
Exercises on hash functions and MACs
Exercise 6.5: Give an example of a hash function that is presumably preimage resistant, but not second preimage
resistant.
Hint for solution: Let x = x0||x1, and let the hash function h(x) = h1(x1), where h1 is presumably preimage
resistant. Then h is presumably preimage resistant, but not second preimage resistant since you can just change x0
without changing the hash value, if you know x.
Exercise 6.6: Define a hash function h to hash n-bit strings to m-bit strings (it is then a compression function).
Assume h is constructed as h : Z2n → Z2m through

h(x) = ((

d∑
i=0

aix
i) mod 2n) mod 2m,

for some fixed d and coefficients ai, i = 0..d. Show how you solve the second preimage problem without solving
some polynomial equation.
Hint for solution: Add a multiple of 2m to the given message.
Exercise 6.7: Assume we have a hash function h1 (compression function) mapping {0, 1}2m to {0, 1}m, i.e.,
compressing 2m bits to m bits. Assume furthermore that h1 is collision resistant. Now construct a new hash
function h2 mapping {0, 1}4m to {0, 1}m, i.e., compressing 4m bits to m bits, by

h2(x) = h2(x1||x2) = h1(h1(x1)||h1(x2)),

where x ∈ {0, 1}4m is written as x = x1||x2, x1, x2 ∈ {0, 1}2m and || means bitstring concatenation.
Prove that h2 is collision resistant.
Hint for solution: Assume the opposite. Let y1 = h1(x1) and y2 = h1(x2). Then h2(x1||x2) = h1(h1(x1)||h1(x2)) =
h1(y1||y2). Assume the collision is with x′1||x′2. By definition x1||x2 is different from x′1||x′2, so assume for ex-
ample x1 6= x′1. They give intermediate values y1 = h1(x1) and y′1 = h1(x

′
1). If you have y1 = y′1 then you have

a collision in h1, a contradiction. So y1 6= y′1. But then y1||y2 is different from y′1||y′2 and since we assumed a
collision, this also leads to a contradiction.
Exercise 6.8: [difficult] Consider the generation of b-bit MACs through CBC-MAC (slide 5, lec15). The MAC
is denoted as MAC(x, k), where x = x1x2 . . . xn, and k is the secret key, and generated by computing yi =
Ek(yi−1 ⊕ xi) and finally setting MAC(x, k) = yn. The block size is b bits.
Assume that Eve can get Alice to generate the MACs for about q = 2 · 2b/2 different messages of her choice.
Show how she can then find a correct MAC (that is correctly verified by Bob) for a new message for which Alice
never generated a MAC.
Hint: For the q messages, let x1 run through q different values, let x2 be randomly chosen and let x3, . . . be the
same for all messages. Then use birthday paradox arguments.
Hint for solution: Consider the q different messages x(i) that Alice is going to provide MACs for. Let x(i) =

x
(i)
1 x

(i)
2 x

(i)
3 . . .. Now select x(i)1 = [i], where [i] means the binary representation of i (so they are all different).

Then x(i)2 is a random choice for every i. For the remaining blocks, x(i)3 is the same fixed value for all i. Now the
birthday argument says that it is very likely that among all these q messages, there are at least two that have the
same MAC value. Call these two messages x and x′ and their MACs is yn = y′n.
Since they share the same blocks from the third block and onwards, this leads to y2 = y′2. So for these two
MACs we get the relationship y1 ⊕ x2 = y′1 ⊕ x′2. The main observation is now that a change on the x2 part does
not change the y1 part. So we can construct two new messages that are known to have the same MAC, namely
xnew = x1(x2 + δ)x3 . . . and x′new = x′1(x

′
2 + δ)x3 . . ..

So Eve is asking for one more message to be authenticated by Alice, xnew, and gets the MAC. She then has
another message x′new that was never sent by Alice but Eve can generate its MAC with probability 1.
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