Final exam in CRYPTOGRAPHY

December 19, 2013, 8–13

- You are allowed to use a calculator.
- Each solution should be written on a *separate sheet of paper*.
- You must *clearly* show the line of reasoning.
- If any data is lacking, make reasonable assumptions.

Good luck!

Problem 1

Alice has two polynomials from $\mathbb{F}_3[D]$,

$$C_1(D) = D^4 + D^2 + 1, \quad C_2(D) = 2D^2 + 2D + 1,$$

to use as connection polynomials for two LFSRs over \mathbb{F}_3 generating sequences denoted $\mathbf{s_1}$ and $\mathbf{s_2}$, respectively. Consider the following statements.

- a) The polynomial $C_1(D)$ is irreducible ("primpolynom") over \mathbb{F}_3 .
- **b)** The polynomial $C_2(D)$ is irreducible over \mathbb{F}_3 .
- c) If s_2 is nonzero, it has period 8.
- d) The cycle set for the connection polynomial $C_1(D)$ includes three different cycles of length 1.
- e) The linear complexity of the sequence $s_1 + s_2$ is always smaller than or equal to 6.

Choose for each of the five statements given above one of the following alternatives:

- i) Correct I am uncertain
- ii) Wrong I am uncertain
- iii) Correct I am certain
- iv) Wrong I am certain.

Correct answer according to i) or ii) gives 1 point. Correct answer according to iii) or iv) gives 2 points. Erroneous answer according to i) or ii) gives 0 points. Erroneous answer according to iii) or iv) gives -2 points.

(Only answers are required!)

(10 points)

Problem 2

An instance of the classic Hill cipher is defined as follows. Let $m \in \mathbb{F}_{2^4}^2$ and let the set of possible keys \mathcal{K} be

 $\mathcal{K} = \{ \text{ all } 2 \times 2 \text{ invertible matrices over } \mathbb{F}_{2^4} \}.$

The encryption function is $e_K(m) = mK$. Assume that \mathbb{F}_{2^4} is generated by $\pi(x) = x^4 + x + 1$ and $\pi(\alpha) = 0$.

- **a)** Encrypt the plaintext $m = (1 + \alpha, \alpha^2)$ using the key $K = \begin{pmatrix} \alpha^3 & \alpha^2 + 1 \\ \alpha^2 + 1 & 1 \end{pmatrix}$.
- b) Explain why \mathcal{K} cannot contain all 2×2 matrices.
- c) A (uniform) source outputs binary symbols that are mapped directly to the elements $\{0, 1\}$ in \mathbb{F}_{2^4} (i.e. only two of the 16 elements in \mathbb{F}_{2^4} have nonzero probability). Find the unicity distance if such a source is encrypted using the Hill cipher above.
- d) Does the Hill cipher achieve perfect secrecy, if we encrypt only a single plaintext vector m?

(10 points)

Problem 3

Factor the RSA number n = 44384521 using the basic form of the Quadratic Sieve algorithm you learned in the first project. The square of the following numbers are *B*-smooth for some very small *B*,

1883840, 6521874, 13519124, 16006155.

Note that factoring n by trial division is not allowed.

(10 points)

Problem 4

- a) Consider a Shamir threshold scheme for n = 30 participants with threshold k = 3 using the public values $x_i = i$. All values are assumed to be in \mathbb{F}_{37} . Assume that participant 2 holds the private share $y_2 = 15$, participant 3 holds the private share $y_3 = 25$, and participant 27 holds the private share $y_{27} = 17$. Help the three participants to restore the shared secret K.
- b) In an authentication system, Alice would like to send two source messages $s_1, s_2 \in \mathbb{F}_{101}$ to Bob in two separately authenticated messages.

They come up with the less good idea of using an authentication code, where the key (encoding rule) E is given as $E = (e_1, e_2)$, where $e_1, e_2 \in \mathbb{F}_{101}$. The first transmitted message M_1 is then $M_1 = (s_1, t_1)$, where

$$t_1 = e_1 + s_1 e_2.$$

For the second message, they use $M_2 = (s_2, t_2)$, where

$$t_2 = e_1 + s_2 e_2^2.$$

Eve observes first the message $M_1 = (2, 45)$ and then she observes $M_2 = (3, 3)$. Find a message that maximizes her chances of getting another message accepted instead of M_2 .

(10 points)

Problem 5

In an RSA cryptosystem the public encryption function is $C = M^e \mod n$ and the secret decryption function is $M = C^d \mod n$, where M is the plaintext and C is the ciphertext. Let the public parameters of the RSA-system be denoted (n, e), where n = pq.

- a) Find a prime p > 1000 and show a few steps of a probabilistic primality test that asserts that p is a (probable) prime.
- **b)** Then pick the prime q = 113 and give the RSA public keys (n, e). Give the secret parameters d and $\phi(n)$ in the RSA cryptosystem.
- c) Decrypt the ciphertext C = 2 in your system.
- d) Prove that if Eve knows $\phi(n)$ in an RSA system with public keys (n, e), then she can compute p and q.

(10 points)