

Cryptology – something old and something new

THOMAS JOHANSSON

CRYPTO AND SECURITY

DEPT. OF ELECTRICAL AND INFORMATION TECHNOLOGY, LUND UNIVERSITY, SWEDEN

Cryptology, what is that?

- the study of cryptographic primitives
- a cryptographic primitive low-level cryptographic algorithms (black-box description), building block, ...
- a cryptographic primitive contains a mathematically oriented description
- cryptographic primitives are used to build secure systems

Cryptographic primitives

- Cryptographic hash function, (compute a hash value for a message (SHA-256))
- Symmetric-key encryption (encrypt/decrypt with a shared key (AES))
- Public-key encryption (encrypt with a public key and decrypt with a different secret key (RSA))
- Digital signatures (confirm the authorship and authenticity of a message by its signature (DSS))
- Mix network (pool communications from many users to anonymize what came from whom)
- Private information retrieval (get database information without server knowing which item was requested)
- Commitment scheme (commit to a chosen value hidden to others, with the ability to reveal it later)

Example of an application

- HTTPS protocol through TLS
- secure communication over a computer network
- you need a Public Key Infrastructure, key agreement, signatures, encryption and data integrity

Cryptographers, who are they?

- mathematicians, theoretical computer scientists, electrical engineers
- International Association for Cryptologic Research, IACR, iacr.org

discrete algebraic structures, probability theory and statistics

Historic view

secrecy

(Shannon, 1949)

The big game changer I

• the birth of Public Key Cryptography (Diffie, Hellman 1976 and R. Merkle)

LUND UNIVERSITY

Public-key encryption scheme

- A set of encryption transformations {*E_e* : *e* ∈ *K*} and a set of decryption transformations {*D_d* : *d* ∈ *K*}. For each *e* ∈ *K* there is a corresponding *d* ∈ *K* such that *D_d*(*E_e*(*M*)) = *M*, ∀*M*.
- Furthermore, after choosing such a pair (*e*, *d*), the *public key e* (or the public parameter) is made public, while the associated *secret key d* is kept secret.
- For the scheme to be secure, it must be computationally infeasible to compute *d* as well as computing E_e⁻¹(C), knowing the public value *e*.

The RSA public-key encryption scheme

Let n = pq, where p and q are two large primes. Let $\mathcal{M} = \mathcal{C} = \mathbb{Z}_n$. Pick a number e relatively prime to $\phi(n)$ and calculate a number d such that $ed = 1 \mod \phi(n)$. The public key is the two numbers (n, e) and the (public) encryption transformation E(M) is

$$E(M) = M^e \bmod n.$$

The secret key is the number *d* (as well as *p*, *q* and $\phi(n)$) and the secret decryption transformation D(C) is

 $D(C) = C^d \mod n.$

Verify that decrypting a ciphertext returns the encrypted plaintext.

$$D(C) = C^d = (M^e)^d = M^{ed} \bmod n.$$

Now we note that $ed = 1 \mod \phi(n)$, which means that we can write

$$ed = 1 + t \cdot \phi(n)$$
,

for some integer t. S we can continue

$$D(C) = M^{ed} = M^{(1+t \cdot \phi(n))} = M \cdot M^{t \cdot \phi(n)} \mod n.$$

From Euler's formula we know that $x^{\phi(n)} = 1$ for any $x \in \mathbb{Z}_n^*$. So assuming that *M* is invertible we have

$$D(C) = M \cdot M^{t \cdot \phi(n)} = M \cdot 1 \mod n.$$

Security of the RSA cryptosystem

- If we can factor *n* then we can compute $\phi(n)$ and *d*.
- RSA relies on the factoring problem.
- This does not mean that breaking RSA is equivalent to solving a factorization problem. It is not known whether RSA can be broken without factoring *n*.

The computational complexity of factoring

• We often use the function

$$L_n(\alpha,\beta) = \exp((\beta + o(1))(\log n)^{\alpha}(\log \log n)^{1-\alpha}).$$

- An algorithm with complexity O(L_n(α, β)) for 0 < α < 1 is said to have sub-exponential behaviour.
- Number Field Sieve: This is currently the most successful method for numbers with more than 100 decimal digits. It can factor numbers of the size of 2^{512} and has complexity $L_n(1/3, 1.923)$.
- For long-term security one would need to take a size of over 2048 bits.
- RSA-768 was factored in 2009.

 $11/3^{-1}$

How fast can we compute a ciphertext?

- Complexity of computing x^e mod n?
- Complexity of computing xy mod n?
- Basic school book n^2 ; Karatsuba $n^{1.58}$; ...

 $n = 2799783391122132787082946763872260162107044678695542853756000992932612840010760934567105295536085606 \\ 1822351910951365788637105954482006576775098580557613579098734950144178863178946295187237869221823983.$

It still requires many operations to compute $M^e \mod n \dots$

The El Gamal cryptosystem (1985)

- Domain parameters: p large prime; g an element in \mathbb{Z}_p^* .
- Public key: $h = g^x \mod p$
- Encryption: Pick a random $k \in \mathbb{Z}_p$. For message $m \in \mathbb{Z}_p$ generate the ciphertext

$$(\mathbf{c}_1, \mathbf{c}_2) = (\mathbf{g}^k, \mathbf{m} \cdot \mathbf{h}^k).$$

• Decryption:

$$\frac{c_2}{c_1^x}=\frac{m\cdot h^k}{g^{kx}}=m.$$

The Discrete Log Problem

• Domain parameters: p large prime; g generator for a large subgroup in \mathbb{Z}_{p}^{*} .

Given

$$h = g^x \mod p$$
,

compute x.

- Index calculus algorithms: can use methods similar to the NFS
- Complexity: subexponential $L_p(1/3, c)$ requires p to be 1024-bit or 2048-bit.

The El Gamal cryptosystem again

- El Gamal works for any finite group!
- The discrete log problem in a group G:
- Given a finite group $h = g^x$ compute x.
- The computational complexity for solving the DLP depends on the group!
- $<\mathbb{Z}_{p}$, +> easy; $<\mathbb{Z}_{p}^{*}$, $\cdot>$ subexponential; elliptic curve groups exponential (?)

Elliptic curve crypto

- Suggested in the 80s, wide-spread from 2004-.
- Example:

$$\mathsf{E}: Y^2 = X^3 + X + 3$$

over the field $\mathbb{Z}_{p} = \mathbb{Z}_{7}$. Points on the curve: \mathbb{O} , (4, 1), (6, 6), (5, 0), (6, 1), (4, 6) Group law for adding points, e.g., (4, 1) + (6, 6) = (5, 0)

- The computational complexity for the best algorithms solving the DLP on some elliptic curve groups is exponential.
- Modulus *p* can be much smaller! (top breaking record is 112-bit ECDLP)

The big game changer II ?

• the birth of quantum computing

The big game changer II ?

Shor's algorithm (1994)

If a large enough (number of qubits) quantum computer is available, then

- The factorization problem can be solved in polynomial time.
- The discrete log problem can be solved in polynomial time.
- Most public-key crypto of today is not secure...
- ...the world is collapsing...

The Quantum era

- The Grover algorithm affects symmetric crypto (but not so serious)
- Some things we encrypt today might need to be kept secret for the upcoming 30-50 years.
- we need to find a new solution now...
- the area of crypto in the presence of a quantum computer is called *post-quantum cryptography*

Post-Quantum Crypto algorithms and future standards

- Most of todays security solutions are based on the difficulty of either *factoring* or solving the *discrete log* problem (RSA, DH, ECDH, ...).
- If a (large enough) quantum computer can be built in 5 (or 10, or 50) years, it can solve these problems fast (in polynomial time).
- A huge threat that forces everyone to reconsider how to build future security algorithms.
- NIST now has an ongoing post-quantum standardization project.

Post-Quantum Crypto are usually based on ...

- Lattice-based crypto (Learning with errors)
- Code-based crypto
- Multivariate crypto (solving systems of multi-variate quadratic equations)
- hash-based crypto

Our research investigates how difficult instances from these different problems are.

Explaining Learning with Errors (LWE)

Basic Linear Algebra in ${\rm I\!R}$

$$\begin{pmatrix} 3 & 5 & 2 & -4 & -1 \\ 4 & -1 & 3 & -4 & 3 \\ -2 & 2 & 2 & 3 & -3 \\ 1 & 0 & -4 & -4 & 1 \\ 0 & -5 & 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix} = \begin{pmatrix} -6 \\ 20 \\ -9 \\ -5 \\ 20 \end{pmatrix}$$

A Slight Modification - the LWE problem

- Arithmetic in $\mathbb{Z}_{13}=\{-6,-5,\ldots,5,6\}$
- e_i small (for example $e_i \in \{0, 1\}$)

$$\begin{pmatrix} 3 & 5 & 2 & -4 & -1 \\ 4 & -1 & 3 & -4 & 3 \\ -2 & 2 & 2 & 3 & -3 \\ 1 & 0 & -4 & -4 & 1 \\ 0 & -5 & 2 & -2 & 1 \\ -3 & 1 & 2 & -1 & -4 \\ 2 & -1 & 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6 \\ e_7 \end{pmatrix} = \begin{pmatrix} -5 \\ -6 \\ 4 \\ -4 \\ -6 \\ 4 \\ 3 \end{pmatrix}$$

A Slight Modification - the LWE problem

- Arithmetic in $\mathbb{Z}_{13}=\{-6,-5,\ldots,5,6\}$
- e_i small (for example $e_i \in \{0, 1\}$)

$$\begin{pmatrix} 3 & 5 & 2 & -4 & -1 \\ 4 & -1 & 3 & -4 & 3 \\ -2 & 2 & 2 & 3 & -3 \\ 1 & 0 & -4 & -4 & 1 \\ 0 & -5 & 2 & -2 & 1 \\ -3 & 1 & 2 & -1 & -4 \\ 2 & -1 & 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -5 \\ -6 \\ 4 \\ -4 \\ -6 \\ 4 \\ 3 \end{pmatrix}$$

Learning with Errors

There is a secret vector **s** in \mathbb{Z}_q^n . We can query an oracle:

The LWE Oracle with Parameters (n, q, \mathcal{X}) :

- 1. Uniformly picks **a** from \mathbb{Z}_q^n .
- 2. Picks a small 'error' e.
- 3. Outputs the pair (**a**, \langle **a**, **s** \rangle + *e*) as a sample.

Error Distribution

Discrete Gaussian over \mathbb{Z}_q with mean 0 and standard deviation σ .

 $D_{\sigma,0}$ returns integers $x \in \mathbb{Z}_q$ with prob. proportional to $\exp(-x^2/(2\sigma^2))$.

LWE Problem Parameters

The LWE Parameters

- 1. Dimension *n*
- 2. Alphabet size q
- 3. The standard deviation σ .

How difficult is it to solve an LWE instance?

Asymptotic Complexity of Solving LWE

There are several reasons to believe the LWE problem is hard (Regev 2005).

- The best known algorithms for LWE run in exponential time (quantum algorithms do not help much).
- LWE (for certain parameters) is known to be hard based on certain assumptions regarding the worst-case hardness of standard lattice problems such as GAPSVP (a decision version of the shortest vector problem)

Complexity of Solving LWE

- $q = n^{c_q}$
- σ = n^{cs}
- Complexity of Solving LWE is usually 2^{(c+o(1))n}, where constant c depends on cq and cs.

Example (Regev instances)

 $c_q = 2$ and $c_s = 1.5$.

Results

Time complexities are on the form $2^{(c+o(1))n}$	
Algorithm	Complexity Exponent (c)
Quantum Computer	0.8856
Classical Computer	0.8951
Previous best	0.9299

Back to crypto - Ring-LWE

 $\mathbb{Z}_q/(f(x))$, where $f(x) = x^n + 1$, where $n = 2^m$, is a common choice. There is a secret polynomial s(x) in $\mathbb{Z}_q/(x^n + 1)$.

The Ring-LWE Oracle with Parameters (n, q, \mathcal{X}) :

- 1. Uniformly picks a(x) from $\mathbb{Z}_q/(x^n+1)$.
- 2. Picks a small 'error' polynomial e(x) from $D_{\sigma,0}^n$.
- 3. Outputs (a(x), b(x)) = (a(x), a(x)s(x) + e(x)) as a sample.

$D_{\sigma,0}^n$ returns *n* integers from $D_{\sigma,0}$.

Distributing keys using Ring-LWE

Think of vectors as polynomials in $\mathbb{Z}_q/(x^n+1)$. **Public key generation by Bob:** Chooses random a(x), small s(x), e(x) and form

$$b(x) = a(x)s(x) + e(x).$$

Publish (b(x), a(x)). Alice sends a key to Bob: Chooses small s'(x), e'(x), e''(x) and compute

c(x) = a(x)s'(x) + e'(x)

and

$$c'(x) = b(x)s'(x) + e''(x) + q/2 \cdot k(x).$$

Here k(x) is a binary polynomial (key). Alice sends (c(x), c'(x)) to Bob.

Distributing keys using LWE

Bob recovering the key: Compute

$$m(x) = c'(x) - c(x)s(x).$$

If m_i closest to q/2 then $k_i = 1$ else if m_i closest to 0 then $k_i = 0$. Explanation:

$$m(x) = c'(x) - c(x)s(x) = b(x)s'(x) + e''(x) + q/2 \cdot k(x) - (a(x)s'(x) + e'(x))s(x)$$

= $(a(x)s(x) + e(x))s'(x) + e''(x) + q/2 \cdot k(x) - (a(x)s'(x) + e'(x))s(x)$
= $q/2 \cdot k(x) + \underbrace{e(x)s'(x) + e''(x) - e'(x)s(x)}_{small}$.

Example

 $\mathbb{Z}_{19}/(x^8+1), \mathbb{Z}_{19} = \{-9, -8, \dots, 8, 9\}, \text{small} = \in \{-1, 0, 1\}$ **Public key generation by Bob:** Chooses random

$$a(x) = 2x^7 - 9x^6 - 4x^5 - 4x^4 - 3x^3 + 5x^2 - 4x + 5,$$

small $s(x) = x^7 + x^3 - x^2 - 1$, $e(x) = -x^6 + x^5 - x^2 + x$ and form b(x) = a(x)s(x) + e(x)

$$b(x) = 3x^7 + 7x^6 + 3x^5 - 1x^4 - 3x^3 + 9x^2 - 8x - 6.$$

Publish (b(x), a(x)).

Example

Alice sends a key to Bob: Let k = (1, 0, 1, 0, 1, 0, 1, 0), or $k(x) = x^7 + x^5 + x^3 + x$. Chooses small $s'(x) = x^5 + x^4 - x^2$, $e'(x) = -x^7 + x^5 + x^3 + x$, $e''(x) = x^6 + x^3 - x$ and compute c(x) = a(x)s'(x) + e'(x)

$$c(x) = 5x^7 + 5x^6 + 5x^5 - 2x^4 - 7x^3 + 8x^2 - 8x - 2$$

and $c'(x) = b(x)s'(x) + e''(x) + 9 \cdot k(x)$

$$c'(x) = -7x^7 + 3x^6 - 2x^5 + x^4 + 8x^3 - 4x^2 + 9x - 8$$

Alice sends (c(x), c'(x)) to Bob.

Example

Bob recovering the key: Compute

$$m(x) = c'(x) - c(x)s(x).$$

$$m(x) = 7x^7 - 1x^6 - 7x^5 + x^4 - 7x^3 + 9x + 1.$$

If m_i closest to q/2 then $k_i = 1$ else if m_i closest to 0 then $k_i = 0$.

$$k = (1, 0, 1, 0, 1, 0, 1, 0)$$

Current PQ-crypto research topics

basis for future security standards

- NIST standardization project contains 84 different proposals
- Difficulty of underlying problems
- Security of specific proposals (different types of primitives)
- Hardware implementation aspects
- Software implementation for constrained devices
- Side-channel attacks and its protection

Thank you for your attention! Any questions?

