Lecture 15: Authentication codes
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Authentication codes

@ Authenticate our messages. We need to check that they are indeed
sent by the claimed sender and that they have not been modified
during transmission.

@ Error correcting codes will not help...

e We must introduce secret keys that are known to the sender/receiver
but unknown to the enemy.
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Three types of protection

e unconditionally secure authentication codes
@ message authentication codes

o digital signatures
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@ authentication techniques that use symmetric cryptographic primitives,
i.e. block ciphers and hash functions, to provide authentication.

@ sender and receiver are here assumed to share a common secret key.

@ MACs appear in many standards, and some common modes of
operations for block ciphers provide MACs.

@ MACGs are not secure against an unlimited enemy. But they have other
practical advantages, such as being able to authenticate many
messages without changing the key.
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CBC-MAC

o CBC-MAC is secure for fixed-length messages but not secure for

variable-length messages.

@ A mistake is to reuse the same key k for CBC encryption and

CBC-MAC.
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Digital signatures

@ an asymmetric solution.

@ Several advantages compared to the other two authentication
techniques.

@ no need to distribute or establish a common secret key.

e nonrepudiation. If the receiver has received an authentic message, the
sender cannot deny having sent it.

e Drawbacks: Signature schemes rely on the hardness of problems like
factoring, work with very large numbers, which make the solutions
slow compared to the other techniques.
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Authentication Codes - the model

An unconditionally secure solution

@ The transmitted information is a source message, s from S.
@ mapped into a (channel) message, denoted by m and taken from M.

@ the secret key, e and taken from the set £.
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Authentication Codes - the model

o Mapping
f:SXE—-M, (s,e)—m. (1)
An important property of f is that if f(s,e) =m and f(s',e) =m,
then s = s’ (injective for each e € £).

@ The mapping f together with S, M and & define an authentication
code (A-code).
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Authentication Codes - the model

@ The receiver must check whether a source message s exists, such that
f(s,e) =m.
e If such an s exists, m is accepted as authentic (m is called valid).

@ Otherwise, m is not authentic and thus rejected.
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The opponent has two possible attacks at his disposal:

o The impersonation attack: Inserting a message m and hoping for it to
be accepted as authentic.

@ substitution attack: opponent observes the message m and replaces
this with another message m/, m # m/, hoping for m’ to be valid.
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Definitions of attack success

the opponent chooses the message that maximizes his chances of success
when performing an attack.

@ Success in impersonation attack:
P; = max P(m is valid) (2)
m
@ Success in substitution attack:

Pg = max_ P(m’ is valid|m is valid). (3)

m#m/’

Probability of deception Pp as Pp = max(Pr, Pg).
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Basic bounds

Theorem

For any authentication code,

P > — 4
P —
5 = M| -1 (5)

| M| must be chosen much larger than [S|.

(example)
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Simmons’ bounds

Theorem (Simmons’ bounds)

For any authentication code,
) (6
9~ H(EIM) = if |S]| > 2. (7)

Pr
Pg

ALY,

For a good protection, i.e., Py small, we must give away a lot of
information about the key.
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The square root bound

Multiply the two bounds together and get

P;Pg > 2 {(M:E)=H(EIM) _ 9—H(E) ®)

From H(FE) < log|&| we obtain the square root bound.

Theorem (Square root bound)

For any authentication code,
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On the square root bound

The square root bound can be tight only if

S| < V€[ + 1.

a large source size demands a twice as large key size. This is not very
practical.
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Systematic authentication codes

An A-code for which the map f: S x &€ — M can be written in the form
f:SXE=SXZ, (s,e)(s,2), (10)

where s € S,z € Z, is called a systematic (or Cartesian) A-code. The
second part z in the message is called the tag (or authenticator) and is
taken from the tag alphabet Z.
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Systematic authentication codes

For any systematic A-code

Pg > Py (11)
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Constructing authentication codes

Define £(m) as the set of keys for which a message m is valid,

Em)={ec&3IseS, f(s,e) =m}. (12)

The probability of success in a substitution attack can be written as

£(m) N E(m)]
Pg = max ,
mm'  |E(m)]

m#£m/’

provided that the keys are uniformly distributed.
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The vector space construction:

Let |S| = ¢™, |Z] = ¢™, and |€] = ¢*™. Decompose the keys as
e = (e1,e2), where s, 2,e1,e3 € Fym. For transmission of source message
s, generate a message m = (s, z), where

z =e1 + seq.

The above construction provides P = Pg = 1/q™. Moreover, it has
parameters |S| = ¢, |Z| = ¢™, and |E| = ¢*™.
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Polynomial evaluation construction

Let S = {s = (s1,...,5k); ;i € Fg}. Define the source message
polynomial to be s(z) = s12 + s92% 4 - - + sz, Let
E={e=(e1,e2); e1,e2 € F;} and Z =T,. For the transmission of
source message s, the transmitter sends s together with the tag

z =e1 + s(e2).

The construction gives systematic A-codes with parameters

IS|=4d", 1El=¢* |2|=q, Pr=1/q, Ps=k/q.
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