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Authentication codes

Authenticate our messages. We need to check that they are indeed
sent by the claimed sender and that they have not been modi�ed
during transmission.

Error correcting codes will not help...

We must introduce secret keys that are known to the sender/receiver
but unknown to the enemy.
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Three types of protection

unconditionally secure authentication codes

message authentication codes

digital signatures
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MACs

authentication techniques that use symmetric cryptographic primitives,
i.e. block ciphers and hash functions, to provide authentication.

sender and receiver are here assumed to share a common secret key.

MACs appear in many standards, and some common modes of
operations for block ciphers provide MACs.

MACs are not secure against an unlimited enemy. But they have other
practical advantages, such as being able to authenticate many
messages without changing the key.

T. Johansson (Lund University) 4 / 20



CBC-MAC

CBC-MAC is secure for �xed-length messages but not secure for
variable-length messages.

A mistake is to reuse the same key k for CBC encryption and
CBC-MAC.

E E E
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Digital signatures

an asymmetric solution.

Several advantages compared to the other two authentication
techniques.

no need to distribute or establish a common secret key.

nonrepudiation. If the receiver has received an authentic message, the
sender cannot deny having sent it.

Drawbacks: Signature schemes rely on the hardness of problems like
factoring, work with very large numbers, which make the solutions
slow compared to the other techniques.
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Authentication Codes - the model

An unconditionally secure solution

The transmitted information is a source message, s from S.
mapped into a (channel) message, denoted by m and taken fromM.

the secret key, e and taken from the set E .
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Authentication Codes - the model

Mapping
f : S × E →M, (s, e) 7→ m. (1)

An important property of f is that if f(s, e) = m and f(s′, e) = m,
then s = s′ (injective for each e ∈ E).
The mapping f together with S,M and E de�ne an authentication

code (A-code).
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Authentication Codes - the model

The receiver must check whether a source message s exists, such that
f(s, e) = m.

If such an s exists, m is accepted as authentic (m is called valid).

Otherwise, m is not authentic and thus rejected.
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Attacks

The opponent has two possible attacks at his disposal:

The impersonation attack: Inserting a message m and hoping for it to
be accepted as authentic.

substitution attack: opponent observes the message m and replaces
this with another message m′, m 6= m′, hoping for m′ to be valid.
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De�nitions of attack success

the opponent chooses the message that maximizes his chances of success
when performing an attack.

Success in impersonation attack:

PI = max
m

P (m is valid) (2)

Success in substitution attack:

PS = max
m,m′

m 6=m′

P (m′ is valid|m is valid). (3)

Probability of deception PD as PD = max(PI , PS).
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Basic bounds

Theorem

For any authentication code,

PI ≥ |S|
|M|

, (4)

PS ≥ |S| − 1

|M| − 1
. (5)

|M| must be chosen much larger than |S|.

(example)
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Simmons' bounds

Theorem (Simmons' bounds)

For any authentication code,

PI ≥ 2−I(M ;E), (6)

PS ≥ 2−H(E|M), if |S| ≥ 2. (7)

For a good protection, i.e., PI small, we must give away a lot of
information about the key.

T. Johansson (Lund University) 13 / 20



The square root bound

Multiply the two bounds together and get

PIPS ≥ 2−I(M ;E)−H(E|M) = 2−H(E). (8)

From H(E) ≤ log |E| we obtain the square root bound.

Theorem (Square root bound)

For any authentication code,

PD ≥
1√
|E|

. (9)
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On the square root bound

Theorem

The square root bound can be tight only if

|S| ≤
√
|E|+ 1.

a large source size demands a twice as large key size. This is not very
practical.
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Systematic authentication codes

An A-code for which the map f : S × E →M can be written in the form

f : S × E → S × Z, (s, e) 7→ (s, z), (10)

where s ∈ S, z ∈ Z, is called a systematic (or Cartesian) A-code. The
second part z in the message is called the tag (or authenticator) and is
taken from the tag alphabet Z.

T. Johansson (Lund University) 16 / 20



Systematic authentication codes

Theorem

For any systematic A-code

PS ≥ PI . (11)
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Constructing authentication codes

De�ne E(m) as the set of keys for which a message m is valid,

E(m) = {e ∈ E ; ∃s ∈ S, f(s, e) = m}. (12)

The probability of success in a substitution attack can be written as

PS = max
m,m′

m 6=m′

|E(m) ∩ E(m′)|
|E(m)|

, (13)

provided that the keys are uniformly distributed.

T. Johansson (Lund University) 18 / 20



The vector space construction:

Let |S| = qm, |Z| = qm, and |E| = q2m. Decompose the keys as
e = (e1, e2), where s, z, e1, e2 ∈ Fqm . For transmission of source message
s, generate a message m = (s, z), where

z = e1 + se2.

Theorem

The above construction provides PI = PS = 1/qm. Moreover, it has

parameters |S| = qm, |Z| = qm, and |E| = q2m.

T. Johansson (Lund University) 19 / 20



Polynomial evaluation construction

Let S = {s = (s1, . . . , sk) ; si ∈ Fq}. De�ne the source message
polynomial to be s(x) = s1x+ s2x

2 + · · ·+ skx
k. Let

E = {e = (e1, e2) ; e1, e2 ∈ Fq} and Z = Fq. For the transmission of
source message s, the transmitter sends s together with the tag

z = e1 + s(e2).

Theorem

The construction gives systematic A-codes with parameters

|S| = qk, |E| = q2, |Z| = q, PI = 1/q, PS = k/q.
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