 7.3. DC level in white Gaussian noise with variance = DC-level

Possible to show:

© AsN->oo, E(A) — A
Asymptotically efficient
* AsN >, var(A) — CRLB
1 N=1
* BytheCLT, we havethat — > z*[n] - is Gaussian as N grows.
n={)
Asymptotically,one can show that the MLE is a linear transformation of
this Gaussian variable. Thus, the estimatoris Gaussian distributed

But since the variance of the estimator is given by the CRLB (asympt.),

o~ N(8,171(6))
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124 ”
Effect of N
1.25~
‘5 2.50
-il i
0.94 Theoretical toti
:, eoretical asymptotic 1 88— Theoretical asymptotic PDF
, Histogram Histogram
0.62—% 1.25+
0.31+ 0.62
0.00+ f t f 0.00 1 i ' !
-1.00 0.00 1.00 2.00 0.00 0.50 1.00 1.50 2,00
(a) N=5 (b) N =20

g~ N@B,I8)
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Theurem‘ 7.1 (Asymptotic Properties of the MLE) If the PDF p{x;8) of the
dota x salisfies some “regularity” conditions, then the MLE of the unknown parameter
0 is asymplotically distributed (for large data records} according to

g~ N, T{8) (7.11)

where I{8) is the Fisher information evaluated at the true value of the unknoun param-
eter.

1. The first-order and second-order derivatives of the log-likelihood function are well
defined.

2.

B [mnpggﬂl;ﬂ)] _o.
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1 | V=1
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Let 8, be the true value of 6
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Theorem 7.1 (Asymptotic Properties of the MLE) Jf the PDF p{x;8) of the
dota x salisfies some “regularity” conditions, then the MLE of the unknown parameter
0 is asymplotically distributed (for large data records} according to

g~ N, T{8) (7.11)
where I{8) is the Fisher information evaluated at the true value of the unknoun param-
efer.

Proof of mean (conistency):
1 1=
v inp(x0) =« nzz;} In p(z{n]; §)
Let 8, be the true value of 6
By the CLT, we have Maximized for 6= 9,
A

| V-l | |
~ 2 Inp(zln]; 6) » / lnp(z[n}; O)p(z[n]; 8o) dz[n]
n=0

\_ [ lp(elnl; 6, p(ainl; 8,) daln) > [ mlptalnl;82)]p(zin}; 1) daln
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Theurem‘ 7.1 (Asymptotic Properties of the MLE) If the PDF p{x;8) of the
dota x salisfies some “regularity” conditions, then the MLE of the unknown parameter
0 is asymplotically distributed (for large data records} according to

g~ N, T{8) (7.11)
where I{8) is the Fisher information evaluated at the true value of the unknoun param-
efer.
Proof of mean (conistency):
1 1=
v inp(x0) =« nz_;} In p(z[n]; §)
N As N grows, the MLE is 6,
Let 8, be the true value of 6
By the CLT, we have Maximized for 6= 9,
A

| V-l | |
~ 2 Inp(zln]; 6) » / lnp(z[n}; O)p(z[n]; 8o) dz[n]
n=0

\_ [ lp(elnl; 6, p(ainl; 8,) daln) > [ mlptalnl;82)]p(zin}; 1) daln
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Neyman-Fisher factorization

| plxi0) = o(T(x). Oh(x) |

MLE ‘ maz p(x;0) ‘
6
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Neyman-Fisher factorization

p(x;0) = g(T'(x),0)h(x)

MLE maz p(x;6)
6

To find the ML, it is sufficient to optimize the function g(T(x),0)

Hence, MLE can be made on the basis of the sufficientstatistic(s) only
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Transformation of parameters

Theorem 7.2 (Invariance Property of the MLE) The MLE of the parameter a =
g{8), where the PDF p(x;#) is parameterized by 6, is given by

& = g(f)

where @ is the MLE of 8. The MLE afﬁ is obtained by mazimizing p(x;8). If g is
not o one-fo-one function, then & marimizes the mﬂdaﬁed !zkﬁhhﬂnd function pr(x; a),
defined as :

prixe) = max  p(x; 9}
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Transformation of parameters

Let us tie things together
* The MLE of a transformed parameter is the transformed MLE of the parameter
* The MLE is efficientif an efficient estimator exists
* From before: The (non-linear) transformed estimate of an efficient estimator
does not preserve efficiency
& =g(0)
7 \ efficient
Not efficient
This argument didn’t say that an efficient estimator for a does not exist
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Transformation of parameters

Let us tie things together
 The MLE of a transformed parameter is the transformed MLE of the parameter

* The MLE is efficientif an efficient estimator exists
* From before: The (non-linear) transformed estimate of an efficient estimator

does not preserve efficiency
& = g(9)

% \ efficient
Not efficient

* We can deduce: A non-linearfunction of a parameter that can be efficiently
estimated cannot be efficiently estimated

& = g(ﬁ)

% N efficient
Not efficient

(but would have been if an efficient existed sinceiit is
the transformed MLE)
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Transformation of parameters

Let us tie things together

The MLE of a transformed parameter is the transformed MLE of the parameter
The MLE is efficient if an efficient estimator exists
From before: The (non-linear) transformed estimate of an efficient estimator
does not preserve efficiency
& =g(0)
7 X

Not efficient

efficient

We can deduce: A non-linearfunction of a parameter that can be efficiently
estimated cannot be efficiently estimated

Due to previous linearization argument, the transformed estimate is
asymptotically efficient.
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Transformation of parameters

Let us tie things together

The MLE of a transformed parameter is the transformed MLE of the parameter
The MLE is efficient if an efficient estimator exists
From before: The (non-linear) transformed estimate of an efficient estimator
does not preserve efficiency

& = g(9)

% \ efficient
Not efficient

We can deduce: A non-linearfunction of a parameter that can be efficiently
estimated cannot be efficiently estimated
Due to previous linearization argument, the transformed estimate is
asymptotically efficient.
This could also have been realized by the observation that

transformed estimate = MLE = asymptotically efficient
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Transformation of parameters

Theorem 7.2 (Invariance Property of the MLE) The MLE of the parameter a =
g{8), where the PDF p(x;#) is parameterized by 6, is given by

& = g(f)

where @ is the MLE of 8. The MLE afﬁ is obtained by mazimizing p(x;8). If g is
not o one-fo-one function, then & marimizes the mﬂdaﬁed !zkﬁhhﬂnd function pr(x; a),
defined as

PT(I‘: ﬂ‘] = {ﬂzglzﬁﬂ}] P(Ir '5':} '. ':' '

What is this?
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Transformation of parameters

Considerthe case o = A?

For some value of a, there are two values of A that producesa, A =+

The likelihood of a, is the largest of the two likelihoods

max x;0)
{9:ﬁ=9(9)}p( )
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Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance o2 whose power in dB is to be estimated.
To do so we first find the MLE of o?. Then, we use the invariance principle to find the
power P in dB, which is defined as

P = 10log,, o*.
The PDF is given by

) 1 1 =,
p(x;0?) = exp [—;,—EZE [nl}.

{2ﬂ02)%{ n=0

Differentiating the log-likelihood function produces

81n p(x; o?) o [ N N o, 1
' —_ — - 2 o I 7
32 552 5 In 27 5 Ino 52 T;I [n}]

i

N 1=,
-252+2a4 Zm[n]

n={)
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Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance o2 whose power in dB is to be estimated.
To do so we first find the MLE of o?. Then, we use the invariance principle to find the
power P in dB, which is defined as

P = 10log,, o*.
The PDF is given by

1 N-1 \
p(x;0%) = Gl E [—*— K [‘n]J

n=>0

Differentiating the log-likelihood function produces

dlnp(x;0?) B N 1 & 2
do? ~ do? 21n2:rr 2111{7 Tr_?; i

i

N 1=
——+ Zmﬂ[n]

MLE (linear) 207 20% 1




Chapter 7 — Maximum Likelihood

Example 7.10 - Power of WGN in dB

We observe N samples of WGN with variance o2 whose power in dB is to be estimated.
To do so we first find the MLE of o?. Then, we use the invariance principle to find the
power P in dB, which is defined as

P = 10log,, o*.
The PDF is given by

1 N-1 \
p(x;0%) = Gl E [—*— K [‘n]J

n=>0

Differentiating the log-likelihood function produces

dn p(x; o%) 0 N 1 & 22
= = 53|73 1n2:rr 5 Ino® 507 ,; [n]
N 1",
= ——+ z*[n] MLE (dB) due to invariance
MLE (linear) 207 20° nga - (B) n
R P = lﬂli}gmﬂ'z
o2= =% 12%n]
NHZ; = 1010gm sz[n]
n—{}
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Efficient ?
Meaningful to compare with CRLB ?

Efficient (Var = 20*/N=CRLB)

MLE (dB) due to invariance

MLE (linear) - 2
7= 3 & =
v 2 = 100, % 3 1)
n=0
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Efficient ? No! Asymptotically: Yes!
Meaningful to compare with CRLB ? No! Not even unbiased
Meets CRLB asymptotically

Efficient (Var = 20*/N=CRLB)

MLE (dB) due to invariance

MLE (linear) "

. 1 Nz—:l P = ]-{‘}1":“3113‘5’?2
=2 Y ol E=
N & = 101 — 2
ne 0log,, N ngﬂ r*[n.
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Set N=10.
Let us anyway check the CRLB for the dB case: 1.8861

Measured variance (Matlab): = 4.17

Efficient ? No! Asymptotically: Yes!
Meaningful to compare with CRLB ? No! Not even unbiased

Meets CRLB asymptotically

Efficient (Var = 20*/N=CRLB)

MLE (linear)

Var=2.21xCRLB

MLE (dB) due to invariance

L

P

10log,, o

p V-1
10log,, N Y z[n).

n=0
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Set N=50.
Let us anyway check the CRLB for the dB case: 0.3771

Measured variance (Matlab): = 0.77

Efficient ? No! Asymptotically: Yes!
Meaningful to compare with CRLB ? No! Not even unbiased

Meets CRLB asymptotically

Efficient (Var = 20*/N=CRLB)

MLE (linear)

Var=2.04xCRLB

MLE (dB) due to invariance

L

P

10log,, o

p V-1
10log,, N Y z[n).

n=0




Chapter 7 — Maximum Likelihood

Set N=150.
Let us anyway check the CRLB for the dB case: 0.126

Measured variance (Matlab): = 0.25

Efficient ? No! Asymptotically: Yes!
Meaningful to compare with CRLB ? No! Not even unbiased

Meets CRLB asymptotically

Efficient (Var = 20*/N=CRLB)

MLE (linear)

Var=2xCRLB

MLE (dB) due to invariance

L

P

10log,, o

p V-1
10log,, N Y z[n).

n=0
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Extension to vector parameter: Straightforward

dInp(x;8)

=10
06

‘Theorem 7.3 (Asymptotic Properties of the MLE (Vector Parameter)) If the
PDF p(x;8) of the data x satisfies some “reqularity” conditions, then the MLE of the
unknown parameter @ is asymptotically distributed according to

6~ N(8,171(8)) (7.36)

where 1(@) is the Fisher information matriz evaluated at the true value of the unknown
parameter.

Theorem 7.4 (Invariance Property of MLE (Vector Parameter)) The MLE of
the parameter a = g(8), where g is an r-dimensional function of the p x 1 parameter
8, and the PDF p(x;8) is parameterized by 6, is given by

& = g(6)
for 8, the MLE of 8. If g is not an invertible function, then & mazimizes the modified
likelihood function pr(x; ), defined as

pT(X; ) = 1 8).
pr(x;a) {9:§=§aj}p(x )
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MLE for linear model x = H# 4 w in Gaussian noise

With no derivations: How should we argue in order to establish the MLE ?
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MLE for linear model x = H# 4 w in Gaussian noise

With no derivations: How should we argue in order to establish the MLE ?

* Inthiscase a linear estimator was optimal (Chapter 4)
* Thislinear estimator was also efficient
e An efficient estimator is alwaysthe MLE

«  MLE is the linear estimator from Chapter 4 6 = (H'C™'H)"'H'C™'x
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Asymptotic MLE: some intuition

1

Pi0) = o 4t (C(0))

exp [—% TC'l(B‘}x‘

With a stationary Gaussian process, the log-likelihood becomes

inp(x;0) = — In2r — o f [1 Po(f)+ ”’8,)] df
1 |- 2
I(f)=+ ZI[n]ﬂxp( j2mfn)

Appears strange, but is not if one knows his linear algebra + Szegé’s Theorem
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Asymptotic MLE: some intuition

Covariance matrix is Toeplitz

Elements of C are autocorrelation values of the process (of course)

Asymptotic Toeplitz matrix admits an Eigenvalue factorization asC=QSQ* (Q=DFT)

PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)

not exactly Szegd’s Thm, but a consequence thereof:
Asymptoticallyand very loosely speaking, the Eigenvaluesof C, i.e. S, converges
to Fourier transform of the autocorrelation sequence.
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PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)

not exactly Szegd’s Thm, but a consequence thereof:
Asymptoticallyand very loosely speaking, the Eigenvaluesof C, i.e. S, converges
to Fourier transform of the autocorrelation sequence.

Consider now log det(C)
= det(C) is the product of eigenvalues
= So, log det(C) is the sum of the logarithm of the eigenvalues
= But: eigenvalues= Fourier transform of autocorrelation=PSD
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Asymptotic MLE: some intuition

Covariance matrix is Toeplitz

Elements of C are autocorrelation values of the process (of course)

Asymptotic Toeplitz matrix admits an Eigenvalue factorization asC=QSQ* (Q=DFT)

PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)

not exactly Szegd’s Thm, but a consequence thereof:
Asymptoticallyand very loosely speaking, the Eigenvaluesof C, i.e. S, converges
to Fourier transform of the autocorrelation sequence.

Consider now log det(C)
= det(C) is the product of eigenvalues
= So, log det(C) is the sum of the logarithm of the eigenvalues
= But: eigenvalues= Fourier transform of autocorrelation=PSD

1
(2m) ¥ det? (C(0)) Inp(x;0) = —— 1n 21 — f InP..(f) df

p(x;0) =
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Asymptotic MLE: some intuition

Covariance matrix is Toeplitz

Elements of C are autocorrelation values of the process (of course)

Asymptotic Toeplitz matrix admits an Eigenvalue factorization asC=QSQ* (Q=DFT)

PSD is the Fourier transform of the autocorrelation sequence (e.g. from the Proakis course)

not exactly Szegd’s Thm, but a consequence thereof:
Asymptoticallyand very loosely speaking, the Eigenvaluesof C, i.e. S, converges
to Fourier transform of the autocorrelation sequence.

Consider now -x"C-1x
= x'Clx =x"QS1Q*x
= Q*xisthe Fourier transform of x
= Slis”one divided with the PSD”
= x'Q together with Q*x isthe periodogram of x

p(x;8) = exp [—% TC'l(B}x] Inp(x:0) = — g j ;{_'8) df



