Computer Security

Exam checklist

Version: February 20, 2017, 09:54

- This list can be used as a tool when studying for the exam. It is a collection of the topics that have been discussed during the lectures. The topics are listed by chapter in the course book, but note that some things are not covered in the course book (most notably time-memory-tradeoff attacks). The topics have been divided into three classes; *most important*, *less important* and *least important*. Note that topics covered by the course book but not by the lectures are automatically placed in the class called *least important*.
- There is no guarantee that *all* exam problems are covered by information given in this document. Exam questions can often be based on the fact that you understand some concept rather than just remember it. These questions are hard to relate to a specific topic from the lectures since they may cover several chapters. However, studying the topics below will make you well prepared for also these questions.

Several of the following topics WILL show up on the exam. Consider these as most important:

Chapter 3

 \Box Terms like confidentiality, integrity, availability, authentication, nonrepudiation, accountability.

 \square Difference between data and information.

Chapter 4

 \Box Spoofing attacks.

 \square Password recovery using brute force, dictionary and time-memory-tradeoff attacks.

 \Box You should know the idea behind the time-memory-tradeoff attack, but no details. You should know the tradeoff given by $N^2 = M^2 T$ and P = N and how a table is constructed.

 \Box The idea behind rainbow tables and when they are useful, but no details.

 \Box The purposes of salts in password hashing.

 \square How the system can help protecting against password compromise.

 \square Biometric systems, the terms FRR, FAR and EER and how they relate, assuming FTA is zero.

Chapter 5

 \Box Discretionary vs. mandatory access control.

 \square The difference between capabilities and ACLs.

 \square How powersets can be used in access control.

□ Least upper bound and greatest lower bound in lattices. Mathematical details are not needed but if you see a Hasse diagram you should be able to locate least upper bound and greatest lower bound for two nodes.

Chapter 6

 \Box The difference between reference monitor, security kernel and the trusted computing base (TCB).

 \square The concept of reference monitors and their purpose.

 \Box Controlled invocation.

Chapter 7

 \Box Difference between real and effective UID in Unix.

 \Box Difference between crypt, MD5 crypt and bcrypt in terms of performance and security. You do not have to know the details of the algorithms or exactly where they are used.

 \Box Purpose of /etc/shadow file and the type of information stored in this file (no details).

□ How access control works in Unix (read, write, execute, owner, group, other).

 \Box Setuid in Unix.

 \Box You do not have to remember what is in an inode, but if you see an inode you should be able to locate the important information in it.

 \Box Use of umask in Unix.

 \Box Usage and potential problems with search path in Unix.

 \square How hosts. allow and hosts.deny are used to determine access control to network services in Unix.

Chapter 8

 \Box The problem with the LM hash and how the NTLM hash is better. You do not have to know the exact details of how they work.

 \Box What are access tokens and what do they contain?

 \Box The concept of privileges.

 \Box What are security descriptors and what do they contain?

 \Box The concept of DACL, how access control lists are searched and what consequences does the search have? The difference between Windows and Unix is important here.

 \Box The purpose of the SACL.

 \square How access control on the network differs from access control on the computer.

 \square Access control for a restricted token.

Chapter 9

 \square How a general tracker can be used to derive sensitive information in statistical databases.

Chapter 10

 \Box You should understand how buffer overflow attacks on the stack work and how they can be prevented and detected. This includes canaries, W $\oplus X$ and ASLR.

 \Box You should understand the idea behind SQL injection attacks how they can be prevented.

Chapter 11.1-11.2, 12.1-12.3

 \Box In Bell-LaPadula you should know the ss-property, the *-property and the ds-property.

 \Box Tranquility in Bell-LaPadula.

 \square Conceptual difference between Bell-LaPadula and Biba models.

 \Box How new integrity levels are computed after reading/writing to an object in the case of dynamic integrity levels in Biba?

 \square You should know the fact that Clark-Wilson focuses on integrity.

Chapter 13

 \Box Strengths and limitations of security evaluation.

□ Difference between Orange Book, ITSEC and Common Criteria in terms of functionality and assurance for products.

 \Box Classification of products in Orange Book, ITSEC and Common Criteria, but not the details of the different classes or evaluation levels.

Chapter 14

□ Empirically, provably and unconditionally secure.

 \Box Kerckhoffs' principle.

 \Box Relation between stream ciphers and OTP.

 \square Stream ciphers vs. block ciphers.

 \Box Block cipher modes ECB, CBC and OFB.

 \Box Symmetric vs. asymmetric cryptography and which types of algorithms belong to which group.

 \square You should be able to compute a toy RSA example, which means that you should know the RSA algorithm.

□ Defining properties of hash functions and the additional properties preimage resistance, second preimage resistance and collision resistance.

 \square Birthday paradox. You do not have to know how to derive it but you should know its meaning and consequences.

 \Box Properties of MAC functions.

 \Box Digital signatures and how they differ from MAC functions.

 \square You should know that El Gamal is based on the discrete logarithm problem.

Chapter 15

 \Box The terms key transport, key agreement, implicit key authentication, key confirmation and explicit key authentication.

 \Box Replay attacks.

 \Box Man-in-the-Middle attacks \Box Certificates and certificate chains. You do not have to know every field in a certificate, only the most important ones.

 \square The Diffie-Hellman protocol (how it works) and the main problem with the protocol.

 \square How STS solves the problem in Diffie-Hellman.

□ For AKEP2, EKE, Needham-Schroeder and Kerberos you should only remember the most important things about them, e.g., the problem with Needham-Schroeder and how Kerberos solves this problem. You should be able to understand them when you see them, but not remember the details by heart.

Chapter 16

 \Box Traffic analysis.

 \Box The SSL handshake when RSA is used.

 \square Purpose of random numbers in SSL.

 \Box Basics of IPsec.

 \Box The difference between the 4 ways of using IPsec, {AH, ESP} \times {Transport, Tunnel}.

Chapter 17

 \square The difference between packet filters, stateful packet filters and application level proxies.

 \square I dea behind anomaly detection and misuse detection for an IDS, and the differences.

 \Box Purpose of Honeypots.

Chapter 19

 \Box How authentication and key agreement works in GSM.

 \Box The important improvements made to the authentication and key agreement

in UMTS compared to GSM.

 \Box The fact that the encryption algorithm in GSM is a stream cipher and in UMTS a block cipher in a stream cipher mode of operation.

 \Box CRC-32 problem, IV size problem and authentication problem in WEP.

 \Box The fact that WPA2 uses AES and is completely different from WEP and WPA.

Very few of the following topics will show up on the exam. These should be studied after you know everything above. The list is sorted but not divided into chapters. Consider these as less important:

 \Box Setgid for directories, sticky bit.

 \square File copy and links (cp and ln) in Unix.

- \square Race conditions.
- \Box Mounting file systems in Unix.
- \Box TCP wrappers.
- \square The Windows registry. No details.
- \Box Groups in windows.
- \square Mandatory access control in Windows Vista.
- □ Primary keys, foreign keys and integrity rules in databases.
- \square Individual trackers in database inference.
- \Box Database views and how they can simplify access control.
- \Box Cascading authorizations in databases.
- \square Invocation in Biba model.
- \Box Clark-Wilson security model.
- \Box Chinese Wall security model.
- \Box One time signatures.
- \Box Security associations in IPsec.
- \Box SSL handshake when Diffie-Hellman is used.
- \square SSL record, a lert and change cipher spec protocols.
- \square Difference between WEP and WPA.

The following topics will NOT be covered by the exam, but if you are interested in the topic and have lots of time left you can look at it. The list is sorted but not divided into chapters. Consider these as least important.

- \Box Strings of integers with prefix as partial ordering.
- \Box The generic access rights in Windows.
- \square The access mask in Windows.
- \Box Unicode and UTF-8 encoding.
- \Box Heap based buffer overflow attacks.
- \Box Integer overflows.
- \Box Federal Criteria.
- \square Details of El Gamal signatures and El Gamal encryption.
- \Box Key management in IPsec.
- \Box Computations of master secret and key in SSL.
- \Box The SQL language details.
- \Box How the A5/1 algorithm works.
- \Box Name of functions and how they are computed in UMTS.
- \Box Encryption algorithm in UMTS.
- \Box Variant of CBC-MAC used in UMTS.
- \Box How the RC4 algorithm works.