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Chapter 3 — Cramer-Rao lower bound

Section 3.10: Asymptotic CRLB for Gaussian WSS processes

For Gaussian WSS processes (first and second order statistics are constant) over time

The elements of the Fisher matrix can be found easy

df

N (% 8lnP,.(f;0) 8o P..(f;0
K@), =+ [ % n ao‘-(f ) 9ln aeff )

Where P,, is the PSD of the process and N (observation length) grows unbounded

This is widely used in e.g. ISI problems



Chapter 4 — The linear model

Definition x=H8+w

This is the linear model

T
x = [:1:[0] :1:[1] T I[N N 1]] note thatin this book, the noise
w = [wo]w[l]...wN-1]]7 is white Gaussian

w ~ N(0, 0.21]




Chapter 4 — The linear model

Definition x=H8+w

x = [z[0)=[1]...z[N —1]]F
w = [wo]w[l]...wN-1]]7
w ~ N(0,°1

Let us now find the MVU estimator....Howto proceed?
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Definition x=H8+w

x = [z[0)=[1]...z[N —1]]F
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Let us now find the MVU estimator
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Chapter 4 — The linear model

Definition x=H8+w

X =

w =
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w ~ N(0,°1

Let us now find the MVU estimator
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Definition x=H8+w

X =

w =

w ~ N(0, 0.21]

Let us now find the MVU estimator
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Chapter 4 — The linear model

Definition x=H8+w

x = [z[0)=[1]...z[N —1]]F 31';9"8 = b
w = [w0]wl].. . wN-1]" ae;‘;o _ oas
w ~ N(0,0°1

Let us now find the MVU estimator

Olnp(x;8) _ _
0 1(6)(g(x) — 8)
dlnp(x;0) O 0 ﬂ_aza;i__l_x_ T(x —
i) _ DT in(ano®)¥ - ooz x— HO)T(x— HO)|
1 8

~sso (x"x ~ 2x"HO + 6T H"HO]
a



Chapter 4 — The linear model

Definition x=H8+w

x = [z[0)=[1]...z[N —1]]F 31';9"8 = b
w = [w0]wl].. . wN-1]" ae;‘;o _ oas
w ~ N(0,0°1

Let us now find the MVU estimator

8lnp(x;6) _ _
0 - 1(8)(g(x) — 8)

Olnp(x;8) _
e =
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Chapter 4 — The linear model

Definition x=H8+w

x = [z[0)=[1]...z[N —1]]F 31;;0
w = [w[o]w[l]...w[N—1]]" 80T A0
8

w ~ N(0, 0.21]

Let us now find the MVU estimator

i

2A0

dlnp(x;0)

Olnp(x;8) _
e =

00

0 - 1(6)(g(x) — 8)
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Chapter 4 — The linear model

Definition x=H8+w

obT @
x = [z[0)=[1]...z[N —1]]F 5 " b
_ 1T T
w = [w0]wll]... w[N—1]] 00 3;9 _ oap
w ~ N(0,0°
Let us now find the MVU estimator
Conclusion 1: dlnp(x;8) = 1(8)(g(x) — 8) Conclusion 2:
MVU estimator (efficient) a0 Statistical
§ = (HTH)-'H'x ' performance
e Olplxif) _ ~a7x - HTHO) b~ N (0,04 (TE))
Covariance g
—_ -1 . r
Cé =1 1(0) = Uz(HTH) 1 Bmﬁli 3) = HJQH [(HTH)—IHTI - a]




Chapter 4 — The linear model

Example 4.1: curve fitting
Task is to fit data samples with a second order polynomial

I(tn)=91 +a2t“+93ti+W(tn) ﬂ=0,1,”.,N—1

We can write this as and the (MVU) estimatoris

x=HO+w a" — (HTH)—IHTx

[z{to) z(t)) . . .:r(tN_l)]T

S
[

(0162 65]"
(1t 2
Ho 1 t.l t.f

| ]. tN._]_ tz -1



Chapter 4 — The linear model

Section 4.5: Extended linear model

Now assume that the noise is not white, so

w ~ N(0,C)
Further assume that the data containsa known part s, so that we have
x=HO0+s+w
We can transfer this back to the linear model by applying the following transformation:
X'=D(x-s)

where
C1l=D'D



Chapter 4 — The linear model

Section 4.5: Extended linear model
In general we have

Theorem 4.2 (Minimum Variance Unblased Estimator for General Linear
Model) If the date can be modeled as

Xx=HO+s+w (4.300

;_.'?JEH-EI‘E i an N = 1 veclor of chservations, H is a known N % p observation matriz
N > p)of rank p, 8 45 a p x 1 veclor of parameiers to be estimated, 5 is an WV x 1
cvector of known signal somples, and w is an N x 1 noise vector with PDF N(0,C),
Mhen the MV estimator is

g=(H"C'H'H' C }x -3 (4.31)

L.

A

%ﬁ‘rﬂﬂlﬂ covarionce matrir is
___::1:5"*5 general linear model the M VU estimator iz efficient in that it atiains the CRLA.




Chapter 4 — The linear model

Example: Signal transmitted over multiple antennas and received by
multiple antennas

Assume that an unknown signal @ is transmitted and received over equally many antennas

oj0] (1) E i () 0ol
O[1] <<<>>> > (U) x[1] All channels are assumed

-

Different due to the nature
of radio propagation

B[N-1] @) @ XIN-1]
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Chapter 4 — The linear model

Example: Signal transmitted over multiple antennas and received by
multiple antennas

Assume that an unknown signal @ is transmitted and received over equally many antennas

oj0] (1) E i () 0ol
O[1] <<<>>> > (U) x[1] All channels are assumed

-

Different due to the nature
of radio propagation

B[N-1] @) @ XIN-1]

The linear model applies x=H8 +w
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Chapter 4 — The linear model

Example: Signal transmitted over multiple antennas and received by
multiple antennas

Assume that an unknown signal @ is transmitted and received over equally many antennas

oj0] (1) E i () 0ol
O[1] <<<>>> > (U) x[1] All channels are assumed

-

Different due to the nature
of radio propagation

B[N-1] @) @ XIN-1]

The linear model applies x=H8 +w

So, the best estimator (MVU) is 6= (HTH)'H”x (ZF equalizer in MIMO)
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Chapter 5— General MVU Estimation
Sufficient statistics

DC level estimationin white noise
.oq N
= — In
A= 2_?5 ]

MVU estimator uses x[0], x[1], ...., Xx[N-1]

But another MVU estimator can be implemented if we are given, e.g.,

S, = {z[0],=[1],...,z[N —1]}
S, = {z[0]+z[1],z[2},2[3],...,z[N - 1]}

S; = {Z- :r[n]},

n=0

Any of these sets are sufficient statistics for optimal estimation of A




Chapter 5— General MVU Estimation
Sufficient statistics

DC level estimationin white noise
.oq N
= — In
A= 2_?5 ]

MVU estimator uses x[0], x[1], ...., Xx[N-1]

But another MVU estimator can be implemented if we are given, e.g.,

S, = {z[0],=[1],...,z[N —1]}
S, = {z[0]+z[1],z[2},2[3],...,z[N - 1]}

S; = {Z- :r[n]},

n=0

The dataset that containsthe least number of elements is minimal sufficient




Chapter 5— General MVU Estimation

Sufficient statistics

There exists a better definition of being minimal sufficient than that in the book

Tp(x) is minimal sufficient if and only if
e Tylx) is sufficient
* If T(x) is sufficient, then there exist a function q( ), such that T,,(x)=q(T(x))




Chapter 5— General MVU Estimation

Sufficient statistics

If we do not care about sufficient statistics...

Save to memory /|:
x[0] —

Estimator
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Sufficient statistics

If we do not care about sufficient statistics...

Estimator

Save to memory

x[0]

X[l] —— /|:
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Sufficient statistics

If we do not care about sufficient statistics...

Estimator

Save to memory
x[0]

x[1]

x[2] ———>




Chapter 5— General MVU Estimation

Sufficient statistics

If we do not care about sufficient statistics...

Estimator

Save to memory
x[0]

x[1]

\ | x[10%-1]

x[10] —>




Chapter 5— General MVU Estimation

Sufficient statistics

If we do not care about sufficient statistics...

Estimator

x[0]

x[1]

x[106-1]

x[10°]




Chapter 5— General MVU Estimation

Sufficient statistics

If we do not care about sufficient statistics...

Estimator

x[0]
- \
s 7& ()4

x[10°]

Do estimation



Chapter 5— General MVU Estimation

Sufficient statistics

With sufficient statistics, no memory is needed

Estimator




Chapter 5— General MVU Estimation

Sufficient statistics

Another unbiased estimator A = z[0]
Estimator can be improved by using also x[1],...

X[0] is not a sufficient statistic for estimation of A



Chapter 5— General MVU Estimation

Sufficient statistics

Another unbiased estimator A = z[0]
Estimator can be improved by using also x[1],...

x[0] is not a sufficient statistic for estimation of A

Question: How can we (in formula) find if a certain function of the data is sufficent or not?




Chapter 5— General MVU Estimation

Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| =" z[n] = To; A)

n=0
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Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| =" z[n] = To; A)

n=0

Now forget about sufficient statistics for a while



Chapter 5— General MVU Estimation

Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| =" z[n] = To; A)

n=0

Now forget about sufficient statistics for a while

If we observe x but cannotinfer the value of an underlying parameter 8, what does the
likelihood p(x; 8) look like?

A
Like this?




Chapter 5— General MVU Estimation

Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| =" z[n] = To; A)

n=0

Now forget about sufficient statistics for a while

If we observe x but cannotinfer the value of an underlying parameter 8, what does the
likelihood p(x; 8) look like?

~

N Like this!

\ 4

_—



Chapter 5— General MVU Estimation

Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| "=} z[n] = Ty; A)

n=0

If T(x) is sufficient, itis not possible to get information about 8 by observing x given T(x)




Chapter 5— General MVU Estimation

Sufficient statistics

Consider an observation x = x[0],...,x[N-1]
But we are also given some statistic T(x)

Knowing T(x) changes the pdf of x into  p(x| "=} z[n] = Ty; A)

n=0

If T(x) is sufficient, itis not possible to get information about 8 by observing x given T(x) ‘

Definition

T(x) is sufficient if and only if p(x| T(x); 8) isindependent of 6 ‘




Chapter 5— General MVU Estimation

Sufficient statistics

Problem: We guessed that the sample mean was a sufficient statistic. To verify it, we must do

Consider the PDF of (5.1). To prove that "~ z[n] is a sufficient statistic we need
to determine p(x{T(x) = Tp; A), where T(x) = Zfﬂ; z[n]. By the definition of the

conditional PDF we have
pix, T(x) = Ty; A)
X|T(x) = Tp; A) = Do = 20 B
PTG =1634) = 5 ) = 7o )

But note that T'(x) is functionally dependent on x, so that the joint PDF p(x, T(x) =
Ty; A) takes on nonzero values only when x satisfies T'(x) = Tp. The joint PDF is

therefore p(x; A)4(T(x) — To), where § is the Dirac delta function (see also Appendix I_O n g m ESSV
5A for a further discussion). Thus, we have that e .
p(x(T(x) = Ty; 4) = PEATE) - To) (5.2) verification

p(T(x) =Tp; A)
Clearly, T'(x) ~ N(NA, No?), so that
e Can we establish
that the sample
mean is sufficient

easier?

= (2#52)‘} e"p[ %7 Z(f["] 4) } (T(x) — To)
L= )
- (2«3;-)% exp [‘gs (2 2*[n] — 24T () +NA’)] H(T(x) - o)

- al;)_#exp[ 5 (Z 22[n} - 2AT0+NA2)]5(T(1) To)-
na

From (5.2) we have

p(x|T(x) = To; A) ’

(mlyz)‘# [ 2a=zr}["}exp [—5;_’(_2“”“2)]

§(T(x) - To)

- 1 Az]
T

Jﬁ 1 &=, [ T2 ]

= —— —-—— [n]| exp |55 3 §(T(x) — To)

= G 7o 5 [

which as claimed does not depend on A. Therefore, we can conclude that > :c[n]
is a sufficient statistic for the estimation of A.
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Neyman-Fisher Factorization Theorem

Theorem 5.1 (Neyman-Fisher Factorization) If we can factor the PDF p(x;8) as

p(x;0) = g(T'(x), 6)h(x) (5.3)

where g i3 a function depending on x only through T'(x) and h is a function depending
only on x, then T(x) is a sufficient statistic for 8. Conversely, if T(x) is a sufficient
statistic for @, then the PDF can be factored as in (5.3).

Proof: Not very illuminating. Only manipulations. Read on your own.
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Neyman-Fisher Factorization Theorem

Theorem 5.3 (Neyman-Fisher Factorization Theorem (Vector Parameter))
If we can factor the PDF p(x;0) as

p(x;0) = g(T(x), 8)h(x) (5.11)

where g ts a function depending only on x through T(x), an r x 1 statistic, and also
on 8, and h is a function depending only on x, then T(x) is a sufficient statistic for 0.
Conversely, if T(x) is a sufficient statistic for @, then the PDF can be factored as in
(5.11).

In many cases, we cannot find a single sufficient statistic

Factorization still holds.

Factorization also gives us the smallest dimension of the sufficient statistic, i.e.,
the minimal sufficient statistic.
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Interlude: Exponential family (not in book, but rather good to know)

An importantclass of likelihoodsis the exponential family (scalar case presented)
f(x;8) = h(x) exp(n(B) T(x)-A(6))
This is a wide class of pdfs. For example,

f(x)8®) isincluded since f(x)8(®) = exp(g(0) log f(x))



Chapter 5— General MVU Estimation

Interlude: Exponential family (not in book, but rather good to know)
Important results for the exponential family f(x;0) = h(x) exp(n(8) - T(x)-A(6))
1. If the likelihood belongs to the exponential family, then T(x) is a sufficient statistic

2. Multivariate case also exists. The number of sufficient statistics equals the number of
unknowns

3. With IID observations, the sufficient statistics are the sums of the individual sufficient
statistics

4. Pitman-Darmodis-Koopman Theorem: If the number of (IID) observations grows
asymptotically large, then the number of sufficient statistics is boundedif and only if the
pdf belongs to the exponential family. Domain of pdf must not depend on 6.
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Example 5.9 z[n] = Acos2rfon +uln] n=0,1,...,N—1

={ﬂfnUQ]T
(x6) = — 1 E‘{ [n] — Acos 2 fon)?
pPXx; g (2#02)9" exXp T 08 4T fomt
Expand the exponent:
N-1 N-1 N-1 N-1

Y _(z[n] — Acos2nfon)® = Y a*n] — 24 E z[n] cos 27 fon + A% )~ cos® 27 fon

n=0 n=0 n=0
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Example 5.9 z[n] = Acos2rfon +uln] n=0,1,...,N—1

6 =[A foo*]”
1 1 =
p(x;6) = (2‘”“-2)9._ eXp | =53 ;{x[n] — Acos2rfon)?

Expand the exponent:

N-1 N-1 N-1 N-1
Y _(z[n] — Acos2nfon)* = Y 2*[n] — 24 Y z[n] cos 2 fyn + A® > cos? 2r fon
n=0 n=0 n=0 n={

Problem: with f, unknown, we cannot express this as g(T(x),0) except from letting T(x)=x

Hence,
* All of the data is needed for estimation. We cannot compress it

* The pdfis not belonging to the exponential family (requires extension to multi-variate case)
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Example 5.9 z[n] = Acos2rfon +uln] n=0,1,...,N—1

6 =[A foo*]”
1 1 =
p(x;6) = (2‘”“-2)9._ eXp | =53 ;{x[n] — Acos2rfon)?

Expand the exponent:

N-1 N-1 N-1 N1
Y _(z[n] — Acos2nfon)* = Y 2*[n] — 24 Y z[n] cos 2 fyn + A® > cos? 2r fon
n=0 n=>0 n=0 n={

With f, known: [ N-l

E z[n] cos 27 fyn

Tx)=| ™= y_,

>zl

=0
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Rao-Blackwell-Lehman-Scheffe Theorem

 Our second method to find the MVU estimator (1st was the CRLB)
e Quite difficult to execute in most cases

e Usually refered to as two theorems

— The Rao-Blackwell Theorem (the first part)
— The Lehman-Scheffe Theorem (the second part)

e Statementis complicated and looks confusing

 Proofis easy and clean
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann—SPheﬂ'e) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 8, then|d = E(|T(x)) |i3

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all/8.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to interpret this?

§ = E@|T(x))
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann—SPheﬂ'e) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 8, then|d = E(|T(x)) |i3

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to interpret this?

§ = E@|T(x)= / Gp(B|T(x)) df
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann—SPheﬂ'e) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 8, then|d = E(|T(x)) |i3

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to interpret this?

§ = E@ITx)= ] Bp(OIT(x))dd = g(T(x))

The new estimator is a function only of the sufficient statistic T(x)!
However, from this derivation, it may possibly depend on 8, but we show next that it does not (1.)
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to prove this?
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to provethis? 4§ = E(§|T(x))
= [ (T (x);0) dx.
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to provethis? 4§ = E(§|T(x))
= [ (T (x);0) dx.

But since T(x) is sufficient
p(x|T(x);0) = p(x|T(x))
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to provethis? 4§ = E(§|T(x))
= [ (T (x);0) dx.

But since T(x) is sufficient )
P(x/T(x);6) = PX{T(x) b = BOTW) = [0@pxT®)dx

After integrating over x, only the value of T(x) remains, therefore not a function of 6
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased

8. of lesser or equal variance than that of 8, for all 6.
Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to prove this?
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased

8. of lesser or equal variance than that of 8, for all 6.
Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to prove this?

i = f Gp(B|T(x)) db
B@) = j f Bp(6|T(x)) b p(T(x);6) dT
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased

8. of lesser or equal variance than that of 8, for all 6.
Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to prove this?

i = f Gp(B|T(x)) db
B@) = j f Bp(6|T(x)) b p(T(x);6) dT
= [4 [ o) pixe0) aT 28
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased

8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

How to prove this?

i = f Gp(B|T(x)) db
B@) = j f Bp(6|T(x)) b p(T(x);6) dT

= [& [ are)pr@so T i = [5 [woTcs0)dTa8= [ginisio)as
_B(@) =6
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)
2. unbiased

3. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

Read on your own. Simple

This means that if we can

e Find one unbiased estimator

* Find one sufficient statistic

We can improve the first estimator
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)
2. unbiased

3. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

Read on your own. Simple

Important remark:
This means that if we can We cannot improve the improved estimator
e Find one unbiased estimator By conditioning it on the same sufficient statistic
* Find one sufficient statistic

We can improve the first estimator
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Rao-Blackwell-Lehman-Scheffe Theorem

Theorem 5.2 (Rao-Blackwell-Lehmann-Scheffe) If 8 is an unbiased estimator of
0 and T(x) is a sufficient statistic for 0, then § = E(8|T(x)) is

1. a valid estimator for 6 (not dependent on 0)

2. unbiased
8. of lesser or equal variance than that of 8, for all 6.

Additionally, if the sufficient statistic is complete, then 6 is the MVU estimator.

This is the Lehmann-Scheffe Theorem
A complete statisticis a fairly complicated thing

* The property of a complete sufficient statisticneeded to prove the L-S thm is
"There is only one function of the statistic thatis unbiased”

=0
/ v(T)p(T;6)dT =0  forall@  |mplies v(T)=0, all T

=00

Remark:Exponential familyis complete (also multivariate case) I
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

* Start with some unbiased estimator @
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

 Start with some unbiased estimator ¢
* Condition on some sufficient statisticT(x) to produce 8 = E(§|T(x))
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

* Start with some unbiased estimator @
* Condition on some sufficient statistic T(x) to produce 6 = E(8|T(x))
* Three properties now hold

— é is unbiased

— é has lower variance than {;'l

— é is only a function of T(x)
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

 Start with some unbiased estimator ¢
* Condition on some sufficient statistic T(x) to produce 6 = E(8|T(x))

* Three properties now hold
— é is unbiased
— @ haslowervariancethan {;'l

— @ is only a function of T(x)

However, there is only one function of T(x) thatis unbiased if T(x) is complete
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

» Start with some unbiased estimator #
* Condition on some sufficient statistic T(x) to produce 6 = E(8|T(x))
* Three properties now hold

— é is unbiased
— @ haslowervariancethan {;'l
— é is only a function of T(x)

 However, there is only one function of T(x) thatis unbiased if T(x) is complete
« Hence, no matter from which § we start, we reach the same (unique) @
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Rao-Blackwell-Lehman-Scheffe Theorem

Additionally, if the sufficient statistic is complete, then 8 is the MVU estimator.

 Start with some unbiased estimator ¢
* Condition on some sufficient statistic T(x) to produce 6 = E(8|T(x))

* Three properties now hold
- é is unbiased
- é has lower variance than §
- é is only a function of T(x)

 However, there is only one function of T(x) thatis unbiased if T(x) is complete
« Hence, no matter from which § we start, we reach the same (unique) @
« Since § haslower variance, this must be the MVU estimator
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Rao-Blackwell-Lehman-Scheffe Theorem
Steps to find MVU estimator

1. Find a single sufficient statistic for 6, that is, T'(x), by using the Neyman-Fisher
factorization theorem.

2. Determine if the sufficient statistic is complete and, if so, proceed; if not, this
approach cannot be used.

3. Find a function g of the sufficient statistic that yields an unbiased estimator =
g(T(x)). The MVU estimator is then 4.

As an alternative implementation of step 3 we may

3." Evaluate § = E{(0|T(x)), where 0 is any unbiased estimator.
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ w0

where w(0] ~ U[—3, 3].
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Clearly, x[0] is unbiased, since E(w[0])=0

Is it the MVU estimator? How to check?
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Clearly, x[0] is unbiased, since E(w[0])=0

Is it the MVU estimator? How to check?

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
15 unbiased

l

§ = ¢(T(x)) = MVU estimator
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Clearly, x[0] is unbiased, since E(w[0])=0

Is it the MVU estimator? How to check?

Step 1: Find sufficient statistic.
x[0] is clearly sufficient since it is the data

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
15 unbiased

l

§ = ¢(T(x)) = MVU estimator
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Clearly, x[0] is unbiased, since E(w[0])=0

Is it the MVU estimator? How to check?

Step 2: check if T(x)=x[0] is complete
"There should only be one unbiased function of x[0]”

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
15 unbiased

l

§ = ¢(T(x)) = MVU estimator
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Clearly, x[0] is unbiased, since E(w[0])=0

Is it the MVU estimator? How to check?

Step 2: check if T(x)=x[0] is complete

”

"There should only be one unbiased function of x[0]
g(x)=x, g(x[0])=x[0], is clearly unbiased in this case

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
15 unbiased

l

§ = ¢(T(x)) = MVU estimator
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Clearly, x[0] is unbiased, since E(w[0])=0
Is it the MVU estimator? How to check?
Step 2: check if T(x)=x[0] is complete

"There should only be one unbiased function of x[0]
g(x)=x, g(x[0])=x[0], is clearly unbiased in this case

”

But so is g(x) = x-sin(2mx), g(x[0]) = x[0]-sin(2mx[0])

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
15 unbiased

l

§ = ¢(T(x)) = MVU estimator
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Example 5.7

Consider the estimation of A for the datum

2{0] = A+ wlo]

where w(0] ~ U[—3, 3].

Clearly, x[0] is unbiased, since E(w[0])=0
Is it the MVU estimator? How to check?
Step 2: check if T(x)=x[0] is complete

"There should only be one unbiased function of x[0]
g(x)=x, g(x[0])=x[0], is clearly unbiased in this case

”

But so is g(x) = x-sin(2mx), g(x[0]) = x[0]-sin(2mx[0])

Use Neyman-Fisher factorization
theorem to find sufficient
statistic

lT{x}

Determine if T(x) is complete
See (5.8)

l

Find function of T'(x) that
! 15 unbiased

l

§ = ¢(T(x)) = MVU estimator

We cannot say that x[0] is the
MVU estimator

Method fails
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

Procedure:
1. Find complete sufficient statistic

2. Find unbiased function of the complete sufficient statistic
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

Interlude e
We may guess thatthe resultis 8= ¥ Z z{n]

n=0
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

Procedure:
1. Find complete sufficient statistic. Apply Neyman-Fisher factorization to the likelihood

2. Find unbiased function of the complete sufficient statistic
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Likelihood function

B

1

— =0!110111N_1

p(x:8) ={ BN 0<zln]<f n
0 otherwise.
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Likelihood function

B

1

—_— =0!110111N_1

p(x;0) ={ BN 0<zfn]<f n
0 otherwise.

Neyman-Fisher

p(x;8) = g(T'(x), 6)h(x)

p(x;8) = T;Tu(ﬁ _ maxz{n]) u(minz|n))

_J1 forz >0
u(z) = 0 forz<0



Chapter 5— General MVU Estimation

Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Likelihood function

ﬁN

1

— O<zlnl<f n=0,1,...,N-1

p(x;9)={ 1.]
0 otherwise.

p(x;8) = T;Tu(ﬁ _ maxz{n]) u(minz|n))

o a

g(T(x),6) h(x)

max x[n] is sufficient for the estimation of 0
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Is max x[n] complete?

oo
| DpTiedr =0 forall 0 implies )=0, all T

=00

Book skips the proof, but it is simple..... pré)=14 N ( )N_l
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Complete statistic  T'(x) = max z[n]

We need to find one unbiased function of max x[n]
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Example 5.8 (Basically the german tank problem)

We observe the data
zn)=wh] n=01,...,N-1

where w[n] is IID noise with PDF U(0, 8] for 8 > 0. We wish to find the MVU estimator
for the mean 8 = 3/2.

T : s 1=
Guess: Unbiased estimator g = ¥ Z z{n]

n=0

Complete statistic  T'(x) = max z[n]

We need to find one unbiased function of max x[n]

ET) = [ err©)de

- [on() e

N
= 8 :
+1 - N+1 Natural guess is wrong.
— _?_"_\_r_e- = —— ma.x:r[n] Sample mean is not a
N+1 2N sufficient statistic




