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Chapter 1

Abstract algebra and Number theory

Before we start the treatment of cryptography we need to review some basic facts from number
theory and abstract algebra.

1.1 Number theory

The set of integers {. . . ,−2,−1, 0, 1, 2, . . .} is denoted by Z.

De�nition 1.1. Let a, b ∈ Z. We say that a divides b (written a|b) if there exists an integer c
such that b = ac.

The following facts are easily checked.

(i) a|a.

(ii) If a|b and b|c then a|c.

(iii) If a|b and a|c then a|(bx+ cy) for any x, y ∈ Z.

(iv) If a|b and b|a then a = ±b.

Let a and b be integers with b ≥ 1. Then an ordinary long division of a by b yields two integers
q and r such that

a = qb+ r, where 0 ≤ r < b. (1.1)

The integers q and r are called the quotient and the remainder, respectively, and they are unique.

De�nition 1.2. The remainder ( r ) of a divided by b is denoted a mod b. The quotient ( q )
of a divided by b is denoted a div b.

Example 1.1. Let a = 47 and b = 7. Then a mod b = 5 and a div b = 6.

We call an integer c a common divisor of integers a and b if c|a and c|b.
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De�nition 1.3. A non-negative integer d is called the greatest common divisor of integers a and
b if

(i) d is a common divisor of a and b.

(ii) for every other common divisor c it hold that c|d.

The greatest common divisor of integers a and b is denoted gcd(a, b).

Clearly, gcd(a, b) is the largest positive integer dividing both a and b (except gcd(0, 0) = 0).

Example 1.2. The common divisors of 28 and 42 are {±2,±7,±14} and gcd(28, 42) = 14.

In a similar fashion as above we de�ne the least common multiple.

De�nition 1.4. A non-negative integer d is called the least common multiple of integers a and
b if

(i) a|d and b|d.

(ii) for every integer c such that a|c and b|c we have d|c.

The least common multiple of integers a and b is denoted lcm(a, b).

Clearly, lcm(a, b) is the smallest positive integer divisible by both a and b. The following rela-
tionship is often useful. If a and b are positive integers, then

lcm(a, b) · gcd(a, b) = a · b. (1.2)

Two integers a, b are called relatively prime if gcd(a, b) = 1. Also, an integer p ≥ 2 is called
prime if its only positive divisors are 1 and p. Otherwise p is called a composite. Prime numbers
play a fundamental role in cryptography. Let us review some known facts about them. Let π(x)
denote the number of primes ≤ x. Some known facts about primes.

(i) There are in�nitely many primes.

(ii) limx→∞
π(x)
x/ lnx = 1.

(iii) For x ≥ 17, x/ lnx < π(x) < 1.25506x/ lnx.

The following theorem is a well known result.

Theorem 1.1 (Unique factorization theorem). Every integer n ≥ 2 can be written as a product
of prime powers,

n = pe11 p
e2
2 · · · p

ek
k ,

where p1, p2, . . . , pk are distinct primes and e1, e2, . . . ek are positive integers. Furthermore, the
factorization is unique up to rearrangement of factors.
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The proof of this theorem is not as easy as it may seem. We refer to any textbook in number
theory. The unique factorization theorem can be used to express the greatest common divisor
and the least common multiple in a simple way.

If a = pe11 p
e2
2 · · · p

ek
k and b = pf11 p

f2
2 · · · p

fk
k , where ei, fi, i = 1, 2, . . . k are now nonnegative integers,

then
gcd(a, b) = p

min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(ek,fk)

k (1.3)

and
lcm(a, b) = p

max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(ek,fk)

k . (1.4)

De�nition 1.5. For n ≥ 1, let φ(n) denote the number of integers in the interval [1, n] which
are relatively prime to n. This function is called the Euler phi function.

Let us prove the following facts concerning the Euler phi function.

Theorem 1.2. (i) If p is a prime, then φ(p) = p− 1.

(ii) If gcd(a, b) = 1 then φ(ab) = φ(a)φ(b).

(iii) If n = pe11 p
e2
2 · · · p

ek
k then

φ(n) = (pe11 − p
e1−1
1 )(pe22 − p

e2−1
2 ) · · · (pekk − p

ek−1
k ).

Proof. The proof is left as an exercise.

Let us consider the problem of computing the greatest common divisor between two integers.
We could use the expression derived in (1.3), but this requires us to �rst �nd the prime factors
of the two integers. This is not always an easy task, as we will see later. Fortunately, there is
an easier and better way of calculating the greatest common divisor. It relies on the following
simple fact.

Lemma 1.3. If a and b are positive integers with a > b, then gcd(a, b) = gcd(b, a mod b).

Proof. The proof is left as an exercise.

Of course, we can now use the above lemma repeatedly until the problem is small enough to be
trivially solved. This leads to the famous Euclidean algorithm for computing gcd(a, b).

Algorithm 1.1 (Euclidean algorithm).

INPUT: Two non-negative integers a, b where a ≥ b.

OUTPUT: gcd(a, b)

FLOW: 1. Set r0 ← a, r1 ← b, i← 1.

2. While ri 6= 0 do:

2.1 Set ri+1 ← ri−1 mod ri, i← i+ 1.

3. Return(ri−1).
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In essence, the algorithm sets r0 = a, r1 = b and then computes the following set of long divisions,

r0 = q1r1 + r2

r1 = q2r2 + r3
...

...
...

ri−2 = qi−1ri−1 + ri

ri−1 = qiri.

Since gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(ri−1, ri) = ri, the algorithm terminates
with the correct answer. Let us illustrate the Euclidean algorithm with an example.

Example 1.3. Compute gcd(1495, 1365).

We have

1495 = 1 · 1365 + 130

1365 = 10 · 130 + 65

130 = 2 · 65 + 0,

and gcd(1495, 1365) = 65.

The following fact is important.

Theorem 1.4. Let a and b be two non-negative integers. Then there exist integers x, y such that
gcd(a, b) can be written as

gcd(a, b) = ax+ by.

Proof. Following the set of long divisions above we have

gcd(a, b) = ri

= ri−2 − qi−1ri−1
= ri−2 − qi−1(ri−3 − qi−2ri−2)
...

...

= r0x+ r1y

= ax+ by,

for some integers x, y ∈ Z.

In the proof of the theorem, we see how we can calculate the integers x and y. There is also an
extended version of Euclidean algorithm which returns not only gcd(a, b) but also the integers
x, y. So when we need to calculate x, y we can either use Eulidean algorithm and then go
�backwards� again, as in the proof, or we can use an extended version of the Eulidean algorithm.
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Algorithm 1.2 (Extended Euclidean algorithm).

INPUT: Two non-negative integers a, b where a ≥ b.

OUTPUT: d = gcd(a, b) and two integers x, y such that d = ax+ by.

FLOW: 1. If b = 0 then return(a,x← 1,y ← 0).

2. Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1.

3. While b > 0 do:

3.1 q ← adiv b, r ← a− qb, x← x2 − qx1, y ← y2 − qy1,
3.2 a← b, b← r, x2 ← x1, x1 ← x, y2 ← y1, y1 ← y.

4. Set d← a, x← x2, y ← y2 and Return(d, x, y).

Example 1.4. Compute gcd(1495, 1365) and �nd two integers x, y such that gcd(1495, 1365) =
1495x+ 1365y.

q r x y a b x2 x1 y2 y1
1495 1365 1 0 0 1

1 130 1 -1 1365 130 0 1 1 -1
10 65 -10 11 130 65 1 -10 -1 11
2 0 21 -23 65 0 -10 21 11 -23

So gcd(1495, 1365) = 65 = 1495 · (−10) + 1365 · 11.

If we instead of using the extended version of the Euclidean algorithm would use the standard
version and then go backwards, we would get

1495 = 1 · 1365 + 130

1365 = 10 · 130 + 65

130 = 2 · 65 + 0

and backwards

65 = 1365− 10 · 130
= 1365− 10 · (1495− 1 · 1365)
= 11 · 1365− 10 · 1495.

1.2 The integers modulo n

Let n be a positive integer. If a and b are integers, then a is said to be congruent to b modulo n,
which is written a ≡ b (mod n), if n divides (a − b). We call n the modulus of the congruence.
We can check the following properties.

Theorem 1.5. For a, a1, b, b1, c ∈ Z we have
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(i) a ≡ b (mod n) if and only if a and b leaves the same remainder when divided by n.

(ii) a ≡ a (mod n).

(iii) If a ≡ b (mod n) then b ≡ a (mod n).

iv) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

v) If a ≡ a1 (mod n) and b ≡ b1 (mod n), then a + b ≡ a1 + b1 (mod n) and ab ≡ a1b1
(mod n).

The properties ii), iii), and iv) are called re�exivity, symmetry and transitivity, respectively.

Proof. The proof can be found in any textbook on number theory.

From the above we can see that the integers in the set {. . . ,−n, 0, n, 2n, . . .} are all congruent
to each other modulo n. Similarly, the integers in the set {. . . ,−n+ 1, 1, n+ 1, 2n+ 1, . . .} are
all congruent to each other modulo n. So the relation of congruence modulo n partitions Z into
n sets, called equivalence classes (each integer belongs to exactly one equivalence class). Since
all elements in an equivalence class have the same remainder r, we use r as an representative for
the equivalence class.

De�nition 1.6. The integers modulo n, denoted Zn, is the set of (equivalence classes of) integers
{0, 1, . . . , n− 1}. Addition, subtraction, and multiplication are performed modulo n.

Example 1.5. Calculate 7 + 11, 7− 11 and 7 · 11 in Z12.

7 + 11 = 6

7− 11 = 7 + (−11) = 7 + 1 = 8

7 · 11 = 77 mod 12 = 5.

As we have seen, addition, subtraction, and multiplication are trivially performed in Zn. How-
ever, the concept of division is a bit trickier.

De�nition 1.7. Let a ∈ Zn. The multiplicative inverse of a is an integer x ∈ Zn such that
ax = 1. If such an integer x exists, then a is said to be invertible and x is called the inverse of
a, denoted a−1.

De�nition 1.8. Division of a by an element b in Zn (written a/b) is de�ned as ab−1, and only
de�ned if b is invertible.

Lemma 1.6. Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1.

Proof. Assume that gcd(a, n) = 1. We know that 1 = gcd(a, n) = xa + yn for some x, y ∈ Z.
Then x mod n is an inverse to a.

Now assume gcd(a, n) > 1. If a has an inverse x then a·x = 1 mod n, which means 1 = a·x+n·y
for some x, y ∈ Z, directly contradicting the assumption.
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Example 1.6. Calculate 7/11 in Z12.

By de�nition 7/11 = 7·11−1. We use Euclidean algorithm to �nd integers such that gcd(11, 12) =
1 = 12− 1 · 11. This gives 11−1 = 11 and 7/11 = 7 · 11−1 = 7 · 11 = 5.

A very important basic result is the Chinese remainder theorem, or CRT for short.

Theorem 1.7 (Chinese Remainder Theorem). Let the integers n1, n2, . . . , nk be pairwise rela-
tively prime. Then the system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has a unique solution modulo n = n1n2 · · ·nk.

Proof.

Algorithm 1.3 (Gauss's algorithm). The solution x to the system of congruences promised by
the CRT can be calculated as

x =
k∑
i=1

aiNiMi mod n,

where Ni = n/ni and Mi = N−1i mod ni.

The CRT allows us to change the way we represent elements. Suppose we are considering the
integers modulo n, where n = n1n2 and gcd(n1, n2) = 1. An element a ∈ Zn has a unique
representation from the pair (a mod n1, a mod n2). Let us denote this map by γ : Zn → Zn1 ×
Zn2 . The following properties are easily veri�ed.

(i) γ(a) = γ(b) if and only if a = b.

ii) For all (a1, a2) ∈ Zn1 × Zn2 there exists an a such that γ(a) = (a1, a2).

(ii) γ(a+ b) = γ(a) + γ(b).

(iii) γ(ab) = γ(a)γ(b).

These properties make γ an isomorphism. This roughly means that we can use any of the two
representations when we do calculus.

Example 1.7. We would like to calculate 910 in Z10 in two ways, direct calculation and through
the CRT.

Direct calculation gives

910 = (81 mod 10)5 = 15 = 1.



10 Chapter 1. Abstract algebra and Number theory

Using the CRT, we �rst set n = n1n2, where n1 = 2, n2 = 5. This gives N1 = 5, N2 = 2,
M1 = 5−1 mod 2 = 1 and M2 = 2−1 mod 5 = 3. Then we calculate the CRT representation

a1 = 910 mod 2 = 1

a2 = 910 mod 5 = 410 mod 5 = 1

Finally, we can reconstruct the integer in Z10 corresponding to (a1, a2) = (1, 1) through Gauss's
algorithm,

x =
2∑
i=1

aiNiMi mod 10 = 1 · 5 · 1 + 1 · 2 · 3 = 1.

Let us continue and de�ne the multiplicative group of Zn, denoted Z∗n, as the set of all invertible
elements, i.e.,

Z∗n = {a ∈ Zn| gcd(a, n) = 1}.

The order of Z∗n refers to the number of elements in Z∗n and is also denoted |Z∗n|. It follows from
the de�nition of the Euler phi function that |Z∗n| = φ(n).

Since the product of two invertible elements is again an invertible element, we say that |Z∗n| is
closed under multiplication.

Theorem 1.8 (Euler's theorem). If a ∈ Z∗n then

aφ(n) ≡ 1 (mod n).

Proof. Let Z∗n = {a1, a2, . . . , aφ(n)}. Looking at the set of elements A = {aa1, aa2, . . . , aaφ(n)},
it is easy to see that A = Z∗n. So we have two ways of writing the product of all elements, i.e.,

φ(n)∏
i=1

aai =

φ(n)∏
i=1

ai,

leading to
φ(n)∏
i=1

a = aφ(n) = 1.

A special case of Euler's theorem is celebrated as Fermat's little theorem.

Corollary 1.9 (Fermat's little theorem). Let p be a prime. If gcd(a, p) = 1 then

ap−1 ≡ 1 (mod p).

From Euler's theorem we see that when working in Zn all exponents can be reduced modulo
φ(n).

Let a ∈ Z∗n. The order of the element a, denoted ord(a) is de�ned as the least positive integer t
such that at = 1.
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Lemma 1.10. Let a ∈ Z∗n. If as = 1 for some s, then ord(a)|s. In particular, ord(a)|φ(n).

Proof. Let t = ord(a). By long division s = qt + r, where r < t. Then as = aqt+r = aqtar and
since at = 1 we have as = ar and ar = 1. But r < t so we must have r = 0 and so ord(a)|s.

De�nition 1.9. Let a ∈ Z∗n. If ord(a) = φ(n), then a is said to be a generator (or a primitive
element) of Z∗n. Furthermore, if Z∗n has a generator then Z∗n is said to be cyclic.

It is clear that if a ∈ Z∗n is a generator, then every element in Z∗n can be expressed as ai for some
integer i. So we can write

Z∗n = {ai|0 ≤ i ≤ φ(n)− 1}.

Finally, we shortly introduce the concept of quadratic residues. An element a ∈ Z∗n is said to be
a quadratic residue modulo n (or a square) if there exists an x ∈ Z∗n such that x2 = a. Otherwise,
a is called a quadratic non-residue modulo n. If x2 = a then x is called the square root of a
modulo n.

Example 1.8. Determine the quadratic residues in Z∗11, knowing that it is cyclic.

Knowing that Z∗11 is cyclic, it can be expressed as

Z∗11 = {ai|0 ≤ i ≤ 10},

where ord(a) = φ(11) = 10. As 10 factors as 10 = 2 · 5 the possible orders for any element are
1, 2, 5, or 10. We try to �nd a generator a.

We start by testing a = 2. As 22 = 4, 25 = 10, we know that 2 must be a generator of Z∗11 without
having to test further.

An element b = ai is a quadratic residue if there is an x = 2j such that x2 = b, or 22j = 2i for
some j. This makes it clear that the quadratic residues are the elements of the form ai where i
is even. This gives the set {20 = 1, 22 = 4, 24 = 5, 26 = 9, 28 = 3}.

1.3 Basic abstract algebra

In the previous sections we have presented various aspects concerning the integers and calculus
modulo n. However, this covered just a few examples of algebraic structures. In this section
we brie�y review some basic concepts from abstract algebra, which provides a more general
treatment of algebraic structures.

1.3.1 Groups

A binary operation ∗ on a set S is a mapping from S×S to S. Our general purpose is to introduce
various environments where we can perform di�erent operations, which are similar to what we
are used to do with the ordinary numbers, like the real numbers. A binary operation on the real
numbers could for example be addition.

In our world of cryptography, as in many other areas, we must be able to represent our elements
in an exact way when implemented. As an in�nite set does not support this, we are in general
only interested in �nite sets.
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De�nition 1.10. A group (G, ∗) is a set G and a binary operation ∗ on G which satis�es the
following.

(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G (associativity).

(ii) There is a special element 1 ∈ G such that a ∗ 1 = 1 ∗ a = a for all a ∈ G.

(iii) For each a ∈ G there is an element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = 1.

We call 1 the identity element and we call a−1 the inverse of a. Furthermore, if

(iv) a ∗ b = b ∗ a for all a, b ∈ G,

then G is called abelian (or commutative).

De�nition 1.11. A group is �nite if the number of elements in G (|G|) is �nite. The number
of elements is called the order of the group.

If we recall the treatment of number theory, we see that the set of integers Z with the addition
operation, denoted (Z,+), is a group. Finite groups are (Zn,+), and (Z∗n, ·), where · denotes
multiplication modulo n. Note that (Zn, ·) is not a group. Neither is (Z, ·).
A non-empty subset H of a group G is called a subgroup of G, if it is itself a group with respect
to the operation of G. Similar to what we de�ned before, we say that a group G is cyclic if there
is an element a ∈ G such that each b ∈ G can be written as ai for some integer i. The element
a is called a generator of G.

The order of an element a ∈ G is the least positive integer such that at = 1, if such an integer
exists. If it does not, then the order of a is de�ned to be ∞.

Lemma 1.11. Let a ∈ G be an element of �nite order t. Then the set of all powers of a forms
a cyclic subgroup of G, denoted by < a >. Furthermore, the order of < a > is t.

We can note some further properties. Suppose an = 1 for some n > 0. Perform a long division
and write n = k · ord(a) + r, where 0 ≤ r ≤ ord(a). Then 1 = an = a=k·ord(a)+r = ar and r = 0.
So we must have ord(a)|n.
Another interesting property. If G is a �nite group, all elements must have �nite order. Choose
k as the product of the orders of all di�erent elements in G. Then ak = 1 for all a ∈ G. The
conclusion is that there exists a positive integer k such that ak = 1 all the time (for any a ∈ G).
Let H be a subgroup in G and pick an element a ∈ G. A set of elements of the form

aH = {ah|h ∈ H}
is called a left coset of H. If G is commutative we simply call it a coset. The set consisting of of
all such left cosets is written G/H. We note that H itself is a left coset. Furthermore, every left
coset contains the same number of elements (the order of H) and every element is contained in
exactly one left coset.

So the elements of G are partitioned into |G|/|H| di�erent cosets, each containing |H| elements.
This leads to the following famous result.

Theorem 1.12 (Lagrange's theorem). If G is a �nite group and H is a subgroup of G, then |H|
divides |G|. In particular, if a ∈ G then the order of a divides |G|.

We end the section by another observation. If |G| is a prime number, then the order of an
element a is either 1 or |G|. In particular, if |G| is a prime number then G must be cyclic.
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1.3.2 Rings

A group was de�ned through a set G together with one binary operation. A ring is de�ned
through a set R together with two binary operations.

De�nition 1.12. A ring (with unity) (R,+, ·) consists of a set R with two binary operations,
denoted + and ·, on R, satisfying the following conditions:

(i) (R,+) is an abelian group with an identity element denoted 0.

(ii) a · (b · c) = (a · b) · c, for all a, b, c ∈ R (associative).

(iii) There is a multiplicative identity denoted 1, with 1 6= 0, such that 1 · a = a · 1 = a, for all
a ∈ R.

(iv) a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a), for all a, b, c ∈ R.

A commutative ring is a ring where additionally

(v) a · b = b · a, for all a, b ∈ R.

One example of a commutative ring is (Z,+, ·), where + and · are the usual operations of addition
and multiplication. Another example is Zn with addition and multiplication modulo n.

Note that the additive inverse of an element a ∈ R is denoted −a. So the subtraction expression
a − b should be interpreted as a + (−b). The multiplication a · b is equivalently written ab;
similarily, a2 = aa = a · a.

De�nition 1.13. An element a ∈ R is called an invertible element (or a unit) if there is an
element b ∈ R such that a · b = b · a = 1.

The set of units in a ring R forms a group under multiplication. For example, the group of units
of the ring Zn is Z∗n.
The multiplicative inverse of an element a ∈ R is denoted by a−1, assuming that it exists. The
division expression a/b should then be interpreted as a · b−1.

De�nition 1.14. A commutative ring where all nonzero elements have (multiplicative) inverses
is called a �eld.

De�nition 1.15. The characteristic of a �eld is the least integer m > 0 such that

m︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

If no such integer m exists, the characteristic is de�ned to be 0.

Examples of �elds are the rational numbers Q, the real numbers R and the complex numbers C.
Note that the set of integers under the usual operations of addition and multiplication is not a
�eld, since the only elements with multiplicative inverses are 1 and −1.

Theorem 1.13. Zn is a �eld if and only if n is a prime number. If n is a prime, the characteristic
of Zn is n.

Finally, a subset F of a �eld E is called a sub�eld of E if F is itself a �eld with respect to the
operations of E. Then we say that E is an extension �eld of F .
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1.3.3 Polynomial rings

De�nition 1.16. A polynomial in the indeterminate x over the ring R is an expression of the
form

f(x) = anx
n + · · ·+ a2x

2 + a1x+ a0,

where each ai ∈ R, an 6= 0, and n ≥ 0. We say that f(x) has degree n, denoted deg f(x) = n.
We also allow f(x) to be the polynomial with all coe�cients zero, in which case the degree is
de�ned to be −∞. A polynomial f(x) is said to be monic if the leading coe�cient is equal to 1,
i.e., an = 1.

De�nition 1.17. Let R be a commutative ring. Then the polynomial ring, denoted by R[x]
is the ring formed by the set of all polynomials in the indeteminate x having coe�cients from
R. The operations are addition and multiplication of polynomials, with the coe�cient aritmethic
performed in R.

Example 1.9. Compute (x2 + 2x+ 9)(x3 + 11x2 + x+ 7) in Z12[x].

(x2 + 2x+ 9)(x3 + 11x2 + x+ 7) = x5 + 11x4 + x3 + 7x2 + 2x4 + 10x3 + 2x2 + 2x+

+9x3 + 3x2 + 9x+ 3

= x5 + x4 + 8x3 + 11x+ 3.

We now consider the polynomial ring F [x], where F denotes an arbitrary �eld. As we will see,
the polynomial ring F [x] has many properties in common with integers.

De�nition 1.18. A polynomial f(x) ∈ F [x] of degree d ≥ 1 is called irreducible if it cannot be
written as a product of two polynomials in F [x], both of degree less than d.

Irreducible polynomials are the polynomial ring counterpart of prime numbers. Similar as for
integers, we have a division algorithm for polynomials.

Lemma 1.14. If g(x), h(x) ∈ F [x], with h(x) 6= 0, then there are polynomials q(x), r(x) ∈ F [x]
such that

g(x) = q(x)h(x) + r(x),

where deg r(x) < deg h(x). Furthermore, q(x) and r(x) are unique and are referred to as the
quotient and the remainder, respectively. The remainder r(x) is also denoted by g(x) mod h(x).

Example 1.10. Compute (x3 + 11x2 + x+ 7) mod (x2 + 2x+ 9) in Z13[x].

Long division of polynomials. By

(x3 + 11x2 + x+ 7)− (x2 + 2x+ 9) · x = 11x2 − 2x2 + x− 9x+ 7 = 9x2 + 5x+ 7

(9x2 + 5x+ 7)− (x2 + 2x+ 9) · 9 = 5x− 5x+ 7− 3 = 4

we have (x3 + 11x2 + x+ 7) = (x2 + 2x+ 9) · (x+ 9) + 4, so

(x3 + 11x2 + x+ 7) mod (x2 + 2x+ 9) = 4.
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If g(x), h(x) ∈ F [x], then h(x) is said to divide g(x), written as h(x)|g(x), if g(x) mod h(x) = 0.

Let f(x) be some �xed polynomial in F [x]. Similar as for the integers, we can de�ne congruences
of polynomials in F [x] based on division by f(x).

De�nition 1.19. Let g(x), h(x) ∈ F [x]. then g(x) is said to be congruent to h(x) modulo f(x)
if f(x)|(g(x)− h(x)). We denote this by g(x) ≡ h(x) (mod f(x)).

We can verify a lot of properties regarding congruences between polynomials.

Theorem 1.15. For g(x), h(x), g1(x), h1(x), s(x) ∈ F [x] we have

(i) g(x) ≡ h(x) (mod f(x)) if and only if g(x) and h(x) leaves the same remainder when
divided by f(x).

(ii) g(x) ≡ g(x) (mod f(x)).

(iii) If g(x) ≡ h(x) (mod f(x)) then h(x) ≡ g(x) (mod f(x)).

iv) If g(x) ≡ h(x) (mod f(x)) and h(x) ≡ s(x) (mod f(x)), then g(x) ≡ s(x) (mod f(x)).

v) If g(x) ≡ g1(x) (mod f(x)) and h(x) ≡ h1(x) (mod f(x)), then g(x)+h(x) ≡ g1(x)+h1(x)
(mod f(x)) and g(x)h(x) ≡ g1(x)h1(x) (mod f(x)).

The properties ii), iii), and iv) are again called re�exivity, symmetry and transitivity, respectivly.
The proof of the theorem is again not given here.

From the above properties we see that the polynomials in F [x] can be divided into sets, called
equivalence classes, where each equivalence class contains all polynomials that leaves a certain
remainder when divided by f(x). Furthermore, since the remainder r(x) itself is a polynomial in
the equivalence class, we use it as a representative of the equivalence class. Note that deg r(x) <
deg f(x).

De�nition 1.20. By F [x]/(f(x)) we denote the set of (equivalence classes of) polynomials in
F [x] of degree less than deg f(x). The addition and multiplication operations are performed
modulo f(x).

Theorem 1.16. F [x]/(f(x)) is a commutative ring.

Theorem 1.17. If f(x) ∈ F [x] is irreducible, then F [x]/(f(x)) is a �eld.

1.4 Finite �elds

A �nite �eld is a �eld which contains a �nite number of elements. The number of elements is
also called the order of the �eld.

We now give a few results which are out of the scope of this text to prove.

Theorem 1.18. (i) If F is a �nite �eld, then the order of F is pm for some prime p and
integer m ≥ 1.
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(ii) For every prime power order pm, there is a unique (up to isomorphism) �nite �eld of order
pm. This �eld is denoted by Fpm , or GF (pm).

Two �elds are isomorphic if they are structually the same, but elements have di�erent represen-
tation. We know already that for p prime Zp is a �eld of order p. So we associate the �nite �eld
Fp with Zp and its representation.

Theorem 1.19. (i) If Fq is a �nite �eld of order q = pm, p prime, then the characteristic of
Fq is p. Furthermore, Fq contains a copy of Zp as a sub�eld.

(ii) Let Fq be a �nite �eld of order q = pm. Then every sub�eld of Fq has order pn for some
positive integer n where n|m. Conversely, if n|m then there are exactly one sub�eld of Fq
of order pn.

(iii) An element a ∈ Fq is in the sub�eld Fpn if and only if ap
n−1 = 1.

The non-zero elements of Fq all have inverses and thus they form a group under multiplication.
This group is called the multiplicative group of Fq and denoted by F∗q . It can be shown that F∗q
is a cyclic group (of order q − 1). Especially, this means that aq−1 = 1 for all a ∈ Fq.

De�nition 1.21. A generator of the cyclic group F∗q is called a primitive element.

We know already that the �nite �elds of prime order p can be realized by a simple modulo p
arithmetic. The question that remains is how to realize the �nite �elds of prime power order pm,
where m > 1. In order to do this we need to extend the theory of greatest common divisors and
the Euclidean algorithm to the polynomial ring F [x].

De�nition 1.22. Let g(x), h(x) ∈ Zp[x], where not both are zero. Then the greatest common
divisor of g(x) and h(x), denoted gcd(g(x), h(x)), is the monic polynomial of greatest degree in
Zp[x] which divides both g(x) and h(x). By de�nition gcd(0, 0) = 0.

Similar to the fundamental theorem of arithmetics, we have

Theorem 1.20. Every non-zero polynomial f(x) ∈ Zp[x] has a factorization

f(x) = af1(x)
e1f2(x)

e2 · · · fk(x)ek ,

where each fi is a distinct monic irreducible polynomial in Zp[x], the ei are positive integers, and
a ∈ Zp. The factorization is unique up to rearrangement of factors.

Now we give the polynomial version of the Euclidean algorithm.

Algorithm 1.4 (Euclidean algorithm for polynomials).

INPUT: Two non-negative polynomials a(x), b(x) ∈ Fq[x].

OUTPUT: gcd(a(x), b(x))

FLOW: 1. Set r0(x)← a(x), r1(x)← b(x), i← 1.
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2. While ri(x) 6= 0 do:

2.1 Set ri+1(x)← ri−1(x) mod ri(x), i← i+ 1.

3. Return(ri−1(x)).

Here is an example.

Example 1.11. Compute gcd(x3 + x2 + 2x+ 2, x2 + x+ 1) in Z3.

x3 + x2 + 2x+ 2 = x · (x2 + x+ 1) + x+ 2

(x2 + x+ 1) = (x+ 2) · (x+ 2) + 0

So gcd(x3 + x2 + 2x+ 2, x2 + x+ 1) = x+ 2.

Theorem 1.21. Let a(x) and b(x) be two non-negative polynomials in Fq[x]. Then there exist
polynomials s(x), t(x) such that gcd(a(x), b(x)) can be written as

gcd(a(x), b(x)) = a(x)s(x) + b(x)t(x).

Example 1.12. Continuing from Example 1.11, we can directly write

gcd(x3 + x2 + 2x+ 2, x2 + x+ 1) = (x+ 2) = (x3 + x2 + 2x+ 2)− x · (x2 + x+ 1),

so s(x) = 1 and t(x) = −x = 2x.

As for the integer case, there is also an extended version of the Euclidean algorithm that in
addition to gcd(a(x), b(x)) also returns the polynomials s(x), t(x) above.

1.4.1 Finite �eld arithmetics

The most common representation for the elements of a �nite �eld Fq, where q = pm, p prime, is
a polynomial basis representation.

Theorem 1.22. Let f(x) ∈ Zp[x] be an irreducible polynomial of degree m. Then Zp[x]/(f(x))
is a �nite �eld of order pm. The elements are all polynomials of degree less than m. Addition
and multiplication of elements is performed modulo f(x).

The following fact assures that all �nite �elds can be represented in this manner.

Lemma 1.23. For each m ≥ 1, there exists a monic irreducible polynomial of degree m over Zp.

Example 1.13. Let us examine the �eld F23 . To construct it we need an irreducible polynomial
of degree 3 over F2. The polynomial π(x) = x3 + x+ 1 is indeed an irreducible polynomial since
π(0) = π(1) = 1.

The elements are the polynomials of degree less than 3, i.e., the set

F23 = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}.
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Addition of the elements x2 + 1 and x+ 1 gives

(x2 + 1) + (x+ 1) = x2 + x,

and multiplication of the elements x2 + 1 and x+ 1 gives

(x2 + 1)(x+ 1) = x3 + x2 + x+ 1 ≡ x2 (mod π)(x),

so (x2 + 1)(x+ 1) = x2.

Our elements in Fq are represented by polynomials in the indeterminate x. As we might want
consider polynomials over Fq, we now change the representation of the elements.

The argument goes as follows. The polynomial f(x) is irreducible over Zp. However, there exists
some element α in some extension �eld Fq for which f(α) = 0. Instead of representing our
elements as polynomials in the indeterminate x we represent them using α and the fact that
f(α) = 0. From a practical point of view, this simply means that our indeterminate x in the
elements is replaced by α.

Example 1.14. Considering the previous example, π(x) = x3 + x+ 1. We introduce α through
π(α) = 0. This gives us the rule

α3 = α+ 1.

The elements are

F23 = {0, 1, α, α+ 1, α2, α2 + 1, α2 + α, α2 + α+ 1},

and, for example

(α2 + 1)(α+ 1) = α3 + α2 + α+ 1 = α2,

using the reduction rule α3 = α+ 1.

Let us look at the arithmetics in a �nite �eld with element representation as above. Addition of
two elements is done by usual addition of two polynomials in Fq. Multiplying two elements g(α)
and h(α) is done by usual multiplication of the two polynomials and then a reduction of the
result through f(α) = 0. Finally, multiplicative inverses can be computed by going backwards
in the Euclidean algorithm for Fq[x].

We might also want to consider an alternative representation through powers of α.

De�nition 1.23. An irreducible polynomial f(x) ∈ Zp[x] is called primitive if the element α
corresponding to f(α) = 0 is a generator of F∗q.

As α is a generator of F∗q , every non-zero element of Fq can be written as a power of α, i.e., αi

for some i, 0 ≤ i ≤ q − 1. This gives us an alternative element representation, namely as powers
of α. This will give a very simple multiplication operation, but instead the addition is more
complicated and involves a polynomial modulo reduction.

If we want to do extensive calculations in small �nite �elds, the best approach is to tabulate
both representations side by side, and use the one most suitable for the operation.
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(Binary representation) Polynomial basis Power of α

0000 0 0
0001 1 1
0010 α α
0100 α2 α2

1000 α3 α3

0011 α+ 1 α4

0110 α2 + α α5

1100 α3 + α2 α6

1011 α3 + α+ 1 α7

0101 α2 + 1 α8

1010 α3 + α α9

0111 α2 + α+ 1 α10

1110 α3 + α2 + α α11

1111 α3 + α2 + α+ 1 α12

1101 α3 + α2 + 1 α13

1001 α3 + 1 α14

Table 1.1: Table representation of the �eld with 16 elements using π(x) = x4 + x+ 1, π(α) = 0.

Example 1.15. Let us represent F24 using the primitive polynomial π(x) = x4 + x + 1 and
π(x) = 0. Using the rule α4 = α+ 1 we can either represent our elements in a polynomial basis
or as powers of α. We get the table in Table 1.1 for the elements in F24 (each row corresponds
to one element).

Note that α15 = 1. Having this table representation of the �eld, it is very easy to perform
operations by switching to the most apropriate representation.

For example, calculating

(α3 + α+ 1)(α3 + α) = [ switch repr.] = α7α9 = α16 = α

and
(α3 + α+ 1)−1 = (α7)−1 = α−7 = α−7+15 = α8.

Finally α/(α+ 1) is calculated as

α/(α+ 1) = α/α4 = α−3 = α12.

1.5 Exercises

Exercise 1.1.

(a) Calculate gcd(222, 1870).

(b) Find integers x and y such that gcd(222, 1870) = 222x+ 1870y.
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Exercise 1.2.

(a) Find the value of φ(36).

(b) Write up all the units in Z36.

(c) Calculate 5−1 in Z36.

Exercise 1.3.

(a) Write 143 = 11 · 13. Let x = 2 and calculate x−1 in Z143.

(b) Now we do the same again but we use CRT. Calculate x−1 (mod 11) and x−1 (mod 13).

(c) Use the result in (b) to recover the value of x−1 in Z143.

Exercise 1.4. Find all integer solutions to the following system of congruences.

x ≡ 3 (mod 7)

x ≡ 1 (mod 13)

x ≡ 13 (mod 17)

Exercise 1.5. Find all integer solutions to the following system of congruences.

x ≡ 3 (mod 3)

x ≡ 1 (mod 7)

x ≡ 13 (mod 14)

Exercise 1.6.

(a) Calculate 2/5 in Z∗8.

(b) Find ord(5) in Z∗8.

(c) Is Z∗8 a cyclic group?

Exercise 1.7. Find the square root of 10 in Z13.

Exercise 1.8. Let S be the set of binary triples, i.e, S = {(s0, s1, s2), si ∈ Z2}. Let the operation
be bitwise addition.

(a) Show that S is a group.

(b) What is the order of the group?

(c) What is the order of the element (1, 1, 1)?
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(d) Is there a generator in the group?

Exercise 1.9. Find a generator for the additive group Z13 (under the addition operation).

Exercise 1.10. Find all subgroups in the multiplicative group Z∗19 (under the multiplication
operation).

Exercise 1.11. Prove that Z4 is not a �eld.

Exercise 1.12. Let F be the �nite �eld F8 constructed using the irreducible polynomial f(x) =
x3 + x+ 1 over F2.

Let F ′ be the �nite �eld F8 constructed using the irreducible polynomial f(x) = x3 + x2 + 1 over
F2.

Find an isomorphism γ between F and F ′, i.e, tabulate γ(a) for all a ∈ F .

Exercise 1.13. Let F24 be constructed using the irreducible polynomial f(x) = x4 + x+ 1 over
F2, f(α) = 0.

(a) Calculate (α3 + 1) · (α2 + α).

(b) Calculate (α3 + 1)−1.

(c) Calculate (α3 + 1)357.

(d) Solve the linear equation (α3 + 1)x = α.

(e) Solve the equation ((α3 + 1)x+ α)2
8
= 1.

Exercise 1.14. For each of the polynomials, �nd out if they are reducible, irreducible and/or
primitive,

(a) x4 + x+ 1 over Z2,

(b) x4 + x3 + x2 + x+ 1 over Z2

(c) x4 + x2 + 1 over Z2,

(d) x4 + x+ 1 over Z3.


