Lecture 15: Authentication codes

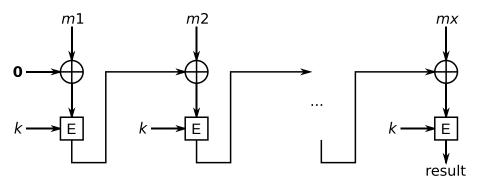
Thomas Johansson

- Authenticate our messages. We need to check that they are indeed sent by the claimed sender and that they have not been modified during transmission.
- Error correcting codes will not help...
- We must introduce secret *keys* that are known to the sender/receiver but unknown to the enemy.

- unconditionally secure authentication codes
- message authentication codes
- digital signatures

- authentication techniques that use symmetric cryptographic primitives, i.e. block ciphers and hash functions, to provide authentication.
- sender and receiver are here assumed to share a common secret key.
- MACs appear in many standards, and some common modes of operations for block ciphers provide MACs.
- MACs are not secure against an unlimited enemy. But they have other practical advantages, such as being able to authenticate many messages without changing the key.

- CBC-MAC is secure for fixed-length messages but not secure for variable-length messages.
- A mistake is to reuse the same key k for CBC encryption and CBC-MAC.

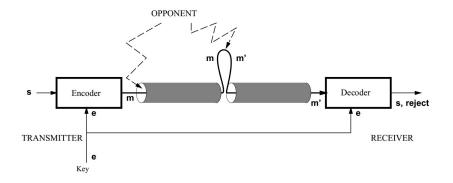


- an asymmetric solution.
- Several advantages compared to the other two authentication techniques.
- no need to distribute or establish a common secret key.
- *nonrepudiation*. If the receiver has received an authentic message, the sender cannot deny having sent it.
- Drawbacks: Signature schemes rely on the hardness of problems like factoring, work with very large numbers, which make the solutions slow compared to the other techniques.

Authentication Codes - the model

An unconditionally secure solution

- The transmitted information is a *source message*, s from \mathcal{S} .
- mapped into a (channel) *message*, denoted by m and taken from \mathcal{M} .
- the secret key, e and taken from the set \mathcal{E} .



Mapping

$$f: \mathcal{S} \times \mathcal{E} \to \mathcal{M}, \quad (s, e) \mapsto m.$$
 (1)

An important property of f is that if f(s, e) = m and f(s', e) = m, then s = s' (injective for each $e \in \mathcal{E}$).

• The mapping f together with S, M and E define an *authentication* code (A-code).

- The receiver must check whether a source message s exists, such that $f(s,e)=m. \label{eq:source}$
- If such an s exists, m is accepted as authentic (m is called valid).
- Otherwise, *m* is not authentic and thus rejected.

The opponent has two possible attacks at his disposal:

- The *impersonation attack*: Inserting a message *m* and hoping for it to be accepted as authentic.
- substitution attack: opponent observes the message m and replaces this with another message m', $m \neq m'$, hoping for m' to be valid.

the opponent chooses the message that maximizes his chances of success when performing an attack.

• Success in impersonation attack:

$$P_I = \max_m P(m \text{ is valid}) \tag{2}$$

• Success in substitution attack:

$$P_S = \max_{\substack{m,m'\\m \neq m'}} P(m' \text{ is valid}|m \text{ is valid}). \tag{3}$$

Probability of deception P_D as $P_D = \max(P_I, P_S)$.

Theorem

For any authentication code,

$$P_{I} \geq \frac{|\mathcal{S}|}{|\mathcal{M}|}, \qquad (4)$$

$$P_{S} \geq \frac{|\mathcal{S}| - 1}{|\mathcal{M}| - 1}. \qquad (5)$$

 $|\mathcal{M}|$ must be chosen much larger than $|\mathcal{S}|$. (example)

Theorem (Simmons' bounds)

For any authentication code,

$$P_{I} \geq 2^{-I(M;E)},$$

$$P_{S} \geq 2^{-H(E|M)}, \quad \text{if } |S| \geq 2.$$
(6)
(7)

For a good protection, i.e., P_I small, we must give away a lot of information about the key.

Multiply the two bounds together and get

$$P_I P_S \ge 2^{-I(M;E) - H(E|M)} = 2^{-H(E)}.$$
 (8)

From $H(E) \leq \log |\mathcal{E}|$ we obtain the square root bound.

Theorem (Square root bound)

For any authentication code,

$$P_D \ge \frac{1}{\sqrt{|\mathcal{E}|}}.$$

(9)

Theorem

The square root bound can be tight only if

$$|\mathcal{S}| \le \sqrt{|\mathcal{E}|} + 1.$$

a large source size demands a twice as large key size. This is not very practical.

An A-code for which the map $f:\mathcal{S}\times\mathcal{E}\to\mathcal{M}$ can be written in the form

$$f: \mathcal{S} \times \mathcal{E} \to \mathcal{S} \times \mathcal{Z}, \quad (s, e) \mapsto (s, z), \tag{10}$$

where $s \in S, z \in \mathbb{Z}$, is called a *systematic* (or Cartesian) A-code. The second part z in the message is called the *tag* (or authenticator) and is taken from the tag alphabet \mathbb{Z} .

Theorem

For any systematic A-code

$$P_S \ge P_I.$$

T. Johansson (Lund University)

(11)

Define $\mathcal{E}(m)$ as the set of keys for which a message m is valid,

$$\mathcal{E}(m) = \{ e \in \mathcal{E}; \exists s \in \mathcal{S}, f(s, e) = m \}.$$
(12)

The probability of success in a substitution attack can be written as

$$P_{S} = \max_{\substack{m,m'\\m \neq m'}} \frac{|\mathcal{E}(m) \cap \mathcal{E}(m')|}{|\mathcal{E}(m)|},$$
(13)

provided that the keys are uniformly distributed.

Let $|\mathcal{S}| = q^m$, $|\mathcal{Z}| = q^m$, and $|\mathcal{E}| = q^{2m}$. Decompose the keys as $e = (e_1, e_2)$, where $s, z, e_1, e_2 \in \mathbb{F}_{q^m}$. For transmission of source message s, generate a message m = (s, z), where

$$z = e_1 + se_2.$$

Theorem

The above construction provides $P_I = P_S = 1/q^m$. Moreover, it has parameters $|S| = q^m$, $|Z| = q^m$, and $|\mathcal{E}| = q^{2m}$.

Let $S = \{ \mathbf{s} = (s_1, \ldots, s_k) ; s_i \in \mathbb{F}_q \}$. Define the source message polynomial to be $s(x) = s_1 x + s_2 x^2 + \cdots + s_k x^k$. Let $\mathcal{E} = \{ e = (e_1, e_2) ; e_1, e_2 \in \mathbb{F}_q \}$ and $\mathcal{Z} = \mathbb{F}_q$. For the transmission of source message s, the transmitter sends s together with the tag

$$z = e_1 + s(e_2).$$

Theorem

The construction gives systematic A-codes with parameters

$$|\mathcal{S}| = q^k, \quad |\mathcal{E}| = q^2, \quad |\mathcal{Z}| = q, \quad P_I = 1/q, \quad P_S = k/q.$$