Problems in cryptology, week 3

Exercise 4.1. Show that the polynomial $x^4 + x + 1$ is irreducible over the field GF(2).

Exercise 4.2. Find $(0110)^{1/2}$. $\pi(\alpha) = \alpha^4 + \alpha + 1$.

Exercise 4.3. Determine the elements in $GF(3^2)$. $\pi(x) = x^2 + x + 2$ is irreducible over GF(3)

Exercise 4.4. Give the addition and multiplication tables for

- a) GF(5)
- b) *GF(7)*

Exercise 4.5. Give the multiplication table for $GF(2^2)$, $\pi(x) = x^2 + x + 1$.

Exercise 4.6. Show that in all fields of characteristic p the following equality holds.

$$(x+y)^p = x^p + y^p$$

Exercise 4.7. Find $gcd(1 + D^7, 1 + D^2 + D^5 + D^6)$ over GF(2).

Exercise 4.8. The stop-and-go-generator is built using two linear feedback shift registers, L_1 and L_2 . If L_2 outputs 1, then L_2 is clocked and the output bit of L_2 is the new keystream bit. If L_1 outputs 0 then L_2 is not clocked and the new keystream bit is the previous bit from L_2 . As an example, if L_1 produces (101001...) and L_2 produces ($a_0, a_1, a_2, ...$) then the keystream sequence is ($a_0, a_0, a_1, a_1, a_2, ...$).

- a) Describe a distinguishing attack on the generator.
- b) One day, you manage to intercept a transmission that you know have been encrypted using the stop-and-go-generator. The intercepted bitstream is

 $C = (1001 \ 1101 \ 0110 \ 1001 \ 0001 \ 0010 \ 1110 \ 0101).$

You know that the intercepted bitstream is the encryption of one of the messages m_1 , m_2 or m_3 . Determine which message was encrypted.

- m_1 : (1110 1000 1011 1111 1101 0001 0111 1100)
- m_2 : (1101 1010 1100 0101 1001 1101 1011 1111)
- m_3 : (1010 1100 1001 0110 1000 0101 0010 0101)

Exercise 4.9. Determine the sequence corresponding to each of the following D-transforms

- a) $\frac{1}{D^{-1}+2}$ in GF(3)
- b) $\frac{D^{-1}}{D^{-1}+2}$ in GF(3)
- c) $\frac{1}{D^{-2}+D^{-1}+1}$ in GF(2)

Exercise 4.10. Determine the period for each of the following polynomials

- a) $1 + D + D^2 + D^3 + D^4$ in GF(2)
- b) $1 + D + D^2 + D^4$ in GF(2)
- c) $1 + D^3 + D^6$ in GF(2)

- d) $1 + 3D^2$ in GF(5)
- e) $1 + 3D + 3D^2$ in GF(5)

Exercise 4.11. Determine the cycle set for each of the following connection polynomials

- a) $1 + D^2 + D^4$ in GF(2)
- b) $1 + D^4$ in GF(2)
- c) $1 D 2D^2$ in GF(3)
- d) $1 2D D^2$ in GF(3)
- e) $1 D D^2$ in GF(3)

Exercise 4.12. Determine the cycle set for $C(D) = 1 - 8D + 2D^2$ in GF(13).