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A polynomial f(x) ∈ Fp

[
x
]

is a primitive polynomial of a finite field exten-
sion Fpk if it has degree k and has a root α ∈ Fpk (f(α) = 0) that generates all
non-zero elements of Fpk (by iterating {α, α2, α3, . . .}).

A primitive polynomial must necessarily be irreducible, but all irreducible
polynomials are not primitive.

A somewhat longer explanation follows below.

1 Finite Field Basics

A finite field Fq of order (the number of elements) q exists if and only if q is a
prime power pk (p is prime, k is a positive integer).

All finite field of the same order are isomorphic. That is, even if two finite
field of the same order are represented differently, they still are the same field.
While the elements may have been relabeled from one representation to another,
they still behave the same way.

The non-zero elements (all except the zero) of a finite field form a mul-
tiplicative group that is cyclic, so this group can be generated by one single
element.

2 Finite Fields Fp of Prime Order

Finite fields Fp of prime order behave exactly like Z/pZ (the integers modulo
p). These are isomorphic.

3 Finite Fields Fpk of Prime Power Order

Finite fields Fpk of prime power order (with k ≥ 2) do not behave like the
integers modulo pk. Instead, we can ”expand” Fp by constructing an extension
field Fpk using polynomials in a special way. We do this because that is how
Fpk does behave, like this somewhat special bunch of polynomials.

As an example, consider F24 = F16. Using the primitive1 polynomial f(x) =
x4 + x+ 1, we can construct F24 as F2

[
x
]
/ 〈f(x)〉 = F2

[
x
]
/
〈
x4 + x+ 1

〉
. That

1Keep reading, it will be explained below.
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is, our finite field elements can be represented by polynomials over F2 that are
taken modulo the polynomial f(x).

The polynomial f(x) corresponds to the zero element, so we can write

x4 + x+ 1 = 0,

which we can also express as a rule for reducing exponents in our polynomials
according to

x4 = x+ 1.

Using this rule, we can reduce every polynomial of degree 4 or higher to a degree
of 3 or less. The elements of F2

[
x
]
/
〈
x4 + x+ 1

〉
are the polynomials

a3x
3 + a2x

2 + a1x+ a0,

where all ai ∈ F2. With four such ai, and each taking the values 0 or 1, there
are 24 = 16 different polynomials/elements.

Addition and multiplication on these polynomials are performed ”as usual”,
with the additional reduction step at the end to reduce the degree if necessary.

4 Multiplication Table for F2

[
x
]
/
〈
x4 + x+ 1

〉
Now, letting the symbol α denote a zero of f(x), so that f(α) = 0, we can write
the reduction rule above as

α4 = α+ 1.

We can also use the symbol α to write a multiplication table for F2

[
x
]
/
〈
x4 + x+ 1

〉
.

1,

α,

α2,

α3,

α4 = α+ 1,

α5 = α2 + α,

α6 = α3 + α2,

α7 = α4 + α3 = α3 + α+ 1,

α8 = α4 + α2 + α = α2 + 1,

α9 = α3 + α,

α10 = α4 + α2 = α2 + α+ 1,

α11 = α3 + α2 + α,

α12 = α4 + α3 + α2 = α3 + α2 + α+ 1,

α13 = α4 + α3 + α2 + α = α3 + α2 + 1,

α14 = α4 + α3 + α = α3 + 1,

α15 = α4 + α = 1.
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Note that we cycle through after 15 iteration, returning to 1 with α15. If all
non-zero elements (15 out of the 16 in F16 in this case) can be generated in this
way, then the polynomial f(x) is primitive.

Replacing α with x, one can see that all non-zero polynomials over F2 with
degree 3 or lower are present. The non-zero elements form a cyclic subgroup
(under multiplication), and every such element can be expressed as a power of
x. One way of multiplying, say, x3 + x2 + 1 with x2 + x + 1 is to realize that
they equal x13 and x10, respectively, so their product is x13+10 = x23, and we
get

x23 = x8 = x2 + 1

simply by reducing the exponent modulo 15 and peeking into our multiplication
table.

If we would have chosen a polynomial that is not primitive, then we would
have cycled though earlier. In this case, since a subgroup must divide the order
of the entire group, we would have found that either α3 = 1 or α5 = 1.

If you are merely interested in finding out if a given polynomial is primitive,
then it suffices to cycle through to the largest proper divisor of q − 1. In our
example above, when we have shown that α5 = α2 + α 6= 1, then we know that
the polynomial is primitive, since the ”next” opportunity for a full cycle is at
α15.
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