Lecture 8: Stream ciphers - LFSR sequences

Thomas Johansson

Introduction

- Symmetric encryption algorithms are divided into two main categories, block ciphers and stream ciphers.
- Block ciphers tend to encrypt a block of characters of a plaintext message using a fixed encryption transformation
- A stream cipher encrypt individual characters of the plaintext using an encryption transformation that varies with time.

A stream cipher built around LFSRs and producing one bit output on each clock $=$ classic stream cipher design.

A stream cipher

- $\mathbf{z}=z_{1}, z_{2}, \ldots$ keystream
- key K

A stream cipher

- Design goal is to efficiently produce random-looking sequences that are as "indistinguishable" as possible from truly random sequences.
- Recall the unbreakable Vernam cipher.
- For a synchronous stream cipher, a known-plaintext attack (or chosen-plaintext or chosen-ciphertext) is equivalent to having access to the keystream $\mathbf{z}=z_{1}, z_{2}, \ldots, z_{N}$.
- We assume that an output sequence \mathbf{z} of length N from the keystream generator is known to Eve.

Type of attacks

- Key recovery attack: Eve tries to recover the secret key K.
- Distinguishing attack: Eve tries to determine whether a given sequence $\mathbf{z}=z_{1}, z_{2}, \ldots, z_{N}$ is likely to have been generated from the considered stream cipher or whether it is just a truly random sequence.

Distinguishing attack is a much weaker attack

Distinguishing attack

- Let $D(\mathbf{z})$ be an algorithm that takes as input a length N sequence \mathbf{z} and as output gives either " X " or "RANDOM".
- With probability $1 / 2$ the sequence \mathbf{z} is produced by generator X and with probability $1 / 2$ it is a purely random sequence.
- The probability that $D(\mathbf{z})$ correctly determines the origin of \mathbf{z} is written $1 / 2+\epsilon$.
- If ϵ is not very close to zero we say that $D(\mathbf{z})$ is a distinguisher for generator X .

Distinguishing attack - example

Assume that Alice sends one of N public images $\left\{I_{1}, I_{2}, \ldots, I_{N}\right\}$ to Bob.
Eve observes the ciphertext c.

- Guess that the plaintext is the image I_{1}, i.e., $\mathbf{m}=I_{1}$.
- Calculate $\hat{\mathbf{z}}=\mathbf{m}+\mathbf{c}$ and compute $D(\hat{\mathbf{z}})$.
- If the guess $\mathbf{m}=I_{1}$ was correct then $D(\hat{\mathbf{z}})=X$. If not, $D(\hat{\mathbf{z}})=$ "RANDOM".

More on attacks

- Building a (synchronous) stream cipher reduces to the problem of building a generator that is resistant to all distinguishing attacks.
- There are essentially always both distinguishing attacks and key recovery attacks on a cipher.
- Exhaustive keysearch; complexity 2^{k}
- An attack is considered successful only if the complexity of performing it is considerably lower than 2^{k} key tests.

Building blocks for stream ciphers

MEMORY

- linear feedback shift registers, or LFSRs for short.
- tables (arrays)

Combinatorial function

- Nonlinear Boolean functions, S-boxes
- XOR, Modular addition, (cyclic) rotations, (multiplications)

Example of a stream cipher design

Linear feedback shift registers

A register of L delay (storage) elements each capable of storing one element from \mathbb{F}_{q}, and a clock signal.
Clocking, the register of delay elements is shifted one step and the new value of the last delay element is calculated as a linear function of the content of the register.

LFSR sequences

- The linear function is described through the coefficients $c_{1}, c_{2}, \ldots, c_{L} \in \mathbb{F}_{q}$ and the recurrence relation is

$$
s_{j}=-c_{1} s_{j-1}-c_{2} s_{j-2}-\cdots c_{L} s_{j-L}
$$

$$
\text { for } j=L, L+1, \ldots
$$

- With $c_{0}=1$ we can write

$$
\sum_{i=0}^{L} c_{i} s_{j-i}=0, \text { for } j=L, L+1, \ldots
$$

The shift register equation.

- The first L symbols $s_{0}, s_{1}, \ldots, s_{L-1}$ form the initial state.

LFSR sequences

- The coefficients $c_{0}, c_{1}, \ldots, c_{L}$ are summarized in the connection polynomial $C(D)$ defined by

$$
C(D)=1+c_{1} D+c_{2} D^{2}+\cdots+c_{L} D^{L}
$$

- Write $<C(D), L>$ to denote the LFSR with connection polynomial $C(D)$ and length L.
- D-transform of a sequence $\mathbf{s}=s_{0}, s_{1}, s_{2} \ldots$ as

$$
S(D)=s_{0}+s_{1} D+s_{2} D^{2}+\cdots,
$$

assuming $s_{i} \in \mathbb{F}_{q}$.

- The indeterminate D is the "delay" and its exponent indicate time.

LFSR sequences

- We assume $s_{i}=0$ for $i<0$. The set of all such sequences having the form

$$
f(D)=\sum_{i=0}^{\infty} f_{i} D^{i}
$$

$f_{i} \in \mathbb{F}_{q}$, is denoted $\mathbb{F}_{q}[[D]]$ and called the ring of formal power series.

Theorem

The set of sequences generated by the LFSR with connection polynomial $C(D)$ is the set of sequences that have D-transform

$$
S(D)=\frac{P(D)}{C(D)}
$$

where $P(D)$ is an arbitrary polynomial of degree at most $L-1$,

$$
P(D)=p_{0}+p_{1} D+\ldots+p_{L-1} D^{L-1} .
$$

Furthermore, the relation between the initial state of the LFSR and the $P(D)$ polynomial is given by the linear relation

$$
\left(\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{L-1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
c_{1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
c_{L-1} & c_{L-2} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{L-1}
\end{array}\right)
$$

LFSR sequences and extension fields

- Let $\pi(x)$ be an irreducible polynomial over \mathbb{F}_{q} and assume that its coefficients are

$$
\pi(x)=x^{L}+c_{1} x^{L-1}+\cdots+c_{L}
$$

This means that $\pi(x)$ is the reciprocal polynomial of $C(D)$.

- Construct the extension field $\mathbb{F}_{q^{L}}$ through $\pi(\alpha)=0$.
- β from $\mathbb{F}_{q^{L}}$ can be expressed in a polynomial basis as

$$
\beta=\beta_{0}+\beta_{1} \alpha+\cdots+\beta_{L-1} \alpha^{L-1}
$$

where $\beta_{0}, \beta_{1}, \ldots \beta_{L-1} \in \mathbb{F}_{q}$.

LFSR sequences and extension fields

Assume that the (unknown) element β is multiplied by the fixed element α. The result is

$$
\alpha \beta=\beta_{0} \alpha+\beta_{1} \alpha^{2}+\cdots+\beta_{L-1} \alpha^{L} .
$$

Reducing α^{L} using $\pi(\alpha)=0$ gives

$$
\alpha \beta=-c_{L} \beta_{L-1}+\left(\beta_{0}-c_{L-1} \beta_{L-1}\right) \alpha+\cdots+\left(\beta_{L-2}-c_{1} \beta_{L-1}\right) \alpha^{L-1}
$$

LFSR sequences and extension fields

- It is quickly checked that

$$
s_{j}=-c_{1} s_{j-1}-c_{2} s_{j-2}-\cdots c_{L} s_{j-L}
$$

when $j \geq L$.

- $p_{0}=s_{0}, p_{1}=s_{1}+c_{1} s_{0}$, etc, where $p_{0}, p_{1}, \ldots, p_{L-1}$ is the initial state
- The sequence fulfills the shift register equation, but uses $p_{0}, p_{1}, \ldots p_{L-1}$ as initial state.

LFSR sequences and extension fields

- The set of LFSR sequences, when $C(D)$ is irreducible, is exactly the set of sequences possible to produce by the implementation of multiplication of an element β by the fixed element α in $\mathbb{F}_{q^{L}}$.
- For a specific sequence specified as $S(D)=P(D) / C(D)$ the initial state is the first L symbols whereas the same sequence is produced in the figure if the initial state is $p_{0}, p_{1}, \ldots, p_{L-1}$.

Properties of LFSR sequences

- A sequence $\mathbf{s}=\ldots, s_{0}, s_{1}, \ldots$ is called periodic if there is a positive integer T such that $s_{i}=s_{i+T}$, for all $i \geq 0$.
- The period is the least such positive integer T for which $s_{i}=s_{i+T}$, for all $i \geq 0$.
- The LFSR state runs through different values. The initial state will appear again after visiting a number of states. If $\operatorname{deg} C(D)=L$, the period of a sequence is the same as the number of different states visited, before returning to the initial state.

Properties of LFSR sequences

- $C(D)$ irreducible: the state corresponds to an element in $\mathbb{F}_{q^{L}}$, say β.
- The sequence of different states that we are entering is then

$$
\beta, \alpha \beta, \alpha^{2} \beta, \ldots, \alpha^{T-1} \beta, \alpha^{T} \beta=\beta
$$

where T is the order or α.

- If α is a primitive element (its order is $q^{L}-1$), then obviously we will go trough all $q^{L}-1$ different states and the sequence will have period $q^{L}-1$. Such sequences are called m-sequences and they appear if and only if the polynomial $\pi(x)$ is a primitive polynomial.

Example

- Length 4 LFSR with connection polynomial

$$
C(D)=1+D+D^{2}+D^{3}+D^{4} \text { in } \mathbb{F}_{2}
$$

- Starting in (0001), we return after 5 clockings of the LFSR.
- There are three cycles of length 5 and one of length one.
- Explanation: $\mathbb{F}_{2^{4}}$, we get through

$$
\pi(x)=x^{L} C\left(x^{-1}\right)=x^{4}+x^{3}+x^{2}+x+1 \text { and } \pi(\alpha)=0 .
$$

- $\alpha^{5}=1$ and $\operatorname{ord}(\alpha)=5$. So starting in any nonzero state $\beta \in \mathbb{F}_{2^{4}}$, we will jump between the states

$$
\beta, \alpha \beta, \alpha^{2} \beta, \alpha^{3} \beta, \alpha^{4} \beta, \alpha^{5} \beta=\beta
$$

Example

- Length 4 LFSR with connection polynomial $C(D)=1+D+D^{4}$ in \mathbb{F}_{2}.
- Starting in (0001), we return after 15 clockings of the LFSR.
- Explanation: $\mathbb{F}_{2^{4}}$, we get through $\pi(x)=x^{L} C\left(x^{-1}\right)=x^{4}+x^{3}+1$ and $\pi(\alpha)=0$.
- $\alpha^{15}=1$ and $\operatorname{ord}(\alpha)=15 . \pi(x)$ primitive polynomial.
- So starting in any nonzero state $\beta \in \mathbb{F}_{2^{4}}$, we will jump between all nnzero states before returning.

Properties of LFSR sequences

The different state cycles that will appear for an arbitrary LFSR.

- $\left[s_{0}, s_{1}, \ldots, s_{T-1}\right]^{\infty}$ denote the periodic and causal sequence

$$
s_{0}, s_{1}, \ldots, s_{T-1}, s_{0}, s_{1}, \ldots, s_{T-1}, s_{0}, \ldots
$$

where $s_{i} \in \mathbb{F}_{q}, i=0,1, \ldots, T-1$.

- $\left(s_{0}, s_{1}, \ldots, s_{N-1}\right)$ denote a sequence where the first N symbols are $s_{0}, s_{1}, \ldots, s_{N-1}$ (and the upcoming symbols are not defined), where $s_{i} \in \mathbb{F}_{q}, i=0,1, \ldots, N-1$.

Properties of LFSR sequences

- If $\mathbf{s}=[1,0,0, \ldots, 0]^{\infty}$ then

$$
S(D)=1+D^{T}+D^{2 T}+\cdots=\frac{1}{1-D^{T}}
$$

- il $\mathbf{s}=[0,1,0, \ldots, 0]^{\infty}$ then

$$
S(D)=D+D^{T+1}+D^{2 T+1}+\cdots=\frac{D}{1-D^{T}}
$$

- In general, if $\mathbf{s}=\left[s_{0}, s_{1}, \ldots, s_{T-1}\right]^{\infty}$ then

$$
S(D)=\frac{s_{0}}{1-D^{T}}+\frac{s_{1} D}{1-D^{T}}+\ldots=\frac{s_{0}+s_{1} D+\ldots s_{T-1} D^{T-1}}{1-D^{T}}
$$

Properties of LFSR sequences

Definition

The period of a polynomial $C(D)$ is the least positive number T such that $C(D) \mid\left(1-D^{T}\right)$.

- Calculated by division of 1 by $C(D)$ and continuing until the we receive the first remainder of the form $1 \cdot D^{N}$. Then the period is $T=N$.
(example)

Properties of LFSR sequences

Theorem

If $\operatorname{gcd}(C(D), P(D))=1$ then the connection polynomial $C(D)$ and the sequence s with D-transform

$$
S(D)=\frac{P(D)}{C(D)}
$$

have the same period (the period of s is the same as the period of the polynomial $C(D)$).

- Note: This $C(D)$ gives the shortest LFSR generating s. Any other connection polynomial generating s must be a multiple of $C(D)$.
(example)

Properties of LFSR sequences

Theorem

If two sequences, \mathbf{s}_{A} and \mathbf{s}_{B}, with periods T_{A} and T_{B} have D-transforms

$$
S_{A}(D)=\frac{P_{A}(D)}{C_{A}(D)}, S_{B}(D)=\frac{P_{B}(D)}{C_{B}(D)}
$$

then the sum of the sequences $\mathbf{s}=\mathbf{s}_{A}+\mathbf{s}_{B}$ has D-transform $S(D)=S_{A}(D)+S_{B}(D)$ and period $\operatorname{lcm}\left(T_{A}, T_{B}\right)$, assuming $\operatorname{gcd}\left(P_{A}(D), C_{A}(D)\right)=1, \operatorname{gcd}\left(P_{B}(D), C_{B}(D)\right)=1$, $\operatorname{gcd}\left(C_{A}(D), C_{B}(D)\right)=1$.
(example)

LFSR cycle sets

- Introduce the cycle set for $C(D)$ (assuming $L=\operatorname{deg} C(D)$).
- Written in the form $n_{1}\left(T_{1}\right) \oplus n_{2}\left(T_{2}\right) \oplus \ldots$
- $1(1) \oplus 3(5)$, one cycle of length one and three cycles of length 5 .
- $n_{1}(T) \oplus n_{2}(T)=\left(n_{1}+n_{2}\right)(T)$.

LFSR cycle sets

Already established facts:

- If $C(D)$ is a primitive polynomial of degree L over \mathbb{F}_{q} then the cycle set is

$$
1(1) \oplus 1\left(q^{L}-1\right) .
$$

- If $C(D)$ is an irreducible polynomial then the cycle set is

$$
1(1) \oplus \frac{\left(q^{L}-1\right)}{T}(T)
$$

where T is the period of the polynomial $C(D)$ (or the order of α when $\pi(\alpha)=0)$.

LFSR cycle sets - remaining cases

Theorem

If $C(D)=C_{1}(D)^{e}$ then the cycle set of $C(D)$ is

$$
1(1) \oplus \frac{\left(q^{L_{1}}-1\right)}{T_{1}}\left(T_{1}\right) \oplus \frac{q^{L_{1}}\left(q^{L_{1}}-1\right)}{T_{2}}\left(T_{2}\right) \oplus \cdots \frac{q^{(n-1) L_{1}}\left(q^{L_{1}}-1\right)}{T_{n}}\left(T_{e}\right),
$$

where $\operatorname{deg} C(D)=L$ and T_{j} is the period of the polynomial $C_{1}(D)^{j}$.

Theorem

If $C_{1}(D)$ is irreducible with period T_{1}, then the period of the polynomial $C_{1}(D)^{j}$ is $T_{j}=p^{m} T_{1}$ where p is the characteristic of the field and m the integer satisfying $p^{m-1}<j \leq p^{m}$.
(example)

LFSR cycle sets - remaining cases

Theorem

For a connection polynomial $C(D)$ factoring like

$$
C(D)=C_{1}(D)^{e_{1}} C_{2}(D)^{e_{2}} \cdots C_{m}(D)^{e_{m}}
$$

$C_{i}(D)$ irreducible, has cycle set $S_{1} \times S_{2} \times \cdots S_{m}$, where S_{i} is the cycle set for $C_{i}^{e_{i}}$, and

$$
n_{1}\left(T_{1}\right) \times n_{2}\left(T_{2}\right)=n_{1} n_{2} \cdot \operatorname{gcd}\left(T_{1}, T_{2}\right)\left(\operatorname{lcm}\left(T_{1}, T_{2}\right)\right)
$$

and the distributive law holds for \times and \oplus.
(example)

Decimation

An m-sequence $s=s_{0}, s_{1}, s_{2}, \ldots$

- Define the sequence \mathbf{s}^{\prime} obtained through decimation by k, defined as the sequence

$$
\mathbf{s}^{\prime}=s_{0}, s_{k}, s_{2 k}, s_{3 k}, \ldots
$$

- \mathbf{s} correspond to multiplication of β by the fixed element α. It is clear that \mathbf{s}^{\prime} corresponds to multiplication of β by the fixed element α^{k}, i.e, the cycle of different states correspond to the sequence

$$
\beta, \alpha^{k} \beta, \alpha^{2 k} \beta, \ldots, \alpha^{(T-1) k} \beta, \alpha^{T k} \beta=\beta
$$

- the period of \mathbf{s}^{\prime} is $\operatorname{ord}\left(\alpha^{k}\right)$ and $\operatorname{ord}\left(\alpha^{k}\right)=q^{L}-1 / \operatorname{gcd}\left(q^{L}-1, k\right)$.

Decimation - advanced

$\mathbb{F}_{q^{L}}$ through a degree L polynomial $\pi(x) \in \mathbb{F}_{q}[x]$ with $\pi(\alpha)=0$.

- Let $\beta \in \mathbb{F}_{q}$ and consider the set of polynomials

$$
\mathcal{F}(\beta)=\left\{f(x) \in \mathbb{F}_{q}[x]: f(\beta)=0\right\}
$$

- The set will contain at least one polynomial of degree $\leq L$.
- Let $f_{0}(x)$ be the polynomial in $\mathcal{F}(\beta)$ of lowest degree. Any other polynomial $f(x)$ in $\mathcal{F}(\beta)$ can be written as $f(x)=q(x) f_{0}(x)+r(x)$, $\operatorname{deg} r(x)<\operatorname{deg} f_{0}(x)$ and

$$
0=f(\beta)=q(\beta) f_{0}(\beta)+r(\beta)=r(\beta)
$$

- So $r(\beta)=0$ and this means that $f_{0}(x) \mid f(x)$ for all polynomials $f(x)$ in $\mathcal{F}(\beta)$.

Decimation - minimal polynomial

- The polynomial $f_{0}(x)$ is called the minimal polynomial of the element β.
- The minimal polynomial to β, now denoted $\pi_{\beta}(x)$, can be calculated as

$$
\pi_{\beta}(x)=(x-\beta)\left(x-\beta^{q}\right)\left(x-\beta^{q^{2}}\right) \cdots\left(x-\beta^{q^{d-1}}\right)
$$

where d is the smallest integer such that $q^{d} \equiv 1 \bmod \operatorname{ord}(\beta)(d$ is the number of conjugates of β).

- The reciprocal of the minimal polynomial $\pi_{\beta}(x)$ gives the connection polynomial for a minimal LFSR producing a sequence corresponding to the state sequence

$$
\beta, \alpha^{k} \beta, \alpha^{2 k} \beta, \ldots, \alpha^{(T-1) k} \beta, \alpha^{T k} \beta=\beta
$$

- The decimated sequence \mathbf{s}^{\prime} can be generated by an LFSR with a connection polynomial being the reciprocal of $\pi_{\alpha^{k}}(x)$.
(example)

Statistical properties of LFSR sequences

The importance of LFSR sequences in general and m-sequences in particular is due to their pseudo randomness properties.

- $\mathbf{s}=s_{0}, s_{1}, \ldots$ is an m-sequence, recall that an r-gram is a subsequence of length r,

$$
\left(s_{t}, s_{t}+1, \ldots, s_{t+r-1}\right)
$$

for $t=0,1, \ldots$.

Theorem

Among the $q^{L}-1 L$-grams that can be constructed for $t=0,1, \ldots, q^{L}-2$, every nonzero vector appears exactly once.

Statistical properties of LFSR sequences

Run-distribution properties of m-sequences.

- A run of length r in a sequence \mathbf{s} is a subsequence of exactly r zeros (or ones). This means that the r zeros must have a one before.

Statistical properties of LFSR sequences

Theorem

The run distribution of any m-sequence of length $2^{L}-1$ is given as

length	0 -runs	1 -runs
1	2^{L-3}	2^{L-3}
2	2^{L-4}	2^{L-4}
\vdots	\vdots	\vdots
$L-2$	1	1
$L-1$	1	0
L	0	1
Total	2^{L-2}	2^{L-2}

Statistical properties of LFSR sequences

The autocorrelation function.

- Let \mathbf{x}, \mathbf{y} be two binary sequences of the same length n.
- The correlation $C(\mathbf{x}, \mathbf{y})$ between the two sequences is defined as the number of positions of agreements minus the number of disagreements.
- The autocorrelation function $C(\tau)$ is defined to be the correlation between a sequence \mathbf{x} and its τ th cyclic shift, i.e.,

$$
\begin{equation*}
C(\tau)=\sum_{i=1}^{n}(-1)^{x_{i}+x_{i+\tau}} \tag{1}
\end{equation*}
$$

where subscripts are taken modulo n and addition in the exponent is $\bmod 2$ addition.

Statistical properties of LFSR sequences

Theorem

If \mathbf{s} is an m-sequence of length $2^{L}-1$, then

$$
C(\tau)=\left\{\begin{array}{ll}
2^{L}-1 & \text { if } \tau \equiv 0 \\
-1 & \text { otherwise }
\end{array}(\bmod n)\right.
$$

Statistical properties of LFSR sequences

More comments:

- The decimation of an m-sequence or the sum of two different m-sequences are (under some assumptions) again m-sequences.
- One property is completely away from random sequences. Let the binary m-sequence be generated by the recursion $s_{j}=\sum_{i=1}^{L} c_{i} s_{j-i}$. By forming a set of random variables $X_{j}=\sum_{i=0}^{L} c_{i} s_{j-i}, j \leq L$ we see that $P\left(X_{j}=0\right)=1$. An extreme point of nonrandomness.

