Hash Functions (and Message Authentication Codes)

e Guarantee integrity of information after the application of the function.
@ A cryptographic hash function is keyless, a MAC has a key.

@ A cryptographic hash function is usually used as a component of
another scheme.

December 11, 2019 1/26

Hash Functions

@ A cryptographic hash function h is a function which takes arbitrary
length bit strings as input and produces a fixed length bit string as
output, the hash value.

@ A cryptographic hash function should be one-way: given any string y
from the range of h, it should be computationally infeasible to find
any value z in the domain of h such that

h(z) =y.

@ Given a hash function with outputs of n bits, we would like a function
for which finding preimages requires O(2") time.

December 11, 2019 2/ 26

Hash Functions — Collision Resistant

@ In practice we need something more than the one-way property.

@ A hash function is called collision resistant if it is infeasible to find two
distinct values z and 2’ such that

December 11, 2019 3/26

Hash Functions — Collision Resistant (Birthday Paradox)

@ Birthday paradox: To find a collision of a hash function f, we can
keep computing

f(x1), f(z2), f(x3),...

until we get a collision. Output size n bits, then we expect to find a
collision after O(2"/2) tries. (more later)

December 11, 2019 4 /26

Hash Functions — Second Preimage Resistant

@ Second preimage resistant: given x it should be hard to find an 2’ # x
with h(z’) = h(z).

@ a cryptographic hash function with n-bit outputs should require O(2")
operations before one can find a second preimage.

December 11, 2019 5/ 26

Hash Functions — Requirements

@ Preimage Resistant: It should be hard to find a message with a
given hash value.

e Second Preimage Resistant: Given one message it should be hard
to find another message with the same hash value.

e Collision Resistant: It should be hard to find two messages with the
same hash value.

December 11, 2019 6 /26

Assuming a function is preimage resistant for almost every element of the
range of h is a weaker assumption than assuming it either collision resistant
or second preimage resistant.

Assuming a function is second preimage resistant is a weaker assumption
than assuming it is collision resistant.

December 11, 2019 7/ 26

Hash Functions — Finding Collisions (Birthday Paradox)

Upper bound on complexity of finding collision.
Probability of collision when we observe M blocks with n bits each.
One block can take N = 2" values.

Probability that blocks are distinct is

1 1 1 2 1 M-1\
(-3) (-5) ()=
M-1

H 67% = ef% Zf\ifll =

=1

M(M—1)
e 2N

since € ~ 1 — z when z is small.

December 11, 2019 8/ 26

Hash Functions — Finding Collisions (Birthday Paradox)

@ Probability for at least one collision

@ Since M is large we can write
1
M =~ (/2N In .
1—¢

=05 — M~118VN
£=0.95 — M ~245VN

December 11, 2019 9/ 26

@ Examples:

Designing Hash Functions

@ Designing functions of infinite domain is hard,

@ one can build a so called compression function, which maps bits
strings of length s into bit strings of length n, for s > n, and then
chain this in some way to produce a function on an infinite domain.

@ The most famous chaining method: the Merkle-Damgérd construction.

December 11, 2019 10 / 26

Merkle-Damgard construction

e f is a compression function from s bits to n bits, s > n, believed to
be collision resistant.

@ use f to construct h which takes arbitrary length inputs.

o f collision resistant = h collision resistant.

1. I = s —n. Pad m with zeros so it is a multiple of [bits, write
m=mims---m;. Set Cp to some fixed initial value.

2. fori=1totdo C; = f(Ci_1||m;)
3. Set h(m) = Ct.

December 11, 2019 11 / 26

Merkle-Damgard construction

@ Length strengthening: input message is preprocessed by first
padding with zero bits to obtain a message which has length a
multiple of [bits. Then a final block of [bits is added which encodes
the original length of the unpadded message in bits. The construction
is limited to hashing messages with length less than 2! bits.

@ Theory: If f is collision resistant then so is h.

December 11, 2019 12 / 26

Constructions: The MD4 Family

Most widely deployed: MD5, RIPEMD-160 and SHA-1.

MD4: 3 rounds of 16 steps and an output bitlength of 128 bits.

MD5: 4 rounds of 16 steps and an output bitlength of 128 bits.

SHA-1: 4 rounds of 20 steps and an output bitlength of 160 bits.

RIPEMD-160: 5 rounds of 16 steps and an output bitlength of 160

bits.

@ SHA-256: 64 rounds of single steps and an output bitlength of 256
bits.

o SHA-384: identical to SHA-512 except the output is truncated to 384

bits.

@ SHA-512: 80 rounds of single steps and an output bitlength of 512
bits.

In recent years a number of weaknesses have been found in almost all of
the early hash functions in the MD4 family, for example MD4, MD5 and
SHA-1.

SHA-1

@ the internal state of the algorithm is a set of five 32-bit values
(Hy, Ha, H3, Hy, Hs).

o define four round constants y1, y2, ¥3, Y4.
@ The length strengthening method used:

o first append a one bit to the message (to signal its end),
o pad with zeros to a multiple of the block length (512 bits),
e as a separate final block, add message length (in bits).

December 11, 2019 14 / 26

SHA-1

The data stream is loaded 16 words at a time into X; for 0 < j < 16.

Algorithm 10.4: SHA-1 Overview
(A,B,C,D,E) = (Hy,Hs, H3, Hy, Hy)
/* Expansion */
for j =16 to 79 do
Xj . ((X],;a, @ Xj,s b X],M H%X],m) « 1)
end
Execute Round 1
Execute Round 2
Execute Round 3
Execute Round 4
(Hy,Ho, Hy,Hy, Hy) = (H1 + A, Hy + B,H3 + C,Hy + D, Hs + E)

The output is the concatenation of the final value of Hy, Hy, H3, Hy, Hs.

December 11, 2019 15 / 26

SHA-1

Algorithm 10.5: Description of the SHA-1 round functions

Round 1

for =0 to 19 do
t=(Ak b))+ f(B,C.D)+E+X;+un
(A,B,C,D,E) = (t, A, B <« 30,C, D)

end

Round 2

for 7 =20 to 39 do
t=(A<K5)+hB,C.D)+E+X;+y
(A,B,C,D,E) = (t, A, B <« 30,C, D)

end

Round 3

for j =40 to 59 do
t=(A<5)+g(B.C.D)+E+X;+y3
(A,B,C,D,E) = (t, A, B <« 30,C, D)

end

Round 4

for j =60 to 79 do
t=(A<K5)+hB,CD)+E+X;+y
(A,B.C,D,E) = (t,A. B « 30,C,D)

end

December 11, 2019 16 / 26

SHA-1

Three bit-wise functions of three 32-bit variables:

flu,v,w) = (uAv)V((—u) Aw),

g(u,v,w) = (uAv)V(uAw)V (vAw),

h(u,v,w) =u®vdw.

December 11, 2019 17 / 26

SHA-1

Three bit-wise functions of three 32-bit variables:

flu,v,w) = (uAv)V((-u) Aw),

g(u,v,w) = (uAv)V(uAw)V(vAw),

/

=uA(vVw)

h(u,v,w) =u®vdw.

December 11, 2019 17 / 26

Security status

@ In practice, MD5 and SHA-1 are by far the most common.

@ Both are Merkle-Damgard constructions.
@ Both are broken.

e MD?5 in practice.
e SHA-1 in theory.

December 11, 2019 18 / 26

Security status

In practice, MD5 and SHA-1 are by far the most common.

Both are Merkle-Damgard constructions.
Both are broken.

e MD?5 in practice.
e SHA-1 in theory.

There is also a SHA-2 family of hash functions.
o Still ok.

December 11, 2019 18 / 26

Security status

In practice, MD5 and SHA-1 are by far the most common.

Both are Merkle-Damgard constructions.
Both are broken.

e MD?5 in practice.
e SHA-1 in theory.

There is also a SHA-2 family of hash functions.
o Still ok.

Newest family: SHA-3
e Output of NIST competition 2012.

December 11, 2019 18 / 26

The SHA-3 standard

@ On October 2, 2012, Keccak was selected as the winner.

e Keccak is a family of cryptographic hash functions designed by Guido
Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche,

@ SHA-3 uses the sponge construction, in which message blocks are
XORed into the initial bits of the state

December 11, 2019 19 / 26

The SHA-3 standard

M A
A
pad | (||
]) M M ~1 A
Y Y Y :
r| |04 & & % |
o s
|
C 0 L > s - : > > L
) / / o, Y
absorbing : squeezing
sponge

December 11, 2019 20 / 26

Usage of hash functions

@ Commit to message by disclosing hash of message, later showing the
message

o If collision resistant, you cannot cheat (change message).
o Consider playing rock, paper, scissors remotely with a hash function.
e Or rock-paper-scissors-lizard-Spock.

Verify integrity of downloaded files.
Digital signatures.
SSL/TLS for integrity protection.

Storing passwords in operating systems and web servers.

December 11, 2019 21 /26

Message Authentication Codes (MACs)

o Keyed hash function.
@ Authenticate origin of messages

e Symmetric key, shared between sender and receiver.
o Both sender and receiver can create and verify MAC.

o Integrity protection of messages

o Message changes in transit are detected.
e An ordinary (key-less) hash function does not provide this. (why?)

December 11, 2019 22 /26

Message Authentication Codes (MACs)

Keyed hash function.
Authenticate origin of messages

e Symmetric key, shared between sender and receiver.
o Both sender and receiver can create and verify MAC.

Integrity protection of messages

o Message changes in transit are detected.

e An ordinary (key-less) hash function does not provide this. (why?)
Two known designs:

o HMAC (based on hash function)
o CBC-MAC (based on block cipher in CBC-mode)

December 11, 2019 22 /26

Message Authentication Codes (MACs)

Keyed hash function.
Authenticate origin of messages

e Symmetric key, shared between sender and receiver.
o Both sender and receiver can create and verify MAC.

Integrity protection of messages

o Message changes in transit are detected.

e An ordinary (key-less) hash function does not provide this. (why?)
Two known designs:

o HMAC (based on hash function)

o CBC-MAC (based on block cipher in CBC-mode)
Are these good constructions?

o MAC) (m)=h(k|m).

o MAC) (m) = h(m]k).

December 11, 2019 22 /26

Message Authentication Codes (MACs)

Is M ACY (m) = h (k||m) a good construction?

e No!

@ Assume we know
¢ = MACy (m1) = h(k[m1).
@ Then we can find MAC of message
MACy (ma|padm, [m2) = h (k|lm1|padm, [m2) = f (¢, m2)

without knowing the key.

December 11, 2019 23 /26

Message Authentication Codes (MACs)

Is M ACY, (m) = h (m||k) a good construction?

e Nol!

@ Find a collision in the hash function, such that
h (ml) = h (TYLQ) .

@ Then

If h if collision resistant, then so is M AC},.

But MACs can be built without requiring collision resistance in the
underlying hash function.

HMAC has this property.

December 11, 2019 24 / 26

HMAC

HMAC is a MAC based on a hash function:

HMAC) (m) = h((k ® opad) |k ((k & ipad) |m)).

opad = 0x5cbchche...

ipad = 0x36363636...

Proposed in 1996.

Used with MD5 or SHA-1 in SSL/TLS.

Immune to previous attacks.

December 11, 2019 25 / 26

Hash Functions from Block Ciphers.

@ Pad the message to be hashed and divide it into blocks
Oy L1y - -y Tty
e Hy =1V, and iterate
H; = f(zi,Hi—1).
@ For example, a Davies-Meyer hash

flzi, Hi—1) = Ey,(Hi—1) ® Hi—1.

December 11, 2019 26 / 26

