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Problem 1
(a) WRONG (For example, since P1(1) = 0)
(b) WRONG (Since P1(2) = 0)
(c) WRONG (the period is 4)
(d) CORRECT (check that P2(x) is irreducible + observe that ord(α) ∈ {1, 7} and it is not

1)
(e) CORRECT (Compute the cycle set: factored polynomials: P1 = (1+D)3 , P2(D) = x3+

x+1. Then S1 = 2(1)⊕1(2)⊕1(4) according to the cycle set formula and S2 = 1(1)⊕1(7).
Finally compute S = S1 ⊗ S2 or observe directly that there will be one cycle of length
14. S = [2(1)⊕ 1(2)⊕ 1(4)]⊗ [1(1)⊕ 1(7)] = 2(1)⊕ 2(7)⊕ 1(2)⊕ 1(14)⊕ 1(4)⊕ 1(28)

Problem 2
(a) Given formulas:

D = H0 −H(M),

N0 = H(K)/D.

Computing

H0 = logL = log 5.

H(M) = −3/4 log(1/4)− 2/8 log(1/8) = 9/4.

H(K) = log(|K|) = log(52) = 2 log 5.

Finally,

N0 = H(K)/D =
2 log 5

(log 5− 9/4)
≈ 64 symbols.

(b) n ∈ {1, 2}, since perfect secrecy requires H(K) ≥ H(M1 · · ·Mn), so n ≤ 2 and for
n ∈ {1, 2} it is a Vernam cipher which is know to have perfect secrecy.

(c) We note that P (C = c) = P (i even)P (M+K0 = c)+P (i odd)P (M+K1 = c) = (P (M+
K0 = c) + P (M +K1 = c))/2. So if empirically P (C = 2) ≈ 1/4 and P (C = 3) ≈ 1/4
then most likely P (M +K0 = 2) = 1/4, P (M +K1 = 2) = 1/4, P (M +K0 = 3) = 1/4,
P (M +K1 = 3) = 1/4. So both 2 −K0 and 3 −K0 must be among the most probable
symbols (0,1,2), giving K0 ∈ {1, 2}. Same for K1. Finally, matching with the remaining
knowledge given in the problem, we see that the two possible keys are (1, 2) or (2, 1).

(d) It is a better way is to record the number of occurences for each alphabet, in this case
in two tables, one for even i and one for odd i.
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Problem 3
(a) We have k = 4 and so we have an unknown polynomial a(x) = a0 + a1x+ a2x

2 + a3x
3

over F37. We know the following system of linear equations:

3 = a0 + 2a1 + 4a2 + 8a3

10 = a0 + 3a1 + 9a2 + 8a3

6 = a0 + 4a1 + 16a2 + 7a3

6 = a0 + 7a1 + 11a2 + a3

Solving steps:


1 2 4 8 3
1 3 9 8 10
1 4 16 7 6
1 7 11 1 6

→


1 2 4 8 3
0 1 5 0 7
0 2 12 18 3
0 5 7 12 3

→


1 2 4 8 3
0 1 5 0 7
0 0 2 18 8
0 0 1 12 6

→


1 2 4 8 3
0 1 5 0 7
0 0 2 18 8
0 0 0 6 4

 .

So 6a3 = 4 gives a3 = 7. More calculations give a2 = 17, a1 = 17, and finally K = a0 =
16. The answer is K = 16.

(b) Eve observes M = (0, 0, 0, 9) leading to knowledge of e1 since t = e1+s1e2+s2e
2
2+s3e

3
2

and so 9 = e1 + 0 · e2 + 0 · e22 + 0 · e32 and e1 = 9. Now

PS = max
M ′

P (M ′ valid|(0, 0, 0, 9) observed) = max
M ′

Number of e2 for which M ′ is valid
Total Number of e2 values

The condition for M ′ to be valid is t = 9+ s1e2 + s2e
2
2 + s3e

3
2 for the choice of t. Because

this is a degree 3 polynomial in the unknown e2, it can have at most three solutions. So
the maximum PS is 3/37 and we just need to find a messageM ′ giving this probability.
Putting t = 9, we have the condition s1e2 + s2e

2
2 + s3e

3
2 = 0 and we should then choose

(s1, s2, s3) such that this equation has three solutions. So for example e2(e2+1)(e2+2) =
2e2 + 3e22 + e32 has three solutions, so we can set M ′ = (2, 3, 1, 9).

Problem 4
(a) In ECB mode, the plaintext is split in blocks and each block is encrypted with the

block cipher, M = M1,M2, · · · and C = C1, C2, . . ., where Ci = EK(Mi). It is not
a good choice because if two blocks in the plaintext are the same, then so are the
corresponding ciphertext blocks. In this case, if the first two ciphertext blocks are the
same, Eve knows that it must have been I1 as plaintext, as it has repeated plaintext
blocks; otherwise it must have been I2. The answer is then I2.

(b) In CBC mode Ci = EK(Mi + Ci−1), where we assume the block cipher behaves like a
random permutation on the input alphabet which in this case is of size 28. Under the
assumption that image I1 was sent, we can compute all the input blocks to the block
cipher, call them x′1, x

′
2, . . .. If I2 was sent, it will correspond to another sequence of

input blocks x′′1, x′′2, . . .. Now we again use the observation that if an input block is
repeated, the ciphertext must be the same. Due to the birthday paradox we know that
in a sequence of input blocks, we have a repetition of a previous block after observing
roughly the square root of the number of possible input blocks. So (28)1/2 = 16. So
if we find for i 6= j: x′i = x′j and ci = cj OR x′′i = x′′j and ci 6= cj , then most likely I1
was the transmitted image. Similar conditions for I2. Collisions of the typ x′i = x′j or
x′′i = x′′j are expected to appear after, say, 10-20 blocks. The lesson to learn: A too small
block size can influence on security.
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(c) A bit-oriented stream cipher encrypts by ci = mi+ zi. All symbols are now considered
to be in F28 . There are only two possible plaintexts I1 or I2. So from the observed
ciphertext, there are only two possible keystreams; if M = I1 then

Z = 00000001, 10000000, 10011010, . . .

and if M = I2 then

Z = 00000001, 10000001, 10011010, . . .

In F28 this corresponds to Z = 1, α7, α7 + α4 + α3 + α, . . . for I1 and Z = 1, α7 + 1, α7 +
α4 + α3 + α, . . . for I2.
We need to find out which one is the correct on. What we know is that the linear
complexity for the stream cipher is ≤ 1. This means that the stream cipher can be
replaced by an LFSR of length at most 1. So one way of solving our problem is to apply
the BM-algorithm to one of the possible key streams. If the BM-algorithm delivers a
shortest LFSR of length >1 then we know that this is not the correct keystream. We try
the M = I1 case.

sN d C1(D) C(D) L LFSR C0(D) d0 e N

− − − 1 0 ← 1 1 1 0

1 1 1 1 +D 1 picture 1 1 1 1
α7 α7 + 1 1 + α7D picture 2 2

α7 + α4 + α3 + α 0 3 3

Above, we computed α14 = α7 + α4 + α3 + α.
The same for the M = I2 case (you do not need to do this).

sN d C1(D) C(D) L LFSR C0(D) d0 e N

− − − 1 0 ← 1 1 1 0

1 1 1 1 +D 1 picture 1 1 1 1
α7 + 1 α7 1 + (α7 + 1)D picture 2 2

α7 + α4 + α3 + α α7 + α4 + α3 + α + (α7 + 1)2 6= 0 ≥ 2 3 3

So it must be M = I1.

Problem 5
(a) For example, the Fermat test means computing ap−1 mod p for some 1 ≤ a ≤ p − 1,

and check if it equals 1. If p is a prime, it must always be so. For example, computing
21020 mod 1021 = 1, 31020 mod 1021 = 1, and a few more, gives that with high probabil-
ity that p is a prime.

(b)

φ(n) = (p− 1)(q − 1) = 126 · 1020 = 128520.

Pick e = 11 since gcd(128520, 11) = 1 (other choices are possible). The secret d is the
inverse of e modulo φ(n), i.e., d · e = 1 mod φ(n). We compute it through Euclidean
algorithm to be d = 35051.

(c) Computing C = 1975311. Square and multiply means first squaring by computing

M = 19753,M2 = 197532 = 13006,M4 = (M2)2 = 130062 = 70268,M8 = (M4)2 = 702682 = 2131,

all calculations in Z129667. Then observe that

C = 1975311 = 197538+2+1 = 197538 · 197532 · 19753 = 2131 · 13006 · 19753 = 27484.

(d) From the project, we know that we can rewrite as 5742 − 4472 = 0 mod n meaning
that (574 − 447)(574 + 447) = K · p · q in the integers, for some K. By computing
gcd(574− 447, n) we have a chance of getting p or q. In this case we are lucky because
gcd(574− 447, 129667) = 127 and so 127|129667 and n is factored.


