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• You are allowed to use a calculator.

• Each solution should be written on a separate sheet of paper.

• You must clearly show the line of reasoning.

• If any data is lacking, make reasonable assumptions.

Good luck!

Problem 1
In an RSA cryptosystem the public encryption function is C =M e mod n and the secret
decryption function is M = Cd mod n, where M is the plaintext and C is the ciphertext.
Let the public parameters of the RSA-system be denoted (n, e), where n = pq.

a) One of the integers in {1041, 1043, 1047, 1049} is a prime. Use a probabilistic pri-
mality test to determine which one. Call it p.

(2 points)

b) Then pick the prime q = 127 and form the RSA public keys (n = pq, e). Find
the smallest possible choice for e with the condition e ≥ 20 and give the secret
parameters d and φ(n) in the RSA cryptosystem.

(3 points)

c) Show the steps of calculating the ciphertext C = M e mod n when encrypting the
plaintext M = 2345 in your constructed RSA system. Use square-and-multiply or
some similar efficient method.

(2 points)

d) Give the arguments that show that decryption of a ciphertext C always returns the
original message M (that created the ciphertext). (3 points)



Problem 2
Consider the following statements about the two polynomials P1(x) = x5 + x+1 and the
primitive polynomial P2(x) = x4 + x+ 1.

a) The polynomial P1(x) is irreducible (“primpolynom”) over F2.

b) The polynomial P1(x) is primitive over F2.

c) The cycle set for an LFSR with connection polynomial C(D) = P2(D)2 in F2 con-
tains cycles of length 30.

d) Use P2(x) to construct F24 through P2(α) = 0. The element α10 has order 15.

e) The equation x2 + 1 = 0 over F24 has a solution.

Choose for each of the five statements given above one of the following alternatives:

i) Correct — I am uncertain
ii) Wrong — I am uncertain
iii) Correct — I am certain
iv) Wrong — I am certain.

Correct answer according to i) or ii) gives 1 point.
Correct answer according to iii) or iv) gives 2 points.
Erroneous answer according to i) or ii) gives 0 points.
Erroneous answer according to iii) or iv) gives -2 points.

(Only answers are required!)

(10 points)

Problem 3
We wish to encrypt a source with alphabet Zl

2 generating independent symbols with
P (M = m) = 1/2l−1 for m ∈ M and P (M = m) = 0 for m /∈ M. HereM is the subset
of Zl

2 where vectors start with a 0. We consider l = 128.

We use AES-128. The key K is then of size 128 bits. A sequence of message sym-
bols M = (M0,M1, . . . ,Mn−1) is encrypted to a sequence of ciphertext symbols C =
(C0, C1, . . . , Cn−1) by ECB mode as

Ci = AES(Mi), 0 ≤ i ≤ n− 1.

a) Compute the unicity distance N0 according to the formula. (5 points)

b) The unicity distance predicts the number of symbols we need to observe before we
can uniquly determine the key used. Explain the conditions for Shannon’s model of
secrecy and why the observation of more than N0 ciphertext blocks does not mean
that one can break the cipher. (2 point)

c) Suggest a modification to the above scheme in order to achieve N0 =∞. (3 points)



Problem 4

a) Five friends are sharing a key K through a secret sharing scheme. Three persons
P1, P2, P3 have private shares in a Shamir threshold scheme for 3 participants with
threshold k = 2 using the public values xi = i. Furthermore, P4 has a share y4
and P5 has a share y5, where these shares have been chosen in such a way that
K = y4 + y5. All values are assumed to be in F19.

• Write up the access structure for the construction.

• Explain why the construction gives an ideal secret sharing scheme.

• Assume that P2 holds the private share y2 = 3, and P3 holds the private share
y3 = 10. Reconstruct K.

(5 points)

b) In an authentication system, Alice would like to send a source message s ∈ Zq to
Bob in an authenticated channel message M .

They are using an authentication code, where the key (encoding rule) E is given
as E = (e1, e2), where e1, e2 ∈ Zq. The transmitted message is M = (s, t), where
t = e1 + se2. Prove that PI = PS = 1/q if q is a prime, and show that this is not
true if q is a composite.

(5 points)

Problem 5
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Alice encrypts her plaintext using a simple stream cipher, built as in the figure above.
The keystream symbol is determined from the output of the LFSRs in the following way.
If two or three output symbols from the LFSRs are one, the keystream symbol will be one,
otherwise it will be zero. The secret key K is the initial state of the three LFSRs. Hence,
we can write the key as a 3-tuple, K = (K1, K2, K3), where Ki is the initial state of the
ith LFSR. The connection polynomials for the different LFSRs are C1(D) = 1 +D +D4,
C2(D) = 1 +D +D3 and C3(D) = 1 +D +D2.

Determine the key (initial states) when it is known that the keystream output is

z = 0011 1110 1011 0110 1111 1001 0110 0101 1011.

(10 points)





Some useful formulas in cryptology.
2013-12-07

Ch. 1: CRT: x ≡ a1 (mod n1), . . . , x ≡ ak (mod nk), gcd(ni, nj) = 1, i 6= j.

x =
k∑
i=1

aiNiMi mod n,

where Ni = n/ni and Mi = N−1i mod ni.

Ch. 2: M.R. =
Z∑
i=A

(pi −
1

26
)2 =

Z∑
i=A

p2i − 0.038

I.C. =

∑Z
i=A fi(fi − 1)

N(N − 1)

Ch. 3: I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) ≥ 0

H(XY ) = H(X) +H(Y | X) = H(Y ) +H(X | Y )

H(X) = −
∑
i

fX(xi) log2 fX(xi)

h(p) = −p log2 p− (1− p) log2(1− p)

Redundancy: D = H0 −H(M)

H(K | C) ≥ H(K)−ND
N0 = H(K)/D

Ch. 4: S(D) =
P (D)

C(D)

1(1) ⊕ 1(qL − 1)

1(1) ⊕ qL − 1

T
(T )

1(1) ⊕ qL1 − 1

T1
(T1) ⊕ · · · ⊕

q(n−1)L1(qL1 − 1)

Tn
(Tn);

Tj = piT1, p
i−1 < j ≤ pi

S1 ⊗ S2 ⊗ · · · ⊗ Sm

n1(T1)⊗ n2(T2) = (n1n2gcd (T1, T2))(lcm (T1, T2))

∀m1,m2, . . . ,mr ∈ Z+ ; gcd (mi,mj) = 1, i 6= j

∀ a, u1, u2, . . . , ur ∈ Z
∃!u ∈ Z+ (a ≤ u < a+m) ∧ (uj = u (mod mj), 1 ≤ j ≤ r)

where m = m1m2 · · ·mr

Ch. 6: n,m ∈ Z+

φ(m) = |{i ∈ {1, 2, . . . ,m− 1} | gcd (i,m) = 1}|
∀n; gcd (n,m) = 1 (nφ(m) = 1 (mod m))



Ch. 7: PD = max (PI , PS)

PI = max
m

P (m valid)

PS = max
m,m′:m 6=m′

P (m′ valid|m valid)

Simmons bounds: PI ≥ 2−I(M;E)

PS ≥ 2−H(E|M)

Ch. 8:
a(x) =

k∑
i=1

yi
∏

1≤j≤k,j 6=i

x− xj
xi − xj

The frequency of various letters in English text is given below. Out of 1000
letters the expected number of occurences for each letter is:

A 73 J 2 S 63

B 9 K 3 T 93

C 30 L 35 U 27

D 44 M 25 V 13

E 130 N 78 W 16

F 28 O 74 X 5

G 16 P 27 Y 19

H 35 Q 3 Z 1

I 74 R 77

In a text of 80000 letters the most common bigrams and trigrams appear
on average as given below:

TH 2161 ED 890 OF 731 THE 1717 TER 232

HE 2053 TE 872 IT 704 AND 483 RES 219

IN 1550 TI 865 AL 681 TIO 384 ERE 212

ER 1436 OR 861 AS 648 ATI 287 CON 206

RE 1280 ST 823 HA 646 FOR 284 TED 187

ON 1232 AR 764 NG 630 THA 255 COM 185

AN 1216 ND 761 CO 606

EN 1029 TO 756 SE 595

AT 1019 NT 743 ME 573

ES 917 IS 741 DE 572



Berlekamp-Massey algorithm

C(D)← 1
L← 0

C0(D)← 1
d0 ← 1
e← 1
N ← 0

N ← N + 1 d← sN −
∑L

i=1(−ci)sN−i

e← e + 1 d = 0?

C(D)← C(D)− dd−1
0 DeC0(D) N < 2L?

C1(D)← C(D)
C(D)← C(D)− dd−1

0 DeC0(D)
L← N + 1− L
C0(D)← C1(D)

d0 ← d
e← 1

No

No

Yes

Yes



sN d C1(D) C(D) L LFSR C0(D) d0 e N

− − − 1 0 ← 1 1 1 0

1


