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Problem 1
(a) For example, the Fermat test means computing ap−1 mod p for some 2 ≤ a ≤ p − 1,

and check if it equals 1. If p is a prime, it must always be so. For example, computing
21040 mod 1041 = 4, 21042 mod 1043 6= 1, 21047 mod 1047 6= 1, 21048 mod 1049 = 1, and
conclude that 1049 is a prime.

(b)

φ(n) = (p− 1)(q − 1) = 126 · 1048 = 132048.

Picking smallest e > 20 such that gcd(132048, e) = 1. Testing gives gcd(132048, 21) 6= 1
and gcd(132048, 23) = 1, so e = 23. The secret d is the inverse of e modulo φ(n), i.e.,
d · e = 1 mod φ(n). We compute it through Euclidean algorithm to be d = 51671.

(c) Computing C = 234523. Square and multiply means first squaring by computing

M = 2345,M2 = 23452 = 36882,M4 = (M2)2 = 368822 = 75094,

M8 = (M4)2 = 750942 = 45692,M16 = (M8)2 = 21231,

all calculations in Zn. Then observe that

C = 234523 = 234516+4+2+1 = 234516 ·23454 ·23452 ·2345 = 21231·75094·36882·2345 = 58952.

(d) Decryption is given by M ′ = Cd mod n and a correct ciphertext is created as C =
M e mod n, where M is the message. We also have e · d = 1 mod φ(n), so we can write
e · d = 1 + k · φ(n) for some integer k. Then

M ′ = Cd = (M e)d = M ed = M1+k·φ(n) = M ·Mkφ(n) = M mod n,

because of Euler’s theorem. This is true when gcd(M,n) = 1. For the case gcd(M,n) 6=
1, the statement is still true but has to be proved by using Chinese remainder theorem
or similar (not required).

Problem 2
(a) WRONG ( P1(x) = (x2 + x+ 1)(x3 + x2 + 1))
(b) WRONG (if it is not irreducible it cannot be primitive)
(c) CORRECT (T1 = 15 and T2 = 2iT1 computing i = 1 from the formula 2i−1 < j = 2 ≤ 2i)
(d) WRONG ((α10)3 = 1 so ord(α10) = 3)
(e) CORRECT (x = 1)

Problem 3
(a) Given formulas:

D = H0 −H(M),

N0 = H(K)/D.

Computing

H0 = logL = log 2128 = 128.

H(M) = 2127 · (−2−127 log(2−127)) + 2127 · (0 log(0)) = 127.

H(K) = log(|K|) = log(2128) = 128.

Finally,

N0 = H(K)/D =
128

(128− 127)
≈ 128 symbols.
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(b) The conditions are ciphertext-only attacks (Eve has access only to the ciphertext) and
unconditional security (Eve has infinite computing power). This means that after ob-
serving slightly more thanN0 = 128 blocks, she can determine the secret key, for exam-
ple by using an exhaustive key search. In practice, we do not have infinite computing
power and we talk about a cipher being broken only if there is an attack method that
is more efficient than exhaustive key search.

(c) For example homophonic coding. In this particular example it would be done by
adding a uniform random bit in the first position of the plaintext block. Then all 128
bit vectors are equally likely and D = 0. In decryption, we just set the first position of
the plaintext block to be 0 again.

Problem 4
(a) I Γ0 = {P1P2;P1P3;P2P3;P4P5} (and any subset in cl(Γ0) can access the secret).

I Ideal SSS means that it is perfect and the size of shares are minimum (same as
the size of the secret). Since the construction can be viewed as two indepen-
dent threshold schemes, one (2,3)-threshold scheme for P1, P2, P3 and one (2,2)-
threshold scheme for P4, P5, and it is known that Shamir threshold scheme is
ideal, it follows.

I Finally, a simple reconstruction. Since k = 2, we have the secret polynomial as
a(x) = a0 + a1x and from the shares we have y2 = a(2) = a0 + 2a1 = 3 and
y3 = a(3) = a0 + 3a1 = 10, leading to K = a0 = 8 after solving the system of 2
equations in two unknowns in F19.

(b) see the lecture notes. When q is composite PS can be larger than 1/q, since a linear
equation can then have more than one solution mod q.

Problem 5

This is essentially the problem you solved in project 3. Recall that the correlation attack uses
a divide-and-conquer approach. We first establish a correlaton between output and LFSR
sequences, by observing (or recalling from the project) that P (zi = uj) = 3/4, j = 1, 2, 3,
in the cipher. So the approach is to write out the possible sequences from a single LFSR,
compare with z and find the sequence closest in Hamming sense.

Start with LFSR3 (shortest): The three nonzero starting states and their corresponding LFSR
sequences are

(0, 1) 0110 1101 1011 0110 1101 1011 0110 1101 1011
(1, 0) 1011 0110 1101 1011 0110 1101 1011 0110 1101
(1, 1) 1101 1011 0110 1101 1011 0110 1101 1011 0110
z 0011 1110 1011 0110 1111 1001 0110 0101 1011

The distances (number of positions in which they differ from z) are 7, 17 and 25. Clearly the
sequence from (0, 1) is closest to z.

Do the same with LFSR2, checking 7 sequences, to get starting state (0, 0, 1).

Finally, knowing two of three sequences you can extract the starting state of LFSR1.
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LFSR3 (0, 1) 0110 1101 1011 0110 1101
LFSR2 (0, 0, 1) 0011 1010 0111 0100 1110
z 0011 1110 1011 0110 1111
LFSR1 ? x0x1 x110 00xx ...

After some calculation, it gives starting state (0, 0, 0, 1).

You can of cause also do as for LFSR2 and LFSR3, but then you need to check 15 different
sequences.


