Estimation Theory Fredrik Rusek

Chapters 3.5-3.10

Recap

- We deal with unbiased estimators of deterministic parameters
- Performance of an estimator is measured by the variance of the estimate (due to the unbiased condition)
- If an estimator has lower variance for all values of the parameter to estimate, it is the minimum variance estimator (MVU)
- If the estimator is biased, one cannot definte any concept of being an optimal estimator for all values of the parameter to estimate
- The smallest variance possible is determined by the CRLB
- If the CRLB is tight for all values of the parameter, the estimator is efficient
- The CRLB provides us with one method to find the MVU estimator
- Efficient -> MVU. The converse is not true
- To derive the CRLB, one must know the likelihood function

Recap

Theorem 3.1 (Cramer-Rao Lower Bound - Scalar Parameter) It is assumed that the PDF $p(\mathbf{x}; \theta)$ satisfies the "regularity" condition

$$E\left[\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta}\right] = 0 \quad for \ all \ \theta$$

where the expectation is taken with respect to $p(\mathbf{x}; \theta)$. Then, the variance of any unbiased estimator $\hat{\theta}$ must satisfy

$$\operatorname{var}(\hat{\theta}) \geq \frac{1}{-E\left[\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2}\right]}$$
(3.6)

where the derivative is evaluated at the true value of θ and the expectation is taken with respect to $p(\mathbf{x}; \theta)$. Furthermore, an unbiased estimator may be found that attains the bound for all θ if and only if

$$\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta} = I(\theta)(g(\mathbf{x}) - \theta)$$
(3.7)

for some functions g and I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and the minimum variance is $1/I(\theta)$.

Fisher Information

The quantity

$$I(\theta) = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right]$$

qualifies as an information measure

1. The more information, the smaller variance

$$\operatorname{var}(\hat{\theta}) \geq \frac{1}{-E\left[\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2}\right]}$$

2. Nonnegative:

$$E\left[\left(\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta}\right)^{2}\right] = -E\left[\frac{\partial^{2} \ln p(\mathbf{x};\theta)}{\partial \theta^{2}}\right]$$

3. Additive for independent observations

Fisher Information

3. Additive for independent observations is important:

Fisher Information3. Additive for independent observations is important:

For independent observations:

$$\ln p(\mathbf{x}; \theta) = \sum_{n=0}^{N-1} \ln p(x[n]; \theta)$$

3.7 4

$$-E\left[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right] = -\sum_{n=0}^{N-1} E\left[\frac{\partial^2 \ln p(x[n];\theta)}{\partial \theta^2}\right]$$

And for IID observations x[n]

$$I(\theta) = Ni(\theta)$$

 $i(\theta) = -E\left[\frac{\partial^2 \ln p(x[n];\theta)}{\partial \theta^2}\right]$

where

Fisher Information3. Additive for independent observations is important:

For independent observations:

$$\ln p(\mathbf{x}; \theta) = \sum_{n=0}^{N-1} \ln p(x[n]; \theta)$$

$$-E\left[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right] = -\sum_{n=0}^{N-1} E\left[\frac{\partial^2 \ln p(x[n];\theta)}{\partial \theta^2}\right]$$

And for IID observations x[n]

$$egin{aligned} I(heta) &= Ni(heta) \ i(heta) &= -E\left[rac{\partial^2 \ln p(x[n]; heta)}{\partial heta^2}
ight] \end{aligned}$$

Further verification of "information measure": If x[0]=...x[N-1], then $I(\theta) = i(\theta)$

where

Section 3.5: CRLB for signals in white Gaussian noise

• White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n; \theta] + w[n]$ n = 0, 1, ..., N - 1

Likelihood

$$p(\mathbf{x}; \theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta])^2\right\}$$

Section 3.5: CRLB for signals in white Gaussian noise

• White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n; \theta] + w[n]$ $n = 0, 1, \dots, N-1$

$$p(\mathbf{x};\theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n;\theta])^2\right\}$$

$$I(\theta) = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right]$$

Section 3.5: CRLB for signals in white Gaussian noise

• White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n; \theta] + w[n]$ $n = 0, 1, \dots, N - 1$ Likelihood $p(\mathbf{x}; \theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])^2\right\}$ Take one differential $\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])\frac{\partial s[n; \theta]}{\partial \theta}$

Section 3.5: CRLB for signals in white Gaussian noise

• White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n;\theta] + w[n]$ $n = 0, 1, \dots, N-1$ Likelihood $p(\mathbf{x};\theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n;\theta])^2\right\}$

Take one differential
$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta]) \frac{\partial s[n; \theta]}{\partial \theta}$$

Take one more

$$\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left\{ (x[n] - s[n; \theta]) \frac{\partial^2 s[n; \theta]}{\partial \theta^2} - \left(\frac{\partial s[n; \theta]}{\partial \theta} \right)^2 \right\}$$

Section 3.5: CRLB for signals in white Gaussian noise

White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n; \theta] + w[n]$ $n = 0, 1, \dots, N - 1$ Likelihood $p(\mathbf{x}; \theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])^2\right\}$ Take one differential $\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])\frac{\partial s[n; \theta]}{\partial \theta}$ Take one more $\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} = \frac{1}{\sigma^2}\sum_{n=0}^{N-1}\left\{(x[n] - s[n; \theta])\frac{\partial^2 s[n; \theta]}{\partial \theta^2} - \left(\frac{\partial s[n; \theta]}{\partial \theta}\right)^2\right\}$

Take expectation
$$E\left(\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right) = -\frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2$$

Section 3.5: CRLB for signals in white Gaussian noise

• White Gaussian noise is common. Handy to derive CRLB explicitly for this case

Signal model $x[n] = s[n; \theta] + w[n]$ $n = 0, 1, \dots, N - 1$ Likelihood $p(\mathbf{x}; \theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])^2\right\}$ Take one differential $\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2}\sum_{n=0}^{N-1}(x[n] - s[n; \theta])\frac{\partial s[n; \theta]}{\partial \theta}$ Take one more $\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} = \frac{1}{\sigma^2}\sum_{n=0}^{N-1}\left\{(x[n] - s[n; \theta])\frac{\partial^2 s[n; \theta]}{\partial \theta^2} - \left(\frac{\partial s[n; \theta]}{\partial \theta}\right)^2\right\}$

Take expectation $E\left(\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right) = -\frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2$

Conclude:
$$\operatorname{var}(\hat{\theta}) \geq \frac{\sigma^2}{\sum\limits_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2}$$

Example 3.5: sinusoidal frequency estimation in white noise

Signal model
$$s[n; f_0] = A\cos(2\pi f_0 n + \phi)$$
 $0 < f_0 < \frac{1}{2}$

Derive CRLB for f₀

Example 3.5: sinusoidal frequency estimation in white noise

Signal model
$$s[n; f_0] = A\cos(2\pi f_0 n + \phi)$$
 $0 < f_0 < \frac{1}{2}$

Derive CRLB for f₀

We have from previous slides that

$$\operatorname{var}(\hat{\theta}) \geq \frac{\sigma^2}{\sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2} \qquad (\text{where } \theta = f_0)$$

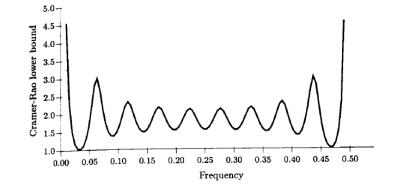
Example 3.5: sinusoidal frequency estimation in white noise

Signal model
$$s[n; f_0] = A\cos(2\pi f_0 n + \phi)$$
 $0 < f_0 < \frac{1}{2}$

We have from previous slides that

$$\operatorname{var}(\hat{\theta}) \geq \frac{\sigma^2}{\sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2} \qquad (\text{where } \theta = f_0)$$

Which yields
$$\operatorname{var}(\hat{f}_0) \ge \frac{\sigma^2}{A^2 \sum_{n=0}^{N-1} [2\pi n \sin(2\pi f_0 n + \phi)]^2}$$



Section 3.6: transformation of parameters

Now assume that we are interested in estimation of $\alpha = g(\theta)$ We already proved the CRLB for this case

$$\operatorname{var}(\hat{\alpha}) \geq rac{\left(rac{\partial g}{\partial heta}
ight)^2}{-E\left[rac{\partial^2 \ln p(\mathbf{x}; heta)}{\partial heta^2}
ight]}$$

Section 3.6: transformation of parameters

Now assume that we are interested in estimation of $\alpha = g(\theta)$ We already proved the CRLB for this case

$$\operatorname{var}(\hat{\alpha}) \geq rac{\left(rac{\partial g}{\partial heta}
ight)^2}{-E\left[rac{\partial^2 \ln p(\mathbf{x}; heta)}{\partial heta^2}
ight]}$$

Question: If we estimate θ first, can we then estimate α as $\hat{\alpha} = g(\hat{\theta})$?

Section 3.6: transformation of parameters

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient.

Choose the estimator for $g(\theta)$ as $\widehat{g(\theta)} = g(\hat{\theta}) = a\hat{\theta} + b$

We have:
$$E(a\hat{\theta} + b) = aE(\hat{\theta}) + b = a\theta + b$$

= $g(\theta)$

so the estimator is unbiased

Section 3.6: transformation of parameters

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient.

Choose the estimator for $g(\theta)$ as $\widehat{g(\theta)} = g(\hat{\theta}) = a\hat{\theta} + b$

ŝ,

We have:
$$E(a\hat{\theta} + b) = aE(\hat{\theta}) + b = a\theta + b$$

= $g(\theta)$

so the estimator is unbiased

The CRLB states

$$\operatorname{var}(\widehat{g(\theta)}) \geq \frac{\left(\frac{\partial g}{\partial \theta}\right)^2}{I(\theta)}$$
$$= \left(\frac{\partial g(\theta)}{\partial \theta}\right)^2 \operatorname{var}(\hat{\theta})$$
$$= a^2 \operatorname{var}(\hat{\theta})$$

Section 3.6: transformation of parameters

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient.

Choose the estimator for $g(\theta)$ as $\widehat{g(\theta)} = g(\hat{\theta}) = a\hat{\theta} + b$

We have:
$$E(a\hat{\theta} + b) = aE(\hat{\theta}) + b = a\theta + b$$

= $g(\theta)$

.

so the estimator is unbiased

The CRLB states

Section 3.6: transformation of parameters

Works for linear transformations g(x)=ax+b. The estimator for θ is efficient.

Choose the estimator for $g(\theta)$ as $\widehat{g(\theta)} = g(\hat{\theta}) = a\hat{\theta} + b$

We have:
$$E(a\hat{\theta} + b) = aE(\hat{\theta}) + b = a\theta + b$$

= $g(\theta)$

so the estimator is unbiased

The CRLB states

٦

$$\operatorname{var}(\widehat{g(\theta)}) \geq \frac{\left(\frac{\partial g}{\partial \theta}\right)^2}{I(\theta)} \\ = \left(\frac{\partial g(\theta)}{\partial \theta}\right)^2 \operatorname{var}(\hat{\theta}) \\ = a^2 \operatorname{var}(\hat{\theta})$$

but

$$\operatorname{var}(\widehat{g(heta)}) = \operatorname{var}(a\hat{ heta} + b) = a^2 \operatorname{var}(\hat{ heta})$$

so we reach the CRLB

Efficiency is preserved for affine transformations!

Section 3.6: transformation of parameters

Now move on to non-linear transformations

Recall the DC level in white noise example. Now seek the CRLB for the power A²

Section 3.6: transformation of parameters

Now move on to non-linear transformations

Recall the DC level in white noise example. Now seek the CRLB for the power A²

We have
$$g(x)=x^2$$
, so $var(\widehat{A^2}) \ge \frac{(2A)^2}{N/\sigma^2} = \frac{4A^2\sigma^2}{N}$

Section 3.6: transformation of parameters

Recall: the sample mean estimator is efficient for the DC level estimation

 $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$

Question: Is \hat{A}^2 efficient for A^2 ?

Section 3.6: transformation of parameters

Recall: the sample mean estimator is efficient for the DC level estimation

 $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$

Question: Is \hat{A}^2 efficient for A^2 ?

NO! This is not even an unbiased estimator

$$E(\bar{x}^2) = E^2(\bar{x}) + \operatorname{var}(\bar{x}) = A^2 + \frac{\sigma^2}{N}$$

$$\neq A^2$$

Section 3.6: transformation of parameters

Recall: the sample mean estimator is efficient for the DC level estimation

 $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$

Question: Is \hat{A}^2 efficient for A^2 ?

NO! This is not even an unbiased estimator

$$E(\bar{x}^2) = E^2(\bar{x}) + \operatorname{var}(\bar{x}) = A^2 + \frac{\sigma^2}{N}$$

$$\neq A^2$$

Efficiency is in general destroyed by non-linear transformations!

Section 3.6: transformation of parameters

Non-linear transformations with large data records

Take a look at the bias again $E(\vec{x}^2) = E^2(\vec{x}) + \operatorname{var}(\vec{x}) = A^2 + \frac{\sigma^2}{N}$

Section 3.6: transformation of parameters

Non-linear transformations with large data records

Take a look at the bias again $E(\bar{x}^2) = E^2(\bar{x}) + \operatorname{var}(\bar{x}) = A^2 + \frac{\sigma^2}{N}$

The square of the sample mean is asymptotically unbiased or unbiased as N grows large

Section 3.6: transformation of parameters

Non-linear transformations with large data records

Take a look at the bias again $E(\bar{x}^2) = E^2(\bar{x}) + \operatorname{var}(\bar{x}) = A^2 + \frac{\sigma^2}{N}$

The square of the sample mean is *asymptotically unbiased* or *unbiased* as *N* grows large

Further
$$\operatorname{var}(\bar{x}^2) = \frac{4A^2\sigma^2}{N} + \frac{2\sigma^4}{N^{2^4}}$$

While the CRLB states that
$$\operatorname{var}(\widehat{A^2}) \geq \frac{(2A)^2}{N/\sigma^2} = \frac{4A^2\sigma^2}{N}$$

Section 3.6: transformation of parameters

Non-linear transformations with large data records

Take a look at the bias again $E(\vec{x}^2) = E^2(\vec{x}) + \operatorname{var}(\vec{x}) = A^2 + \frac{\sigma^2}{N}$

The square of the sample mean is *asymptotically unbiased* or *unbiased* as *N* grows large

Further
$$\operatorname{var}(\bar{x}^2) = \frac{4A^2\sigma^2}{N} + \frac{2\sigma^4}{N^{2^5}}$$

While the CRLB states that
$$\operatorname{var}(\widehat{A^2}) \geq \frac{(2A)^2}{N/\sigma^2} = \frac{4A^2\sigma^2}{N}$$

Hence, the estimator \hat{A}^2 is asymptotically efficient

Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?

Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?

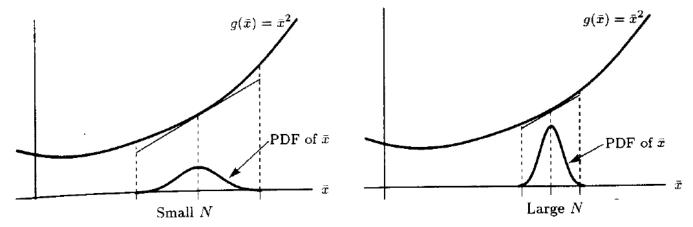
When the data record grows, the data statistic* becomes more concentrated around a stable value. We can linearize g(x) around this value, and as the data record grows large, the non-linear region will seldomly occur

*Definition of statistic: function of data observations used to estimate parameters of interest

Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?

When the data record grows, the data statistic* becomes more concentrated around a stable value. We can linearize g(x) around this value, and as the data record grows large, the non-linear region will seldomly occur



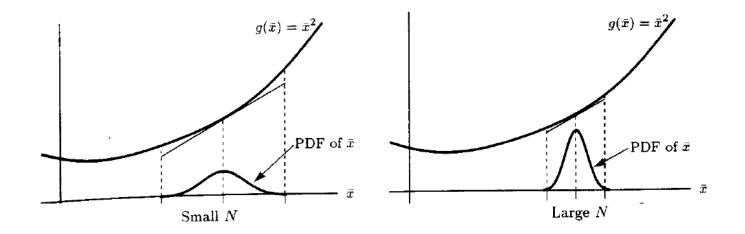
*Definition of statistic: function of data observations used to estimate parameters of interest

Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?

Linearization at A

$$g(\bar{x}) \approx g(A) + \frac{dg(A)}{dA}(\bar{x} - A)$$



Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?

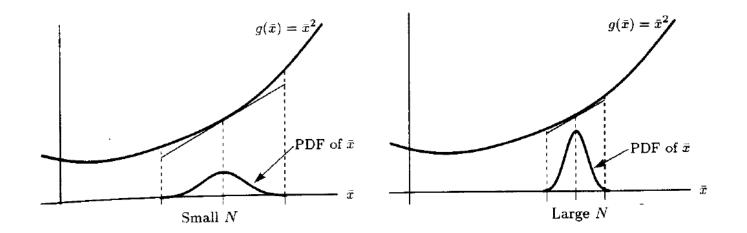
Linearization at A

Expectation

$$g(\bar{x}) \approx g(A) + \frac{dg(A)}{dA}(\bar{x} - A)$$

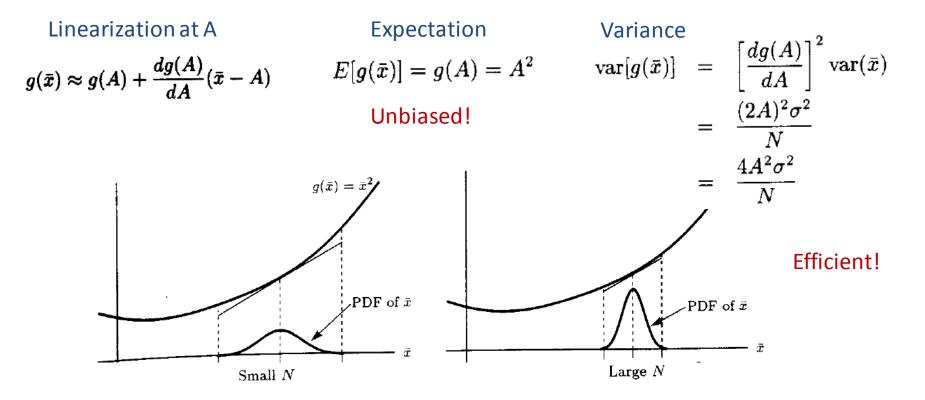
$$E[g(\bar{x})] = g(A) = A^2$$

Unbiased!



Section 3.6: transformation of parameters

Why is the estimator $\hat{\alpha}=g(\hat{\theta})$ asymptotically efficient ?



Section 3.7: Multi-variable CRLB $\theta = [\theta_1 \theta_2 \dots \theta_p]^T$

Theorem 3.2 (Cramer-Rao Lower Bound - Vector Parameter) It is assumed that the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ satisfies the "regularity" conditions

$$E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \qquad for \ all \ \boldsymbol{\theta}$$

where the expectation is taken with respect to $p(\mathbf{x}; \boldsymbol{\theta})$. Then, the covariance matrix of any unbiased estimator $\hat{\boldsymbol{\theta}}$ satisfies

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \ge \mathbf{0} \tag{3.24}$$

where ≥ 0 is interpreted as meaning that the matrix is positive semidefinite. The Fisher information matrix $I(\theta)$ is given as

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

where the derivatives are evaluated at the true value of θ and the expectation is taken with respect to $p(\mathbf{x}; \theta)$. Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbb{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Section 3.7: Multi-variable CRLB $\theta = [\theta_1 \theta_2 \dots \theta_p]^T$

Theorem 3.2 (Cramer-Rao Lower Bound - Vector Parameter) It is assumed that the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ satisfies the "regularity" conditions

 $E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \quad \text{for all } \boldsymbol{\theta}$

where the expectation is taken with respect to $p(\mathbf{x}; \boldsymbol{\theta})$.

Same regularity conditions as before

Satisfied (in general) when integration and differentiating can be interchanged

Section 3.7: Multi-variable CRLB $\theta = [\theta_1 \theta_2 \dots \theta_p]^T$

Theorem 3.2 (Cramer-Rao Lower Bound - Vector Parameter) It is assumed that the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ satisfies the "regularity" conditions

$$E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \qquad \text{for all } \boldsymbol{\theta}$$

where the expectation is taken with respect to $p(\mathbf{x}; \boldsymbol{\theta})$. Then, the covariance matrix of any unbiased estimator $\hat{\boldsymbol{\theta}}$ satisfies

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \ge \mathbf{0} \tag{3.24}$$

where ≥ 0 is interpreted as meaning that the matrix is positive semidefinite. The Fisher information matrix $I(\theta)$ is given as

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

where the derivatives are evaluated at the true value of θ and the expectation is taken with respect to $p(\mathbf{x}; \theta)$.

Covariance of estimator minus Fisher matrix is positive semi-definite

Will soon be a bit simplified

Section 3.7: Multi-variable CRLB $\theta = [\theta_1 \theta_2 \dots \theta_p]^T$

Theorem 3.2 (Cramer-Rao Lower Bound - Vector Parameter) It is assumed that the PDF $p(\mathbf{x}; \theta)$ satisfies the "regularity" conditions

 $E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \quad \text{for all } \boldsymbol{\theta}$

where the expectation is taken with respect to $p(\mathbf{x}; \boldsymbol{\theta})$. Then, the covariance matrix of any unbiased estimator $\hat{\boldsymbol{\theta}}$ satisfies

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \ge \mathbf{0} \tag{3.24}$$

where ≥ 0 is interpreted as meaning that the matrix is positive semidefinite. The Fisher information matrix $I(\theta)$ is given as

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

We can find the MVU estimator also in this case

where the derivatives are evaluated at the true value of θ and the expectation is taken with respect to $p(\mathbf{x}; \theta)$. Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbf{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Section 3.7: Multi-variable CRLB

Let us start with an implication of $C_{\hat{\theta}} - I^{-1}(\theta) \ge 0$

Section 3.7: Multi-variable CRLB

Let us start with an implication of $\mathbf{C}_{\hat{\theta}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0}$

The diagonal elements of a positive semi-definite matrix are non-negative Therefore

$$\left[\mathbf{C}_{\hat{\theta}}-\mathbf{I}^{-1}(\boldsymbol{\theta})\right]_{ii}\geq 0$$

Section 3.7: Multi-variable CRLB

Let us start with an implication of $\mathbf{C}_{\hat{\theta}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0}$

The diagonal elements of a positive semi-definite matrix are non-negative Therefore

 $\left[\mathbf{C}_{\hat{\theta}}-\mathbf{I}^{-1}(\boldsymbol{\theta})\right]_{ii}\geq 0$

And consequently,

 $\operatorname{var}(\hat{\theta}_i) = \left[\mathbf{C}_{\hat{\theta}}\right]_{ii} \geq \left[\mathbf{I}^{-1}(\boldsymbol{\theta})\right]_{ii}$

Proof

Regularity condition: same story as for single parameter case

Start by differentiating the "unbiasedness conditions" $E(\hat{\alpha}_i) = \alpha_i = [\mathbf{g}(\boldsymbol{\theta})]_i$ i = 1, 2, ..., r.

$$\frac{\partial}{\partial \theta_i} \int \hat{\alpha}_i \, p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \, = \, \frac{\partial [g(\boldsymbol{\theta})]_i}{\partial \theta_i} \qquad \longrightarrow \qquad \int \hat{\alpha}_i \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \, \frac{\partial [g(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

Proof

Regularity condition: same story as for single parameter case

Start by differentiating the "unbiasedness conditions" $E(\hat{\alpha}_i) = \alpha_i = [\mathbf{g}(\boldsymbol{\theta})]_i$ i = 1, 2, ..., r.

$$\frac{\partial}{\partial \theta_i} \int \hat{\alpha}_i \, p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i} \longrightarrow \int \hat{\alpha}_i \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

And then add "0" via the regularity condition $E\left[\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0}$ to get

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

Proof

Regularity condition: same story as for single parameter case

Start by differentiating the "unbiasedness conditions" $E(\hat{\alpha}_i) = \alpha_i = [\mathbf{g}(\boldsymbol{\theta})]_i$ i = 1, 2, ..., r.

$$\frac{\partial}{\partial \theta_i} \int \hat{\alpha}_i \, p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i} \longrightarrow \int \hat{\alpha}_i \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

And then add "0" via the regularity condition $E\left[\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta}\right] = \mathbf{0}$ to get

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

For i≠j, we have

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_j} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_j}$$

Proof

Regularity condition: same story as for single parameter case

Combining into matrix form, we get

$$\int (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x} = \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [g(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_j} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_j}$$

Proof

Regularity condition: same story as for single parameter case

Combining into matrix form, we get

$$\int (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x} = \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$
rx1 vector rxp matrix

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_i}$$

$$\int (\hat{\alpha}_i - \alpha_i) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_j} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial [\mathbf{g}(\boldsymbol{\theta})]_i}{\partial \theta_j}$$

Proof

Regularity condition: same story as for single parameter case

Combining into matrix form, we get

$$\int (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

Now premultiply with a^T and postmultiply with b, to yield

$$\int \mathbf{a}^T (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b}$$

Proof

Regularity condition: same story as for single parameter case

Combining into matrix form, we get

$$\int (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

Now premultiply with a^T and postmultiply with b, to yield

$$\int \mathbf{a}^{T}(\hat{\alpha} - \alpha) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x} = \mathbf{a}^{T} \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b}$$

So to yield
$$\left(\mathbf{a}^{T} \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b} \right)^{2} \leq \int \mathbf{a}^{T} (\hat{\alpha} - \alpha) (\hat{\alpha} - \alpha)^{T} \mathbf{a} p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x}$$
$$\cdot \int \mathbf{b}^{T} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x}$$

Now apply C-S to yield

Proof

Regularity condition: same story as for single parameter case

Combining into matrix form, we get

$$\int (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

-

Now premultiply with a^T and postmultiply with b, to yield

$$\int \mathbf{a}^{T}(\hat{\alpha} - \alpha) \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \mathbf{b} d\mathbf{x} = \mathbf{a}^{T} \frac{\partial \mathbf{g}(\theta)}{\partial \theta} \mathbf{b}$$

C-S to yield
$$\left(\mathbf{a}^{T} \frac{\partial \mathbf{g}(\theta)}{\partial \theta} \mathbf{b} \right)^{2} \leq \int \mathbf{a}^{T}(\hat{\alpha} - \alpha)(\hat{\alpha} - \alpha)^{T} \mathbf{a} p(\mathbf{x}; \theta) d\mathbf{x}$$
$$\int \mathbf{b}^{T} \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta}^{T} \mathbf{b} p(\mathbf{x}; \theta) d\mathbf{x}$$
$$= \mathbf{a}^{T} \mathbf{C}_{\hat{\alpha}} \mathbf{a} \mathbf{b}^{T} \mathbf{I}(\theta) \mathbf{b}$$

Now apply C-S to yield

Proof

Regularity condition: same story as for single parameter case

Note that

$$\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

but since

$$E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i}\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_j}\right] = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = [\mathbf{I}(\boldsymbol{\theta})]_{ij}.$$

this is ok

$$\begin{aligned} \left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b}\right)^2 &\leq \int \mathbf{a}^T (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha})^T \mathbf{a} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \\ & \cdot \int \mathbf{b}^T \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \\ &= \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \mathbf{b}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{b} \end{aligned}$$

Proof

The vectors a and b are arbitrary. Now select b as

$$\mathbf{b} = \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}$$

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b} \right)^2 \leq \int \mathbf{a}^T (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha})^T \mathbf{a} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \cdot \int \mathbf{b}^T \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} = \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \mathbf{b}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{b}$$

Proof

The vectors a and b are arbitrary. Now select b as

$$\mathbf{b} = \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}$$

Some manipulations yield

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2 \leq \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2$$

$$\begin{pmatrix} \mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{b} \end{pmatrix}^2 \leq \int \mathbf{a}^T (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha})^T \mathbf{a} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \\ \cdot \int \mathbf{b}^T \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b} p(\mathbf{x}; \boldsymbol{\theta}) \, d\mathbf{x} \\ = \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \mathbf{b}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{b}$$

Proof

The vectors a and b are arbitrary. Now select b as

$$\mathbf{b} = \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}$$

Some manipulations yield

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2 \leq \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2$$

For later use, we must now prove that the Fisher information matrix I(**θ**) is positive semidefinite.

Interlude (proof that Fisher information matrix is positive semidefinite)

We have

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i}\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_j}\right]$$

So

$$\mathbf{I}(\boldsymbol{\theta}) = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]$$

Interlude (proof that Fisher information matrix is positive semidefinite)

We have

So

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i} \frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_j}\right]$$

$$\mathbf{I}(\boldsymbol{\theta}) = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]$$

Condition for positive semi-definite: $\mathbf{a}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{a} \ge 0$

Interlude (proof that Fisher information matrix is positive semidefinite)

We have

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i}\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_j}\right]$$

So

$$\mathbf{I}(\boldsymbol{\theta}) = E\left[\frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]$$

Condition for positive semi-definite: $\mathbf{a}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{a} \ge 0$

But
$$\mathbf{a}^T \mathbf{I}(\boldsymbol{\theta}) \mathbf{a} = E \left[\mathbf{a}^T \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{a} \right] = E \left[\boldsymbol{d}^T \boldsymbol{d} \right] \ge 0$$

for $\boldsymbol{d} = \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{a}$

Proof

Now return to the proof, we had

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2 \leq \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\alpha}}} \mathbf{a} \left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)$$

Proof

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)^2 \leq \mathbf{a}^T \mathbf{C}_{\hat{\boldsymbol{\sigma}}} \mathbf{a} \left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right)$$

We have

- **I**(**0**) positive semi-definite
- $\mathbf{I}^{-1}(\boldsymbol{\theta})$ positive semi-definite

$$\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \text{ positive semi-definite}$$

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right) \geq 0$$

Proof

We therefore get

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right) \leq \mathbf{a}^T \mathbf{C}_{\dot{\boldsymbol{\alpha}}} \mathbf{a}$$

$$\left(\mathbf{a}^T \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}\right) \geq 0$$

Proof

and

$$\mathbf{a}^T \left(\mathbf{C}_{\hat{\boldsymbol{\alpha}}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \right) \mathbf{a} \geq 0.$$

but **a** is arbitrary, so
$$\mathbf{C}_{\hat{\alpha}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T}$$
 must be positive semi-definite

Proof

Last part:

Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbb{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Proof

Last part:

Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbb{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

a

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Condition for equality
$$\mathbf{a}^{T}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) = c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \mathbf{b}$$

$$= c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \mathbf{a}.$$
$$\mathbf{b} = \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T}$$

Proof

Last part:

Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbb{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Condition for equality
$$\mathbf{a}^T(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) = c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b}$$

$$= c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}$$

However, a is arbitrary, so it must hold that

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{c} \mathbf{I}(\boldsymbol{\theta}) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

$$\alpha = \mathbf{g}(\boldsymbol{\theta}) = \boldsymbol{\theta}$$

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

Condition for equality
$$\mathbf{a}^T(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) = c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{b}$$

$$= c \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^T \mathbf{a}$$

However, a is arbitrary, so it must hold that

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{c} \mathbf{I}(\boldsymbol{\theta}) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

One more differential (just as in the single-parameter case) yields (via the chain rule)

$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} = \sum_{k=1}^p \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (-\delta_{kj}) + \frac{\partial \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} \right)}{\partial \theta_j} (\hat{\theta}_k - \theta_k) \right)$$

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

$$E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = E\left[\sum_{k=1}^p \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(-\delta_{kj}) + \frac{\partial\left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}\right)}{\partial \theta_j}(\hat{\theta}_k - \theta_k)\right)\right]$$

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

$$E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = E\left[\sum_{k=1}^{p} \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(-\delta_{kj}) + \frac{\partial\left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(\hat{\theta}_k - \theta_k)\right)}{\partial \theta_j}\right)\right]$$

Only k=j remains

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

$$E\left[\frac{\partial^{2} \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] = E\left[\sum_{k=1}^{p} \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(-\delta_{kj}) + \frac{\partial \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(\hat{\theta}_{k} - \theta_{k})\right)}{\partial \theta_{j}}\right)\right]$$

Only k=j remains
$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^{2} \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] = \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ij}}{c(\boldsymbol{\theta})}$$

def
From above

Proof

Each element of the vector $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ equals $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i} = \sum_{k=1}^p \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})} (\hat{\theta}_k - \theta_k)$

$$E\left[\frac{\partial^{2} \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] = E\left[\sum_{k=1}^{p} \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(-\delta_{kj}) + \frac{\partial \left(\frac{[\mathbf{I}(\boldsymbol{\theta})]_{ik}}{c(\boldsymbol{\theta})}(\hat{\theta}_{k} - \theta_{k})\right)}{\partial \theta_{j}}\right)\right]$$

Only k=j remains
$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{c}\mathbf{I}(\boldsymbol{\theta})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^{2} \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] = \frac{[\mathbf{I}(\boldsymbol{\theta})]_{ij}}{c(\boldsymbol{\theta})}$$
$$C(\boldsymbol{\theta}) = \underline{1}$$

def
$$From above$$
$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A^2}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A \partial \sigma^2}\right] \\ -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \sigma^2 \partial A}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \sigma^{2^2}}\right] \end{bmatrix}$$
$$\ln p(\mathbf{x};\boldsymbol{\theta}) = -\frac{N}{2}\ln 2\pi - \frac{N}{2}\ln \sigma^2 - \frac{1}{2\sigma^2}\sum_{n=0}^{N-1} (x[n] - A)^2$$

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A^2}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A \partial \sigma^2}\right] \\ -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \sigma^2 \partial A}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \sigma^{2^2}}\right] \end{bmatrix}$$
$$\ln p(\mathbf{x};\boldsymbol{\theta}) = -\frac{N}{2}\ln 2\pi - \frac{N}{2}\ln \sigma^2 - \frac{1}{2\sigma^2}\sum_{n=0}^{N-1} (x[n] - A)^2$$

Derivatives are

$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A^2} = -\frac{N}{\sigma^2}$$
$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A \partial \sigma^2} = -\frac{1}{\sigma^4} \sum_{n=0}^{N-1} (x[n] - A)$$
$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \sigma^{2^2}} = \frac{N}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$
$$\ln p(\mathbf{x}; \boldsymbol{\theta}) = -\frac{N}{2} \ln 2\pi - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$
$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A^2} = -\frac{N}{\sigma^2}$$
$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A \partial \sigma^2} = -\frac{1}{\sigma^4} \sum_{n=0}^{N-1} (x[n] - A)$$
$$\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \sigma^{2^2}} = \frac{N}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{n=0}^{N-1} (x[n] - A)^2$$

n=0

Derivatives are

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

What are the implications of a diagonal Fisher information matrix?

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

What are the implications of a diagonal Fisher information matrix?

$$\begin{aligned} \operatorname{var}(\hat{A}) &\geq \mathrm{I}^{-1}(\boldsymbol{\theta})_{11} &= -E\left[\begin{array}{c} \frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A^2} \end{array} \right] = \frac{N}{\sigma^2} \\ \operatorname{var}(\hat{\sigma^2}) &\geq \mathrm{I}^{-1}(\boldsymbol{\theta})_{22} &= -E\left[\begin{array}{c} \frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \sigma^{2^2}} \end{array} \right] = \frac{2\sigma^4}{N}. \end{aligned}$$

But this is precisely what one would have obtained if only one parameter was unknown

Example 3.6

DC level in white Gaussian noise with unknown density: estimate both A and σ^2

Fisher Information matrix is

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

A diagonal Fisher Information matrix means that the parameters to estimate are "independent" and that the quality of the estimate are not degraded when the other parameters are unknown.

Example 3.7

Line fitting problem: Estimate A and B from the data x[n]

$$x[n] = A + Bn + w[n]$$
 $n = 0, 1, ..., N - 1$

Fisher Information matrix

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A^2}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial A \partial B}\right] \\ -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial B \partial A}\right] & -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial B^2}\right] \end{bmatrix}$$
$$p(\mathbf{x};\boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]-A-Bn)^2\right\}$$

Example 3.7

Line fitting problem: Estimate A and B from the data x[n]

$$x[n] = A + Bn + w[n]$$
 $n = 0, 1, ..., N - 1$

Fisher Information matrix

$$\mathbf{I}(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \begin{bmatrix} N & \sum_{\substack{n=0\\N-1}}^{N-1} n \\ \sum_{\substack{n=0\\n=0}}^{N-1} n & \sum_{\substack{n=0\\n=0}}^{N-1} n^2 \end{bmatrix} = \frac{1}{\sigma^2} \begin{bmatrix} N & \frac{N(N-1)}{2} \\ \frac{N(N-1)}{2} & \frac{N(N-1)(2N-1)}{6} \end{bmatrix}$$

Example 3.7

Line fitting problem: Estimate A and B from the data x[n]

$$x[n] = A + Bn + w[n]$$
 $n = 0, 1, ..., N - 1$

Fisher Information matrix

$$\mathbf{I}^{-1}(\boldsymbol{\theta}) = \sigma^2 \begin{bmatrix} \frac{2(2N-1)}{N(N+1)} & -\frac{6}{N(N+1)} \\ -\frac{6}{N(N+1)} & \frac{12}{N(N^2-1)} \end{bmatrix} \qquad \operatorname{var}(\hat{B}) \geq \frac{2(2N-1)\sigma^2}{N(N+1)} \\ \operatorname{var}(\hat{B}) \geq \frac{12\sigma^2}{N(N^2-1)}.$$

In this case, the quality of A is degraded if B is unknown (4 times if N is large)

Example 3.7

How to find the MVU estimator?

Example 3.7

How to find the MVU estimator?

Use the CRLB!

Furthermore, an unbiased estimator may be found that attains the bound in that $C_{\hat{\theta}} = \mathbb{I}^{-1}(\theta)$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
(3.25)

for some p-dimensional function g and some $p \times p$ matrix I. That estimator, which is the MVU estimator, is $\hat{\theta} = g(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

Example 3.7

Not easy to see this....

Find the MVU estimator.

We have

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A} \\ \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial B} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn) \\ \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn)n \end{bmatrix}$$
$$= \begin{bmatrix} \frac{N}{\sigma^2} & \frac{N(N-1)}{2\sigma^2} \\ \frac{N(N-1)}{2\sigma^2} & \frac{N(N-1)(2N-1)}{6\sigma^2} \end{bmatrix} \begin{bmatrix} \hat{A} - A \\ \hat{B} - B \end{bmatrix}$$
$$\hat{A} = \frac{2(2N-1)}{N(N+1)} \sum_{n=0}^{N-1} x[n] - \frac{\hat{\theta}}{N(N+1)} \sum_{n=0}^{N-1} nx[n]$$
$$\hat{B} = -\frac{\hat{\theta}}{N(N+1)} \sum_{n=0}^{N-1} x[n] + \frac{12}{N(N^2-1)} \sum_{n=0}^{N-1} nx[n]$$

Example 3.7

Not easy to see this....

Find the MVU estimator.

We have $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial A} \\ \frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial B} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn) \\ \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn)n \end{bmatrix}$ $= \begin{bmatrix} \frac{N}{\sigma^2} & \frac{N(N-1)}{2\sigma^2} \\ \frac{N(N-1)}{2\sigma^2} & \frac{N(N-1)(2N-1)}{6\sigma^2} \end{bmatrix} \begin{bmatrix} \hat{A} - A \\ \hat{B} - B \end{bmatrix}$ No dependency on parameters to estimate $\hat{A} = \frac{2(2N-1)}{N(N+1)} \sum_{n=0}^{N-1} x[n] - \frac{6}{N(N+1)} \sum_{n=0}^{N-1} nx[n]$ No dependency on x[n] $\hat{B} = -\frac{6}{N(N+1)} \sum_{n=1}^{N-1} x[n] + \frac{12}{N(N^2-1)} \sum_{n=1}^{N-1} nx[n]$

Example 3.8

DC level in Gaussian noise with unknown density.

Estimate SNR $\alpha = \frac{A^2}{\sigma^2}$

Example 3.8

DC level in Gaussian noise with unknown density.

Estimate SNR $\alpha = \frac{A^2}{\sigma^2}$

Fisher information matrix $\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$

$$\mathbf{C}_{\hat{\alpha}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \geq 0$$

Example 3.8

DC level in Gaussian noise with unknown density.

Estimate SNR $\alpha = \frac{A^2}{\sigma^2}$

Fisher information matrix $\mathbf{I}(\boldsymbol{\theta}) =$

$$(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

From proof of CRLB

$$\mathbf{C}_{\hat{\alpha}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \geq 0$$

 \mathbf{T}

$$\frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial g(\boldsymbol{\theta})}{\partial \theta_1} & \frac{\partial g(\boldsymbol{\theta})}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial g(\boldsymbol{\theta})}{\partial A} & \frac{\partial g(\boldsymbol{\theta})}{\partial \sigma^2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{2A}{\sigma^2} & -\frac{A^2}{\sigma^4} \end{bmatrix}$$

Example 3.8

DC level in Gaussian noise with unknown density.

Estimate SNR $\alpha = \frac{A^2}{\sigma^2}$

Fisher information matrix $I(\theta)$

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

So

$$\mathbf{C}_{\hat{\alpha}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \ge 0$$

$$\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})^{T}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{2A}{\sigma^{2}} & -\frac{A^{2}}{\sigma^{4}} \end{bmatrix} \begin{bmatrix} \frac{\sigma^{2}}{N} & 0\\ 0 & \frac{2\sigma^{4}}{N} \end{bmatrix} \begin{bmatrix} \frac{2A}{\sigma^{2}} \\ -\frac{A^{2}}{\sigma^{4}} \end{bmatrix}$$

$$= \frac{4A^{2}}{N\sigma^{2}} + \frac{2A^{4}}{N\sigma^{4}}$$

$$= \frac{4\alpha + 2\alpha^{2}}{N}.$$

$$\operatorname{var}(\hat{\alpha}) \geq \frac{4\alpha + 2\alpha^2}{N}$$

Section 3.9. Derivation of Fisher matrix for Gaussian signals

A common case is that the received signal is Gaussian

 $\mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}(\boldsymbol{\theta}), \mathbf{C}(\boldsymbol{\theta})\right)$

Convenient to derive formulas for this case (see appendix for proof)

$$\begin{bmatrix} \mathbf{I}(\boldsymbol{\theta}) \end{bmatrix}_{ij} = \begin{bmatrix} \frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_i} \end{bmatrix}^T \mathbf{C}^{-1}(\boldsymbol{\theta}) \begin{bmatrix} \frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_j} \end{bmatrix} \\ + \frac{1}{2} \operatorname{tr} \left[\mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_i} \mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_j} \right]$$

When the covariance is not dependent on $\boldsymbol{\theta}$, the second term vanishes, and one can reach

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \frac{\partial s[n;\boldsymbol{\theta}]}{\partial \theta_i} \frac{\partial s[n;\boldsymbol{\theta}]}{\partial \theta_j}$$

Example 3.14

Consider the estimation of A, f_0 , and φ

 $x[n] = A\cos(2\pi f_0 n + \phi) + w[n] \qquad n = 0, 1, \dots, N-1$

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \frac{\partial s[n; \boldsymbol{\theta}]}{\partial \theta_i} \frac{\partial s[n; \boldsymbol{\theta}]}{\partial \theta_j}$$

Example 3.14

Consider the estimation of A, f_0 , and ϕ

 $x[n] = A\cos(2\pi f_0 n + \phi) + w[n]$ n = 0, 1, ..., N - 1

$$\mathbf{I}(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \begin{bmatrix} \frac{N}{2} & 0 & 0\\ 0 & 2A^2 \pi^2 \sum_{n=0}^{N-1} n^2 & \pi A^2 \sum_{n=0}^{N-1} n\\ 0 & \pi A^2 \sum_{n=0}^{N-1} n & \frac{NA^2}{2} \end{bmatrix}$$

Interpretation of the structure?

$$\left[\mathbf{I}(\boldsymbol{ heta})
ight]_{ij} = rac{1}{\sigma^2}\sum_{n=0}^{N-1}rac{\partial s[n; \boldsymbol{ heta}]}{\partial heta_i}rac{\partial s[n; \boldsymbol{ heta}]}{\partial heta_j}$$

Example 3.14

Consider the estimation of A, f_0 , and φ

 $x[n] = A\cos(2\pi f_0 n + \phi) + w[n] \qquad n = 0, 1, \dots, N - 1$

$$\mathbf{I}(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \begin{bmatrix} \frac{N}{2} & 0 & 0\\ 0 & 2A^2 \pi^2 \sum_{n=0}^{N-1} n^2 & \pi A^2 \sum_{n=0}^{N-1} n\\ 0 & \pi A^2 \sum_{n=0}^{N-1} n & \frac{NA^2}{2} \end{bmatrix} \quad \mathbf{var}(\hat{f}_0) \geq \frac{2\sigma^2}{N}$$
$$\mathbf{var}(\hat{f}_0) \geq \frac{12}{(2\pi)^2 \eta N(N^2 - 1)}$$
$$\mathbf{var}(\hat{\boldsymbol{\phi}}) \geq \frac{2(2N - 1)}{\eta N(N + 1)}$$

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \frac{\partial s[n; \boldsymbol{\theta}]}{\partial \theta_i} \frac{\partial s[n; \boldsymbol{\theta}]}{\partial \theta_j}$$

Frequency estimation decays as 1/N³

 $\eta = A^2/(2\sigma^2)^2$

Section 3.10: Asymptotic CRLB for Gaussian WSS processes

For Gaussian WSS processes (first and second order statistics are constant) over time The elements of the Fisher matrix can be found easy

$$\left[\mathbf{I}(\boldsymbol{\theta})\right]_{ij} = \frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\partial \ln P_{xx}(f;\boldsymbol{\theta})}{\partial \theta_i} \frac{\partial \ln P_{xx}(f;\boldsymbol{\theta})}{\partial \theta_j} df$$

Where P_{xx} is the PSD of the process and N (observation length) grows unbounded

This is widely used in e.g. ISI problems

Definition

$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$

$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$

 $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

This is the linear model, note that in this book, the noise is white Gaussian

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

Let us now find the MVU estimator....How to proceed?

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[-\ln(2\pi\sigma^2)^{\frac{N}{2}} - \frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T(\mathbf{x} - \mathbf{H}\boldsymbol{\theta}) \right]$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[-\ln(2\pi\sigma^2)^{\frac{N}{2}} - \frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T(\mathbf{x} - \mathbf{H}\boldsymbol{\theta}) \right]$$

$$= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \boldsymbol{\theta}} \left[\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{H}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{H}^T \mathbf{H}\boldsymbol{\theta} \right]$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \mathbf{b}^T \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b}$$
$$\frac{\partial \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A} \boldsymbol{\theta}$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[-\ln(2\pi\sigma^2)^{\frac{N}{2}} - \frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T(\mathbf{x} - \mathbf{H}\boldsymbol{\theta}) \right]$$

$$= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \boldsymbol{\theta}} \left[\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{H}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{H}^T \mathbf{H}\boldsymbol{\theta} \right]$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \mathbf{b}^T \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b}$$
$$\frac{\partial \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A} \boldsymbol{\theta}$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{\sigma^2} [\mathbf{H}^T \mathbf{x} - \mathbf{H}^T \mathbf{H} \boldsymbol{\theta}]$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \mathbf{b}^T \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b}$$
$$\frac{\partial \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A} \boldsymbol{\theta}$$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$
$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{\sigma^2} [\mathbf{H}^T \mathbf{x} - \mathbf{H}^T \mathbf{H} \boldsymbol{\theta}]$$
$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\mathbf{H}^T \mathbf{H}}{\sigma^2} [(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x} - \boldsymbol{\theta}]$$

Definition $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

$$\mathbf{x} = [x[0] x[1] \dots x[N-1]]^T$$
$$\mathbf{w} = [w[0] w[1] \dots w[N-1]]^T$$
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\frac{\partial \mathbf{b}^T \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b}$$
$$\frac{\partial \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A} \boldsymbol{\theta}$$

Let us now find the MVU estimator

Conclusion 1: MVU estimator (efficient) $\hat{\theta} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$ Covariance $\mathbf{C}_{\hat{\theta}} = \mathbf{I}^{-1}(\boldsymbol{\theta}) = \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1}$

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \mathbf{I}(\theta)(\mathbf{g}(\mathbf{x}) - \theta)$$

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2} [\mathbf{H}^T \mathbf{x} - \mathbf{H}^T \mathbf{H} \theta]$$

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2} [\mathbf{H}^T \mathbf{x} - \mathbf{H}^T \mathbf{H} \theta]$$

$$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1})$$

Example 4.1: curve fitting

Task is to fit data samples with a second order polynomial

$$x(t_n) = \theta_1 + \theta_2 t_n + \theta_3 t_n^2 + w(t_n)$$
 $n = 0, 1, ..., N-1$

We can write this as

and the (MVU) estimator is

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$$

 $\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$

$$\mathbf{x} = [x(t_0) x(t_1) \dots x(t_{N-1})]^T$$

$$\boldsymbol{\theta} = [\theta_1 \theta_2 \theta_3]^T$$

$$\mathbf{H} = \begin{bmatrix} 1 & t_0 & t_0^2 \\ 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_{N-1} & t_{N-1}^2 \end{bmatrix}.$$

Section 4.5: Extended linear model

Now assume that the noise is not white, so

 $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

Further assume that the data contains a known part s, so that we have

 $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{s} + \mathbf{w}$

We can transfer this back to the linear model by applying the following transformation:

x'=D(x-s)

where

Section 4.5: Extended linear model

In general we have

Theorem 4.2 (Minimum Variance Unbiased Estimator for General Linear Model) If the data can be modeled as

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{s} + \mathbf{w} \qquad (4.30)$$

where x is an $N \times 1$ vector of observations, **H** is a known $N \times p$ observation matrix (N > p) of rank p, θ is a $p \times 1$ vector of parameters to be estimated, s is an $N \times 1$ vector of known signal samples, and w is an $N \times 1$ noise vector with PDF $\mathcal{N}(0, \mathbb{C})$, then the MVU estimator is

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} (\mathbf{x} - \mathbf{s})$$
(4.31)

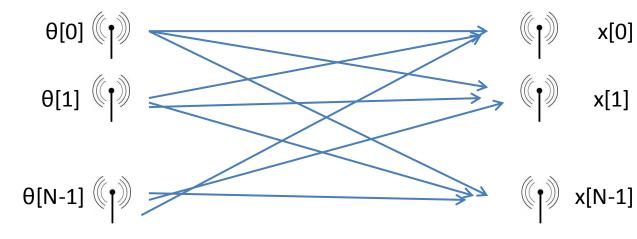
and the covariance matrix is

$$C_{\hat{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$
 (4.32)

For the general linear model the MVU estimator is efficient in that it attains the CRLB.

Example: Signal transmitted over multiple antennas and received by multiple antennas

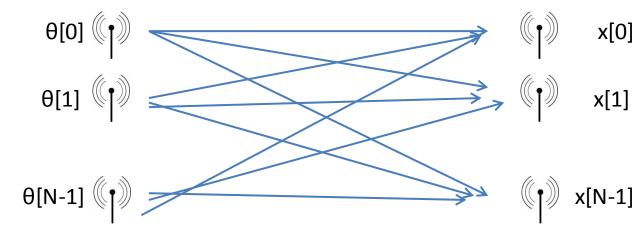
Assume that an unknown signal **\Theta** is transmitted and received over equally many antennas



All channels are assumed Different due to the nature of radio propagation

Example: Signal transmitted over multiple antennas and received by multiple antennas

Assume that an unknown signal **\Theta** is transmitted and received over equally many antennas

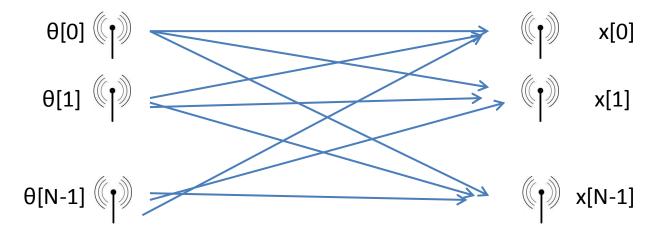


All channels are assumed Different due to the nature of radio propagation

The linear model applies $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

Example: Signal transmitted over multiple antennas and received by multiple antennas

Assume that an unknown signal **\Theta** is transmitted and received over equally many antennas



All channels are assumed Different due to the nature of radio propagation

The linear model applies $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

So, the best estimator (MVU) is $\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$ which is the ZF equalizer in MIMO