
ABEL Design Manual

Version 8.0

Technical Support Line: 1- 800-LATTICE or (408) 428-6414
DSNEXP-ABL-DM Rev 8.0.1

Copyright

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

The software described in this manual is copyrighted and all rights are reserved by
Lattice Semiconductor Corporation. Information in this document is subject to change
without notice.

The distribution and sale of this product is intended for the use of the original
purchaser only and for use only on the computer system specified. Lawful users of
this product are hereby licensed only to read the programs on the disks, cassettes, or
tapes from their medium into the memory of a computer solely for the purpose of
executing them. Unauthorized copying, duplicating, selling, or otherwise distributing
this product is a violation of the law.

Trademarks

The following trademarks are recognized by Lattice Semiconductor Corporation:

Generic Array Logic, ISP, ispANALYZER, ispATE, ispCODE, ispDCD,
ispDOWNLOAD, ispDS, ispDS+, ispEXPERT, ispGDS, ispGDX, ispHDL, ispJTAG,
ispSmartFlow, ispStarter, ispSTREAM, ispSVF, ispTA, ispTEST, ispTURBO,
ispVECTOR, ispVerilog, ispVHDL, ispVM, Latch-Lock, LHDL, pDS+, RFT, and Twin
GLB are trademarks of Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pDS, pLSI, Silicon Forest, and UltraMOS are
registered trademarks of Lattice Semiconductor Corporation.

Project Navigator is a trademark of Data I/O Corporation. ABEL-HDL is a registered
trademark of Data I/O Corporation.

Microsoft, Windows, and MS-DOS are registered trademarks of Microsoft
Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Lattice Semiconductor Corporation
5555 NE Moore Ct.
Hillsboro, OR 97124

(503) 268-8000

December 1999
ABEL Design Manual 2

Limited Warranty

Lattice Semiconductor Corporation warrants the original purchaser that the Lattice
Semiconductor software shall be free from defects in material and workmanship for a
period of ninety days from the date of purchase. If a defect covered by this limited
warranty occurs during this 90-day warranty period, Lattice Semiconductor will repair
or replace the component part at its option free of charge.

This limited warranty does not apply if the defects have been caused by negligence,
accident, unreasonable or unintended use, modification, or any causes not related to
defective materials or workmanship.

To receive service during the 90-day warranty period, contact Lattice Semiconductor
Corporation at:

Phone: 1-800-LATTICE
Fax: (408) 944-8450
E-mail: applications@latticesemi.com

If the Lattice Semiconductor support personnel are unable to solve your problem over
the phone, we will provide you with instructions on returning your defective software
to us. The cost of returning the software to the Lattice Semiconductor Service Center
shall be paid by the purchaser.

Limitations on Warranty

Any applicable implied warranties, including warranties of merchantability and fitness
for a particular purpose, are hereby limited to ninety days from the date of purchase
and are subject to the conditions set forth herein. In no event shall Lattice
Semiconductor Corporation be liable for consequential or incidental damages
resulting from the breach of any expressed or implied warranties.

Purchaser’s sole remedy for any cause whatsoever, regardless of the form of action,
shall be limited to the price paid to Lattice Semiconductor for the Lattice
Semiconductor software.

The provisions of this limited warranty are valid in the United States only. Some states
do not allow limitations on how long an implied warranty lasts, or exclusion of
consequential or incidental damages, so the above limitation or exclusion may not
apply to you.

This warranty provides you with specific legal rights. You may have other rights which
vary from state to state.
ABEL Design Manual 3

Table of Contents

Preface . 7
What is in this Manual . 8

Where to Look for Information . 8
Documentation Conventions . 9
Related Documentation . 10

Chapter 1 ABEL-HDL Overview . 11
Programmable Design in ispDesignExpert . 12

What is Programmable Designing? . 12
What is ABEL-HDL?. 14

Overview of Design . 15
Projects. 15
Project Sources . 16
Design Hierarchy . 17
Design Compilation . 17
Design Simulation. 17
Device Programming . 17

Chapter 2 ABEL-HDL Hierarchical Designs . 18
Why Use Hierarchical Design? . 19
Approaches to Hierarchical Design . 19

Creating a new Hierarchical Design . 19
Top-down Design . 20
Bottom-up Design . 20
Inside-out (Mixed) Design . 20

Specifying a Lower-level Module . 20

Chapter 3 Compiling ABEL-HDL Designs . 23
Overview of ABEL-HDL Compiling . 24

Design Entry . 24
Creating a Design Using ABEL-HDL Sources . 24

Design Compliation . 29
Keeping Track of Process: Auto-update . 29
Compiling an ABEL-HDL Source File . 30
Using Properties and Strategies . 31

Design Simulation. 34
ABEL Design Manual 4

Chapter 4 ABEL-HDL Design Considerations . 37
Overview of ABEL-HDL Design Considerations . 38
Hierarchy in ABEL-HDL . 38

Instantiating a Lower-level Module in an ABEL-HDL Source . 39
Identifying I/O Ports in the Lower-level Module. 39
Declaring Lower-level Modules in the Top-level Source . 40
Instantiating Lower-level Modules in Top-level Source. 40

Hierarchy and Retargeting and Fitting . 41
Redundant Nodes . 41
Merging Feedbacks. 41
Post-linked Optimization . 41

Hierarchical Design Considerations. 42
Prevent Node Collapsing . 42

Node Collapsing. 42
Selective Collapsing . 42

Pin-to-pin Language Features . 43
Device-independence vs. Architecture-independence . 43
Signal Attributes . 43
Signal Dot Extensions . 43

Pin-to-pin vs. Detailed Descriptions for Registered Designs . 44
Using := for Pin-to-pin Descriptions . 44

Resolving Ambiguities. 44
Detailed Circuit Descriptions . 45

Detailed Descriptions: Designing for Macrocells. 45
Examples of Pin-to-pin and Detailed Descriptions . 47

Pin-to-pin Module Description . 47
Detailed Module Description . 47

Detailed Module with Inverted Outputs. 48
When to Use Detailed Descriptions . 50
Using := for Alternative Flip-flop Types . 50

Using Active-low Declarations . 51
Polarity Control . 53

Polarity Control with Istype . 53
Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity 53
Using ‘invert’ and ‘buffer’ to Control Programmable Inversion 54

Flip-flop Equations . 54
Feedback Considerations — Dot Extensions . 55

Dot Extensions and Architecture-Independence . 56
Dot Extensions and Detail Design Descriptions . 58

Using Don’t Care Optimization. 60
Exclusive OR Equations . 62

Optimizing XOR Devices . 62
Using XOR Operators in Equations . 62
Using Implied XORs in Equations . 62
Using XORs for Flip-flop Emulation . 63

JK Flip-Flop Emulation . 63
ABEL Design Manual 5

State Machines . 65
Use Identifiers Rather Than Numbers for States . 65
Powerup Register States . 67
Unsatisfied Transition Conditions . 67

D-Type Flip-Flops . 67
Other Flip-flops . 68

Precautions for Using Don’t Care Optimization . 68
Number Adjacent States for One-bit Change. 72
Use State Register Outputs to Identify States . 72

State Register Bit Values . 73
Using Symbolic State Descriptions. 74

Symbolic Reset Statements . 74
Symbolic Test Vectors . 75

Using Complement Arrays . 75
ABEL-HDL and Truth Tables . 77

Basic Syntax - Simple Examples . 78
Influence of Signal polarity . 79
Using .X. in Truth tables conditions . 80
Using .X. on the right side . 81
Special case: Empty ON-set. 82
Registered Logic in Truth tables. 82
ABEL Design Manual 6

Preface

This manual provides information on ABEL-HDL design sources, hierarchical
structure, compiling, and design considerations. It is assumed that you have a basic
understanding of ABEL-HDL design.
ABEL Design Manual 7

What is in this Manual
What is in this Manual
This manual contains the following information:

■ Introduction to ABEL-HDL design

■ Hierarchical design in ABEL-HDL

■ ABEL-HDL compiling

■ ABEL-HDL design considerations

Where to Look for Information
Chapter 1, ABEL-HDL Overview – Provides an overview of ABEL-HDL designs.

Chapter 2, ABEL-HDL Hierarchical Designs – Discusses the hierarchical structure
in ABEL-HDL designs.

Chapter 3, Compiling ABEL-HDL Designs – Provides information on the compiling
of ABEL-HDL designs.

Chapter 4, ABEL-HDL Design Considerations – Discusses the design
considerations in ABEL-HDL designs.
ABEL Design Manual 8

Documentation Conventions
Documentation Co nventions
This user manual follows the typographic conventions listed here:

Convention Definition and Usage

Italics Italicized text represents variable input. For example:

design .1

This means you must replace design with the file name you used for all the files
relevant to your design.

Valuable information may be italicized for emphasis. Book titles also appear in
italics.

The beginning of a procedure appears in italics. For example:

To run the functional simulation:

Bold Valuable information may be boldfaced for emphasis. Commands are shown in
boldface. For example:

Select File ⇒ Open from the Waveform Viewer.

Courier
Font

Monospaced (Courier) font indicates file and directory names and text that the
system displays. For example:

The C:\isptools\ispsys\config subdirectory contains...

Bold
Courier

Bold Courier font indicates text you type in response to system prompts. For
example:

SET YBUS [Y0..Y6];

|...| Vertical bars indicate options that are mutually exclusive; you can select only one.
For example:

INPUT|OUTPUT|BIDI

“Quotes” Titles of chapters or sections in chapters in this manual are shown in quotation
marks. For example:

See Chapter 1, “Introduction.”

✍ NOTE Indicates a special note.

▲ CAUTION Indicates a situation that could cause loss of data or other problems.

❖ TIP Indicates a special hint that makes using the software easier.

⇒ Indicates a menu option leading to a submenu option. For example:

File ⇒ New
ABEL Design Manual 9

Related Documentation
Related Documentation
In addition to this manual, you might find the following reference material helpful:

■ ispDesignExpert User Manual

■ ispDesignExpert Tutorial

■ ABEL-HDL Reference Manual

■ Schematic Entry User Manual

■ Design Verification Tools User Manual

■ ispLSI Macro Library Reference Manual

■ ispLSI 5K/8K Macro Library Supplement

■ ISP Daisy Chain Download User Manual

■ ispEXPERT Compiler User Manual

■ VHDL and Verilog Simulation User Manual

These books provide technical specifications for the LSC device families and give
helpful information on device use and design development.
ABEL Design Manual 10

Chapter 1 ABEL-HDL Overview

This chapter covers the following topics:

■ Programmable Design in ispDesignExpert

■ Overview of Design
ABEL Design Manual 11

Programmable Design in ispDesignExpert
Programmable Design in ispDesignExpe rt

What is P rogrammable Designing?
Programmable designing is creating a design that can be implemented into a
programmable device. PLDs (Programmable Logic Devices) and CPLDs (Complex
PLDs) are a few examples of programmable devices.

Figure 1-1 shows an example Design. This design has lower-level ABEL-HDL files
(not shown).

Figure 1-1. Example of a Top-level ABEL-HDL source for a Design

MODULE twocnt
TITLE 'two counters having a race'
"Demonstrate s abilit y t o us e multipl e level s of ABEL-HDL Hierarchy,
"an d t o collaps e lower-leve l modul e node s int o uppe r leve l modules.
"Fo r example , eac h counte r has fou r REGISTER nodes , and thi s module
"has four COMBINATORIAL pins. The lower-level registers are
“correctly flattened into the top-level combinatorial outputs. No
“do t extension s ar e used , allowin g th e syste m t o determin e th e best
“feedbac k pat h t o use . Thi s desig n use s th e advance d fi t properties
“REMOVE REDUNDANT NODES and MERGE EQUIVALENT FEEDBACK NODES.
"Constants
c,x = .c.,.x.;

"Inputs
clk, en1, en2, rst pin ;

"Outputs
a3, a2, a1, a0, b3, b2, b1, b0 pin ;
ov1, ov2 pin istype

'reg,buffer';
"Submodule declarations

hiercnt interface (clk,rst,en -> q3, q2, q1, q0);
"Submodule instances

cnt1 functional_block hiercnt;
cnt2 functional_block hiercnt;
ABEL Design Manual 12

Programmable Design in ispDesignExpert
Figure 1-1. Example of a Top-level ABEL-HDL source for an Design (Continued)

Equations
cnt1.clk = clk;
cnt2.clk = clk;
cnt1.rst = rst;
cnt2.rst = rst;
cnt1.en = en1;
cnt2.en = en2;

"Each counter may be enabled independent of the other. This module
may be used as a Sub-module for a higher-level design, as these
counters may be cascaded by feeding the ovoutputs to the en inputs
of the next stage.

ov1.clk = clk;
ov2.clk = clk;

ov1 := a3 & a2 & a1 & !a0 & en1; "look-ahead carry -
overflow

ov2 := b3 & b2 & b1 & !b0 & en2; "indicator
a3 = cnt1.q3; a2 = cnt1.q2; a1 = cnt1.q1; a0 =

cnt1.q0;
b3 = cnt2.q3; b2 = cnt2.q2; b1 = cnt2.q1; b0 =

cnt2.q0;
test_vectors
([clk,rst,en1,en2] -> [a3,a2,a1,a0,b3,b2,b1,b0,ov1,ov2])

[0 , 0, 0 , 0] -> [x, x, x, x, x, x, x, x, x, x];
[c , 1, 0 , 0] -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
[c , 0, 1 , 0] -> [0, 0, 0, 1, 0, 0, 0, 0, 0, 0];
[c , 0, 1 , 0] -> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0];
[c , 0, 1 , 0] -> [0, 0, 1, 1, 0, 0, 0, 0, 0, 0];
[c , 0, 0 , 1] -> [0, 0, 1, 1, 0, 0, 0, 1, 0, 0];
[c , 0, 0 , 1] -> [0, 0, 1, 1, 0, 0, 1, 0, 0, 0];

END
ABEL Design Manual 13

Programmable Design in ispDesignExpert
What is ABEL-HDL?
ABEL-HDL is a hierarchical logic description language. ABEL-HDL design
descriptions are contained in an ASCII text file in the ABEL Hardware Description
Language (ABEL-HDL). For example, the following ABEL-HDL code describes a
one-bit counter block:

MODULE obcb
TITLE 'One Bit Counter Block'
"Inputs
 clk, rst, ci pin ;
"Outputs
 co pin istype 'com';
 q pin istype 'reg';
Equations
 q.clk = clk;
 q := !q.fb & ci & !rst "toggle if carry in and not reset
 # q.fb & !ci & !rst "hold if not carry in and not reset
 # 0 & rst; "go to 0 if reset
 co = q.fb & ci; "carry out is carry in and q = 1
END

For detailed information about the ABEL-HDL language, refer to the ABEL-HDL
Reference Manual and the online help of ispDesignExpert. An online version of the
ABEL-HDL Reference Manual is provided in the ispDesignExpert CD (accessible by
selecting Help ⇒ Manuals from the ispDesignExpert Project Navigator).
ABEL Design Manual 14

Overview of Design
Overview of Design
With ispDesignExpert, you can create and test designs that will be physically
implemented into Programmable devices. ispDesignExpert uses the Project
Navigator interface (Figure 1-2) as the front-end to all the design tools which creates
an integrated design environment that links together design, simulation, and
place-and-route tools.

Figure 1-2. ispDesignExpert Project Navigator

Projects
In ispDesignExpert, a single design is represented by a single project that is created
and modified using the Project Navigator. The project contains all the logical
descriptions for the design. In addition, the project can contain documentation files,
and test files.

A project represents one design, but you have the option of targeting your design to a
specific device. When you switch the target device, the processes and design flow in
the Project Navigator changes to one that is appropriate for the new target device.

The Sources in Project Window (Sources window)
shows all the design files associated with a project.

The Processes for Current Source Window
(Processes window)
ABEL Design Manual 15

Overview of Design
Project Sources
In ispDesignExpert, a project (design) consists of one or more source files.

Each type of source is identified by an icon and name in the Sources in Project
window. The Sources in Project window is the large scrollable window on the left side
of the Project Navigator display. The Sources in Project window lists all of the sources
that are part of the project design.

In addition to the sources that describe the function of the design, every project
contains at least two special types of sources: the project notebook and the device.

Project Notebook – The project notebook is where you enter the title and name of the
project. You can also use the project notebook to keep track of external files (such as
document files) that are related to your project.

Device – The device is a source that includes information about the currently selected
device.

The supported sources are:

■ ABEL-HDL module (.abl)

■ schematic module(.sch)

■ VHDL module (.vhd)

■ Verilog HDL module (.v)

■ test vector file (.abv)

■ graphic waveform stimulus (.wdl)

■ VHDL test bench (.vhd)

■ Verilog test fixture (.tf)

Figure 1-3 shows the sources as they appear in the Project Navigator. The top-level
ABEL-HDL file RM12PS6Kcontains INTERFACE statements that instantiate (links to)
the lower-level ABEL-HDL files PSSR8X16 and RAM12.

Figure 1-3. Sources in a Design Project

Project Title

Targeted Device

ABEL-HDL Test Vectors

Lower-level ABEL-HDL Files

Top-level ABEL-HDL File
ABEL Design Manual 16

Overview of Design
Design Hierarchy
When designs can be broken into multiple levels, this is called hierarchical designing.
ispDesignExpert supports full hierarchical design, which permits you to create a
design that is divided into multiple levels, either to clarify its function or permit the
easy reuse of functional blocks. For instance, a large complex design does not have
to be created as a single module. By using hierarchical designing, each component
or piece of a complex design could be created as a separate module. Figure 1-3
shows a two-level hierarchy.

For more information on hierarchical designing, refer to Chapter 2, “ABEL-HDL
Hierarchical Designs” .

Design Compilation
After design entry, you can compile your design using the ispEXPERT Compiler. The
compiler first verifies designs for correct syntax, then optimizes and parittions
designs, and fits logic and performs place-and-route to map the logic to specific
devices, it finally generates a JEDEC fusemap file used to program the device and a
netlist file for post-route simulation.

The compiler gathers all compilation results and writes this information to the
ispEXPERT Compiler report that can be read using Process ⇒ View from the
Project Navigator.

If an error occurs, the compiler stops and issues the auto-make log file
(automake.log) in the Report Viewer. Using the log file information, you can
change your design and recompile it.

Design Simulation
In ispDesignExpert, functional and timing simulation is available using ABEL-HDL
Test Vector (.abv) files or Waveform Description Language (.wdl) files. The
functional and timing simulator and Waveform Viewer enable you to verify your design
before implementing it into a specific device. For more information on simulation, refer
to the Design Verification Tools User Manual .

Device Programming
After the compiler produces a fusemap of your finished design, the integrated ISP
Download System in ispDesignExpert enables you to download the JEDEC device
programming file to an ispLSI device using an ispDOWNLOAD cable. See the ISP
Daisy Chain Download User Manual for more details.
ABEL Design Manual 17

Chapter 2 ABEL-HDL Hierarchical Designs

ispDesignExpert supports full hierarchical design. Hierarchical structuring permits a
design to be broken into multiple levels, either to clarify its function or permit the easy
reuse of lower-level sources. For instance, a large complex design does not have to
be created as a single module. By using hierarchical design, each component or
piece of a complex design could be created as a separate module.

A design is hierarchical when it is broken up into modules. For example, you could
create a top-level ABEL-HDL describing a design. In the ABEL-HDL file, you could
interface to lower-level modules that describe pieces of the design.

The module represented by the ABEL-HDL interface is said to be at one level below
the ABEL-HDL file in which the INTERFACE statement appears. Regardless of how
you refer to the levels, any design with more than one level is called a hierarchical
design. In ispDesignExpert, there is no limit to the number of hierarchical levels a
design can contain.

This chapter covers the following topics:

■ Why Use Hierarchical Design?

■ Approaches to Hierarchical Design

■ Specifying a Lower-level Module in an ABEL-HDL Module
ABEL Design Manual 18

Why Use Hierarchical Design?
Why Use Hierarchical Design?
The primary advantage of hierarchical design is that it encourages modularity. For
instance, a careful choice of the circuitry you select to be a module will give you a
module that can be reused.

Another advantage of hierarchical design is the way it lets you organize your design
into useful levels of abstraction and detail.

Approaches to Hierarchical Design
Hierarchical designs consists of ONE top-level. The lower-level modules can be of
any supported source (ABEL-HDL sources) and are represented in the top-level
module by a place-holder. You can create the top-level module first or create it after
creating the lower-level modules. Figure 2-1 illustrates a two-level hierarchical
project.

Figure 2-1. Example of a Hierarchical Project in the Project Navigator

Creating a new Hierarchical Design
Hierarchical entry is a convenient way to enter a large design one piece at a time. It is
also a way of organizing and structuring your design and the design process. The
choice of the appropriate methodology can speed the design process and reduce the
chance of design or implementation errors.

There are three basic approaches to creating a multi-module hierarchical design:

■ Top-down

■ Bottom-up

■ Inside-out (mixed)

Regardless of the approach you choose, you start from those parts of the design that
are clearly defined and move up or down to those parts of the design that need
additional definition.

The following sections explain the philosophy and techniques of each approach.

Project Title

Lower-level ABEL-HDL Sources

Top-level ABEL-HDL Source
ABEL Design Manual 19

Specifying a Lower-level Module
Top-down Design

In top-down design, you do not have to know all the details of your project when you
start. You can begin at the top, with a general description of the circuit’s functionality,
then break the design into modules with the appropriate functions. This approach is
called “stepwise refinement” – you move in order from a general description to
modularized functions and to the specific circuits that perform those functions.

In a top-down design, the uppermost schematic usually consists of nothing but Block
symbols representing modules (plus any needed power, clocking, or support
circuitry). These modules are repeatedly broken down into simpler modules (or the
actual circuitry) until the entire design is complete.

Bottom-up Design

In bottom-up design you start with the simplest modules, then combine them in
schematics at increasingly higher levels. Bottom-up design is ideal for projects in
which the top-level behavior cannot be defined until the low-level behavior is
established.

Inside-out (Mixed) Design

Inside-out design is a hybrid of top-down and bottom-up design, combining the
advantages of both. You start wherever you want in the project, building up and down
as required.

ispDesignExpert fully supports the mixed approach to design. This means that you
can work bottom-up on those parts of the project that must be defined in hardware
first, and top-down on those parts with clear functional definitions.

Specifying a Lower-level Module
The following steps outline how to specify a lower-level module in a design module.

1. In a Text Editor, open your ABEL-HDL file (File ⇒ Open) or create a new
ABEL-HDL file (File ⇒ New).

2. In the ABEL-HDL file, use the INTERFACE and FUNCTIONAL_BLOCK keywords
to instantiate lower-level files.

❖ TIP You can also use the INTERFACE keyword in lower-level files
to link to upper-level ABEL-HDL modules (not upper-level
schematics).

You can place multiple instances of the same interface in the
same design by using the FUNCTIONAL_BLOCK statement.

Refer to the ABEL-HDL Reference Manual for more
information.
ABEL Design Manual 20

Specifying a Lower-level Module
3. The interface must have same names as the pin names (ABEL-HDL) in the
lower-level module.

Figure 2-2, Figure 2-3 and Figure 2-4 show one upper-level ABEL-HDL module
and different ways to implement the lower-level modules:

Figure 2-2. Top-level ABEL-HDL Module for NAND1

Figure 2-3. Lower-level Schematic for AND1 Interface

MODULE nand1

TITLE 'Hierarchical nand gate -
Instantiates an and gate and a not gate.'

I1, I2, O1 pin;

" The following code defines the interfaces (components)
" and1 and not1. And1 corresponds to the lower-
" level module AND1.vhd, AND1.ABL, or AND1.SCH.
" For component AND1, the IN1, IN2, and OUT1 interface names
" correspond to IN1, IN2, and OUT1 in the lower-level module.

and1 INTERFACE(IN1, IN2 -> OUT1);
not1 INTERFACE(IN1 -> OUT1);

" The following code defines the instances for the interfaces
" using the functional_block statement. For the and1 interface,
" there is one instance named my_and.

my_and functional_block and1;
my_not functional_block not1;

EQUATIONS

my_and.IN1 = I1;
my_and.IN2 = I2;
my_not.IN1 = andinst.OUT1;
O1 = my_not.OUT1;

END
ABEL Design Manual 21

Specifying a Lower-level Module
The name of the lower-level schematic must match the Block Name (schematic), or
the interface name (ABEL-HDL) in the upper-level module. This associates the
lowe-level module with the symbol representing it. The schematic (Figure 2-3) must
be named AND.sch .

The nets in the lower-level schematic correspond to the pin names (schematics), or
pine names (ABEL-HDL) in the upper-level module.

Figure 2-4. Lower-level ABEL-HDL Module for AND1 Interface

❖ TIP If you are in a lower-level schematic, you can click the Use
Data From This Block button in the New Block Symbol dialog
box (Add ⇒ New Block Symbol) to automatically create a
functional block symbol for the current schematic.

MODULE and1
TITLE 'and1 gate -

Instantiated by nand1 - Simple hierarchy example'

" The pins must match the Symbol pins (schematic),
" or interface names (ABEL-HDL) in the upper-level module.

IN1, IN2, OUT1 pin;
EQUATIONS

OUT1 = IN1 & IN2;

TEST_VECTORS

([IN1, IN2] -> [OUT1])
 [0, 0] -> [0];
 [0, 1] -> [0];
 [1, 0] -> [0];
 [1, 1] -> [1];

END

❖ TIP It is best to create the lowest-level sources first and then
import or create the higher-level sources.
ABEL Design Manual 22

Chapter 3 Compiling ABEL-HDL Designs

This chapter provides information on what the ispEXPERT Compiler functions during
compiling ABEL-HDL designs. It covers the following topics:

■ Design Entry

■ Design Compilation

■ Design Simulation
ABEL Design Manual 23

Overview of ABEL-HDL Compiling
Overview of ABEL-HDL Compiling

Design Entry
In ispDesignExpert, when you create an ABEL-HDL module and import that module
into a design, this is called design entry. Design entry for ABEL-HDL modules is
primarily a function of the Project Navigator and a Text Editor (used to enter the
ABEL-HDL code). The following sections use a sample to describe how to enter the
design in a project.

Creating a Design Using ABEL-HDL Sources

Follow the steps to describe the design using ABEL-HDL.

To start a new project and set up a new directory for this tutorial:

1. Start ispDesignExpert. The Project Navigator window appears.

2. Select File ⇒ New Project . The Create New Project dialog box (Figure 3-1)
appears.

Figure 3-1. Create New Project Dialog Box

3. Select Schematic/ABEL in the Project Type field. This specifies the design source
in ispDesignExpert.

4. Navigate to a directory where you want to save your project files, enter a project
name and_ff2.syn in the Project Name field.

5. Click Save to exit the Create New Project dialog box. The Project Navigator
displays the new project with the defalut device ispLSI5384E-125LB388.
ABEL Design Manual 24

Overview of ABEL-HDL Compiling
To change the name of the project:

1. Double-click on the project notebook icon or project name Untitled that appears at
the top of the Sources in Project window. The Project Properties dialog box
(Figure 3-2) appears.

Figure 3-2. Project Properties Dialog Box

2. Enter a descriptive title AND gate with a flip-flop in the Title field.

3. Click OK to save the change.

4. Select File ⇒ Save from the Project Navigator to save the changes to your new
project.

To enter the ABEL-HDL description:

1. Select Source ⇒ New to create a new design source. The New Source dialog
box (Figure 3-3) appears.

Figure 3-3. New Source Dialog Box

2. Select ABEL-HDL Module in the New field.

3. Click OK to close the dialog box. The Text Editor loads and the New ABEL-HDL
dialog box (Figure 3-4) appears prompting you for a module name, file name, and
title.
ABEL Design Manual 25

Overview of ABEL-HDL Compiling
Figure 3-4. New ABEL-HDL Source Dialog Box

4. In the Module Name field, enter and_ff2 .

5. In the File Name field, enter and_ff2.abl (the file extension can be omitted).

6. If you like, enter a descriptive title AND gate with a flip-flop in the Title
text box.

7. When you have finished entering the information, click the OK button. You now
have a template ABEL-HDL source file as shown in Figure 3-5.

✍ NOTE The module name and file name should have the same base
name as demonstrated above. (The base name is the name
without the 3 character extension.) If the module and file
names are different, some automatic functions in the Project
Navigator might fail to run properly.
ABEL Design Manual 26

Overview of ABEL-HDL Compiling
Figure 3-5. Template ABEL-HDL Source File

For detailed syntax on ABEL-HDL language, refer to the ABEL-HDL Reference
Manual .

To enter the logic description:

8. Add declarations for the three inputs (two AND gate inputs and the clock) and the
output by entering the following statements in the ABEL-HDL source file. If a
TITLE statement exists in the template file, enter these statements after the TITLE
statement:

input_1, input_2, Clk pin;
output_q pin istype 'reg';

These two statements declare four signals (input_1, input_2, Clk, and output_q).

9. To describe the actual behavior of this design, enter two equations in the following
manner:

Equations

output_q := input_1 & input_2;
output_q.clk = Clk;

These two equations define the data to be loaded on the registered output, and
define the clocking function for the output.

✍ NOTE ABEL-HDL does not have an explicit declaration for inputs and
outputs; whether a given signal is an input or an output
depends on how it is used in the design description that
follows. The signal output_q is declared to be type 'reg’,
which implies that it is a registered output pin. The actual
behavior of output_q , however, is specified using one or
more equations.
ABEL Design Manual 27

Overview of ABEL-HDL Compiling
Specifying Test Vectors

The method for testing ABEL-HDL designs is to use test vectors. Test vectors are
sets of input stimulus values and corresponding expected outputs that can be used
with the functional and timing simulator. Test vectors can be specified in two ways.
They can be specified in the ABEL-HDL source, or they can be specified in an
external Test Vector file (.abv). When you specify the test vectors in the ABEL-HDL
source, the system will create a dummy ABV file (design -vectors) that points to
the ABEL-HDL source containing the vectors.

As the test vectors in this sample is very short, we just add them to the ABEL-HDL
source file.

To add the test vectors to the ABEL-HDL source file:

10.Type the following test vectors before the END statement in the and_ff2.abl file.

Test_vectors
([Clk, input_1 , input_2] -> output_q)
 [0 , 0 , 0] -> 0;
 [.C., 0 , 0] -> 0;
 [.C., 0 , 1] -> 0;
 [.C., 1 , 1] -> 1;

Figure 3-6 shows the complete ABEL-HDL source file.

Figure 3-6. Sample ABEL-HDL Source File and_ff2.abl

11.Select File ⇒ Save from the Text Editor to save the ABEL-HDL source file.

12.Select File ⇒ Exit to exit the Text Editor.
ABEL Design Manual 28

Overview of ABEL-HDL Compiling
After creating the ABEL-HDL source file, the Project Navigator updates the Sources
window to include the new ABEL-HDL source (notice the ABEL-HDL source icon).
The Project Navigator also updates the Processes window to reflect the steps
necessary to process this source file.

Design Compliation
In general, compiling involves every process after Design Entry that prepares your
design for simulation and implementation. These processes include compiling and
optimizing steps which can be done at the level of a single module or for the entire
design.

However, which processes are available for your design depends entirely on which
device architecture you want to implement your design.

This chapter discusses some of the general considerations and processes used in
ABEL-HDL compiling. For more information about design considerations, refer to
Chapter 4, “ABEL-HDL Design Considerations.”

Keeping Track of Process: Auto-update

Figure 3-7 shows the Project Naviagor window for the and_ff2 ABEL-HDL module.

Figure 3-7. Project Naviagtor Window with and_ff2.syn Loaded
ABEL Design Manual 29

Overview of ABEL-HDL Compiling
There are more processes required for an ABEL-HDL source file than for a
schematic, because the ABEL-HDL source file requires compilation and optimization
before you can run a simulation. And the Project Navigator knows what processes
are required to generate a simulation file from an ABEL-HDL source, you can
double-click on the end process you want. The auto-update feature automatically
runs any processes required to complete the process you request.

Device-related processes, such as mapping the selected ABEL-HDL source file to a
JEDEC file, will be available in the Processes for Current Source window after you
select a device for the design.

Compiling an ABEL-HDL Source File

The Project Navigator’s auto-updating reprocesses sources when they are needed to
perform the process you request. You do not need to worry about when to recompile
ABEL-HDL source files.

However, you can compile an individual source file by highlighting the file in the
Sources window and double-clicking on Compile Logic in the Processes window.
Alternatively, you can double-click on a report in the Processes window and compile
automatically.

To compile an ABEL-HDL file and view the report:

1. Highlight a ABEL-HDL source file (and_ff2.abl) in the Sources window.

2. Double-click Compiled Equations in the Processes window.

The source file is compiled and the resulting compiled equations are displayed in
the Report Viewer (Figure 3-8). If the ABEL-HDL file contains syntax errors, the
errors are displayed in a view window and an error indication appears in the
Processes window.
ABEL Design Manual 30

Overview of ABEL-HDL Compiling
Figure 3-8. Compiled Equations for and_ff2

In this example, the compiled equations are identical to the equations that you
entered in the ABEL-HDL source file. This is because the equations were simple
Boolean equations that did not require any advanced compiling in order to be
processed.

Using Properties and Strategies

For many processes (such as the compiling and optimizing steps shown above),
there are processing options you can specify. These options include compiler options
(such as custom arguments or processing changes) and optimization options (such
as node collapsing). You can use properties to specify these options.

Properties

The properties available at any given time depend on the following conditions:

■ The selected type of source file in the Sources window (for example, ABEL-HDL).

■ The selected process in the Processes window
ABEL Design Manual 31

Overview of ABEL-HDL Compiling
To see how properties are set:

1. Highlight the ABEL-HDL source file in the Sources window (by clicking on the
and_ff2 ABEL-HDL source).

2. Highlight (do not double-click) Compile Logic in the Processes window.

3. Click the Properties button below the Processes window.

The Properties dialog box (Figure 3-9) appears with a menu of properties. This
properties menu is specific to the Compile Logic process for an ABEL-HDL
source.

Figure 3-9. Properties Dialog Box

4. In the Properties dialog box, select the Generate Listing property.

5. Click on the arrow to the right of the text box (at the top of the properties menu),
and select the Expanded option from the list.

6. Click on the Close button to accept the setting and exit the Properties dialog box.

To get information on a property:

1. Click on a property in the Properties Dialog box.

2. Press the Help button.

Strategies

Another way to set options in your project is to use strategies. A strategy is a set of
properties (processing options) that you have specified for some or all of the sources
in your project. Strategies can be useful as your processing requirements change,
depending on factors such as size and speed tradeoffs in synthesis, or whether your
design is being processed for simulation or final implementation.

With strategies, you do not have to modify the properties for every source in the
design if you want to change the processing options. Strategies allow you to set up
properties once, then associate a strategy with a source to which you want to apply
the properties. You can create new strategies that reflect different properties for the
entire project, and then associate one or more custom strategies with the sources in
your project.
ABEL Design Manual 32

Overview of ABEL-HDL Compiling
To see how strategies work:

1. Select Source ⇒ Strategy from the Project Navigator. The Define Strategies
dialog box (Figure 3-10) appears.

Figure 3-10. Define Strategies Dialog Box

2. Click the New button, the New Strategy dialog box (Figure 3-11) appears.

Figure 3-11. New Strategy Dialog Box

3. Enter a name for the strategy in the New strategy Name field.

4. Click the OK button. The new strategy appears in the Strategy drop-down list box
in the Define Strategies dialog box.

To associate a source with a new strategy:

1. Select a strategy in the Strategy field of the Define Stratigies dialog box.

2. Click the Associate button.

3. Highlight the ABEL-HDL source and_ff2 in the Source to Associate with
Strategy field.

4. Click the Associate with Strategy button.

The and_ff2 source appears in the Associated Sources list box (Figure 3-12).
ABEL Design Manual 33

Overview of ABEL-HDL Compiling
Figure 3-12. Expanded Define Strategies Dialog Box

Design Simulation
The following section briefly discusses simulation and waveform viewing. For further
information on simulation, refer to the Design Verification Tools User Manual .

To simulate the design:

1. Highlight the test vector file (.abv) in the Sources window.

In this tutorial, as the test vectors are specified in the ABEL-HDL module, the
and_ff2-vectors in the Sources window is actually a dummy test vector file
that links to the test vectors in the and_ff2.abl file.

2. Double-click on the Functional Simulation process in the Processes window.

The Project Navigator builds all of the files needed to simulate the design and
then runs the functional simulator.

The Simulator Control Panel (Figure 3-13) appears after a successful compiling of
the test vectors.

❖ TIP There is a shortcut method to associate a source with a
strategy from the Project Navigator. Highlight a source and
use the Strategy drop-down list box in the toolbar to associate
an existing strategy with the selected source.
ABEL Design Manual 34

Overview of ABEL-HDL Compiling
Figure 3-13. Simulator Control Panel Window

3. From the Simulator Control Panel, click the Run icon or select Simulate ⇒ Run .

The simulator runs from the initial time until the time value defined in the Run to
Time field.

4. Select Tools ⇒ Waveform Viewer after the simulator stops. The Waveform
Viewer opens with the signals and their waveforms (Figure 3-14).

Figure 3-14. Waveform Viewer Window
ABEL Design Manual 35

Overview of ABEL-HDL Compiling
The Waveform Viewer works like a logic analyzer. You can display any signal in
the design, group signals into buses and display them in a choice of radices. You
can also jump between times, place cursors and measure delta times, and do
other typical logic analyzer tasks.

For more information on selecting waveforms to view in the Waveform Viewer,
refer to the Design Verification Tools User Manual .

❖ TIP If you keep the View ⇒ Show Waveforms menu item checked
in the Simulator Control Panel, the Waveform Viewer will be
invoked during the simulation process for you to monitor the
simulation results.
ABEL Design Manual 36

Chapter 4 ABEL-HDL Design Considerations

This chapter covers the following topics:

■ Overview of ABEL-HDL Design Considerations

■ Hierarchy in ABEL-HDL

■ Hierarchical Design Considerations

■ Node Collapsing

■ Pin-to-pin Language Features

■ Pin-to-pin vs. Detailed Descriptions for Registered Designs

■ Using Active-low Declarations

■ Polarity Control

■ Flip-flop Equations

■ Feedback Considerations — Dot Extensions

■ Using Don’t Care Optimization

■ Exclusive OR Equation

■ State Machines

■ Using Complement Arrays

■ ABEL-HDL and Truth Tables
ABEL Design Manual 37

Overview of ABEL-HDL Design Considerations
Overview of ABEL-HDL Design Considerations
This chapter discusses issues you need to consider when you create a design with
ABEL-HDL. The topics covered are listed below:

■ Hierarchy in ABEL-HDL

■ Hierarchical Design Considerations

■ Node Collapsing

■ Pin-to-Pin Architecture-independent Language Features

■ Pin-to-Pin Vs. Detailed Descriptions for Registered Designs

■ Using Active-low Declarations

■ Polarity Control

■ Istypes and Attributes

■ Flip-flop Equations

■ Feedback Considerations — Using Dot Extensions

■ @DCSET Considerations and Precautions

■ Exclusive OR Equations

■ State Machines

■ Using Complement Arrays

■ ABEL-HDL and Truth Tables

Hierarchy in ABEL-HDL
You use hierarchy declarations in an upper-level ABEL-HDL source to refer to
(instantiate) an ABEL-HDL module.

To instantiate an ABEL-HDL module:

In the lower-level module: (optional)

1. Identify lower-level I/O Ports (signals) with an INTERFACE statement.

In the top-level source:

2. Declare the lower-level module with an INTERFACE declaration.

3. Instantiate the lower-level module with FUNCTIONAL_BLOCK declarations.

✍ NOTE Hierarchy declarations are not required when instantiating an
ABEL-HDL module in a schematic. For instructions on
instantiating lower-level modules in schematics, refer to your
schematic reference.
ABEL Design Manual 38

Hierarchy in ABEL-HDL
Instantiating a Lower-level Module in an ABEL-HDL Source

Identifying I/O Ports in the Lower-level Module

The way to identify an ABEL-HDL module’s input and output ports is to place an
INTERFACE statement immediately following the MODULE statement. The
INTERFACE statement defines the ports in the lower-level module that are used by
the top-level source.

You must declare all input pins in the ABEL-HDL module as ports, and you can
specify default values of 0, 1, or Don’t-care.

You do not have to declare all output pins as ports. Any undeclared outputs become
No Connects or redundant nodes. Redundant nodes can later be removed from the
designs during post-link optimization.

The following source fragment is an example of a lower-level INTERFACE statement.

module lower
interface (a=0, [d3..d0]=7 -> [z0..z7]) ;
title 'example of lower-level interface statement ' ...

This statement identifies input a, d3, d2, d1 and d0 with default values, and outputs
z0 through z7. For more information, see “Interface (lower-level)” in the ABEL-HDL
Reference Manual .

Specifying Signal Attributes

Attributes specified for pins in a lower-level module are propagated to the higher-level
source. For example, a lower-level pin with an ‘invert’ attribute affects the higher-level
signal wired to that pin (it affects the pin's preset, reset, preload, and power-up value).

Output Enables (OE)

Connecting a lower-level tristate output to a higher-level pin results in the output
enable being specified for the higher-level pin. If another OE is specified for the
higher-level pin, it is flagged as an error. Since most tristate outputs are used as
bidirectionals, it might be important to keep the lower-level OE.
ABEL Design Manual 39

Hierarchy in ABEL-HDL
Buried Nodes

Buried nodes in lower-level sources are handled as follows:

Dangling Nodes Lower-level nodes that do not fanout are propagated to the
higher-level module and become dangling nodes.
Optimization may remove dangling nodes.

Combinational nodes Combinational nodes in a lower-level module become
collapsible nodes in the higher-level module.

Registered nodes Registered nodes are preserved with hierarchical names
assigned to them.

Declaring Lower-level Modules in the Top-level Source

To declare a lower-level module, you match the lower-level module’s INTERFACE
statement with an INTERFACE declaration. For example, to declare the lower-level
module given above, you would add the following declaration to your upper-level
source declarations:

lower interface (a, [d3..d0] -> [z0..z7]) ;

You could specify different default values if you want to override the values given in
the instantiated module, otherwise the instantiated module must exactly match the
lower-level interface statement. See “Interface (top-level)” in the ABEL-HDL
Reference Manual for more information.

Instantiating Lower-level Modules in Top-level Source

Use a FUNCTIONAL_BLOCK declaration in an top-level ABEL-HDL source to
instantiate a declared lower-level module and make the ports of the lower-level
module accessible in the upper-level source. You must declare sources with an
INTERFACE declaration before you instantiate them.

To instantiate the module declared above, add an interface declaration and signal
declarations to your top-level declarations, and add port connection equations to your
top-level equations, as shown in the source fragment below:

DECLARATIONS
 low1 FUNCTIONAL_BLOCK lower ;
 zed0..zed7 pin ; "upper-level inputs
 atop pin istype 'reg,buffer'; "upper-level output
 d3..d0 pin istype 'reg,buffer'; "upper-level ouputs
EQUATIONS
 atop = low1.a; "wire this source's outputs
 [d3..d0] = low1.[d3..d0] ; "to lower-level inputs
 low1.[z0..z7] = [zed0..zed7]; "wire this source's inputs
 "to lower-level outputs

See “Functional_block” in the ABEL-HDL Reference Manual for more information.
ABEL Design Manual 40

Hierarchy in ABEL-HDL
Hierarchy and Retargeting and Fitting

Redundant Nodes

When you link multiple sources, some unreferenced nodes may be generated. These
nodes usually originate from lower-level outputs that are not being used in the
top-level source. For example, when you use a 4-bit counter as a 3-bit counter. The
most significant bit of the counter is unused and can be removed from the design to
save device resources. This step also removes trivial connections. In the following
example, if out1 is a pin and t1 is a node:

out1 = t1;
t1 = a86;

would be mapped to

out1 = a86;

Merging Feedbacks

Linking multiple modules can produce signals with one or more feedback types, such
as .FB and .Q. You can tell the optimizer to combine these feedbacks to help the
fitting process.

Post-linked Optimization

If your design has a constant tied to an input, you can re-optimize the design.
Re-optimizing may further reduce the product terms count.

For example, if you have the equation

out = i0 & i1 || !i0 & i2;

and i0 is tied to 1, the resulting equation would be simplified to

out = i1;
ABEL Design Manual 41

Hierarchical Design Considerations
Hierarchical Design Considerations
The following considerations apply to hierarchical design.

Prevent Node Collapsing
Use the signal attribute ‘keep’ to indicate that the combinational node should not be
collapsed (removed). For example, the following ABEL-HDL source uses the 'keep'
signal attribute:

MODULE sub1
TITLE 'sub-module 1'
a,b,c pin;
d pin ;
e node istype 'keep';
Equations
e = a $ b;
d = c & e;
END

Node Collapsing
All combinational nodes are collapsible by default. Nodes that are to be collapsed (or
nodes that are to be preserved) are flagged through the use of signal attributes in the
language. The signal attributes are:

Istype 'keep' Do not collapse this node.

'collapse' Collapse this node.

Collapsing provides multi-level optimization for combinational logic. Designs with
arithmetic and comparator circuits generally generate a large number of product
terms that will not fit to any programmable logic device. Node collapsing allows you to
describe equations in terms of multi-level combinational nodes, then collapse the
nodes into the output until it reaches the product term you specify. The result is an
equation that is optimized to fit the device constraints.

Selective Collapsing
In some instances you may want to prevent the collapsing of certain nodes. For
example, some nodes may help in the simulation process. You can specify nodes you
do not want collapsed as Istype 'keep' and the optimizer will not collapse them.
ABEL Design Manual 42

Pin-to-pin Language Features
Pin-to-pin Language Features
ABEL-HDL is a device-independent language. You do not have to declare a device or
assign pin numbers to your signals until you are ready to implement the design into a
device. However, when you do not specify a device or pin numbers, you need to
specify pin-to-pin attributes for declared signals.

Because the language is device-independent, the ABEL-HDL compiler does not have
predetermined device attributes to imply signal attributes. If you do not specify signal
attributes or other information (such as the dot extensions, which are described later),
your design might not operate consistently if you later transfer it to a different target
device.

Device-independence vs. Architecture-independence
The requirement for signal attributes does not mean that a complex design must
always be specified with a particular device in mind. You may still have to understand
the differences between GAL devices and ispLSI devices, but you do not have to
specify a particular device when describing your design.

Attributes and dot extensions help you refine your design to work consistently when
moving from one class of device architecture to another; for example from devices
having inverted outputs to those with a particular kind of reset/preset circuitry.
However, the more you refine your design, using these language features, the more
restrictive your design becomes in terms of the number of device architectures for
which it is appropriate.

Signal Attributes
Signal attributes remove ambiguities that occur when no specific device architecture
is declared. If your design does not use device-related attributes (either implied by a
DEVICE statement or expressed in an ISTYPE statement), it may not operate the
same way when targeted to different device architectures. See “Pin Declaration,”
“Node Declaration” and “Istype” in the ABEL-HDL Reference Manual for more
information.

Signal Dot Extensions
Signal dot extensions, like attributes, enable you to more precisely describe the
behavior of a circuit that may be targeted to different architectures. Dot extensions
remove the ambiguities in equations.

Refer to “Feedback Considerations — Dot Extensions” on page 55 and
“Language Structure” in the ABEL-HDL Reference Manual for more information.
ABEL Design Manual 43

Pin-to-pin vs. Detailed Descriptions for Registered Designs
Pin-to-pin vs. Detailed Descriptions for Registered Designs
You can use ABEL-HDL assignment operators when you write high-level equations.
The = operator specifies a combinational assignment, where the design is written
with only the circuit’s inputs and outputs in mind. The := assignment operator
specifies a registered assignment, where you must consider the internal circuit
elements (such as output inverters, presets and resets) related to the memory
elements (typically flip-flops). The semantics of these two assignment operators are
discussed below.

Using := for Pin-to-pin Descriptions
The := implies that a memory element is associated with the output defined by the
equation. For example, the equation;

Q1 := !Q1 # Preset;

implies that Q1 will hold its current value until the memory element associated with
that signal is clocked (or unlatched, depending on the register type). This equation is
a pin-to-pin description of the output signal Q1. The equation describes the signal’s
behavior in terms of desired output pin values for various input conditions. Pin-to-pin
descriptions are useful when describing a circuit that is completely
architecture-independent.

Language elements that are useful for pin-to-pin descriptions are the “:=” assignment
operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET and .COM dot
extensions described in the ABEL-HDL Reference Manual . These dot extensions
help resolve circuit ambiguities when describing architecture-independent circuits.

Resolving Ambiguities

In the equation above (Q1 := !Q1 # Preset;), there is an ambiguous feedback
condition. The signal Q1 appears on the right side of the equation, but there is no
indication of whether that fed-back signal should originate at the register, come
directly from the combinational logic that forms the input to the register, or come from
the I/O pin associated with Q1. There is also no indication of what type of register
should be used (although register synthesis algorithms could, theoretically, map this
equation into virtually any register type). The equation could be more completely
specified in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1 := !Q1.FB # Preset; "Reg. feedback normalized to pin value

This set of equations describes the circuit completely and specifies enough
information that the circuit will operate identically in virtually any device in which you
can fit it. The feedback path is specified to be from the register itself, and the .CLK
equation specifies that the memory element is clocked, rather than latched.
ABEL Design Manual 44

Pin-to-pin vs. Detailed Descriptions for Registered Designs
Detailed Circuit Descriptions
In contrast to a pin-to-pin description, the same circuit can be specified in a detailed
form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1.D = !Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and specifying
feedback directly from the register restricts the device architectures in which the
design can be implemented. Furthermore, the equations describe only the inputs to,
and feedback from, the flip-flop and do not provide any information regarding the
configuration of the actual output pin. This means the design will operate quite
differently when implemented in a device with inverted outputs versus a device with
non-inverting outputs.

To maintain the correct pin behavior, using detailed equations, one additional
language element is required: a ‘buffer’ attribute (or its complement, an ‘invert’
attribute). The ‘buffer’ attribute ensures that the final implementation in a device has
no inversion between the specified D-type flip-flop and the output pin associated with
Q1. For example, add the following to the declarations section:

Q1 pin istype ‘buffer’;

Detailed Descriptions: Designing for Macrocells

One way to understand the difference between pin-to-pin and detailed description
methods is to think of detailed descriptions as macrocell specifications. A macrocell is
a block of circuitry normally (but not always) associated with a device’s I/O pin.
Figure 4-1 illustrates a typical macrocell associated with signal Q1.

Figure 4-1. Detailed Macrocell
ABEL Design Manual 45

Pin-to-pin vs. Detailed Descriptions for Registered Designs
Detailed descriptions are written for the various input ports of the macrocell (shown in
the figure above with dot extension labels). Note that the macrocell features a
configurable inversion between the Q output of the flip-flop and the output pin labeled
Q1. If you use this inverter (or select a device that features a fixed inversion), the
behavior you observe on the Q1 output pin will be inverted from the logic applied to
(or observed on) the various macrocell ports, including the feedback port Q1.q.

Pin-to-pin descriptions, on the other hand, allow you to describe your circuit in terms
of the expected behavior on an actual output pin, regardless of the architecture of the
underlying macrocell. Figure 4-2 illustrates the pin-to-pin concept:

Figure 4-2. Pin-to-pin Macrocell

When pin-to-pin descriptions are written in ABEL-HDL, the “generic macrocell” shown
above is synthesized from whatever type of macrocell actually exists in the target
device.
ABEL Design Manual 46

Pin-to-pin vs. Detailed Descriptions for Registered Designs
Examples of Pin-to-pin and Detailed Descriptions
Two equivalent module descriptions, one pin-to-pin and one detailed, are shown
below for comparison:

Pin-to-pin Module Description

module Q1_1
 Q1 pin istype 'reg';
 Clock,Preset pin;

equations
 Q1.clk = Clock;
 Q1 := !Q1.fb # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

Detailed Module Description

module Q1_2
 Q1 pin istype 'reg_D,buffer';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.D = !Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The first description can be targeted into virtually any device (if register synthesis and
device fitting features are available), while the second description can be targeted
only to devices featuring D-type flip-flops and non-inverting outputs.

To implement the second (detailed) module in a device with inverting outputs, the
source file would need to be modified as shown in the following section.
ABEL Design Manual 47

Pin-to-pin vs. Detailed Descriptions for Registered Designs
Detailed Module with Inverted Outputs
module Q1_3
 Q1 pin istype 'reg_D,invert';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 !Q1.D = Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

In this version of the module, the existence of an inverter between the output of the
D-type flip-flop and the output pin (specified with the 'invert' attribute) has
necessitated a change in the equation for Q1.D.

As this example shows, device-independence and pin-to-pin description methods are
preferable, since you can describe a circuit completely for any implementation. Using
pin-to-pin descriptions and generalized dot extensions (such as .FB , .CLK and .OE)
as much as possible allows you to implement your ABEL-HDL module into any one of
a particular class of devices. (For example, any device that features enough flip-flops
and appropriately configured I/O resources.) However, the need for particular types of
device features (such as register preset or reset) might limit your ability to describe
your design in a completely architecture-independent way.

If, for example, a built-in register preset feature is used in a simple design, the target
architectures are limited. Consider this version of the design:
ABEL Design Manual 48

Pin-to-pin vs. Detailed Descriptions for Registered Designs
module Q1_5l
 Q1 pin istype 'reg,buffer';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AP = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The equation for Q1 still uses the := assignment operator and .FB for a pin-to-pin
description of Q1's behavior, but the use of .AP to describe the reset function
requires consideration of different device architectures. The .AP extension, like the
.D and .Q extensions, is associated with a flip-flop input, not with a device output pin.
If the target device has inverted outputs, the design will not reset properly, so this
ambiguous reset behavior is removed by using the ‘buffer’ attribute, which reduces
the range of target devices to those with non-inverted outputs.

Using .ASET instead of .AP can solve this problem if the fitter being used supports
the .ASET dot extension.

Versions 5 and 7 of the design above and below are unambiguous, but each is
restricted to certain device classes:

module Q1_7l
 Q1 pin istype 'reg,invert';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AR = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end
ABEL Design Manual 49

Pin-to-pin vs. Detailed Descriptions for Registered Designs
When to Use Detailed Descriptions
Although the pin-to-pin description is preferable, there will frequently be situations
when you must use a more detailed description. If you are unsure about which
method to use for various parts of your design, examine the design’s requirements. If
your design requires specific features of a device (such as register preset or unusual
flip-flop configurations), detailed descriptions are probably necessary. If your design
is a simple combinational function, or if it matches the “generic” macrocell in its
requirements, you can probably use simple pin-to-pin descriptions.

Using := for Alternative Flip-flop Types
In ABEL-HDL you can specify a variety of flip-flop types using attributes such as
istype ‘reg_D’ and ‘reg_JK’. However, these attributes do not enforce the use of a
specific type of flip-flop when a device is selected, and they do not affect the meaning
of the := assignment operator.

You can think of the := assignment operator as a memory operator. The type of
register that most closely matches the := assignment operator’s behavior is the
D-type flip-flop.

The primary use for attributes such as istype ‘reg_D’ , ‘reg_JK’ and
‘reg_SR’ is to control the generation of logic. Specifying one of the ‘reg_’
attributes (for example, istype ‘reg_D’) instructs the AHDL compiler to generate
equations using the .D extension regardless of whether the design was written using
.D, := or some other method (for example, state diagrams).

Using := for flip-flop types other than D-type is only possible if register synthesis
features are available to convert the generated equations into equations appropriate
for the alternative flip-flop type specified. Since the use of register synthesis to
convert D-type flip-flop stimulus into JK or SR-type stimulus usually results in
inefficient circuitry, the use of := for these flip-flop types is discouraged. Instead, you
should use the .J and .K extensions (for JK-type flip-flops) or the .S and .R extensions
(for SR-type flip-flops) and use a detailed description method (including 'invert' or
'buffer' attributes) to describe designs for these register types.

There is no provision in the language for directly writing pin-to-pin equations for
registers other than D-type. State diagrams, however, may be used to describe
pin-to-pin behavior for any register type.

✍ NOTE You also need to specify istype ‘invert’ or ‘buffer’ when you use
detailed syntax.
ABEL Design Manual 50

Using Active-low Declarations
Using Active-low Declarations
In ABEL-HDL you can write pin-to-pin design descriptions using implied active-low
signals. Active-low signals are declared with a ‘!’ operator, as shown below:

!Q1 pin istype 'reg';

If a signal is declared active-low, it is automatically complemented when you use it in
the subsequent design description. This complementing is performed for any use of
the signal itself, including as an input, as an output, and in test vectors.
Complementing is also performed if you use the .fb dot extension on an active-low
signal.

The following three designs, for example, operate identically:

Design 1 — Implied Pin-to-Pin Active-low

module act_low2
 !q0,!q1 pin istype 'reg';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 [q1,q0] := ([q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [q1, q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end
ABEL Design Manual 51

Using Active-low Declarations
Design 2 — Explicit Pin-to-Pin Active-low

module act_low1
 q0,q1 pin istype 'reg';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0] := (![q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Design 3 — Explicit Detailed Active-low

module act_low3
 q0,q1 pin istype 'reg_d,buffer';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0].D := (![q1,q0].Q + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Both of these designs describe an up counter with active-low outputs. The first
example inverts the signals explicitly (in the equations and in the test vector header),
while the second example uses an active-low declaration to accomplish the same
thing.
ABEL Design Manual 52

Polarity Control
Polarity Control
Automatic polarity control is a powerful feature in ABEL-HDL where a logic function is
converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations. For example,
all three equations below for F1 are equivalent.

(1) F1 = (A & B);

(2) !F1 = !(A & B);

(3) !F1 = !A # !B;

In the example above, equation (3) uses two product terms, while equation (1)
requires only one. This logic function will use fewer product terms in a non-inverting
device than in an inverting device. The logic function performed from input pins to
output pins will be the same for both polarities.

Not all logic functions are best optimized to positive polarity. For example, the
inverted form of F2, equation (3), uses fewer product terms than equation (2).

(1) F2 = (A # B) & (C # D);

(2) F2 = (A & C) # (A & D) # (B & C) # (B & D);

(3) !F2 = (!A & !B) # (!C & !D);

Programmable polarity devices are popular because they can provide a mix of non-
inverting and inverting outputs to achieve the best fit.

Polarity Control with Istype
In ABEL-HDL, you control the polarity of the design equations and target device (in
the case of programmable polarity devices) in two ways:

■ Using Istype 'neg', 'pos' and 'dc'

■ Using Istype 'invert' and 'buffer'

Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity

The ‘neg’, ‘pos’, and ‘dc’ attributes specify types of optimization for the polarity as
follows:
ABEL Design Manual 53

Flip-flop Equations
‘neg’ Istype ‘neg’ optimizes the circuit for negative polarity.
Unspecified logic in truth tables and state diagrams becomes
a 0.

‘pos’ Istype ‘pos’ optimizes the circuit for positive polarity.
Unspecified logic in truth tables and state diagrams becomes
a 1.

‘dc’ Istype ‘dc’ uses polarity for best optimization. Unspecified
logic in truth tables and state diagrams becomes don't care
(X).

Using ‘invert’ and ‘buffer’ to Control Programmable Inversion

An optional method for specifying the desired state of a programmable polarity output
is to use the ‘invert’ or ‘buffer’ attributes. These attributes ensure that an inverter gate
either does or does not exist between the output of a flip-flop and its corresponding
output pin. When you use the ‘invert’ and ‘buffer’ attributes, you can still use
automatic polarity selection if the target architecture features programmable inverters
located before the associated flip-flop.

The polarity of devices that feature a fixed inverter in this location, and a
programmable inverter before the register, cannot be specified using ‘invert’ and
‘buffer’.

Flip-flop Equations
Pin-to-pin equations (using the := assignment operator) are only supported for D
flip-flops. ABEL-HDL does not support the := assignment operator for T, SR or JK
flip-flops and has no provision for specifying a particular output pin value for these
types.

If you write an equation of the form:

Q1 := 1;

and the output, Q1, has been declared as a T-type flip-flop, the ABEL-HDL compiler
will give a warning and convert the equation to

Q1.T = 1;

✍ NOTE The ‘invert’ and ‘buffer’ attributes do not actually control device
or equation polarity — they only enforce the existence or
nonexistence of an inverter between a flip-flop and its output
pin.
ABEL Design Manual 54

Feedback Considerations — Dot Extensions
Since the T input to a T-type flip-flop does not directly correspond to the value you
observed on the associated output pin, this equation will not result in the pin-to-pin
behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you must consider
the behavior of the flip-flop you used and write detailed equations that stimulate the
inputs of that flip-flop. A detailed equation to set and hold a T-type flip-flop is shown
below:

Q1.T = !Q1.Q;

Feedback Considerations — Dot Extensions
The source of feedback is normally set by the architecture of the target device. If you
don't specify a particular feedback path, the design may operate differently in different
device types. Specifying feedback paths (with the .FB, .Q or .PIN dot extensions)
eliminates architectural ambiguities. Specifying feedback paths also allows you to use
architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

■ No Dot Extension — A feedback signal with no dot extension (for example,
count := count+1;) results in pin feedback if it exists in the target device. If there is
no pin feedback, register feedback is used, with the value of the register contents
complemented (normalized) if needed to match the value observed on the pin.

■ .FB Extension — A signal specified with the .FB extension (for example,
count := count.fb+1;) results in register feedback normalized to the pin value if a
register feedback path exists. If no register feedback is available, pin feedback is
used, and the fuse mapper checks that the output enable does not conflict with
the pin feedback path. If there is a conflict, an error is generated if the output
enable is not constantly enabled.

■ .COM Extension — A signal specified with the .COM extension (for example,
count := count.com+1;) results in OR-array (pre-register) feedback, normalized to
the pin value if an OR-array feedback path exists. If no OR-array feedback is
available, pin feedback is used and the fuse mapper checks that the output enable
does not conflict with the pin feedback path. If there is a conflict, an error is
generated if the output enable is not constantly enabled.

■ .PIN Extension — If a signal is specified with the .PIN extension (for example,
count := count.pin+1;), the pin feedback path will be used. If the specified device
does not feature pin feedback, an error will be generated. Output enables
frequently affect the operation of fed-back signals that originate at a pin.

■ .Q Extension — Signals specified with the .Q extension (for example,
count.d = count.q+1;) will originate at the Q output of the associated flip-flop. The
fed-back value may or may not correspond to the value you observe on the
associated output pin; if an inverter is located between the Q output of the flip-flop
and the output pin (as is the case in most registered PAL-type devices), the value
of the fed-back signal will be the complement of the value you observe on the pin.
ABEL Design Manual 55

Feedback Considerations — Dot Extensions
■ .D Extension — Some devices allow feedback of the input to the register. To
select this feedback, use the .D extension. Some device kits also support .COM
for this feedback; refer to your device kit manual for detailed information.

Dot Extensions and Architecture-Independence
To be architecture-independent, you must write your design in terms of its pin-to-pin
behavior rather than in terms of specific device features (such as flip-flop
configurations or output inversions).

For example, consider the simple circuit shown in the following (Figure 4-3). This
circuit toggles high when the Toggle input is forced high, and low when the Toggle is
low. The circuit also contains a three-state output enable that is controlled by the
active-low Enable input.

Figure 4-3. Dot Extensions and Architecture-independence: Circuit 1

The following simple ABEL-HDL design describes this simple one-bit synchronous
circuit. The design description uses architecture-independent dot extensions to
describe the circuit in terms of its behavior, as observed on the output pin of the
target device. Since this design is architecture-independent, it will operate the same
(disregarding initial powerup state), irrespective of the device type.
ABEL Design Manual 56

Feedback Considerations — Dot Extensions
Figure 4-4. Pin-to-pin One-bit Synchronous Circuit module pin2pin

If you implement this circuit in a simple GAL16LV8 device (either by adding a device
declaration statement or by specifying the P16R8 in the Fuseasm process), the result
will be a circuit like the one illustrated in the following figure (Figure 4-5). Since the
GAL16LV8 features inverted outputs, the design equation is automatically modified to
take the feedback from Q-bar instead of Q.

.

Figure 4-5. Dot Extensions and Architecture-independence: Circuit 2

module pin2pin;
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype 'reg';

equations
 Qout := !Qout.FB & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end
ABEL Design Manual 57

Feedback Considerations — Dot Extensions
Dot Extensions and Detail Design Descriptions
You may need to be more specific about how you implement a circuit in a target
device. More-complex device architectures have many configurable features, and you
may want to use these features in a particular way. You may want a precise powerup
and preset operation or, in some cases, you may need to control internal elements.

The circuit previously described (using architecture-independent dot extensions)
could be described, for example, using detailed dot extensions in the following
ABEL-HDL source file.

Figure 4-6. Detailed One-bit Synchronous Circuit with Inverted Qout

This version of the design will result in exactly the same fuse pattern as indicated in
Figure 4-5. As written, this design assumes the existence of an inverted output for the
signal Qout. This is why the Qout.D and Qout.Q signals are reversed from the
architecture-independent version of the design presented earlier.

To implement this design in a device that does not feature inverted outputs, the
design description must be modified. The following example shows how to write this
detailed design:

module detail1
 d1 device 'P16R8';
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype 'reg_D';

equations
 !Qout.D = Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

✍ NOTE The inversion operator applied to Qout.D does not correspond
directly to the inversion found on each output of a P16R8. The
equation for Qout.D actually refers to the D input of one of the
GAL16LV8’s flip-flops; the output inversion found in a P16R8 is
located after the register and is assumed rather than specified.
ABEL Design Manual 58

Feedback Considerations — Dot Extensions
Figure 4-7. Detail One-bit Synchronous Circuit with non-inverted Qout

module detail2
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype 'reg_D';

equations
 Qout.D = !Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end
ABEL Design Manual 59

Using Don’t Care Optimization
Using Don’t Care Optimization
Use Don’t Care optimization to reduce the amount of logic required for an
incompletely specified function. The @DCSET directive (used for logic description
sections) and ISTYPE attribute ‘dc’ (used for signals) specify don’t care values for
unspecified logic.

Consider the following ABEL-HDL truth table:

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];

This truth table has four inputs, and therefore sixteen (24) possible input
combinations. The function specified, however, only indicates eight significant input
combinations. For each of the design outputs (f3 through f0) the truth table specifies
whether the resulting value should be 1 or 0. For each output, then, each of the eight
individual truth table entries can be either a member of a set of true functions called
the on-set, or a set of false functions called the off-set.

Using output f3, for example, the eight input conditions can be listed as on-sets and
off-sets as follows (maintaining the ordering of inputs as specified in the truth table
above):

 on-set of f3 off-set of f3
 0 1 1 1 0 0 0 0
 1 1 1 1 0 0 0 1
 1 1 1 0 0 0 1 1
 1 1 0 0 1 0 0 0

The remaining eight input conditions that do not appear in either the on-set or off-set
are said to be members of the dc-set, as follows for f3:

 dc-set of f3
 0 0 1 0
 0 1 0 0
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 1
ABEL Design Manual 60

Using Don’t Care Optimization
Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear as
follows (with ones indicating the on-set, zeroes indicating the off-set, and dashes
indicating the dc-set):

If the don’t-care entries in the Karnaugh map are used for optimization, the function
for f3 can be reduced to a single product term (f3 = i2) instead of the two (f3 = i3 & i2
& !i0 # i2 & i1 & i0) otherwise required.

The ABEL-HDL compiler uses this level of optimization if the @DCSET directive or
ISTYPE ‘dc’ is included in the ABEL-HDL source file, as shown below.

Figure 4-8. Source File Showing Don’t Care Optimization

This example results in a total of four single-literal product terms, one for each output.
The same example (with no istype ‘dc’) results in a total of twelve product terms.

For truth tables, Don’t Care optimization is almost always the best method. For state
machines, however, you may not want undefined transition conditions to result in
unknown states, or you may want to use a default state (determined by the type of
flip-flops used for the state register) for state diagram simplification.

When using don’t care optimization, be careful not to specify overlapping conditions
(specifying both the on-set and dc-set for the same conditions) in your truth tables
and state diagrams. Overlapping conditions result in an error message.

For state diagrams, you can perform additional optimization for design outputs if you
specify the @dcstate attribute. If you enter @dcstate in the source file, all state
diagram transition conditions are collected during state diagram processing. These
transitions are then complemented and applied to the design outputs as don’t-cares.
You must use @dcstate in combination with @dcset or the ‘dc’ attribute.

module dc
 i3,i2,i1,i0 pin;
 f3,f2,f1,f0 pin istype 'dc,com';

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];
end
ABEL Design Manual 61

Exclusive OR Equations
Exclusive OR Equations
Designs written for exclusive-OR (XOR) devices should contain the 'xor' attribute for
architecture-independence.

Optimizing XOR Devices
You can use XOR gates directly by writing equations that include XOR operators, or
you can use implied XOR gates. XOR gates can minimize the total number of product
terms required for an output or they can emulate alternate flip-flop types.

Using XOR Operators in Equations
If you want to write design equations that include XOR operators, you must either
specify a device that features XOR gates in your ABEL-HDL source file, or specify the
'xor' attribute for all output signals that will be implemented with XOR gates. This
preserves one top-level XOR operator for each design output. For example,

module X1
 Q1 pin istype 'com,xor';
 a,b,c pin;
equations
 Q1 = a $ b & c;
end

Also, when writing equations for XOR PALs, you should use parentheses to group
those parts of the equation that go on either side of the XOR. This is because the
XOR operator ($) and the OR operator (#) have the same priority in ABEL-HDL. See
example octalf.abl .

Using Implied XORs in Equations
High-level operators in equations often result in the generation of XOR operators. If
you specify the 'XOR' attribute, these implied XORs are preserved, decreasing the
number of product terms required. For example,

module X2
 q3,q2,q1,q0 pin istype 'reg,xor';
 clock pin;
 count = [q3..q0];
equations
 count.clk = clock;
 count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition operator results in
XOR operators for the four outputs, the 'xor' attribute can reduce the amount of
circuitry generated.
ABEL Design Manual 62

Exclusive OR Equations
Using XORs for Flip-flop Emulation
Another way to use XOR gates is for flip-flop emulation. If you are using an XOR
device that has outputs featuring an XOR gate and D-type flip-flops, you can write
your design as if you were going to be implementing it in a device with T-type
flip-flops. The XOR gates and D-type flip-flops emulate the specified T-type flip-flops.
When using XORs in this way, you should not use the ‘xor’ attribute for output signals
unless the target device has XOR gates.

JK Flip-Flop Emulation

You can emulate JK flip-flops using a variety of circuitry found in programmable
devices. When a T-type flip-flop is available, you can emulate JK flip-flops by ANDing
the Q output of the flip-flop with the K input. The !Q output is then ANDed with the J
input.

Figure 4-9 illustrates the circuitry and the Boolean expression.

Figure 4-9. JK Flip-flop Emulation Using T Flip-flop

✍ NOTE The high-level operator that generates the XOR operators
must be the top-level (lowest priority) operation in the
equation. An equation such as
count := (count.FB + 1) & !reset; does not result in the
preservation of top-level XOR operators, since the & operator
is the top-level operator.
ABEL Design Manual 63

Exclusive OR Equations
You can emulate a JK flip-flop with a D flip-flop and an XOR gate. This technique is
useful in devices such as the GAL20VP8. The circuitry and Boolean expression is
shown in Figure 4-10.

Figure 4-10. T Flip-flop Emulation Using D Flip-flop

Finally, you can also emulate a JK flip-flop by combining the D flip-flop emulation of a
T flip-flop, Figure 4-10, with the circuitry of Figure 4-1. The following figure illustrates
this concept.

Figure 4-11. JK Flip-flop Emulation, D Flip-flop with XOR
ABEL Design Manual 64

State Machines
State Machines
A state machine is a digital device that traverses a predetermined sequence of states.
State-machines are typically used for sequential control logic. In each state, the
circuit stores its past history and uses that history to determine what to do next.

This section provides some guidelines to help you make state diagrams easy to read
and maintain and to help you avoid problems. State machines often have many
different states and complex state transitions that contribute to the most common
problem, which is too many product terms being created for the chosen device. The
topics discussed in the following subsections help you avoid this problem by reducing
the number of required product terms.

The following subsections provide state machine considerations:

■ Use Identifiers Rather Than Numbers for States

■ Powerup Register States

■ Unsatisfied Transition Conditions, D-Type Flip-Flops

■ Unsatisfied Transition Conditions, Other Flip-Flops

■ Number Adjacent States for a One-bit Change

■ Use State Register Outputs to Identify States

■ Use Symbolic State Descriptions

Use Identifiers Rather Than Numbers for States
A state machine has different “states” that describe the outputs and transitions of the
machine at any given point. Typically, each state is given a name, and the state
machine is described in terms of transitions from one state to another. In a real
device, such a state machine is implemented with registers that contain enough bits
to assign a unique number to each state. The states are actually bit values in the
register, and these bit values are used along with other signals to determine state
transitions.

As you develop a state diagram, you need to label the various states and state
transitions. If you label the states with identifiers that have been assigned constant
values, rather than labeling the states directly with numbers, you can easily change
the state transitions or register values associated with each state.

When you write a state diagram, you should first describe the state machine with
names for the states, and then assign state register bit values to the state names.

For an example, see Figure 4-12 for a state machine named “sequence.” (This state
machine is also discussed in the design examples.) Identifiers (A, B, and C) specify
the states. These identifiers are assigned a constant decimal value in the declaration
section that identifies the bit values in the state register for each state. A, B, and C are
only identifiers: they do not indicate the bit pattern of the state machine. Their
declared values define the value of the state register (sreg) for each state. The
declared values are 0, 1, and 2.
ABEL Design Manual 65

State Machines
Figure 4-12. Using Identifiers for States

module Sequence
title 'State machine example';

 q1,q0 pin 14,15 istype 'reg';
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17 istype 'reg';
 in_B,in_C pin 12,13 istype 'com';
 sreg = [q1,q0];

"State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;
state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;

IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset is active
 in_B = 1; " or hold is active. Turn on halt indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;

test_vectors([clock,enab,start,reset,hold]->[sreg,halt,in_B,in_C])
 [.p. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];

 [.c. , 0 , 1 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 1 , 0]->[A , 1 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 1 , 0 , 0];

 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];
end
ABEL Design Manual 66

State Machines
Powerup Register States
If a state machine has to have a specific starting state, you must define the register
powerup state in the state diagram description or make sure your design goes to a
known state at powerup. Otherwise, the next state is undefined.

Unsatisfied Transition Conditions

D-Type Flip-Flops

For each state described in a state diagram, you specify the transitions to the next
state and the conditions that determine those transitions. For devices with D-type
flip-flops, if none of the stated conditions are met, the state register, shown in the
following figure, is cleared to all 0s on the next clock pulse. This action causes the
state machine to go to the state that corresponds to the cleared state register. This
can either cause problems or you can use it to your advantage, depending on your
design.

Figure 4-13. D-type Register with False Inputs

You can use the clearing behavior of D-type flip-flops to eliminate some conditions in
your state diagram, and some product terms in the converted design, by leaving the
cleared-register state transition implicit. If no specified transition condition is met, the
machine goes to the cleared-register state. This behavior can also cause problems if
the cleared-register state is undefined in the state diagram, because if the transition
conditions are not met for any state, the machine goes to an undefined state and
stays there.

To avoid problems caused by this clearing behavior, always have a state assigned to
the cleared-register state. Or, if you do not assign a state to the cleared-register state,
define every possible condition so some condition is always met for each state. You
can also use the automatic transition to the cleared-register state by eliminating
product terms and explicit definitions of transitions. You can also use the
cleared-register state to satisfy illegal conditions.
ABEL Design Manual 67

State Machines
Other Flip-flops

If none of the state conditions is met in a state machine that employs JK, RS, and
T-type flip-flops, the state machine does not advance to the next state, but holds its
present state due to the low input to the register from the OR array output. In such a
case, the state machine can get stuck in a state. You can use this holding behavior to
your advantage in some designs.

Precautions for Using Don’t Care Optimization
When you use don't care optimization, you need to avoid certain design practices.
The most common design technique that conflicts with this optimization is mixing
equations and state diagrams to describe default transitions. For example, consider
the design shown in the following figure.

Figure 4-14. State Machine Description with Conflicting Logic

module TRAFFIC
title 'Traffic Signal Controller'

 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 "Node numbers are not required if fitter is used
 S3..S0 node 31..34 istype 'reg_sr,buffer';
 COMP node 43;

 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip-flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];

Off = [0 , 1];

" test_vectors edited

equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;
ABEL Design Manual 68

State Machines
Figure 4-14 State Machine Description with Conflicting Logic (Continued)

"Use Complement Array to initialize or restart
 [S3..S0].R = (!COMP & [1,1,1,1]);
 [GreenA,YellowA,RedA] = (!COMP & [On ,Off,Off]);
 [GreenB,YellowB,RedB] = (!COMP & [Off,Off,On]);

state_diagram Count
 State 0: if (SenA & !SenB) then 0 with COMP = 1;
 if (!SenA & SenB) then 4 with COMP = 1;
 if (SenA == SenB) then 1 with COMP = 1;

 State 1: goto 2 with COMP = 1;
 State 2: goto 3 with COMP = 1;
 State 3: goto 4 with COMP = 1;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5 with COMP = 1;

 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8 with COMP = 1;

State 8: if (!SenA & SenB) then 8 with COMP = 1;
if (SenA & !SenB) then 12 with COMP = 1;
if (SenA == SenB) then 9 with COMP = 1;

 State 9: goto 10 with COMP = 1;
 State 10: goto 11 with COMP = 1;

State 11: goto 12 with COMP = 1;

State 12: GreenB = Off;
 YellowB = On ;
 goto 13 with COMP = 1;

 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0 with COMP = 1;
end
ABEL Design Manual 69

State Machines
This design uses the complement array feature of the Signetics FPLA devices to
perform an unconditional jump to state [0,0,0,0]. If you use the @DCSET directive,
the equation that specifies this transition

[S3,S2,S1,S0].R = (!COMP & [1,1,1,1]);

will conflict with the dc-set generated by the state diagram for S3.R, S2.R, S1.R, and
S0.R. If equations are defined for state bits, the @DCSET directive is incompatible.
This conflict would result in an error and failure when the logic for this design is
optimized.

To correct the problem, you must remove the @DCSET directive so the implied dc-set
equations are folded into the off-set for the resulting logic function. Another option is
to rewrite the module as shown below.

Figure 4-15. @DCSET-compatible State Machine Description

module TRAFFIC1
title 'Traffic Signal Controller'

 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 S3..S0 node 31..34 istype 'reg_sr,buffer';
 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];
" test_vectors edited
equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;
ABEL Design Manual 70

State Machines
Figure 4-15 @DCSET-compatible State Machine Description (Continued)

@DCSET
state_diagram Count
 State 0: if (SenA & !SenB) then 0;
 if (!SenA & SenB) then 4;
 if (SenA == SenB) then 1;

 State 1: goto 2;
 State 2: goto 3;
 State 3: goto 4;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5;

 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;

goto 8;

 State 6: goto 0;
 State 7: goto 0;

 State 8: if (!SenA & SenB) then 8;
 if (SenA & !SenB) then 12;
 if (SenA == SenB) then 9;

 State 9: goto 10;
 State 10: goto 11;
 State 11: goto 12;

 State 12: GreenB = Off;
 YellowB = On ;
 goto 13;

State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0;

 State 14: goto 0;

 State 15: "Power up and preset state
 RedA = Off;
 YellowA = Off;
 GreenA = On ;
 RedB = On ;
 YellowB = Off;
 GreenB = Off;
 goto 0;
end
ABEL Design Manual 71

State Machines
Number Adjacent States for One-bit Change
You can reduce the number of product terms produced by a state diagram by
carefully choosing state register bit values. Your state machine should be described
with symbolic names for the states, as described above. Then, if you assign the
numeric constants to these names so the state register bits change by only one bit at
a time as the state machine goes from state to state, you will reduce the number of
product terms required to describe the state transitions.

As an example, take the states A, B, C, and D, which go from one state to the other in
alphabetical order. The simplest choice of bit values for the state register is a numeric
sequence, but this is not the most efficient method. To see why, examine the following
bit value assignments. The preferred bit values cause a one-bit change as the
machine moves from state B to C, whereas the simple bit values cause a change in
both bit values for the same transition. The preferred bit values produce fewer product
terms.

If one of your state register bits uses too many product terms, try reorganizing the bit
values so that state register bit changes in value as few times as possible as the state
machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require some
tradeoffs; you may have to optimize for one bit and, in the process, increase the value
changes for another. The object should be to eliminate as many product terms as
necessary to fit the design into the device.

Use State Register Outputs to Identify States
Sometimes it is necessary to identify specific states of a state machine and signal an
output that the machine is in one of these states. Fewer equations and outputs are
needed if you organize the state register bit values so one bit in the state register
determines if the machine is in a state of interest. Take, for example, the following
sequence of states in which identification of the Cn states is required:

State Simple
Bit Values

Preferred
Bit Values

A 00 00
B 01 01
C 10 11
D 11 10
ABEL Design Manual 72

State Machines
State Register Bit Values

This choice of state register bit values allows you to use Q3 as a flag to indicate when
the machine is in any of the Cn states. When Q3 is high, the machine is in one of the
Cn states. Q3 can be assigned directly to an output pin on the device. Notice also that
these bit values change by only one bit as the machine cycles through the states, as
is recommended in the section above.

State Name Q3 Q2 Q1
A 0 0 0
B 0 0 1

C1 1 0 1
C2 1 1 1
C3 1 1 0
D 0 1 0
ABEL Design Manual 73

State Machines
Using Symbolic State Descriptions
Symbolic state descriptions describe a state machine without having to specify actual
state values. A symbolic state description is shown below.

Figure 4-16. Symbolic State Description

Symbolic state descriptions use the same syntax as non-symbolic state descriptions;
the only difference is the addition of the STATE_REGISTER and STATE declarations,
and the addition of symbolic synchronous and asynchronous reset statements.

Symbolic Reset Statements

In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET statements
specify synchronous or asynchronous state machine reset logic. For example, to
specify that a state machine must asynchronously reset to state Start when the Reset
input is true, you write

ASYNC_RESET Start : (Reset) ;

module SM
 a,b,clock pin; " inputs
 a_reset,s_reset pin; " reset inputs
 x,y pin istype 'com'; " simple outputs

 sreg1 state_register;
 S0..S3 state;

equations
 sreg1.clk = clock;

state_diagram sreg1
 state S0:
 goto S1 with {x = a & b;
 y = 0; }
 state S1: if (a & b)
 then S2 with {x = 0;
 y = 1; }
 state S2: x = a & b;
 y = 1;
 if (a) then S1 else S2;
 state S3:
 goto S0 with {x = 1;
 y = 0; }

 async_reset S0: a_reset;
 sync_reset S0: s_reset;
end
ABEL Design Manual 74

Using Complement Arrays
Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering the
symbolic state register name in the test vector header (in the output sections), and
the symbolic state names in the test vectors as output values.

Using Complement Arrays
The complement array is a unique feature found in some logic sequencers. This
section shows a typical use ending counter sequence.

You can use transition equations to express the design of counters and state
machines in some devices with JK or SR flip-flops. A transition equation expresses a
state of the circuit as a variation of, or adjustment to, the previous state. This type of
equation eliminates the need to specify every node of the circuit; you can specify only
those that require a transition to the opposite state.

An example of transition equations is shown in Figure 4-17, a source file for a decade
counter having a single (clock) input and a single latched output. This counter divides
the clock input by a factor of ten and generates a 50% duty-cycle squarewave output.
In addition to its registered outputs, this device contains a set of “buried” (or
feedback) registers whose outputs are fed back to the product term inputs. These
nodes must be declared, and can be given any names.

Node 49, the complement array feedback, is declared (as COMP) so that it can be
entered into each of the equations. In this design, the complement array feedback is
used to wrap the counter back around to zero from state nine, and also to reset it to
zero if an illegal counter state is encountered. Any illegal state (and also state 9) will
result in the absence of an active product term to hold node 49 at a logic low. When
node 49 is low, product term 9 resets each of the feedback registers so the counter is
set to state zero. (To simplify the following description of the equations in Figure 4-17,
node 49 and the complement array feedback are temporarily ignored.)

The first equation states that the F0 (output) register is set (to provide the counter
output) and the P0 register is set when registers P0, P1, P2, and P3 are all reset
(counter at state zero) and the clear input is low. The complemented outputs of the
registers (with the clear input low) form product term 0. Product term 0 sets register
P0 to increment the decade counter to state 1, and sets register F0 to provide an
output at pin 18.
ABEL Design Manual 75

Using Complement Arrays
Figure 4-17. Transition Equations for a Decade Counter

The second equation performs a transition from state 1 to state 2 by setting the P1
register and resetting the P0 register. (The .R dot extension is used to define the
reset input of the registers.) In state 2, the F0 register remains set, maintaining the
high output. The third equation again sets the P0 register to achieve state 3 (P0 and
P1 both set), while the fourth equation resets P0 and P1, and sets P2 for state 4, and
so on.

module DECADE
title 'Decade Counter Uses Complement Array
Michael Holley Data I/O Corp'

 decade device 'F105';

 Clk,Clr,F0,PR pin 1,8,18,19;
 P3..P0 node 40..37;
 COMP node 49;

 F0,P3..P0 istype 'reg_sr,buffer';

 _State = [P3,P2,P1,P0];
 H,L,Ck,X = 1, 0, .C., .X.;

equations
 [P3,P2,P1,P0,F0].ap = PR;
 [F0,P3,P2,P1,P0].clk = Clk;

"Output Next State Present State Input
 [F0.S, COMP, P0.S] = !P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "0 to 1
 [COMP, P1.S,P0.R] = !P3.Q & !P2.Q & !P1.Q & P0.Q & !Clr; "1 to 2
 [COMP, P0.S] = !P3.Q & !P2.Q & P1.Q & !P0.Q & !Clr; "2 to 3
 [COMP, P2.S,P1.R,P0.R] = !P3.Q & !P2.Q & P1.Q & P0.Q & !Clr; "3 to 4
 [COMP, P0.S] = !P3.Q & P2.Q & !P1.Q & !P0.Q & !Clr; "4 to 5
 [F0.R, COMP, P1.S,P0.R] = !P3.Q & P2.Q & !P1.Q & P0.Q & !Clr; "5 to 6
 [COMP, P0.S] = !P3.Q & P2.Q & P1.Q & !P0.Q & !Clr; "6 to 7
 [COMP,P3.S,P2.R,P1.R,P0.R] = !P3.Q & P2.Q & P1.Q & P0.Q & !Clr; "7 to 8
 [COMP P0.S] = P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "8 to 9
 [P3.R,P2.R,P1.R,P0.R] = !COMP; "Clear

"After Preset, clocking is inhibited until High-to-Low clock transition.
test_vectors ([Clk,PR,Clr] -> [_State,F0])
 [0 , 0, 0] -> [X , X];
 [1 , 1, 0] -> [^b1111, H]; " Preset high
 [1 , 0, 0] -> [^b1111, H]; " Preset low
 [Ck, 0, 0] -> [0 , H]; " COMP forces to State 0
 [Ck, 0, 0] -> [1 , H];
" ..vectors edited...
 [Ck, 0, 1] -> [0 , H]; " Clear
end
ABEL Design Manual 76

ABEL-HDL and Truth Tables
Wraparound of the counter from state 9 to state 0 is achieved by means of the
complement array node (node 49). The last equation defines state 0 (P3, P2, P1, and
P0 all reset) as equal to !COMP, that is, node 49 at a logic low. When this equation is
processed, the fuses are blown. As a result, the !COMP signal is true to generate
product term 9 and reset all the “buried” registers to zero.

ABEL-HDL and Truth Tables
Truth Tables in ABEL-HDL represent a very easy and straightforward description
method, well suited in a number of situations involving combinational logic.

The principle of the Truth Table is to build an exhaustive list of the input combinations
(referred to as the ON-set) for which the output(s) become(s) active.

The following list summarizes design considerations for Truth Tables. Following the
list are more detailed examples.

■ The OFF-set lines in a Truth Table are necessary when more than one output is
assigned in the Truth Table. In this case, not all Outputs are fired under the same
conditions, and therefore OFF-set conditions do exist.

■ OFF-set lines are ignored because they represent the default situation, unless the
output variable is declared dc. In this case, a third set is built, the DC-set and the
Output inside it is assigned proper values to achieve the best logic reduction
possible.

■ If output type dc (or @dcset) is not used and multiple outputs are specified in a
Truth table, consider the outputs one by one and ignore the lines where the
selected output is not set.

■ Don't Cares (.X.) used on the right side of a Truth Table have no optimization
effect.

■ When dealing with multiple outputs of different kind, avoid general settings like
@DCSET which will affect all your outputs. Use istype ‘.....DC’ on outputs for
which this reduction may apply.

■ Beware of Outputs for which the ON-set might be empty.

■ As a general guideline, it is important not to rely on first impression or simple
intuition to understand Truth tables. The way they are understood by the compiler
is the only possible interpretation. This means that Truth Tables should be
presented in a clear and understandable format, should avoid side effects, and
should be properly documented (commented).
ABEL Design Manual 77

ABEL-HDL and Truth Tables
Basic Syntax - Simple Examples
In this example, the lines commented as L1 and L2 are the ON-set.

Lines L3 and L4 are ignored because Out is type default (meaning ‘0’ for unspecified
combinations). The resulting equation does confirm this.

MODULE DEMO1
TITLE 'Example 1'
" Inputs

A, B, C pin;
"Output

Out pin istype 'com';
Truth_Table
 ([A,B,C] -> Out)

[0,1,0] -> 1; // L1
[1,1,1] -> 1; // L2
[0,0,1] -> 0; // L3
[1,0,0] -> 0; // L4

END
// Resulting Reduced Equation :
// Out = (!A & B & !C) # (A & B & C);

Example 2 differs from example 1 because Out is now type ‘COM, DC’. (optimizable
don’t care).

In this case, the lines commented as L1 and L2 are the ON-set, L3 and L4 are the
OFF-set and other combinations become don’t care (DC-set) meaning 0 or 1 to
produce the best logic reduction. As a result in this example, the equation is VERY
simple.

@DCSET instruction would have produced the same result as to declare Out of type
dc. But @DCSET must be used with care when multiple outputs are defined: they all
become dc.

MODULE DEMO1
TITLE 'Example 2'
" Inputs

A, B, C pin;
"Output

Out pin istype 'com, dc';
Truth_Table
 ([A,B,C] -> Out)

[0,1,0] -> 1; // L1
[1,1,1] -> 1; // L2
[0,0,1] -> 0; // L3
[1,0,0] -> 0; // L4

END
// Resulting Reduced Equation :
// Out = (B);
ABEL Design Manual 78

ABEL-HDL and Truth Tables
Influence of Signal polarity
We will see now with example 3 how the polarity of the signal may influence the truth
table:

In this example, Out1 and Out2 are strictly equivalent. For !Out1, note that the ON-set
is the 0 values. The third line L3 is ignored.

MODULE DEMO2
TITLE 'Example 3'
" Inputs

A, B, C pin;
"Output

Out1pin istype 'com, neg';
Out2pin istype 'com, neg';
Out3pin istype 'com, neg'; // BEWARE

Truth_Table
 ([A,B,C] -> [!Out1, Out2, Out3])

[0,0,1] -> [0, 1, 0];//L1
[0,1,1] -> [0, 1, 0];//L2
[1,1,0] -> [1, 0, 1];//L3

END
// Resulting Equations :
// !Out1 = !Out2 = (A # !C);
// or: Out1 = Out2 = (!A & C);
// BUT: Out3 = (A & B & !C); <<what you wanted ?

For active-low outputs, one must be careful to specify 1 for the active state if the
Output appears without the exclamation point (!).
0 must be used when !output is defined in the table header.

We recommend the style used for Out1.

For Out3, line used is L3, L1 and L2 are ignored.
ABEL Design Manual 79

ABEL-HDL and Truth Tables
Using .X. in Truth tables conditions
Don’t Care used on the left side in Truth tables have no optimization purpose. they
only serve as a shortcut to write several conditions in one single line.

Be careful when using .X. in conditions. This can lead to overlapping conditions which
look not consistent (see example below). Due to the way the compiler work, this type
of inconsistency is not checked nor reported. In fact, only the ON-set condition is
taken into account, the OFF-set condition is ignored.

The following example illustrates this:

MODULE DEMO3
TITLE 'Example 4'
" Inputs

A, B, C pin;
"Output

Outpin istype 'com';
" Equivalence

X = .X.;
Truth_Table
 ([A,B,C] -> Out)

[0,0,1] -> 0; //L1 ignored in fact
[0,1,0] -> 1; //L2
[1,X,X] -> 1; //L3
[0,0,1] -> 1; //L4 incompatible
[1,1,0] -> 0; //L5 incompatible

END
// Result : Out = A # (B & !C) # (!B & C)

L1 is in fact ignored. Out is active high, therefore only line L4 is taken into account.

Likewise, L5 intersects L3, but is ignored since it is not in the ON-set for Out.

Globally, only L2, L3 and L4 are taken into account, as we can check in the resulting
equation, without any error reported.
ABEL Design Manual 80

ABEL-HDL and Truth Tables
Using .X. on the right side
The syntax allows to use .X. as a target value for an output. In this case, the condition
is simply ignored.

Example 6 shows that-> .X. states are not optimized if DC type or @DCSET are not
used.

These lines are ALWAYS ignored.

MODULE DEMO6
TITLE 'Example 6'
" Inputs

A, B, C pin;
"Output

Outpin istype 'com';
" Equivalence

X = .X.;
Truth_Table
 ([A,B,C] -> Out)

[0,0,0] -> 0;
[0,0,1] -> X;
[0,1,0] -> 1;
[0,1,1] -> X;
[1,X,X] -> X;

END
// As is : Out = (!A & B & !C);
// With istype 'com,DC' : Out = (B);

They are in fact of no use, except maybe as a way to document that output does not
matter.

✍ NOTE This is not the method to specify optimizable don’t care states.
See example 2 for such an example.
ABEL Design Manual 81

ABEL-HDL and Truth Tables
Special case: Empty ON-set
There is a special case which is unlikely to happen, but may sometimes occurs.
Consider this example:

MODULE DEMO5
TITLE 'Example 5'
" Inputs

A, B, C pin;
"Output

Outpin istype 'com, pos';
Truth_Table

([A,B,C] -> Out)
[0,0,1] -> 0;
[0,1,0] -> 0;
[1,0,0] -> 0;

// [0,0,0] -> 1;//changes everything!
END
// Without the last line L4 :
// !Out=(A & !B & !C)# (!A & B & !C)# (!A & !B & C);
// WITH L4 : Out = (!A & !B & !C);

What we obtain is slightly unexpected. This table should produce Out=0; as the
result. (We enumerated only OFF conditions, and the polarity is POS (or default), so
unlisted cases should also turn into zeroes.)

One reason to build such a table could be when multiple outputs are defined, and
when Out needs to be shut off for whatever reason.

In the absence of the line L4, the result is not intuitive. The output is 0 only for the
listed cases (L1, L2, L3), and is 1 for all other cases, even if dc or pos is used.

When line L4 is restored, then the output equation becomes Out = (!A & !B & !C);
because we fall in the general situation where the ON-set is not empty.

Registered Logic in Truth tables
Truth Tables can specify registered outputs. In this case, the assignment become :>
(instead of ->).

For more information, refer to the ABEL-HDL Reference Manual .
ABEL Design Manual 82

Index
Symbols
'attribute'

and polarity control 54
'collapse'

selective collapsing 42
'neg'

and polarity control 53
.D 56
.FB 55
.PIN 55
.Q 55
:=

alternate flip-flop types 50
@DCSET

example 61
with state machines 68

'xor' 62
“collapse”

collapsing nodes 42
“Keep”

collapsing nodes 42

A
ABEL-HDL

enter an ABEL-HDL description 25
enter logic description 27
enter test vectors 28
overview 14
properties 31
strategies 32

ABEL-HDL Compiling 24
Active-low declarations 51
actlow1.abl 52
actlow2.abl 51
Attributes

and architecture independence 43
Architecture independence

attributes 43
dot extensions 43, 56
dot extensions, example 57
resolving ambiguities 44

Arrays, complement 75

Attributes
collapsing nodes 42
in lower-level sources 39

Auto-update 29

B
Bottom-up design 20

C
Collapsing nodes 42

selective 42
Combinational nodes 40
Compilation 17
Complement arrays 75

example 76

D
D flip-flop

unsatisfied transition conditions 67
Dangling nodes 40
dc

and polarity control 53
dc.abl 61
Dc-set 60

and optimization 61
decade.abl 76
Declarations

active-low 51
Design hierarchy 17
Design Overview

compilation 17
device programming 17
hierarchy 17
projects 15
simulation 17
sources 16

Dot extensions
and detail descriptions 58

Detail descriptions 45
and macrocells 45
example, dot extensions 58, 59
example, inverting 48
example, non-inverting 47
when to use 50
ABEL Design Manual 83

Index
detail1.abl 58
detail2.abl 59
Device programming 17
Devices

programmable polarity 53
Don't Care .X.

on left side of Truth Table 80
on right side of Truth Table 81

Detail descriptions
and dot extensions 58

Dot extensions
.D 56
.FB 55
.PIN 55
.Q 55
and architecture independence 43, 56
and architecture independence,

example 57
and feedback 55
example, detail 58, 59
no 55

E
Emulation of flip-flops 63
Equation polarity 53
Equations

for flip-flops 54
XOR 62

F
Feedback

and dot extensions 55
merging 41

Flip-flops
and dot extensions 54
detail descriptions 50
D-type 67
emulation with XORs 63
state diagrams 50
using := with 50

H
Hierarchical design

abstract 19
advantages of 19
approaches to 19
bottom-up 20
defined for ABEL-HDL 20
mixed 20
philosophy 19
symbols in 20

techniques 19
top-down 20

Hierarchical levels
defined 18

Hierarchy 17, 38
modular design 18, 19

I
Identifiers

in state machines 65
Inside-out design 20
Instantiation 38
Interface

submodule 39
Istype, and polarity control 54

J
JK flip-flop

and := 50
emulation of 63

L
Linking modules

merging feedbacks 41
post-linked optimization 41

Lower-level sources 39
instantiating 38

M
Mixed design 20

N
Node

collapsing 42
combinational 40
complement arrays 75
dangling 40
registered 40
removing redundant 41
selective collapsing 42

O
Off-set 60
One-bit changes 72
On-set 60

in Truth Tables 78
Optimization

and @DCSET 61
of XORs 62
post-linked 41
reducing product terms 72

Output enables 39
ABEL Design Manual 84

Index
P
pin2pin.abl 57
Pin-to-pin descriptions 44

and flip-flops 54
example 47
resolving ambiguities 44

Polarity control 53
active levels 53

Ports
declaring lower-level 39

Post-linked Optimization 41
Powerup state 67
Preset

built-in, example 48
Product terms

reducing 72
Programmable designing 12
Programmable polarity, active levels for

devices 53
Project sources 16
Properties 31

Q
Q11.abl 47
Q12.abl 47
Q13.abl 48
Q15.abl 49
Q17.abl 49

R
Redundant nodes 41
Registered design descriptions 44
Registered nodes 40
Registers

bit values in state machines 72
cleared state in state machines 67
powerup states 67

Reset
example, inverted architecture 49
example, non-inverted architecture 49
resolving ambiguities 49

S
Selective collapsing 42
sequence.abl 66
Simulation 17
Sources

ABEL-HDL 16
device 16
graphic waveform stimulus 16
project notebook 16
schematic 16

test vector 16
Verilog HDL 16
Verilog test fixture 16
VHDL 16
VHDL test bench 16

SR flip-flop
and := 50

State machine example 66
@DCSET 70
no @DCSET 68

State machines
and @DCSET 61, 68
cleared register state 67
design considerations 65
identifiers in 65
identifying states 72
illegal states 67
powerup register states 67
reducing product terms 72
using state register outputs 72

State registers 72
Strategies 32
Symbolic state descriptions 74

T
T flip-flop

and equations 54
Top-down design 20
traffic.abl 68
traffic1.abl 70
Transferring designs 43
Transition conditions 67
Tristate outputs 39
Truth Tables

ABEL-HDL 77

X
x1.abl 62
x2.abl 62
XORs

and operator priority 63
example 62
flip-flop emulation 63
implied 62
optimization of 62
ABEL Design Manual 85

	Main Table of Contents
	ABEL Design Manual
	Table of Contents
	Preface
	What is in this Manual
	Where to Look for Information

	Documentation Conventions
	Related Documentation

	Chapter 1 ABEL-HDL Overview
	Programmable Design in ispDesignExpert
	What is Programmable Designing?
	What is ABEL-HDL?

	Overview of Design
	Projects
	Project Sources
	Design Hierarchy
	Design Compilation
	Design Simulation
	Device Programming

	Chapter 2 ABEL-HDL Hierarchical Designs
	Why Use Hierarchical Design?
	Approaches to Hierarchical Design
	Creating a new Hierarchical Design
	Top-down Design
	Bottom-up Design
	Inside-out (Mixed) Design

	Specifying a Lower-level Module

	Chapter 3 Compiling ABEL-HDL Designs
	Overview of ABEL-HDL Compiling
	Design Entry
	Creating a Design Using ABEL-HDL Sources

	Design Compliation
	Keeping Track of Process: Auto-update
	Compiling an ABEL-HDL Source File
	Using Properties and Strategies

	Design Simulation

	Chapter 4 ABEL-HDL Design Considerations
	Overview of ABEL-HDL Design Considerations
	Hierarchy in ABEL-HDL
	Instantiating a Lower-level Module in an ABEL-HDL Source
	Identifying I/O Ports in the Lower-level Module
	Declaring Lower-level Modules in the Top-level Source
	Instantiating Lower-level Modules in Top-level Source

	Hierarchy and Retargeting and Fitting
	Redundant Nodes
	Merging Feedbacks
	Post-linked Optimization

	Hierarchical Design Considerations
	Prevent Node Collapsing

	Node Collapsing
	Selective Collapsing

	Pin-to-pin Language Features
	Device-independence vs. Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. Detailed Descriptions for Registered Designs
	Using := for Pin-to-pin Descriptions
	Resolving Ambiguities

	Detailed Circuit Descriptions
	Detailed Descriptions: Designing for Macrocells

	Examples of Pin-to-pin and Detailed Descriptions
	Pin-to-pin Module Description
	Detailed Module Description

	Detailed Module with Inverted Outputs
	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types

	Using Active-low Declarations
	Polarity Control
	Polarity Control with Istype
	Using Istype ‘neg’, ‘pos’, and ‘dc’ to Control Equation and Device Polarity
	Using ‘invert’ and ‘buffer’ to Control Programmable Inversion

	Flip-flop Equations
	Feedback Considerations — Dot Extensions
	Dot Extensions and Architecture-Independence
	Dot Extensions and Detail Design Descriptions

	Using Don’t Care Optimization
	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations
	Using XORs for Flip-flop Emulation
	JK Flip-Flop Emulation

	State Machines
	Use Identifiers Rather Than Numbers for States
	Powerup Register States
	Unsatisfied Transition Conditions
	D-Type Flip-Flops
	Other Flip-flops

	Precautions for Using Don’t Care Optimization
	Number Adjacent States for One-bit Change
	Use State Register Outputs to Identify States
	State Register Bit Values

	Using Symbolic State Descriptions
	Symbolic Reset Statements
	Symbolic Test Vectors

	Using Complement Arrays
	ABEL-HDL and Truth Tables
	Basic Syntax - Simple Examples
	Influence of Signal polarity
	Using .X. in Truth tables conditions
	Using .X. on the right side
	Special case: Empty ON-set
	Registered Logic in Truth tables

	Index

