Recall the Euclidean algorithm for calculating the greatest common divisor (GCD) of two numbers.

If you have an integer \(a \), then the multiplicative inverse of \(a \) in \(\mathbb{Z}/n\mathbb{Z} \) (the integers modulo \(n \)) exists precisely when \(\gcd(a, n) = 1 \). That is, if \(\gcd(a, n) \neq 1 \), then \(a \) does not have a multiplicative inverse.

The multiplicative inverse of \(a \) is an integer \(x \) such that
\[
a \cdot x \equiv 1 \pmod{n},
\]
or equivalently, an integer \(x \) such that
\[
a \cdot x = 1 + k \cdot n
\]
for some \(k \). If we simply rearrange the equation to read
\[
a \cdot x - k \cdot n = 1,
\]
then the equation can be read as "The integer \(a \) has a multiplicative inverse \(x \) if and only if 1 (one) can be written as a linear combination of \(a \)'s and \(n \)'s".

We proceed by example.

Example 1. If \(n = 36 \) and \(a = 2 \), then \(\gcd(a, n) = \gcd(2, 36) = 2 \), so \(2 \) does not have an inverse in \(\mathbb{Z}/36\mathbb{Z} \). In this case, the notation \(2^{-1} \) does not make any sense.

Example 2. If \(n = 36 \) and \(a = 5 \), then \(\gcd(a, n) = \gcd(5, 36) = 1 \), so \(5 \) does have an inverse in \(\mathbb{Z}/36\mathbb{Z} \), and the notation \(5^{-1} \) makes sense in this case.

To calculate the multiplicative inverse, calculate the GCD, proceeding until you get remainder 1 (one). In this case it is a simple one-liner.

\[
36 = 7 \cdot 5 + 1
\]

Note that you have just written 1 (one) as a linear combination of 5’s and 36’s. Rearranging, we get
\[
5 \cdot (-7) = 1 + (-1) \cdot 36.
\]
Comparing this with
\[
a \cdot x = 1 + k \cdot n,
\]
it can be seen that \(x = -7 \) and \(k = -1 \) is a solution. We do not care about the value of \(k \), but the multiplicative inverse of \(5 \) is clearly \(x = -7 \).

Does it make sense to have a negative value when we are working with the integers modulo \(n \)? Well, yes, as we are free to add or remove multiples of \(36 \), \(-7 \) is just another way of writing 29. Therefore we have \(5^{-1} = 29 \). □

Example 3. If \(n = 36 \) and \(a = 17 \), then \(\gcd (a, n) = \gcd (17, 36) = 1 \), so 17 does have an inverse in \(\mathbb{Z}/36\mathbb{Z} \), and the notation \(17^{-1} \) makes sense.

To calculate the multiplicative inverse, apply Euclid’s algorithm, proceeding until you get remainder 1 (one).

\[
\begin{align*}
36 &= 2 \cdot 17 + 2, \quad (1) \\
17 &= 8 \cdot 2 + 1. \quad (2)
\end{align*}
\]

Rearranging Eq. (2), we get

\[
1 \cdot 17 + (-8) \cdot 2 = 1. \quad (3)
\]

Here, you have not (yet) written 1 (one) as a linear combination of 17’s and 36’s, but as a linear combination of 17’s and 2’s. However, Eq. (1) gives us a way to write 2’s as a linear combination of 17’s and 36’s, so we can substitute the 2’s according to

\[
1 \cdot 36 + (-2) \cdot 17 = 2.
\]

Substitution into Eq. (3) gives us

\[
1 \cdot 17 + (-8) \cdot \left(1 \cdot 36 + (-2) \cdot 17 \right) = 1, \quad (4)
\]

which simplifies to

\[
17 \cdot 17 + (-8) \cdot 36 = 1.
\]

Again, rearranging and comparing with

\[
a \cdot x = 1 + k \cdot n,
\]

it can be seen that \(x = 17 \) and \(k = 8 \), so 17 is its own inverse. It is correct to write \(17^{-1} = 17 \). □

In the general case, applying the Euclidean algorithm may produce many rows/equations. When calculating the multiplicative inverse, you will then need to substitute several times – once per additional row.

To summarize all of this, calculating the multiplicative inverse of \(a \) in \(\mathbb{Z}/n\mathbb{Z} \) is quite easy (mechanical) if you remember the general trick. Use Euclid’s algorithm to express 1 (one) as a linear combination of \(a \)'s and \(n \)'s.