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Introduction

Symmetric encryption algorithms are divided into two main categories,

block ciphers and stream ciphers.

Block ciphers tend to encrypt a block of characters of a plaintext

message using a �xed encryption transformation

A stream cipher encrypt individual characters of the plaintext using an

encryption transformation that varies with time.

A stream cipher built around LFSRs and producing one bit output on each

clock = classic stream cipher design.
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A stream cipher

Design goal is to e�ciently produce random-looking sequences that

are as �indistinguishable� as possible from truly random sequences.

Recall the unbreakable Vernam cipher.

For a synchronous stream cipher, a known-plaintext attack (or

chosen-plaintext or chosen-ciphertext) is equivalent to having access

to the keystream z = z1, z2, . . . , zN .

We assume that an output sequence z of length N from the

keystream generator is known to Eve.
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Type of attacks

Key recovery attack: Eve tries to recover the secret key K.

Distinguishing attack: Eve tries to determine whether a given

sequence z = z1, z2, . . . , zN is likely to have been generated from the

considered stream cipher or whether it is just a truly random sequence.

Distinguishing attack is a much weaker attack

T. Johansson (Lund University) 5 / 42



Distinguishing attack

Let D(z) be an algorithm that takes as input a length N sequence z
and as output gives either �X� or �RANDOM�.

With probability 1/2 the sequence z is produced by generator X and

with probability 1/2 it is a purely random sequence.

The probability that D(z) correctly determines the origin of z is

written 1/2 + ε.

If ε is not very close to zero we say that D(z) is a distinguisher for

generator X.
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Distinguishing attack - example

Assume that Alice sends one of N public images {I1, I2, . . . , IN} to Bob.

Eve observes the ciphertext c.

Guess that the plaintext is the image I1, i.e., m = I1.

Calculate ẑ = m+ c and compute D(ẑ).

If the guess m = I1 was correct then D(ẑ) = X. If not,

D(ẑ) =�RANDOM�.
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More on attacks

Building a (synchronous) stream cipher reduces to the problem of

building a generator that is resistant to all distinguishing attacks.

There are essentially always both distinguishing attacks and key

recovery attacks on a cipher.

Exhaustive keysearch; complexity 2k

An attack is considered successful only if the complexity of performing

it is considerably lower than 2k key tests.
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Building blocks for stream ciphers

MEMORY

linear feedback shift registers, or LFSRs for short.

tables (arrays)

Combinatorial function

Nonlinear Boolean functions, S-boxes

XOR, Modular addition, (cyclic) rotations, (multiplications)
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Example of a stream cipher design
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Linear feedback shift registers

sj-L sj-L+1
sj-2 sj-1s0,s1,... sj. . .

. . .-cL
-cL-1 -c2 -c1

A register of L delay (storage) elements each capable of storing one

element from Fq, and a clock signal.

Clocking, the register of delay elements is shifted one step and the new

value of the last delay element is calculated as a linear function of the

content of the register.
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LFSR sequences

The linear function is described through the coe�cients

c1, c2, . . . , cL ∈ Fq and the recurrence relation is

sj = −c1sj−1 − c2sj−2 − · · · cLsj−L,

for j = L,L+ 1, . . ..

With c0 = 1 we can write

L∑
i=0

cisj−i = 0, for j = L,L+ 1, . . . .

The shift register equation.

The �rst L symbols s0, s1, . . . , sL−1 form the initial state.
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LFSR sequences

The coe�cients c0, c1, . . . , cL are summarized in the connection

polynomial C(D) de�ned by

C(D) = 1 + c1D + c2D
2 + · · ·+ cLD

L.

Write < C(D), L > to denote the LFSR with connection polynomial

C(D) and length L.

D-transform of a sequence s = s0, s1, s2 . . . as

S(D) = s0 + s1D + s2D
2 + · · · ,

assuming si ∈ Fq.
The indeterminate D is the �delay� and its exponent indicate time.
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LFSR sequences

We assume si = 0 for i < 0. The set of all such sequences having the

form

f(D) =

∞∑
i=0

fiD
i,

fi ∈ Fq, is denoted Fq[[D]] and called the ring of formal power series.
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Theorem

The set of sequences generated by the LFSR with connection polynomial

C(D) is the set of sequences that have D-transform

S(D) =
P (D)

C(D)
,

where P (D) is an arbitrary polynomial of degree at most L− 1,

P (D) = p0 + p1D + . . .+ pL−1D
L−1.

Furthermore, the relation between the initial state of the LFSR and the

P (D) polynomial is given by the linear relation
p0
p1
...

pL−1

 =


1 0 · · · 0
c1 1 . . . 0
...

...
...

...

cL−1 cL−2 . . . 1




s0
s1
...

sL−1

 .
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LFSR sequences and extension �elds

Let π(x) be an irreducible polynomial over Fq and assume that its

coe�cients are

π(x) = xL + c1x
L−1 + · · ·+ cL.

This means that π(x) is the reciprocal polynomial of C(D).

Construct the extension �eld FqL through π(α) = 0.

β from FqL can be expressed in a polynomial basis as

β = β0 + β1α+ · · ·+ βL−1α
L−1,

where β0, β1, . . . βL−1 ∈ Fq.
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LFSR sequences and extension �elds

Assume that the (unknown) element β is multiplied by the �xed element α.
The result is

αβ = β0α+ β1α
2 + · · ·+ βL−1α

L.

Reducing αL using π(α) = 0 gives

αβ = −cLβL−1 + (β0 − cL−1βL−1)α+ · · ·+ (βL−2 − c1βL−1)αL−1.

. . .

-c1 -c2 -cL-1 -cL
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LFSR sequences and extension �elds

. . .

-c1 -c2 -cL-1 -cL

It is quickly checked that

sj = −c1sj−1 − c2sj−2 − · · · cLsj−L,

when j ≥ L.
p0 = s0, p1 = s1 + c1s0, etc, where p0, p1, . . . , pL−1 is the initial state

The sequence ful�lls the shift register equation, but uses

p0, p1, . . . pL−1 as initial state.
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LFSR sequences and extension �elds

The set of LFSR sequences, when C(D) is irreducible, is exactly
the set of sequences possible to produce by the implementation

of multiplication of an element β by the �xed element α in FqL.
For a speci�c sequence speci�ed as S(D) = P (D)/C(D) the initial

state is the �rst L symbols whereas the same sequence is produced in

the �gure if the initial state is p0, p1, . . . , pL−1.
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Properties of LFSR sequences

A sequence s = . . . , s0, s1, . . . is called periodic if there is a positive

integer T such that si = si+T , for all i ≥ 0.

The period is the least such positive integer T for which si = si+T , for
all i ≥ 0.

The LFSR state runs through di�erent values. The initial state will

appear again after visiting a number of states. If degC(D) = L, the
period of a sequence is the same as the number of di�erent states

visited, before returning to the initial state.
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Properties of LFSR sequences

C(D) irreducible: the state corresponds to an element in FqL , say β.
The sequence of di�erent states that we are entering is then

β, αβ, α2β, . . . , αT−1β, αTβ = β,

where T is the order or α.

If α is a primitive element (its order is qL − 1), then obviously we will

go trough all qL − 1 di�erent states and the sequence will have period

qL − 1. Such sequences are called m-sequences and they appear if and

only if the polynomial π(x) is a primitive polynomial.
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Example

Length 4 LFSR with connection polynomial

C(D) = 1 +D +D2 +D3 +D4 in F2.

Starting in (0001), we return after 5 clockings of the LFSR.

There are three cycles of length 5 and one of length one.

Explanation: F24 , we get through

π(x) = xLC(x−1) = x4 + x3 + x2 + x+ 1 and π(α) = 0.

α5 = 1 and ord(α) = 5. So starting in any nonzero state β ∈ F24 , we

will jump between the states

β, αβ, α2β, α3β, α4β, α5β = β.
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Example

Length 4 LFSR with connection polynomial C(D) = 1+D+D4 in F2.

Starting in (0001), we return after 15 clockings of the LFSR.

Explanation: F24 , we get through π(x) = xLC(x−1) = x4 + x3 + 1
and π(α) = 0.

α15 = 1 and ord(α) = 15. π(x) primitive polynomial.

So starting in any nonzero state β ∈ F24 , we will jump between all

nnzero states before returning.
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Properties of LFSR sequences

The di�erent state cycles that will appear for an arbitrary LFSR.

[s0, s1, . . . , sT−1]
∞ denote the periodic and causal sequence

s0, s1, . . . , sT−1, s0, s1, . . . , sT−1, s0, . . . ,

where si ∈ Fq, i = 0, 1, . . . , T − 1.

(s0, s1, . . . , sN−1) denote a sequence where the �rst N symbols are

s0, s1, . . . , sN−1 (and the upcoming symbols are not de�ned), where

si ∈ Fq, i = 0, 1, . . . , N − 1.
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Properties of LFSR sequences

If s = [1, 0, 0, . . . , 0]∞ then

S(D) = 1 +DT +D2T + · · · = 1

1−DT
.

iI s = [0, 1, 0, . . . , 0]∞ then

S(D) = D +DT+1 +D2T+1 + · · · = D

1−DT

In general, if s = [s0, s1, . . . , sT−1]
∞ then

S(D) =
s0

1−DT
+

s1D

1−DT
+ . . . =

s0 + s1D + . . . sT−1D
T−1

1−DT
.
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Properties of LFSR sequences

De�nition

The period of a polynomial C(D) is the least positive number T such that

C(D)|(1−DT ).

Calculated by division of 1 by C(D) and continuing until the we

receive the �rst remainder of the form 1 ·DN . Then the period is

T = N .

(example)
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Properties of LFSR sequences

Theorem

If gcd(C(D), P (D)) = 1 then the connection polynomial C(D) and the

sequence s with D-transform

S(D) =
P (D)

C(D)

have the same period (the period of s is the same as the period of the

polynomial C(D)).

Note: This C(D) gives the shortest LFSR generating s. Any other

connection polynomial generating s must be a multiple of C(D).

(example)
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Properties of LFSR sequences

Theorem

If two sequences, sA and sB, with periods TA and TB have D-transforms

SA(D) =
PA(D)

CA(D)
, SB(D) =

PB(D)

CB(D)
,

then the sum of the sequences s = sA + sB has D-transform

S(D) = SA(D) + SB(D) and period lcm(TA, TB), assuming

gcd(PA(D), CA(D)) = 1, gcd(PB(D), CB(D)) = 1,
gcd(CA(D), CB(D)) = 1.

(example)
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LFSR cycle sets

Introduce the cycle set for C(D) (assuming L = degC(D)).

Written in the form n1(T1)⊕ n2(T2)⊕ . . ..
1(1)⊕ 3(5), one cycle of length one and three cycles of length 5.

n1(T )⊕ n2(T ) = (n1 + n2)(T ).
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LFSR cycle sets

Already established facts:

If C(D) is a primitive polynomial of degree L over Fq then the cycle

set is

1(1)⊕ 1(qL − 1).

If C(D) is an irreducible polynomial then the cycle set is

1(1)⊕ (qL − 1)

T
(T ),

where T is the period of the polynomial C(D) (or the order of α when

π(α) = 0).
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LFSR cycle sets - remaining cases

Theorem

If C(D) = C1(D)e then the cycle set of C(D) is

1(1)⊕ (qL1 − 1)

T1
(T1)⊕

qL1(qL1 − 1)

T2
(T2)⊕ · · ·

q(n−1)L1(qL1 − 1)

Tn
(Te),

where degC(D) = L and Tj is the period of the polynomial C1(D)j .

Theorem

If C1(D) is irreducible with period T1, then the period of the polynomial

C1(D)j is Tj = pmT1 where p is the characteristic of the �eld and m the

integer satisfying pm−1 < j ≤ pm.

(example)
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LFSR cycle sets - remaining cases

Theorem

For a connection polynomial C(D) factoring like

C(D) = C1(D)e1C2(D)e2 · · ·Cm(D)em ,

Ci(D) irreducible, has cycle set S1 × S2 × · · ·Sm, where Si is the cycle set

for Ceii , and

n1 (T1)× n2 (T2) = n1n2 · gcd (T1, T2)
(
lcm(T1, T2)

)
and the distributive law holds for × and ⊕.

(example)
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Decimation

An m-sequence s = s0, s1, s2, . . .

De�ne the sequence s′ obtained through decimation by k, de�ned as

the sequence

s′ = s0, sk, s2k, s3k, . . . .

s correspond to multiplication of β by the �xed element α. It is clear
that s′ corresponds to multiplication of β by the �xed element αk, i.e,
the cycle of di�erent states correspond to the sequence

β, αkβ, α2kβ, . . . , α(T−1)kβ, αTkβ = β.

the period of s′ is ord(αk) and ord(αk) = qL − 1/ gcd(qL − 1, k).
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Decimation - advanced

FqL through a degree L polynomial π(x) ∈ Fq[x] with π(α) = 0.

Let β ∈ Fq and consider the set of polynomials

F(β) = {f(x) ∈ Fq[x] : f(β) = 0}.

The set will contain at least one polynomial of degree ≤ L.
Let f0(x) be the polynomial in F(β) of lowest degree. Any other

polynomial f(x) in F(β) can be written as f(x) = q(x)f0(x) + r(x),
deg r(x) < deg f0(x) and

0 = f(β) = q(β)f0(β) + r(β) = r(β).

So r(β) = 0 and this means that f0(x)|f(x) for all polynomials f(x)
in F(β).

T. Johansson (Lund University) 34 / 42



Decimation - minimal polynomial

The polynomial f0(x) is called the minimal polynomial of the element

β.

The minimal polynomial to β, now denoted πβ(x), can be calculated

as

πβ(x) = (x− β)(x− βq)(x− βq2) · · · (x− βqd−1
),

where d is the smallest integer such that qd ≡ 1 mod ord(β) (d is the

number of conjugates of β).
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The reciprocal of the minimal polynomial πβ(x) gives the connection

polynomial for a minimal LFSR producing a sequence corresponding to

the state sequence

β, αkβ, α2kβ, . . . , α(T−1)kβ, αTkβ = β.

The decimated sequence s′ can be generated by an LFSR with a

connection polynomial being the reciprocal of παk(x).

(example)
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Statistical properties of LFSR sequences

The importance of LFSR sequences in general and m-sequences in

particular is due to their pseudo randomness properties.

s = s0, s1, . . . is an m-sequence, recall that an r-gram is a

subsequence of length r,

(st, st + 1, . . . , st+r−1),

for t = 0, 1, . . ..

Theorem

Among the qL − 1 L-grams that can be constructed for

t = 0, 1, . . . , qL − 2, every nonzero vector appears exactly once.
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Statistical properties of LFSR sequences

Run-distribution properties of m-sequences.

A run of length r in a sequence s is a subsequence of exactly r zeros

(or ones). This means that the r zeros must have a one before.
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Statistical properties of LFSR sequences

Theorem

The run distribution of any m-sequence of length 2L − 1 is given as

length 0-runs 1-runs

1 2L−3 2L−3

2 2L−4 2L−4

...
...

...

L− 2 1 1
L− 1 1 0
L 0 1

Total 2L−2 2L−2
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Statistical properties of LFSR sequences

The autocorrelation function.

Let x,y be two binary sequences of the same length n.

The correlation C(x,y) between the two sequences is de�ned as the

number of positions of agreements minus the number of

disagreements.

The autocorrelation function C(τ) is de�ned to be the correlation

between a sequence x and its τ th cyclic shift, i.e.,

C(τ) =

n∑
i=1

(−1)xi+xi+τ , (1)

where subscripts are taken modulo n and addition in the exponent is

mod 2 addition.
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Statistical properties of LFSR sequences

Theorem

If s is an m-sequence of length 2L − 1, then

C(τ) =

{
2L − 1 if τ ≡ 0 (mod n)
−1 otherwise
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Statistical properties of LFSR sequences

More comments:

The decimation of an m-sequence or the sum of two di�erent

m-sequences are (under some assumptions) again m-sequences.

One property is completely away from random sequences. Let the

binary m-sequence be generated by the recursion sj =
∑L

i=1 cisj−i.

By forming a set of random variables Xj =
∑L

i=0 cisj−i, j ≤ L we see

that P (Xj = 0) = 1. An extreme point of nonrandomness.
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