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• We deal with unbiased estimators of deterministic parameters 

• Performance of an estimator is measured by the variance of the estimate 
(due to the unbiased condition) 

• If an estimator has lower variance for all values of the parameter to estimate, 
it is the minimum variance estimator (MVU) 

• If the estimator is biased, one cannot definte any concept of being an optimal 
estimator for all values of the parameter to estimate 

• The smallest variance possible is determined by the CRLB 

• If the CRLB is tight for all values of the parameter, the estimator is efficient 

• The CRLB provides us with one method to find the MVU estimator 

• Efficient -> MVU.    The converse is not true 

• To derive the CRLB, one must know the likelihood function 
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Fisher Information 
 

 

 

 

qualifies as an information measure 

 

1. The more information, the smaller variance 

 

 

 

2. Nonnegative : 

 

3.     Additive for independent observations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quantity 
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Fisher Information 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Additive for independent observations is important: 
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Fisher Information 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Additive for independent observations is important: 

 

 

For independent observations: 

 

 

 

 

 

And for IID observations x[n] 

 

 

where 
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Fisher Information 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Additive for independent observations is important: 

 

 

For independent observations: 

 

 

 

 

 

And for IID observations x[n] 

 

 

where 

Further verification of 
”information measure”: 
If x[0]=…x[N-1], then 
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Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 
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Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 

We need to compute 
the Fisher information 
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Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 

Take one differential 
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Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 

Take one differential 

Take one more 
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Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 

Take one differential 

Take one more 

Take expectation 



Chapter 3 – Cramer-Rao lower bound 

Section 3.5: CRLB for signals in white Gaussian noise 
• White Gaussian noise is common. Handy to derive CRLB explicitly for this case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Likelihood 

Take one differential 

Take one more 

Take expectation 
Conclude: 
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Example 3.5: sinusoidal frequency estimation in white noise 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Derive CRLB for f0 
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Example 3.5: sinusoidal frequency estimation in white noise 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Derive CRLB for f0 
 
We have from 
previous slides that 

(where θ=f0) 
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Example 3.5: sinusoidal frequency estimation in white noise 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal model 

Derive CRLB for f0 
 
We have from 
previous slides that 

(where θ=f0) 

Which yields 
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Section 3.6: transformation of parameters 
 

Now assume that we are interested in estimation of α=g(θ) 

We already proved the CRLB for this case 
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Section 3.6: transformation of parameters 
 

Now assume that we are interested in estimation of α=g(θ) 

We already proved the CRLB for this case 

 

 

 

 

 

Question: If we estimate θ first, can we then estimate α as α=g(θ)  ?  
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Section 3.6: transformation of parameters 
 

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient. 

 

Choose the estimator for g(θ) as 

 

We have: 

 

    so the estimator is unbiased 
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Section 3.6: transformation of parameters 
 

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient. 

 

Choose the estimator for g(θ) as 

 

We have: 

 

    so the estimator is unbiased 

 

The CRLB states 
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Section 3.6: transformation of parameters 
 

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient. 

 

Choose the estimator for g(θ) as 

 

We have: 

 

    so the estimator is unbiased 

 

The CRLB states     

    but 

 

    so we reach the CRLB 
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Section 3.6: transformation of parameters 
 

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient. 

 

Choose the estimator for g(θ) as 

 

We have: 

 

    so the estimator is unbiased 

 

The CRLB states     

    but 

 

    so we reach the CRLB 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Efficiency is preserved for affine transformations! 
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Section 3.6: transformation of parameters 
 

Now move on to non-linear transformations 

 

Recall the DC level in white noise example. Now seek the CRLB for the power A2 
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Section 3.6: transformation of parameters 
 

Now move on to non-linear transformations 

 

Recall the DC level in white noise example. Now seek the CRLB for the power A2 

 

We have g(x)=x2, so 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Section 3.6: transformation of parameters 
 

Recall: the sample mean estimator is efficient for the DC level estimation 

 

 

 

 

Question: Is A2 efficient for A2 ?  
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Section 3.6: transformation of parameters 
 

Recall: the sample mean estimator is efficient for the DC level estimation 

 

 

 

 

Question: Is A2 efficient for A2 ?  

 

NO! This is not even an unbiased estimator 
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Section 3.6: transformation of parameters 
 

Recall: the sample mean estimator is efficient for the DC level estimation 

 

 

 

 

Question: Is A2 efficient for A2 ?  

 

NO! This is not even an unbiased estimator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Efficiency is in general destroyed by non-linear transformations! 
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Section 3.6: transformation of parameters 
 

Non-linear transformations with large data records 

 

Take a look at the bias again 
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Section 3.6: transformation of parameters 
 

Non-linear transformations with large data records 

 

Take a look at the bias again 

 

 

The square of the sample mean is asymptotically unbiased or unbiased as N grows large 
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Section 3.6: transformation of parameters 
 

Non-linear transformations with large data records 

 

Take a look at the bias again 

 

 

The square of the sample mean is asymptotically unbiased or unbiased as N grows large 

 

Further 

 

 

While the CRLB states that  
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Section 3.6: transformation of parameters 
 

Non-linear transformations with large data records 

 

Take a look at the bias again 

 

 

The square of the sample mean is asymptotically unbiased or unbiased as N grows large 

 

Further 

 

 

While the CRLB states that  

 

Hence, the estimator A2 is asymptotically efficient 
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Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 
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Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 

 

When the data record grows, the data statistic* becomes more concentrated around a stable 
value. We can linearize g(x) around this value, and as the data record grows large, the non-
linear region will seldomly occur 

 

 

 

 

 

 

 

 
*Definition of statistic: function of data observations used to estimate parameters of interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 

 

When the data record grows, the data statistic* becomes more concentrated around a stable 
value. We can linearize g(x) around this value, and as the data record grows large, the non-
linear region will seldomly occur 

 

 

 

 

 

 

 

 
*Definition of statistic: function of data observations used to estimate parameters of interest 
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Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linearization at A 



Chapter 3 – Cramer-Rao lower bound 

Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linearization at A Expectation 
 
 
Unbiased! 
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Section 3.6: transformation of parameters 
 

Why is the estimator α=g(θ) asymptotically efficient ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linearization at A Expectation 
 
 
Unbiased! 

Variance 
 
 
 
 
 
 
   
  Efficient! 
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Section 3.7: Multi-variable CRLB 
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Section 3.7: Multi-variable CRLB 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same regularity 
conditions as 
before 
 
Satisfied (in 
general) when 
integration and 
differentiating 
can be 
interchanged 
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Section 3.7: Multi-variable CRLB 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariance of estimator minus Fisher 
matrix is positive semi-definite 
 
Will soon be a bit simplified 
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Section 3.7: Multi-variable CRLB 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can find 
the MVU 
estimator 
also in this 
case 
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Section 3.7: Multi-variable CRLB 

 
Let us start with an implication of 
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Section 3.7: Multi-variable CRLB 

 
Let us start with an implication of 

 

The diagonal elements of a positive semi-definite matrix are non-negative 

Therefore 
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Section 3.7: Multi-variable CRLB 

 
Let us start with an implication of 

 

The diagonal elements of a positive semi-definite matrix are non-negative 

Therefore 

 

 

 

And consequently, 
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Proof 
Regularity condition: same story as for single parameter case 

 

Start by differentiating the ”unbiasedness conditions” 
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Proof 
Regularity condition: same story as for single parameter case 

 

Start by differentiating the ”unbiasedness conditions” 

 

 

 

 

And then add ”0” via the regularity condition 

to get 
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Proof 
Regularity condition: same story as for single parameter case 

 

Start by differentiating the ”unbiasedness conditions” 
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For i≠j, we have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Proof 
Regularity condition: same story as for single parameter case 

 

Combining into matrix form, we get 

 

 

 

 

And then add ”0” via the regularity condition 
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Proof 
Regularity condition: same story as for single parameter case 
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rx1 vector 
1xp vector rxp matrix 
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Proof 
Regularity condition: same story as for single parameter case 

 

Combining into matrix form, we get 

 

 

 

 

Now premultiply with aT and postmultiply with b, to yieldcondition 

to get 
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Proof 
Regularity condition: same story as for single parameter case 

 

Combining into matrix form, we get 

 

 

 

 

Now premultiply with aT and postmultiply with b, to yieldcondition 

to get 

 

 

Now apply C-S to yield 
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Proof 
Regularity condition: same story as for single parameter case 
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Proof 
Regularity condition: same story as for single parameter case 

 

Note that 
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Proof 
The vectors a and b are arbitrary. Now select b as 
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Proof 
The vectors a and b are arbitrary. Now select b as 

 

 

Some manipulations yield 
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Proof 
The vectors a and b are arbitrary. Now select b as 

 

 

Some manipulations yield 

 

 

 

 

For later use, we must now prove that the Fisher information matrix I(θ) is positive semi-
definite. 
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Interlude (proof that Fisher information matrix is positive semi-
definite) 
We have 
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Interlude (proof that Fisher information matrix is positive semi-
definite) 
We have 
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Condition for positive semi-definite: 
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Interlude (proof that Fisher information matrix is positive semi-
definite) 
We have 
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Proof 

 
Now return to the proof, we had 
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Proof 
The vectors a and b are arbitrary. Now select b as 

 

 

Some manipulations yield 
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  positive semi-definite 

  positive semi-definite 

   

  positive semi-definite     
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Proof 
The  

We therefore get 
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Proof 
The  

and 

 

 

 

 

 

 

but a is arbitrary, so                                                must be positive semi-definite  
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Proof 
 

Last part: 
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Proof 
 

Last part: 

 

 

 

 

 

 

 

Condition for equality 
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Proof 
 

Last part: 

 

 

 

 

 

 

 

Condition for equality 

 

     

 

However, a is arbitrary, so it must hold that 
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Proof 
 

Each element of the vector                     equals 

 

 

 

 

 

 

 

Condition for equality 

 

     

 

However, a is arbitrary, so it must hold that 
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Proof 
 

Each element of the vector                     equals 

 

 

 

 

One more differential (just as in the single-parameter case) yields  (via the chain rule) 
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Proof 
 

Each element of the vector                     equals 

 

 

 

 

Take expectation 
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Proof 
 

Each element of the vector                     equals 
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Only k=j remains 
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Proof 
 

Each element of the vector                     equals 
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def 
From 
above 
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Proof 
 

Each element of the vector                     equals 
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def 
From 
above 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 

 

Fisher Information matrix is 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 

 

Fisher Information matrix is 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 

 

Fisher Information matrix is 

 

 

 

 

What are the implications of a diagonal Fisher information matrix? 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 

 

Fisher Information matrix is 

 

 

 

 

What are the implications of a diagonal Fisher information matrix? 

 

 

 

 

But this is precisely what one would have obtained if only one parameter was unknown 
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Example 3.6 
 

DC level in white Gaussian noise with unknown density: estimate both A and σ2 

 

Fisher Information matrix is 

 

 

 

 

A diagonal Fisher Information matrix means that the parameters  

to estimate are ”independent” and that the quality of the estimate are 

not degraded when the other parameters are unknown. 
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Example 3.7 
 

Line fitting problem: Estimate A and B from the data x[n] 

 

 

 

Fisher Information matrix 
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Example 3.7 
 

Line fitting problem: Estimate A and B from the data x[n] 

 

 

 

Fisher Information matrix 
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Example 3.7 
 

Line fitting problem: Estimate A and B from the data x[n] 

 

 

 

Fisher Information matrix 

 

 

 

 

 

In this case, the quality of A is degraded if B is unknown (4 times if N is large) 
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Example 3.7 
 

How to find the MVU estimator? 
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Example 3.7 
 

How to find the MVU estimator? 

Use the CRLB! 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.7 
 

Find the MVU estimator. 

 

We have 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not easy to see 
this…. 
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Example 3.7 
 

Find the MVU estimator. 

 

We have 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not easy to see 
this…. 

No dependency 
on x[n] 

No dependency 
on parameters 
to estimate 
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Example 3.8 
 

DC level in Gaussian noise with unknown density. 

 

Estimate SNR 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.8 
 

DC level in Gaussian noise with unknown density. 

 

Estimate SNR 

 

Fisher information matrix 

 

 

 

From proof of CRLB  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.8 
 

DC level in Gaussian noise with unknown density. 

 

Estimate SNR 

 

Fisher information matrix 

 

 

 

From proof of CRLB  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.8 
 

DC level in Gaussian noise with unknown density. 

 

Estimate SNR 

 

Fisher information matrix 

 

 

 

 

So 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Section 3.9. Derivation of Fisher matrix for Gaussian signals 
 

A common case is that the received signal is Gaussian 

 

 

Convenient to derive formulas for this case (see appendix for proof) 

 

 

 

 

 

When the covariance is not dependent on θ, the second term vanishes, and one can reach 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.14 
 

Consider the estimation of A, f0, and φ 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

Example 3.14 
 

Consider the estimation of A, f0, and φ 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interpretation of the structure? 
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Example 3.14 
 

Consider the estimation of A, f0, and φ 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency estimation decays as 1/N3 



Chapter 3 – Cramer-Rao lower bound 

Section 3.10: Asymptotic CRLB for Gaussian WSS processes 
 

For Gaussian WSS processes (first and second order statistics are constant) over time 

The elements of the Fisher matrix can be found easy 

 

 

 

 

 

 

Where Pxx is the PSD of the process and N (observation length) grows unbounded 

 

This is widely used in e.g. ISI problems 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Definition 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the linear model, note  
that in this book, the noise  
is white Gaussian 
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Definition 

 

 

 

 
Let us now find the MVU estimator….How to proceed? 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Definition 

 

 

 

 
Let us now find the MVU estimator 
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Definition 

 

 

 

 
Let us now find the MVU estimator 
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Definition 

 

 

 

 
Let us now find the MVU estimator 
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Definition 

 

 

 

 
Let us now find the MVU estimator 
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Definition 
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Chapter 4 – The linear model 

Definition 

 

 

 

 
Let us now find the MVU estimator 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Definition 

 

 

 

 
Let us now find the MVU estimator 

 

Conclusion 1:                  Conclusion 2: 

MVU estimator (efficient)                 Statistical  
                   performance  

 

Covariance  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Example 4.1: curve fitting 
Task is to fit data samples with a second order polynomial 

 

 

 

 

We can write this as     and the (MVU) estimator is 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Section 4.5: Extended linear model 
Now assume that the noise is not white, so 

 

 

Further assume that the data contains a known part s, so that we have 

 

 

 

We can transfer this back to the linear model by applying the following transformation: 

     

    x’=D(x-s) 

 

where 

    C-1=DTD 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Section 4.5: Extended linear model 
In general we have 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – The linear model 

Example: Signal transmitted over multiple antennas and received by 
multiple antennas 

 
Assume that an unknown signal θ is transmitted and received over equally many antennas 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ[0] 

θ[1] 

θ[N-1] 

x[0] 

x[1] 

x[N-1] 

All channels are assumed  
Different due to the nature  
of radio propagation  
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Chapter 4 – The linear model 

Example: Signal transmitted over multiple antennas and received by 
multiple antennas 

 
Assume that an unknown signal θ is transmitted and received over equally many antennas 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ[0] 

θ[1] 

θ[N-1] 

x[0] 

x[1] 

x[N-1] 

All channels are assumed  
Different due to the nature  
of radio propagation  

The linear model applies 
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Chapter 4 – The linear model 

Example: Signal transmitted over multiple antennas and received by 
multiple antennas 

 
Assume that an unknown signal θ is transmitted and received over equally many antennas 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ[0] 

θ[1] 

θ[N-1] 

x[0] 

x[1] 

x[N-1] 

All channels are assumed  
Different due to the nature  
of radio propagation  

The linear model applies 
 
So, the best estimator (MVU) is               which is the ZF equalizer in MIMO 
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