
EDIN01 Cryptography 2018

Project 1: Factoring Algorithms

• This project will be done in groups of 1-2 people.
• Estimated effort: 20 man-hours

Learning goals:

• Understanding the complexity of factoring large numbers.
• Implementing a factoring algorithm.
• Improving presentation skills.

Computer Security
EITA25

Advanced Computer Security
EITN50

Web Security
EITF05

Advanced Web Security
EITN41

Cryptography
EDIN01

Data Security
EITF55

Helsingborg

1 Introduction

The purpose of this project is to understand the difficulty, or more accurately the complexity, of factoring
large numbers. We will only consider the case when our target number is a product of two large prime
numbers. Such numbers are especially important in public key cryptography.

Let p and q be two prime numbers and let N = pq. Our factoring problem is given as follows.

Problem: Given N , find the primes p and q such that N = pq.

2 Trial division

We will first consider a very simple approach to the problem, usually referred to as trial division. This is
based on the fact that if N is not a prime then N must be divisible by a number of size at most b

√
Nc.

So we just test whether
N mod p = 0,

for all p = 2, 3, 4, . . . , b
√
Nc.

Exercise 1: Assume that we can perform ten million tests of the above kind each second on our
computer. How long would it take to factor a 25 digit number (with two prime factors both of the same
order (12 digit numbers))?

If you want to factor many 25 digit numbers, you can improve the running time of the basic trial division
by first precomputing and storing the primes up to b

√
Nc.

Exercise 2: How much faster does your improved trial division algorithm become for 25 digit numbers?
Roughly how much storage does your algorithm require? What kind of budget does the storage require-
ment demand; student budget, big government grant, more dollars than there are atoms in the universe?
You may check current storage pricing on http://www.prisjakt.nu.

3 More efficient methods

As you may guess, there are more powerful algorithms for factoring. Whereas the complexity of trial
division is exponential in the number of digits in a number N , Nβ · C for some constants β and C,
modern factoring algorithms has a complexity that lies somewhere between polynomial and exponential
time. Two well known methods are called Quadratic Sieve and Number field Sieve, respectively. The
Quadratic Sieve algorithm was the fastest factoring algorithm up to the early 1990s, but when the target
numbers grew larger, the Number field Sieve started to outperform the Quadratic Sieve, due to a better
asymptotic performance.

The RSA numbers1 is a set of large semiprimes - products of two large primes - where the challenge is
to factorize the numbers. The largest of them that has been factorized so far is a 768 bit number, which
was done using the equivalent of roughly 2000 core years on a single-core personal computer. Given
that this was done in 2009 and that some parties, like the NSA, have significantly larger computational
resources than that, using RSA with a 1024 bit composite number is no longer secure against a powerful
adversary. The minimum recommended length is currently 2048 bits.

Exercise 3: Write a program that implements a simple version of the Quadratic Sieve algorithm,
described in the sequel. Use this program to factor the 25 digit number you have been given from the
assistant.

1https://en.wikipedia.org/wiki/RSA_numbers

2

http://www.prisjakt.nu
https://en.wikipedia.org/wiki/RSA_numbers

As you will have understood from the previous exercise, efficient implementations are very important for
the success of such an algorithm.

Exercise 4 (voluntary): Include measurement of CPU-time in your program and measure the time it
takes to factor the number

n = 92434447339770015548544881401

Report the time to the assistant and compare your performance with other groups.2

Reporting your results: To pass a project you have to hand in a written report and also present your
solution to the assistant. Send in your written report per e-mail, send a pdf and include the project title
and your group number in the subject. Include everything in your report; code, explanations, solutions,
and so on. Explain the vital parts of your code in a human-readable way. Do not send multiple files,
and do not compress you report pdf.

4 The Quadratic Sieve algorithm

The Quadratic Sieve algorithm is based on a very basic trick, known for a long time. If we in some way
can find (or produce) two different numbers x and y such that

x2 = y2 mod N

then we have
x2 − y2 = (x− y)(x+ y) = 0 mod N,

and this means that (x− y)(x+ y) = K · p · q for some integer K. We can separate two possible cases,

• either p divides (x− y) and q divides (x+ y), or vice versa;
• or both p and q divides (x− y) and none of them divides (x+ y), or vice versa.

We calculate
d = gcd(x− y,N).

In the first case we will then get d = p or d = q whereas in the second case we get d = N or d = 1. If
the first case appear we can factor N , but if the second case appears we can not.

Example: It is easy to check that 322 = 102 mod 77. By calculating d = gcd(32 − 10, 77) = 11 we get
the factor 11 of 77.

In conclusion, given two integers x and y such that x2 = y2 mod N we will be able to factor N with
probability around 1/2. Our current problem is how to obtain such numbers x, y.

In order to proceed we need some definitions. We define a factorbase F to be the set of prime numbers
less than a certain bound B, called the smoothness bound. The number of primes in F is denoted |F |.

Example: If B = 12, then F = {2, 3, 5, 7, 11}.

Furthermore, we define a number x to be B-smooth if it can be factored over the factorbase F , i.e., it
can be written as a product of primes all smaller than B.

Example: N = 264 is 12-smooth since N = 264 = 23 · 3 · 11.

The first step in Quadratic Sieve is to generate many numbers xi, i = 1, 2, . . ., such that if x2i = yi mod N
then yi is a B-smooth number (yi factors over F).

2If this number still isn’t challenging enough to factorize, and you want a much, much larger challenge, you can check
out the RSA numbers.

3

In order to find such numbers, we could select a random number r and test whether r2 mod N is B-
smooth. But we can increase our probability of finding such numbers if we select the numbers r to test
of a special form. We select our numbers r to test as

r = b
√
k ·Nc+ j, (1)

for j = 1, 2, . . . and k = 1, 2,

Note that
r2 = (b

√
k ·Nc+ j)2 = (b

√
k ·Nc)2 + 2 · (b

√
k ·Nc) · j + j2,

which means that r2 mod N is a number of the same order as
√
N . The probability that such a number

will factor over F is much larger than for a randomly selected r.

Example: If N = 77 then r = b
√

1 ·Nc+ 1 = 8 + 1 = 9 and r2 mod 77 = 4 is 12-smooth.

Remark: The name Quadratic Sieve comes from an efficient way of implementing the above step, using
a sieving approach. However, we skip this idea here.

After this first step, we have a set of numbers xi, i = 1, 2, . . . , L, such that if x2i = yi mod N then yi factors
over F . Now we are going to combine them to build two numbers x and y such that x2 = y2 mod N .

If we assume that L > |F |, say L = |F |+ 5, then there exists a suitable selection of xi’s such that

x2i1 · x
2
i2 · . . . x

2
iL′ = yi1 · yi2 · . . . yiL′ mod N,

and yi1 · yi2 · . . . yiL′ = Y 2 for some Y .

Let us demonstrate why. The process is the same as Gaussian elimination for solving a system of linear
equations.

Let the factor base F be F = {p1, p2, . . . , p|F |}. We write our collected numbers xi as a system of
equations

x21 = pe111 · pe122 · . . . · pe1|F |
|F |

x22 = pe211 · pe222 · . . . · pe2|F |
|F |

...
...

x2L = peL1
1 · peL2

2 · . . . · peL|F |
|F | ,

where all numbers are assumed to be reduced modulo N . Our objective is to obtain an equation where
the right hand side is of the form y2 for some y. This is true if all exponents involved eij , j = 1, . . . |F |,
are even. If so, the right hand side

pei11 · p
ei2
2 · . . . · p

ei|F |
|F | =

(
p
ei1/2
1 · pei2/22 · . . . · pei|F |/2

|F |

)2
and this gives y = p

ei1/2
1 · pei2/22 · . . . · pei|F |/2

|F | .

The remaining question is how to get the right hand side of one equation to have only even exponents.
This is done by a Gaussian elimination process.

Start by selecting an equation for which the exponent for p1 (ei1) is odd, say

x21 = pe111 · pe122 · . . . · pe1|F |
|F | .

Now go through all other equations. For each equation for which the exponent for p1 (ei1) is odd, say

x2i = pei11 · p
ei2
2 · . . . · p

ei|F |
|F | ,

4

we replace this equation by

(x1 · xi)2 = pe11+ei11 · pe12+ei22 · . . . · p
e1|F |+ei|F |
|F | .

If the exponent is even, we do nothing.

After this step, we remove the first equation (the one with the odd exponent) from the system. The
exponents for p1 are now even in all remaining equations. We now repeat the same process but for p2,
and so on. Note that once all exponents for p1 are even they will remain even throughout the entire
process.

After going through all the exponents for all the primes, we should, with L = |F | + 5, end up with 5
equations with all even exponents on the right hand side. We then have several pairs x, y such that
x2 = y2 mod N , and this should give us a high probability of finding the factors of N .

As you might have noticed, the above procedure is equivalent to solving of a system of binary linear
equations, where even exponent corresponds to the value 0 and odd exponent corresponds to the value
1.

An important note is the following. Let r21 = b1, where b1 factors over F . Then the number r = 2 · r1 by
r2 = (r1 · 2)2 = 4 · r21 = b also produces a relation r2 = b where b factors over F . Note that for these two
relations the binary row in the matrix above will be the same. Many pairs of relations of the above form
will be created when you run the algorithm. It is clear that both of them represent the same relation
and that only one of them should be included. Therefore, before you insert a row in the binary matrix
M above, make sure that it is not already present.

Example: In this example we go through the factoring procedure, step by step. Make sure that you
understand each step. Assume N = 16637 and we want to find the factorization of N . We take our
factorbase as the first 10 prime numbers.

F = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Take L = |F |+ 2 = 12. Hence, we want to find 12 relations such that x2i = yi mod N can be completely
factorized by the prime numbers in our factorbase, i.e., x2i is 30-smooth. By using (1) we can generate
numbers that are likely to be 30-smooth. Trying e.g., k = 2 and j = 2 will give r = 184 and r2 mod
N = 582. Since

582 = 2 · 3 · 97,

this can not be factored over our factorbase since 97 > 29, so r = 184 is thrown away. Next, we try
k = 3 and j = 2, which gives r = 225 and r2 mod N = 714. This number is 30-smooth since

714 = 2 · 3 · 7 · 17

so it can be factorized by our factorbase. Hence, we let x1 = 225. Continuing with different choices for
k and j gives

k j r r2 mod N

3 2 225 714 = 2 · 3 · 7 · 17
4 4 261 1573 = 112 · 13
5 3 291 1496 = 23 · 11 · 17
5 4 292 2079 = 33 · 7 · 11
6 2 317 667 = 23 · 29
7 2 343 1190 = 2 · 5 · 7 · 17
10 6 413 4199 = 13 · 17 · 19
11 4 431 2754 = 2 · 34 · 17
12 12 458 10120 = 23 · 5 · 11 · 23
13 4 469 3680 = 25 · 5 · 23
13 8 473 7448 = 23 · 72 · 19
14 8 490 7182 = 2 · 33 · 7 · 19

5

Note that e.g., r = 395 gives r2 mod 16637 = 6292 = 22 · 112 · 13. This also factors over our factorbase
but it would give the same binary row in the matrix as r = 261. Because of this, r = 395 will also be
thrown out.

Now we have 12 equations such that x2i = yi mod N factors over the chosen factorbase. The binary
matrix can now be written as

M =



1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 1 1 0 0
1 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0


where each column represents one prime number in the factorbase and each row represents one of the 12
equations. By solving x ·M = 0 we get a solution

x = 101100000000.

This means that we multiply row 1, 3 and 4 together.

2252 · 2912 · 2922 = 24 · 34 · 72 · 112 · 172 mod 16637
⇒ (225 · 291 · 292)2 = (22 · 32 · 7 · 11 · 17)2 mod 16637

⇒ 27872 = 138502 mod 16637

Now we calculate gcd(13850− 2787, 16637) = 1. Bad luck, we didn’t get a factor. Another solution is

x = 001000011100.

In the same way as before, we multiply row 3, 8, 9 and 10 in order to get the expression

48912 = 89522 mod 16637.

Calculating gcd(8952 − 4891, 16637) = 131 gives us a factor of N . Taking 16637/131=127 will give us
the other factor.

A few words about implementation of the algorithm. The size of the factor base should for best perfor-
mance in your case be as large as possible. Select a size that your computer can handle, for example
L = 1000.

Finally, there are two things to address in your program. Firstly, you need to be able to do arithmetic with
large numbers (30 digit numbers). The standard integer representation in a programming language is
usually not sufficient. You need to use some library supporting large integers (or implement it yourself!).
The second problem you might run into is memory management. Note that the second step of the
algorithm requires a substantial amount of memory for large factor bases. You might need to check the
efficiency of your representation in your program as well as how your programming language handles
memory.

Here are some numbers you can use to test your program;

323 = 17 · 19,
307561 = 457 · 673,
31741649 = 4621 · 6869,
3205837387 = 46819 · 68473,
392742364277 = 534571 · 734687.

6

	Introduction
	Trial division
	More efficient methods
	The Quadratic Sieve algorithm

