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Project 2: Shift Register Sequences

• This project will be done in groups of 1-2 people.
• Estimated effort: 20 man-hours

Learning goals:

• Learn about linear shift register sequences.
• Learn about be Bruijn sequences.
• Implementing devices that output shift register sequences.
• Improving presentation skills.
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1 Introduction

The purpose of this project is to learn more about shift register sequences. This will include linear
feedback shift register sequences as well as de Bruijn sequences (also called full length sequences). The
project covers chapters 1 and 4 in the course literature (lecture notes).

The exercises marked Home exercises (HE) should be done by hand. If you run into problems make
sure you get some help before you proceed.

There are additional hints and comments on the course home page. In particular, there is a general
instruction on factoring polynomials in finite fields, together with an explanation of HE 1.3.

To solve most of the exercises marked Laboratory exercises (LE) you need a computer program that
can handle symbolic algebra. We have two suggested programs in this course.

1.1 Maple

The first suggestion is Maple. The maple commands you will use are e.g., Factor, Primitive, Irreduc,
and the GF package with G:-ConvertIn and G:-order. Note that capitalization matters for these com-
mands, irreduc and Irreduc are two different commands. Read the help on all these commands
before you start the laboratory exercises.

Students with an LU account can download Maple for free from here.

1.2 SageMath

If you don’t want to use Maple, an open-source alternative with simpler syntax is SageMath. The easiest
way to use SageMath is to register an account at CoCalc. You can also download Sage from here and
run it on your own computer. For this project you will only need to use the SageMath Notebook, which
works in a way similar to Maple.

For an introduction to SageMath you can make a simple search on the internet to find lots of tutori-
als. Some useful sage commands for this project are GF, factor, is_primitive, is_irreducible and
multiplicative_order.

When finished with the project, you get your exercises approved by the assistant. You will also have to
answer some basic questions to show that you understand what you have done.
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2 Polynomials over finite fields

We will start to study whether a certain polynomial is primitive, irreducible, or reducible (sv. primitivt,
primt, faktoriserbart). If you do not recall the definitions, go back to the lecture notes and study it
again.

Home exercise 1: For each of the polynomials below, determine whether the polynomial is primitive,
irreducible, or reducible over the specified field.

1. p(x) = x4 + x2 + 1 over F2.
2. p(x) = x3 + x+ 1 over F3.
3. p(x) = x2 + α5x+ 1 over F24 , where α4 + α+ 1 = 0. (hint on course home page, FAQ section)

Laboratory exercise 1: For each of the polynomials below, determine whether the polynomial is
primitive, irreducible, or reducible over the specified field.

1. p(x) = x23 + x5 + 1 over F2.
2. p(x) = x23 + x6 + 1 over F2.
3. p(x) = x18 + x3 + 1 over F2.
4. p(x) = x8 + x6 + 1 over F7.
5. p(x) = x6 + α5x+ 1 over F24 , where α4 + α+ 1 = 0. (voluntary)

Home exercise 2: Let F24 be constructed through π(x) = x4 + x+ 1 and π(α) = 0 (α4 + α + 1 = 0).
Determine the order of the following elements in F24 .

1. α.
2. α2.
3. α3.
4. α5.

Laboratory exercise 2: Let F218 be constructed through π(x) = x18+x3+1 and π(α) = 0 (α18+α3+1 =
0). Determine the order of the following elements in F218 .

1. α.
2. α2.
3. α3.
4. α+ α3.

Finally, we connect the properties of the polynomials and the cycle sets they generate.

Home exercise 3: Determine the cycle set for the first two poynomials in HE 1.

Laboratory exercise 3: Determine the cycle set for the first two poynomials in LE 1.

To help you with the next part of Project 2, we include the following two exercises.

Home exercise 4: Find a primitive polynomial of degree 4 over F2. In order to facilitate your job in
HE 5, choose such a polynomial with constant term 1 (one).

Laboratory exercise 4: Find a primitive polynomial of degree 4 over F5. Same here, in order to
facilitate your job in LE 5, choose such a polynomial with constant term 1 (one).
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3 De Bruijn Sequences

A de Bruijn sequence is a sequence with period qL generated by a feedback shift register (FSR) of length
L. A de Bruijn sequence has the maximal possible period for a shift register of length L.

If we consider the cycle set of a de Bruijn sequence, it will contain only one single cycle, running through
all qL different states. It is quite obvious that such a sequence cannot be generated by a linear feedback
shift register. We must use nonlinear feedback.

One way to proceed is to start with a primitive feedback polynomial. Such a polynomial has two cycles,
one containing the all zero state 0 only, and another containing the remaining qL − 1 different states.
Assume that we have a sequence of transitions . . . s → s′ → . . . in the big cycle. The idea is to put the
zero state 0 somewhere in the big cycle by adding a nonlinear part to the linear feedback. This should
result in a change of the original big cycle to instead go through the transitions . . . s→ 0→ s′ → . . ..

Home exercise 5: Draw a picture of a device that generates a de Bruijn sequence of length 16, using
the above described method and the feedback polynomial you derived in HE 4. Use for example XOR
and AND gates for the feedback,

Laboratory exercise 5: It is common in different buildings to require a pin code to open certain doors.
Usually, the pin code consists of four digits between 0 and 9. So there are 10,000 different pin codes
possible. If you do not know better, you might think that it is necessary to push a maximum of 40,000
digits, or on average 20,000 digits, in order to find the correct pin code and open the door.

But this is of course wrong, which is easily seen if you push the sequence “00001” of length 5. You test
both pin codes “0000” and “0001”. We see that the best we can do is to test a new pin code every time
we push a new digit (except the first three). This is exactly a de Bruijn sequence over Z10. This means
that we need to push at most 10,003 digits and on average around 5,000.

Your task in this exercise is to write a program that efficiently constructs such a de Bruijn sequence over
Z10. Write the 10,003 digits to a file and then verify that the sequence runs through every state (every
4-tuple) in Z4

10 exactly once! Check the web page of the course for such a verification program.

Hint 1: As 10 = 5 · 2 is not a prime, Z10 is not a field, and we cannot construct a maximal length
sequence directly. Instead, construct two de Bruijn sequences, one of period 24 and one of period 54,
and then combine them to a single sequence over Z10 by a one-to-one mapping f : Z2 × Z5 → Z10, as
illustrated below.

period 24

(de Bruijn)
period 54

(de Bruijn)

f
Z2 symbols Z5 symbols

Z10 symbols

You can think of the two devices as black boxes that output one symbol (each) per clocking. Placing the
outputs ”side by side” and regarding them as pairs, you need to define the mapping f so that it maps
any such pair of symbols uniquely (a bijection) to a symbol in Z10.

You have already constructed the leftmost de Bruijn device in HE 5. Use the same approach to construct
the rightmost one.

Hint 2: To efficiently construct the sequence, you cannot rely on a recursive algorithm. Instead, follow
the advice given in Hint 1.
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