
Solutions to exercises in Cryptology�week 5. 2006-11-21

Chapter 5

5.1 In CBC mode we have ci = EK(ci−1 ⊕mi). Decrypting both sides gives

DK(ci) = ci−1 ⊕mi ⇒ mi = DK(ci)⊕ ci−1.

5.2 In a distinguishing attack we want to distinguish the keystream from a truly random sequence. Since a

block cipher is an invertible function we have

EK(x) 6= EK(y) if x 6= y,

otherwise decryption would not be deterministic. Since a block cipher in counter mode encrypts an incre-

menting counter, the keystream blocks will never repeat. In a truly random sequence, keysteam blocks

can repeat. Thus, in the distinguishing attack we observe the keystream block and if they never repeat,

the sequence is from the cipher. Otherwise it is random. The distinguisher can be written as

Input (a1, a2, a3, . . . , aN )
if ai = aj for some i 6=j

output Random

else

output Counter Mode

How many cipher blocks do we need to observe such that the probability for correct decision is signi�cantly

larger than 0.5? Assume that we have observed N m-bit blocks. A block can have one of M = 2m possible

values. In a truly random sequence the probability that all blocks are distinct is(
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since 1− x ≈ e−x when x is small. Thus, the probability for at least one collision is

ε ≈ 1− e
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.

If N is large, we can ignore the −N term and we get

N ≈
√

2M ln
1

1− ε
.

The breaking point, when our distinguisher will have better probability than a random guess is when

ε = 0.5. This is reached when N ≈ 1.18
√

M = 1.18 · 232. If we want a higher probability, e.g., ε = 0.95,
we need to observe N ≈ 2.45

√
M = 2.45 ·232 keystream blocks. (In general, if we observe random samples

from a uniform distribution of size M , we expect a collision after about N = C
√

M samples, where C is

a small constant. This relationship is commonly known as the birthday paradox.)

Chapter 6

6.1 a) We know that d · e = 1 mod φ(n) i.e., d · 379 = 1 mod 3999996.

Euclid's algorithm

(Read down)

3999996 = 10554·379+30
379 = 12·30 +19
30 = 1·19 +11
19 = 1·11 +8
11 = 1·8 +3
8 = 2·3 +2
3 = 1·2 +1
2 = 2·1 +0

Bezout's identity

(Read up)

= 139 · (3999996− 10554 · 379)− 11 · 379 = 139 · 3999996− 1467017 · 379
= 7 · 30− 11 · (379− 12 · 30) = 139 · 30− 11 · 379
= 7 · (30− 1 · 19)− 4 · 19 = 7 · 30− 11 · 19
= 3 · 11− 4 · (19− 1 · 11) = 7 · 11− 4 · 19
= 3 · (11− 1 · 8)− 1 · 8 = 3 · 11− 4 · 8
= 3− 1 · (8− 2 · 3) = 3 · 3− 1 · 8

1 = 3− 1 · 2



This gives d = −1467017 = 2532979 mod φ(n).

b) We use that n = p · q = 4003997.

φ(n) = (p− 1)(q − 1) = p · q − p− q + 1 = n− p− q + 1

3999996 = 4003997− p− q + 1 ⇔
⇔ p = 4002− q

n = p · q

}
⇒ (q − 2001)2 = 4 = 22

We can choose (p, q) = (1999, 2003) or (p, q) = (2003, 1999).

6.2 If p = 11 and q = 17 we have n = 187 and φ(n) = (11 − 1)(17 − 1) = 160. The system can be seen as

RSA with e = 3. Euclid's algorithm gives d = 107.

a) We use the fact that (R3)107 = R mod 187.

RA = 104107 = 25 mod 187
RB = 58107 = 31 mod 187

This gives RA + RB = 56.

b) We have RARC = 122−RD = 122− 49 = 73. We know that RC = 160 so

RA = 73 · 160−1.

Euclid's algorithm gives that 160−1 = 90 mod 187 so RA = 25. From a) we have the sum RA + RB = 56
which gives RB = 31.

6.3 The attacker can create the ciphertext c′ = 2ec mod n and ask for the decryption of c′. He will then get

the plaintext m′ and

m′ = (c′)d mod n = (2ec)d mod n = (2ed mod n)(cd mod n) = 2m mod n.

Thus, he can recover the message m by computing

m =
m′

2
= m′ · 2−1 mod n.

Since n is odd, 2 will always have an inverse in Zn.

6.4 a) With p = 23 and q = 29 we have n = 667 and φ(n) = (p − 1)(q − 1) = 616. We want to �nd

d = e−1 = 3−1 mod 616.

616 = 3 · 205 + 1 ⇒ 616− 3 · 205 = 1 mod 616⇒ 3−1 = −205 = 411 mod 616.

Thus, d = 411.

b)We want to �nd m = cd mod n = 2411 mod 667. We can write 411
in binary as 110011011. Hence

2411 = 2256 · 2128 · 216 · 28 · 22 · 21.

We can write a table for the powers mod 667. (shown to the right)

Hence,

m = 2411 = 422 · 634 · 170 · 256 · 4 · 2 = 200 mod 667.

21 2 mod 667
22 4 mod 667
24 16 mod 667
28 256 mod 667
216 170 mod 667
232 219 mod 667
264 604 mod 667
2128 634 mod 667
2256 422 mod 667

c) Using the chinese remainder theorem and the fact that ap−1 = 1 mod p when p is prime, we can write

m1 = 2411 mod 23 = 222·18+15 mod 23 = 215 mod 23 = 16 mod 23
m2 = 2411 mod 29 = 228·14+19 mod 29 = 219 mod 29 = 26 mod 29

Using the chinese remainder theorem

m = m1N1M1 + m2N2M2 mod n

with parameters n = 667, n1 = 23, n2 = 29, N1 = n/n1 = 29, N2 = n/n2 = 23, M1 = 29−1 mod 23 =
6−1 mod 23 = 4 mod 23 and M2 = 23−1 mod 29 = (−6)−1 mod 29 = −5 = 24 mod 29 we get

m = 16 · 4 · 29 + 26 · 23 · 24 = 200 mod 667.


