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14.4: Choosing an estimator

‘ zin) = Alnj+wh] n=01,...,N-1 ‘
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Complex-valued models

Consider the following complex-valued estimation problem

JA) = 3 [&n] - Asfn)f?

n=I}

Where all quantities are complex-valued (~ means complexin Kay)

In the real-valued case we can take the differential with respect to A, set to 0, and solve



Complex-valued models

Consider the following complex-valued estimation problem

JA) = 3 [&n] - Asfn)f?

n=0

Where all quantities are complex-valued (~ means complexin Kay)

In the real-valued case we can take the differential with respect to A, set to 0, and solve

To take a differential, we must go back to the definition of a differential

f'(20) = lim I

| zZ— Zp

Note: z is assumed to be complex valued
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For the definition to be meaningful, the limit must exist, and not depend on the
direction that one approahces z,
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Complex-valued models

For the definition to be meaningful, the limit must exist, and not depend on the
direction that one approahces z,

When this is true, the function f(z) is said to be analytic/holomorphic

Or, in other words: An analytical function allows one to take differentials



Complex-valued models

For the definition to be meaningful, the limit must exist, and not depend on the
direction that one approahces z,

When this is true, the function f(z) is said to be analytic/holomorphic

A function is analytical when the Cauchy-Riemann equations are satisfied

f(z) = f(x+iy) = u(x,y) + iv(x,y)

ou v Ju dv
= and — =

dr — dy dy O




Complex-valued models

N1

J(A) = 3" |z[n] — As[n])®

n==I{}

Let us now return to the complex-valued estimation problem

Is it analytical so that we can take differentials??

f(z) = f(x+iy) = u(x,y) + iv(x,y)

ou v Ju dv
= and — =

dr — dy dy O




Complex-valued models

N1

J(A) = 3" |z[n] — As[n])®

n==I{}

Let us now return to the complex-valued estimation problem
Is it analytical so that we can take differentials??

No. Since v(x,y) = 0, we have that dv/dx=dv/dy=0
The only real-valued functions that are analytical are constantfunctions

=0
f(z) = f(x+iy) = u(x,y) +iv(x,y) / \\
4




Complex-valued models

N1

J(A) = 3" |z[n] — As[n])®

n==I{}

All estimation (in general: optimization) problems have real-valued cost functions

We must abandon the normal definition of differential

~—

More fundamentally, we cannot regard z as being one number. We must consider it to
be two numbers: its real-part and its complex-part.



Complex-valued models

We will do two things next:
1. Deal with the complex case as a multivariate optimization problem.

2. Show that with clever book-keeping, this multivariate treatment can be writtenin a
form that resembles normal real-valued algebra.

Recall: In no cases will the differential be found through the formula

f'(z0) = lim f(z) — f(2)

=30 zZ— 20




Complex-valued models

Expressing A = Ag+iA, etc, we have

J(A) = Z — A3[n))?

—
N-1
J(Ag, A5} = Z|IR[ﬂ]+j33!['n]-{AR+jAI)(SR[n]+'jSI[n])|2

n=0



Complex-valued models

Expressing A = Ag+iA, etc, we have

J(A) = Z — A3[n))?

—
N-1

J(Ag, A5} = Z|IR[ﬂ]+j33!['n]-{AR+jAI)(SR[n]+'jSI[n])|2

n=0
N-=1

— Z [.T:R[n] - ARSR[H] -+ Afﬁj[ﬂl)z + (If{ﬂ] - ARSI["*] = AISR[“]}2

e

|zg+iz)|? = | 25|% + |z]?



Complex-valued models

Expressing A= Ag+iA, etc, we have

J(A) = Z — A3[n))?

—
N-1
J(Ag, A5} = Z \zrln] + jzrln] = (AR + jA1)(srln] + jsi[n])}?
N=1
= Z [IR[H] - ARSR[H] + A;S;[ﬂl)z + (Ij‘{ﬂ] — ARSI[H] — 1’11,1’5R['~"1']}2

This is a quadraticform in A;and A, Define A =[Ag A;]"

Some algebra will yield something of the form
V(Ag,A) = bTA+ATCA

Where b is a 2x1 vector and Cis 2x2



Complex-valued models

We can now take normal differentials with respect to the real vector A

J(Ag,A) = bTA+ATCA



Complex-valued models

We can now take normal differentials with respect to the real vector A

We have seen this repeatedly in the course, and the final result is

EEIR + 5?1;

Ji. ERER + 5; 8 X is here a vector containingall x[n] (etc)
shx; —stxp

| sksp+s7s;

J(Ag,A) = bTA+ATCA



Complex-valued models

We can now take normal differentials with respect to the real vector A

We have seen this repeatedly in the course, and the final result is

SEXgp + 8] X;
ShSg + 81 8;

A = T - Going back to complex-valued notation, we get
ERIf - Elr IH
— —~ * . T
shsp+s1s; | | 3 — SRXRTSIXifJSkXr— jsiXn

sksp +87s;
(xr + jx1)"(sr — Js1)
sksp +sls;
N-1
Z[n|5™[n]
U

=
N—-1

pE

=0




Complex-valued models

We can now take normal differentials with respect to the real vector A

We have seen this repeatedly in the course, and the final result is

SEXgp + 8] X;
ShSg + 81 8;

A = T - Going back to complex-valued notation, we get
ERIf - Elr IH
— —~ * . T
shsp+s1s; | | 3 — SRXRTSIXifJSkXr— jsiXn

sksp +87s;
(xr + jx1)"(sr — Js1)
sksp +sls;
N-1
Z[n|5™[n]
U

This approach is valid, but in-efficient

(a notational nightmare)
=

N-1

pE

=0




Complex-valued models

Let us now gow back a step J(ﬁ}

I

N-—-1 N
> [&[n) — A[n)f?
n=0

We need to compute 6_J and ﬂ
OAR 0A;

Then, we should set them both to 0



Complex-valued models

I

Let us now gow back a step J(ﬁ}

N-—-1 N
> [&[n) — A[n)f?
n=0

oJ and aJ

We need to compute vs
0Ap OA;

Then, we should set them both to 0

To keep track of both of them, we can form the quantity

aJ oJ . aJ

94 ~ o4n 34,



Complex-valued models

I

Let us now gow back a step J(ﬁ}

N-—-1 N
> [&[n) — A[n)f?
n=0

oJ and aJ

We need to compute vs
0Ap OA;

Then, we should set them both to 0

To keep track of both of them, we can form the quantity

Ty _ 7
A Ap

However, to obtain some nice formulas later, Kay (but not all other authors)
choose to keep track of the differentials as

oJ I(BJ .6J)

84 2\0Ar 704,




Complex-valued models

Note that we have

%zﬂ if and only if 3?3 =0 and g—i =0

With the new book-keeping, our definition of differential "behaves as normal”

Q
S

|
|

1(6.1_.6.1)
5A  2\0Anp 04,




Complex-valued models

Note that we have

g—juﬂ if and only if 3?3 =0 and g—i =0

With the new book-keeping, our definition of differential "behaves as normal”

8J oJ . 8J f(z) — f(z)
RECALLAGAIN  —— = (3AR JBA;) ISNOT  f'(20) = lim ——

3J_1(6J .6J)
T2

3A 9An 84,




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

Let us consider first 98 -

0o
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|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

Let us consider first % _ 1 (Bi 3;:3) (a+ j0)



Complex-valued models

|

To efficientlyuse 2 —
0 0Ar ~O0A;

oJ % ( o0J . 0J ) we need some properties of it

Let us consider first @

0o

il



Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

Let us consider first % 1 (Bi 3;:3) (a+j5)
(30: . a8 o 3ﬁ)
5 1oa o5 38

(1450 —j0+1)

il

b |



Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

0 3\3a a3
(3a+ a8 o 3ﬁ)
3o ‘o ‘o5 T o

(1450 —j0+1)

Let us consider first 99 L ( 4 Y ) (a+ 70)

il

b |



Complex-valued models

oJ % ( o0J . 0J ) we need some properties of it

To efficientlyuse 2 — —
0 0Arp " O0A;

Let us now consider ‘?;; _ % (Si Jﬁ?ﬂ) (a + jB)
1 (Ekx a3 O BJ)
= 3\8a Yo 7o " 5B

1




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

NN 1/ 8 ) “—
Let us now con5|der o s o a y
a8 = 2(3& 5’33)(““’3)

1 (aa /.88 .da 8;3)
—_ S +J_ — ‘?_ _
2 \ O Oa ap  ag
(1+ j0 —j0+1)
‘\ 1‘ Change signs here

il

Nl




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

26 = 2\3a ‘33
(80: 3 da aﬁ)

Let us now consider 9¢° 1 ( 9 9 ) (a—3B)

— | — —

3a o0 '35 "8
(1—j0~30—1)

il

b |




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

From the definition, the chain rule continues to hold

9 B G
59 X(OY(6) = Y(B) = X(6) + X(8) = V(6)
a0 6°




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

5 ) we need some properties of it

From the definition, the chain rule continues to hold

9 B G
59 X(OY(6) = Y(B) = X(6) + X(8) = V(6)

In particular, this implies that

o .. 80, 80" -
%99 —366‘ +6'39 =1-6"+0.0=0

a6 06 8 5 5

— =1 =U - — v o

09 a8 59 X(OIY(6) = Y(8) = X(B) + X(8) = Y(6)




Complex-valued models

|

To efficiently use 3_{ 1( 0J _jﬂ
2 \0Ar ~0A;

) we need some properties of it
0

a -
% g8 = @
a6 06 8 5 5
— =1 = U - — v o
a0 o8 50 X(B)Y(6) = Y(B) 25 X(0) + X(6) 5 Y(6)




Let us now return to the "notational nightmare” and solve it with % = % (

Complex-valued models

oJ ,0J

9An B4,

N1

J(A) = 3" |z[n] — As[n])®

=1}

% 06 =6

)



Complex-valued models

Let us now return to the “notational nightmare” and solve it with 9J _ % ( 81 _.90J )

94 DA,
. N1 }
J(A) = |&[n] - A3[n]]?
=0

aJ g ol - 2

= = T3 E[n] — A3[n]

S Sl #1 |

bals) 06* ]

36 o6 =" 5699 =0




Complex-valued models

Let us now return to the "notational nightmare” and solve it with % = % ( ;‘; ~J ;j})
. N-—-1 .
J(A) =} |7[n] — A[n]”
=0
8J 0 &= TN
0A 0A ,_,;] | l
N=1 a N _
- ; - (12[n]} - 2ln] A"5*[n) — AS[n)2"[n] + A& |3(n)1?)
oo 06* 0

50 56 a6 99" ="




Complex-valued models

Let us now return to the "notational nightmare” and solve it with % = % ( ;‘; ~J ;j})
. N-—-1 .
J(A) =} |7[n] — A[n]”
=0
8J 0 &= TN
0A 0A ,_,;] | l
N=1 a N _ -
= ; - (12n)* — 2[n)4*5° 0] - A3[n)a*[n] + AA"|3[n)|?)
a0 06" O poe_ e




Complex-valued models

Let us now return to the “notational nightmare” and solve it with % = % ( 81 _.90J )

9An B4,

N1

J(A) =3 |Z[n] - A3[n]|’
O ) N=1 ) 2
—aj—i = 3i 5__ |:T:[n] — A.§[n]|

N=1 9 N
Z oA (12ln]f* — [n] 45" [n] - A3[n]* [n] + AA" |3{n)?)

N-1

2 (0

n=

f"'_-"“'

— 5[n)E*[n] + zi*|§[n}|2) .

96 a6 " g 99" ="




Complex-valued models

” . . ” . . aJ 1/ dJ L oJ
Let us now return to the “notational nightmare” and solve it with 5i= 2 (6AR —JaAI)
. N—-1 .
J(A) =) |i[n] ~ A3[n]]*
=0
8J 9 = 2
—_— = = ‘.'E[ﬂ] — Ag[ﬂ]
0A 0A ; | l
N-l a _ - -
_ ; 7 (l:i[n]F — E[n]A"5"[n] — A3[n]E"[n] + AA*|§[n]12)
N-1 )
= Z (0 — 0 = 3[n|z*[n] + A"|§[n}|2) : N—1
n=o Y _En)5"[n]
‘A’L — n=0
59 86 o . .. o 1o
25 = 1 5 =0 55 96" =10 ;m[nn




Complex-valued models

For vector valued parameters we can, in the same fashion, reach the formulas

ob'e .,  98%Db

56 ~ D 58 U

96" A . H
Y- = (AB)", where A¥ = A




Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)



Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

Variance is defined as

var(f) = E (2 - BE(#)[*) = E() - |E(®)/”



Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

Variance is defined as
var(Z) = E (& - E(%)|?) = E(1Z*) - |E(&)[?
= E([xg[?) + E(]x,]?) - E(xg) - E(x,

= var(xg) + var(x,)



Complex-valued models

Complex Gaussian PDFs

Let

The pdfof u,vis  p(u,v) =

Twice the variance

Z =u+ jv Wwhere uandvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)




Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

The pdfof u,vis  p(u,v) = exp [_

Square root



Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

The pdfof u,vis  p(u,v) = exp [_




Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

The pdfof u,vis  p(u,v) = exp [_

Define f = E(Z) = py + jtto

Then p(Z)=——5exp|——I|Z — A
ﬂ’a’ U ° [ ~N
< Variance (since var(x) = var(xg) + var(x,) )




Complex-valued models

Complex Gaussian PDFs

let Zz =u+jv whereuandyvareindependent Gaussians

N{(py,0%/2) and Ny, 0%/2)

The pdfof u,vis  p(u,v) = exp [_

No squareroot



Theorem 15.1 (Complex Multivariate Gaussian PDF) If a real random vector
x of dimension 2n x 1 can be partitioned as

u nxl
X = =

v nxl
where u, v are real random vectors and X has the PDF

Ho C C

X ~ N' : [ Hu uv ])
([ Hy ] Cou Con

and C,, =C,, and C,, = —C,,

then defining the nx 1 complez random vector X = u+jv, X has the complex multivariate
Gaussian PDF

X ~ CN(ﬁ? Ci)
where
o= p, tin,
C: = 2(Cu.+7Cuu)
or more exrplicitly
1 - - Arn
exp [—(x - 2)"Cz ' (x — )] . (15.22)

P(X) = o get(Cy)



Theorem 15.1 (Complex Multivariate Gaussian PDF) If a real random vector
x of dimension 2n x 1 can be partitioned as

u nxl
X = =

v nxl
where u, v are real random vectors and X has the PDF

Ho C C

X ~ N' : [ Hu uv ])
([ Hy ] Cou Con

and C,, =C,, and C,, = —C,,

Important remark: Not all vectors with complex Gaussian
elements are multivariate complex Gaussian. Not even if the
underlying real Gaussians are jointly Gaussian

It MUST hold that C,, = C,, and C,, = —C,,,

Meaning of this is, e.g., that the variance is equal for the real and
imag parts (circularily symmetric)




Complex-valued models

Example

Thus, %~ CN(HS,C)

Find MLE



Complex-valued models

Example

Thus, x~CN(HE,C)

The pdf is exp [—(X — HO)?C'(x - HO)]

P(%:0) = TX 3et(C)



Complex-valued models

Example

Thus, %~ CN(HS,C)

The pdf is exp [—(X — HO)?C'(x - HO)]

PX:0) = ¥ 3et(C)

Take log, and differential )
dlnp(%;0) (% — HO)*C'(x — HY)
a0 06




Complex-valued models

Example

Thus, %~ CN(HS,C)

The pdf is exp [—(X — HO)?C'(x - HO)]

PX:0) = ¥ 3et(C)

Take log, and differential
dln p(i; 9) _ _3(i - HQ)HC‘l(i — Hﬂ)
a0 06

Expand  J— §#C~ 15— x7C~'HO - 8FHYC '3 + "H*C'HE

aJ

rer—

06



Complex-valued models

Example
obeg . 88%b
EY) =b 50 =0
0607 A0

= (AB)", where A" = A

a8

Expand  J— §#C~ 15— x7C~'HO - 8FHYC '3 + "H*C'HE
aJ

rer—

06



Complex-valued models

Example
obeg . 88%b
EY) =b 50 =0
0607 A0

= (AB)", where A" = A

a8

Expand  J— §#C~ 15— x7C~'HO - 8FHYC '3 + "H*C'HE

% _ - (B¥CT'%)" -0+ (HC'HO)'

96
HC'(x - HY)]"



Complex-valued models

Example
obeg . 88%b
EY) =b 50 =0
0607 A0

= (AB)", where A" = A

a8

Expand  J— §#C~ 15— x7C~'HO - 8FHYC '3 + "H*C'HE

2 = 0-(BYC7'%) -0+ (HICHY)'

{HHC_l(i — Hﬂ)]* é. — (HHC—IH)—IHHCﬂli




Continuous time — discrete time

| will briefly cover two parts (if time permits)

1. Karhunen-Loeve decomposition
2. Practical (mathematical) conversion



On Bandwidth

DAVID SLEPIAN, FELLOW, IEEE

Abstract-1t is easy to argue that real signals must be bandlimited.
It is also easy to argue that they cannot be so.
THE DILEMMA

RE SIGNALS really bandlimited? They seem to be, and
A yet they seem not to be.

On the one hand, a pair of solid copper wires will
not propagate electromagnetic waves at optical frequencies,
and so the signals I receive over such a pair must be band-
limited. In fact, it makes little physical sense to talk of energy
received over wires at frequencies higher than some finite
cutoff W, say 10?° Hz. It would seem, then, that signals must
be bandlimited.

On the other hand, however, signals of limited bandwidth W
are finite Fourier transforms,




On Bandwidth

DAVID SLEPIAN, FELLOW, IEEE

W
s(2) =f e*™ S(f) df
-W

and irrefutable mathematical arguments show them to be
extremely smooth. They possess derivatives of all orders.
Indeed, such integrals are entire functions of ¢, completely
predictable from any little piece, and they cannot vanish on
any t interval unless they vanish everywhere. Such signals
cannot start or stop, but must go on forever. Surely real
signals start and stop, and so they cannot be bandlimited!




Continuous time — discrete time

Karhunen-Loeve decomposition
Recall the operations of the MMSE estimator in discrete time:

It starts by whitening the observations

Correlated signals carries littleinformation, so a clear goal of the conversion should be to
produce uncorrelated samples



Continuous time — discrete time

Karhunen-Loeve decomposition

We seek to expand the signal in the form

N
Xty = lim > x(t), 0=t=T
i=1

N=—w .

% O f " x(t) (0 dt.

0

We work with convergence in the MSE sense, i.e.

N—aoo

lim E th _ é x, gsi(r)ﬂ 0, 0<i<T



Continuous time — discrete time

Karhunen-Loeve decomposition

We seek to expand the signal in the form
N

Xty = lim > x(t), 0=t=T

% O f " x(t) (0 dt.

0

The constraint that the x;’s should be uncorrelated reads

E(xx;) = Ady.



Continuous time — discrete time

Karhunen-Loeve decomposition

We seek to expand the signal in the form
N

x(t) = lim > xg¢(), 0

IA
IA
=

% O f " x(t) (0 dt.

ﬂj{_value x;? has a simple physical interpretation. It corresponds to
ergy along the coordinate function #(t) in a particular sample

f!_l’?_lrly, £(x;®) = A corresponds to the expected value of the energy
£}y assuming that m, = 0. Clearlv. & > 0 for all 7.



Continuous time — discrete time

Karhunen-Loeve decomposition

Let us now examine the requirements on the basis for having uncorrelated coefficients

MOy = E(xx;)
-z|[ " x(0) 40) de ) X0 40 o

T T
= J; bi(t) dt f Kt u) p{u) du, foralliand;.
v U

o

Ki(t,u) = E(x(t)x(u))



Continuous time — discrete time

Karhunen-Loeve decomposition

Let us now examine the requirements on the basis for having uncorrelated coefficients

MOy = E(xx;)
-z|[ " x(0) 40) de ) X0 40 o

T T
= J; (1) dt f Kt u) p{u) du, foralliand;.
.o O
\

J

(0




Continuous time — discrete time

Karhunen-Loeve decomposition

Let us now examine the requirements on the basis for having uncorrelated coefficients

MOy = E(xx;)
-z|[ " x(0) 40) de ) X0 40 o

T T
= J; bi(t) dt f Kt u) p{u) du, foralliand;.
| 0 |

- A (1)

A (1) = f Kt w) ) du, O<t<T




Continuous time — discrete time

Karhunen-Loeve decomposition

Most important properties:

EU:xz(z) a’rJ =J;chx(z, ) dt = _;i)«i

Mercer’stheorem K., (¢, u) = zl A pi(2) b (u), O0<t,ux<T,

A (1) = f Kt w) ) du, O<t<T




Continuous time — discrete time

Karhunen-Loeve decomposition

Most important properties:

e B0 2 E (0 - S]]

—

for any € > O there exists an N, independent of t such that
éx(t) < eforall N > N,

A (1) = f Kt w) ) du, O<t<T




Continuous time — discrete time

Karhunen-Loeve decomposition

Most important properties:

e B0 2 E (0 - S]]

—

for any ¢ > O there exists an N, independent of t such thit
éx(t) < eforall N > N,

Thus, with N, basis functions, we can represent x(t) with a small loss €

A (1) = f Kt w) ) du, O<t<T




Continuous time — discrete time

Karhunen-Loeve decomposition
A very importantapplication area of Karhunen — Loeve: Time variant Gaussian process

For more details, see Van Trees 1968



Continuous time — discrete time

Karhunen-Loeve decomposition

Bandlimited processes

P

AT < W,
Spectrum of process: Sx(w) — I2W lf‘

0, |l > W,

Observation time of the process: T seconds



Continuous time — discrete time

Karhunen-Loeve decomposition

Bandlimited processes

P
——
fl W

Spectrum of process: S, (w) = 2W | ‘ ’

0&_ lf] > W.ﬁ
Observation time of the process: T seconds

sin a(f — u)
After some math Kx(t, u)y = P ot — 1)

T2 sin off — U
And we need to solve A ¢(f) = f P ( )

-T2 a(t — u)

H(u) du.




Continuous time — discrete time

Karhunen-Loeve decomposition

Bandlimited processes

P

Y774 < W,
Spectrum of process: Sx(w) - J2W lfl

0, fl > W,

Observation time of the process: T seconds

sin a(f — u)
a(t — u)

After some math Kx(r, u)y = P

*I2sin off — u
And we need to solve A ¢(f) = f P al )

-T2 a(t — u)

H(u) du.

Solutions are well known: prolate spheroidal wave functions



Continuous time — discrete time

A process of bandwidth W observed for T seconds

Karhunen-Loeve decomposition is 2WT+1 dimensional

Interesting discovery

Eigenvaluesabove
2WT+1 are almost zero

2WT=255

— i Y— —

No=0.996 -
A1 =0.912 %
Ag=0.519 5

s = 0.0004 s

2WT=510

—_— e ———]

e — — bl S — —

o= 1.000
1= 0.999 57

Ao =0.997 51
Ag=0.961 3=
A= 0.748 2
A5 =0.321 3

g = 0.0004 %




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

In reality, the signal may be approximately band-limited, but the noise is typically not
Followingthe sampling theorem yields horrible results



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

In reality, the signal may be approximately band-limited, but the noise is typically not
Followingthe sampling theorem (based on signal only) yields horrible results

A
/—'—\\\ o —— —
noise
=




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

In reality, the signal may be approximately band-limited, but the noise is typically not

Followingthe sampling

theorem (based on signal only) yields horrible results

A

signal ™S

— —
— —
\

\_/' \
noise

Selecting the sampling rate as 2B yields a discrete time spectrum with folding here



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

s[n] = s(n/2B) S(w) = ??2??

noise

Selecting the sampling rate as 2B yields a discrete time spectrum with folding here



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

s[n] = s(n/2B) S(w) = ??2??

For the signal, there is no folding




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

A signal s(t) whose Fourier transform S(f) is limited to B (positive) Hz can be perfectly
reconstructed from its samples s(nT), n=...-1,0,1,2,.... Where T, = 1/2B

s[n] = s(n/2B) S(w) = ??2??

S(w)
A l l

But for the noise there is

—
— e —




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

\ Folded noise

S(w) The signal drowns in the noise, and there is
A no way to solve this in the discrete domain




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Ideally, we should filter here

\W_pass filter
A

— —
\

e

=== == ==
—_—
= ==
_—_—— =




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

However, let us first start with noise whitening. Thisis invertable, so nothingis lost

Noise whitener

— —
b S
— —
— e —




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

However, let us first start with noise whitening. Thisis invertable, so nothingis lost

A After noise whitening




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

We can now apply the low-pass filter




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Discrete time model will be

L8 w

Thus, the spectrum of the discrete time model coincides with useful
part of the continiuoussignal spectrum. Optimal A2D



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

However, this LPF is hard to implement




Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Let us filter with a realistic filter, and change the sampling rate

83 | f

Sample here



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

After filtering (but before sampling)

Sample here



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Now sample

We should take the part to the right and fold back



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Result

Is it lossy or not?



Continuous time — discrete time

Sampling theorem ( = asymptotic version of the prolate spheroidal wave functions)

To handle this, we must first filter the signal in order to avoid to fold back any noise

Result

>
18 W

Is it lossy or not? The fact that there is “more noise than necessary” can be
handled by the discrete-time processing. System is over-sampled



