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Chapters 1-3.4 



Schedule, tentative 

• Lectures: Tuesdays 10-12 in E:3139 
– Easter break? 

– 19/2 cancelled  

– Possibly 26/2 needs to be moved 

 

• Seminars: (about) every 2-3 weeks 
 

 

 

 

 



Contents 

• Chapters 1-13 in the book (+ some extra 
minor material) 

 

• I don’t know how many lectures that we 
need, depends on the amount of discussion 
at the lectures 
 

• 8-12 lectures is a good guess  

 
 

 

 

 

 



Examination 
• Reqs for passing degree (Alt. 1) 

– About 80% attendance at lectures 

– About 80% attendance at seminars 

– Presented 2 problems during seminars 

 

• Reqs for passing degree (Alt. 2) 
– Attend as much as you can 

– Solve a lot of homework problems and hand them in 

 

• 9 ECTS 

 

 

 



Estimation vs. Detection theory 

In estimation theory, we try to estimate the value of a continuous 
variable 

 

 

 

 

 

 

 

 

 

 

 

In this example, 
we try to estimate 
the distance to the 
airplane R 



Estimation vs. Detection theory 

In estimation theory, we try to estimate the value of a continuous 
variable 

 

 

 

 

 

 
In Detection Theory, we try to estimate the value of a discrete 
variable 

 

 

 

In this example, 
we try to estimate 
the distance to the 
airplane R 

If it was a detection 
problem, we would 
have tried to estimate 
the presence of an 
airplane (0/1) 



Estimation vs. Detection theory 

Simply put, 

In detection theory, we are either right or wrong 

In estimation theory, we are always wrong 

 
 



Estimation vs. Detection theory 

Remark: When the cardinality of the set is large,  

discrete problems are usually classified as 
estimation theory problems 

Two famous examples: 

• German tank problem 

– Estimate number of produced german tanks per month 
based on the number of tanks you observe at battlefield 

• Doomsday problem 

– Estimate how many more humans that will be born in the 
future from the number of humans born so far (around 1011) 

 

 

 



Some words about the book 

• Simple to read 

• For engineers, not for mathematicians 

• More than half of the book is examples 

• Many examples are used throughout the book 

• Almost no proofs 

• 99% based on discrete time. The reader is assumed to be able to 
convert continuous time to discrete on his own. Possibly, we will 
add one lecture at the end dealing with this shortcoming 

• First part is assuming deterministic parameters to estimate, 
second part is assuming random parameters 



Some words about the book 

• Simple to read 

• For engineers, not for mathemticians 

• More than half of the book is examples 

• Many examples are used throughout the book 

• Almost no proofs 

• 99% based on discrete time. The reader is assumed to be able to 
convert continuous time to discrete on his own. Possibly, we will 
add one lecture at the end dealing with this shortcoming 

• First part is assuming deterministic parameters to estimate, 
second part is assuming random parameters 

May be confusing if you have 
background on the subject, for example 
knowledge of the MMSE estimator for 
MIMO communications 



Chapter 1 

Mathematical formulation of the problem we’ll study 

 

 

 

• x[n] is a sequence of, possibly dependent, observations. These 
observations carry information about a parameter θ that we 
would like to estimate 

 

• We do this by constructing a (deterministic) function g(x) that 
produces an estimate of θ 

 
 

 

 

 

x[0] 

x[N-1] 

θ 𝜃  g(x) 
Physical 
process 



Chapter 1 

Likelihood functions vs conditional probabilities 

 

• The data x=x[0]…x[N-1] is of course dependent on the parameter we 
would like to estimate, θ, in some way 

 

• We denote by p(x;θ)  a family of PDFs parameterized by θ. In words, 
”This is the pdf that x will abide if the the unknown parameter is θ” 

 

• Note that θ is, on the most basic level, not a random variable 

 

• If θ was the realization of a random process, then we have the 
conditional pdf p(x|θ) 

• Note that a likelihood and a conditional pdf have the same formulas, it is only 
the interpretation of them that differ 
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Chapter 1 

Likelihood functions vs conditional probabilities 
 

 

 

 

Given the functional form of the family of 
likelihoods, p(x[0];θ), we can infer the value of θ 
from an observation x[0] 
 
For example, if x[0]<0, then it is unlikely that θ= θ2  



Chapter 2 – Minimum variance unbiased 
estimators 

Unbiased estimators 

 

Recall that the estimator is 

• A function only of x 

• Random, since x is random 

Since 𝜃 is random, it has an expectation E(𝜃 ). 

 

The estimator is unbiased if 

  E 𝜃 = θ,  ∀𝜃 

 

 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Unbiased estimators 

 

Recall that the estimator is 

• A function only of x 

• Random, since x is random 

Since 𝜃 is random, it has an expectation E(𝜃 ). 

 

The estimator is unbiased if 

  E 𝜃 = θ,  ∀𝜃 

 

 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Unbiased estimators 

 

Recall that the estimator is 

• A function only of x 

• Random, since x is random 

Since 𝜃 is random, it has an expectation E(𝜃 ). 

 

The estimator is unbiased if It also has a variance 

  E 𝜃 = θ,  ∀𝜃  𝑣𝑎𝑟 𝜃 = 𝐸(𝜃 − 𝜃)2 

  

 

 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Unbiased estimators 

 

Recall that the estimator is 

• A function only of x 

• Random, since x is random 

Since 𝜃 is random, it has an expectation E(𝜃 ). 

 

The estimator is unbiased if It also has a variance 

  E 𝜃 = θ,  ∀𝜃  𝑣𝑎𝑟 𝜃 = 𝐸(𝜃 − 𝜃)2 

  

 

 

 

 

 

Note: The variance of the estimator depends on θ 



Chapter 2 – Minimum variance unbiased 
estimators 

Quality of estimator 

 

A natural criterion may be the mean square error 

 

 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Quality of estimator 

 

A natural criterion may be the mean square error 

 

 

However,  

 

 

 

 

 

where b(θ) is the bias: 
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Quality of estimator 

 

A natural criterion may be the mean square error 

 

 

However,  

 

 

 

 

 

where b(θ) is the bias: 

+2𝐸( 𝜃 − 𝐸 𝜃 𝑏(𝜃)) 

=0 



Chapter 2 – Minimum variance unbiased 
estimators 

The dependence of the bias on θ is bad news, as is shown with an 
example next 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

 

 

– A: DC level to be estimated 

– w[n], zero mean white Gaussian noise 

 

 

 

Proposed estimator:             (proven optimal later) 
 
 
 
Unbiased  
 
 
 
Variance   



Chapter 2 – Minimum variance unbiased 
estimators 

 

 

– A: DC level to be estimated 

– w[n], zero mean white Gaussian noise 

 

 

 

Modified estimator:              
 
 
 
bias   
 
 
   



Chapter 2 – Minimum variance unbiased 
estimators 

 

 

– A: DC level to be estimated 

– w[n], zero mean white Gaussian noise 

 

 

 

Modified estimator:              
 
 
 
 
 
   

The optimal estimator depends on A -> Not realizable!! 



Chapter 2 – Minimum variance unbiased 
estimators 

Summary 

 

We seek a function g(x) that estimates a parameter θ well 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Summary 

 

We seek a function g(x) that estimates a parameter θ well 

 

• The natural performance metric is mse 
– But this does not work as the bias term b(θ) makes the optimal function g(x) 

dependent on θ 

 

• Restrict to the class of unbiased estimators, i.e.,  

 
– The MSE is now the variance              of the estimator, which is taken as 

performance metric 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Summary 

 

We seek a function g(x) that estimates a parameter θ well 

 

• The natural performance metric is mse 
– But this does not work as the bias term b(θ) makes the optimal function g(x) 

dependent on θ 

 

• Restrict to the class of unbiased estimators, i.e.,  

 
– The MSE is now the variance              of the estimator, which is taken as 

performance metric 

GOAL: Find unbiased g(x) with as small            as possible 

 



Chapter 2 – Minimum variance unbiased 
estimators 

 

Check point 

 

It is easy to find g(x) with a small variance,           , for example 

g(x)=0 has zero variance 

 

But g(x)=0 is not unbiased 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

 

Check point 

 

It is easy to find g(x) with a small variance,           , for example 

g(x)=0 has zero variance 

 

But g(x)=0 is not unbiased 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Minimum variance unbiased estimator (MVU) 

 

Recall, the variance of the estimator,           , depends on θ, and to be 
the optimal estimator, it must provide the smallest variance for all θ 

 

 

 

 



Chapter 2 – Minimum variance unbiased 
estimators 

Minimum variance unbiased estimator (MVU) 

 

Recall, the variance of the estimator,           , depends on θ, and to be 
the optimal estimator, it must provide the smallest variance for all θ 

 

 

 

 

The MVU exists only in some cases, see example 2.3 for a case 
where it does not exist 
Sometimes, there is not even any unbiased estimator at all 



Chapter 2 – Minimum variance unbiased 
estimators 

 

Unbiasedness for Vector parameters 

 

 

 

MVU for Vector parameters 

 

 

 

or 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

The CRLB is useful in the following ways: 
• It provides a lower bound on the variance of any unbiased estimator 

• If an MVU exists, the function g(x) will fall out as a side result 

 

 

Some properties of CRLB  
• Derived for unbiased estimators (can easily be extended to biased, but not in this 

book) 

• The bound is not always reachable (it is only a lower bound) 

• A regularity condition must hold, so the CRLB cannot always be applied 

• Better bounds exist (more about this later) 

• Cramér and Rao proved it independently in the mid 40s 

• French mathematician Frechét proved it earlier, but never published 

 

 

 

 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

Basic idea of CRLB: 

  

 

 

 

 

For case (a):  the value A=5 is not very likely 
For case (b): A=5 cannot be ruled out 
 
 

Some hand waving in these arguments 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

Basic idea of CRLB: 

  

 

 

 

 

For case (a):  the value A=5 is not very likely 
For case (b): A=5 cannot be ruled out 
 
In fact, the sharpness around x[0]=3 is important 
If p(x[0];A) is very sharp around A=x[0],  then we can expect to 
be able to infer the value of A with a much better precision 
 

Some hand waving in these arguments 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

  

 

 

 

 

In mathematics, ”sharpness” has the name curvature 
The curvature is measured by the reciprocal of the radius of the 
circle  

- 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

  

 

 

 

 

But, at the correct value, an unbiased estimator has 0 slope, so 
that we get  

- 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

  

 

 

 

 

But, at the correct value, an unbiased estimator has 0 slope, so 
that we get 
 
 
 
 
 
 
 
Further, multiplicative constants should not affect the 
precision, e.g., -x2 should be as good as the likelihood -2x2 

 

Taking the log of the likelihood removes these constants. 
Hence, the ”sharpness” can be effectively measured by  
 
 
 
 
  

- 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

  

 

 

 

 

If the ”sharpness” of the log-likelihood function  
Is very big, we have a plot according to 
 
 
 
 
 
 
 
while we get the below plot if it is small 
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If the ”sharpness” of the log-likelihood function  
Is very big, we have a plot according to 
 
 
 
 
 
 
 
while we get the below plot if it is small 
 
 
 
  

Clearly, we expect much 
better estimation 
precision for the first case 
than for the second, 
which ”proves” that the 
curvature is most relevant 
for determining bounds 
on the variance 
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If the ”sharpness” of the log-likelihood function  
Is very big, we have a plot according to 
 
 
 
 
 
 
 
while we get the below plot if it is small 
 
 
 
  

 
 
 
 

Guess: 
”Precision = 1/sharpness” 
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If the ”sharpness” of the log-likelihood function  
Is very big, we have a plot according to 
 
 
 
 
 
 
 
while we get the below plot if it is small 
 
 
 
  

We next discuss an example where the guess is correct. 
Then we prove it by the Cramer-Rao theorem 

 
 
 
 

Guess: 
”Precision = 1/sharpness” 
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Estimate A 

Likelihood 
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Estimate A 

Likelihood 

Find curvature: 
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Estimate A 

Likelihood 

Find curvature: 

So… 
 
 
 
 
The guess is correct in this case!!! 
 
 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

Interlude 

 

In the previous example, the second derivative did not depend on 
x[0], but it will in general 

 

Curvature is a measure of precision, but we cannot have measure of 
precision that depends on the particular realization of x 

 

Solution: Find expected curvature 

 

   This is independent of x 
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Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

Some condition must 
hold. Must check 
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Reciprocal of curvature 
bounds precision 

Some condition must 
hold. Must check 

The CRLB only takes into account what the likelihood looks like around 
the correct value 
 
This is fine, since it is a lower bound 
 
A complicated pdf with many peaks will lead to estimators very far 
away from the CRLB 
 
Examples of better bounds: Weiss-Weinstein, Bobrovsky-Zakai etc etc 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

 

 

Reciprocal of curvature 
bounds precision 

Derivative of log-
likelihood produces the 
estimator 

Some condition must 
hold. Must check 
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Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

Proof. 

Check the regularity condition 
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Proof. 

Check the regularity condition 
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Proof. 

Check the regularity condition 
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Proof. 

Check the regularity condition 

 

 

 

 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

 

 

 

Proof. 

Check the regularity condition 

 

 

 

 The regularity condition is in 
most books  that this 
equality must hold 
(derivation and integration 
can be interchanged) 

𝐵 = 𝑥: 𝑝 𝑥; 𝜃 > 0  Alternative regularity 
condition (plus some 
differentiability conditions 
that I don’t mention) 

Not dependent on θ 
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Proof. 

Check the regularity condition 

 

 

 

 The regularity condition is in 
most books  that this 
equality must hold 
(derivation and integration 
can be interchanged) 

𝐵 = 𝑥: 𝑝 𝑥; 𝜃 > 0  

Not dependent on θ 

𝑝 𝑥; 𝜃 =
1

𝜃
, 0 ≤ 𝑥 ≤ 𝜃 

Example of likelihood that 
violates the regularity 
condition: 

Alternative regularity 
condition (plus some 
differentiability conditions 
that I don’t mention) 
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Proof. 

Check the regularity condition 
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Proof.(interlude) 

Interchanging derivation and integration allows us (at least me) to 
actually understand the regularity condition  

 

 

 

This is independent of x.  
 
Can be interpreted as the expected likelihood if the 
parameter of interest has a certain value θ 
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Proof.(interlude) 

Interchanging derivation and integration allows us (at least me) to 
actually understand the regularity condition  

 

 

 

Or, no matter what θ is, you must get the same value 
of the log-likelihood on average 
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Proof.(generalization) 
The proof in the book is more general than the statement of the theorem. However, 
the generalization in the proof will be used later in the book 

 

We assume some underlying parameter θ, but that we would like to estimate a 
function thereof α=g(θ). 

 

For example, θ can be the DC level, but we are more interested in the power of the 
DC level, so that α= θ2, i.e., g(x)=x2 

 

Warning: the book uses g(x) both for the estimator function  

 

and for 

   α=g(θ) 
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Proof 
The unbiased condition now reads 

 

 

or 

 

Take differential (and change order of differentiation and integration) 



Chapter 3 – Cramer-Rao lower bound 

 

 

 

Proof 
The unbiased condition now reads 

 

 

or 

 

Take differential (and change order of differentiation and integration) 

 

 

 

 

Use regularity condition (I added a ”0” term to the l.h.s.) 
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Proof (Interlude: 3-term Cauchy-Schwarz) 
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Proof 
 

 
 

 

 

 

Compare now with what we had before 
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Proof 
 

 
 

 

 

 

Compare now with what we had before 
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Proof 
 

 
 

But this can be written as 
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Proof 
 

 
 

But this can be written as 

 

 

 

 

 

 

 

This is not the same as is stated in the theorem, so we are not done yet 

 

 

Should be 
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Proof 
 

We have 

 

 

 

 

 

 

 

Should be 
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Proof 
 

We have 

 

 

 

 

 

Take one more differential, and change order 

 

 

 

 

 

 

 

Should be 
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Proof 
 

Rearranging gives 

 

 

 

 

 

Take one more differential, and change order 

 

 

 

 

 

 

 

Should be 

2nd part 
done…. 
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Proof 
 

 

 

 

 

 

 

 

 

 

 

 

 

If                                ,  the statement of the theorem follows 
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Chapter 3 – Cramer-Rao lower bound 

 

 

 

Proof (last part) 
Lets go back and check the condition for equlity in the C-S inequality 
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Proof (last part) 
Lets go back and check the condition for equlity in the C-S inequality 

 

 

 

 

 

 

 

 

So, for equality we must have 

 

 

Where c can depend on θ, but not on x 
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Proof (last part) 
Now, assume                             (other g() are discussed in later sections)  which yields  
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Now, assume                             (other g() are discussed in later sections)  which yields  

 

 

 

 

Take one more differential: 
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Proof (last part) 
Now, assume                             (other g() are discussed in later sections)  which yields  

 

 

 

 

Take one more differential: 

 

 

 

 

Take expectation with respect to x and use the unbiasedness of the estimator 
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Proof (last part) 
Now, assume                             (other g() are discussed in later sections)  which yields  
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Take expectation with respect to x and use the unbiasedness of the estimator 
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Chapter 3 – Cramer-Rao lower bound 

Some remarks 
• The CRLB depends on θ 

 

• An estimator that meets the CRLB is said to be efficient 

 

• An efficient estimator is not the same as an MVU estimator 
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Example (3.2, a look at 3.1 again)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate A 
In this example, we just  
guessed that x[0] would be a good 
estimator for A. 
 
But what if we cannot make such guess? 
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In this example, we just  
guessed that x[0] would be a good 
estimator for A. 
 
But what if we cannot make such guess? 
Use the CRLB theorem 
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Estimate A 
In this example, we just  
guessed that x[0] would be a good 
estimator for A. 
 
But what if we cannot make such guess? 
Use the CRLB theorem 
 
 
 
 
Now identify 
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Example (3.2, a look at 3.1 again)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate A 
In this example, we just  
guessed that x[0] would be a good 
estimator for A. 
 
But what if we cannot make such guess? 
Use the CRLB theorem 
 
 
 
 
Now identify 

In most cases we cannot express the 
derivative in this way, and an efficient 
estimator does not exist in those cases 


