

Integrated Device Technology, Inc.

Version 1.0
March 1997

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 492-8674

Printed in U.S.A.
©1996 Integrated Device Technology, Inc.

 IDT/sim
User/Developer’s Manual

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications
at any time, without notice, in order to improve design or performance and to supply the best possible
product. IDT does not assume any responsibility for use of any circuitry described other than the
circuitry embodied in an IDT product. The Company makes no representations that circuitry de-
scribed herein is free from patent infringement or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent, patent rights or other
rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life sup-
port devices or systems unless a specific written agreement pertaining to such intended use is exe-
cuted between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant
into the body or (b) support or sustain life and whose failure to perform, when properly used in ac-
cordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system, or to affect its
safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port,
FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REAL8,
R3041, R3051, R3052, R3071, R3081, R36100, R3721, R4600, R4640, R4650, R4700, R4761, R4762, R5000, RISController, RISCore,
RISC Subsystem, RISC Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trademarks of Inte-
grated Device Technology, Inc.
MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/os, R3000, and R3010 are trademarks
of MIPS Computer Systems, Inc. Postscript is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are
registered trademarks of Apple Computer, Inc. Centronics is a registered trademark of Genicom, Inc. Ethernet is a registered trademark
of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.

 iii

Integrated Device Technology, Inc.

This manual provides users and developers with an organizational
overview as well as assistance throughout the developmental stages of the
IDT/sim Debug Monitor. User commands, minimum start-up informa-
tion and a complete PROM function entry point table are included.

Summary of Contents

Chapter 1, “IDT/sim Debug Monitor Overview,”

 defines the compo-
nents and functions of the system integration manager (IDT/sim).

Chapter 2, “Developing IDT/sim,”

 provides both source code and
compiler installation information. Discussions on building IDT/sim,
testing the executable and cross-compiling issues are included.

Chapter 3, “Minimum IDT/sim Start-up File,”

 includes a basic over-
view on the source code organization and directory structures.

Chapter 4, “Minimum IDT/sim User Commands,”

 contains an expla-
nation on the user commands that do not require support during the
initial porting of IDT/sim.

Chapter 5, “Adding & Deleting User Commands,”

 provides the infor-
mation necessary for working with the command table contained in the
‘SIM3000/imain.c’ or ‘SIM4000/imain.c’ source files.

Chapter 6, “Adding & Deleting IDT/sim Device Drivers,”

 provides
instructions for working with the switch and device initialization tables.

Chapter 7, “Using Micromonitor,”

 explains the use of Micromonitor
and includes user command definitions and working examples. If working
with a new design, a recommended debug sequence is also included.

Chapter 8, “Using the Systems Diagnostics Command,”

 explains
the low-level hardware diagnostic tests and actions made available
through the systems diagnostics command.

Chapter 9, “IDT/sim PROM Entry Points,”

 presents a description of
general use and comprehensive listing of all PROM entry point functions
accessed in IDT/sim.

Chapter 10, “IDT/sim User Commands,”

 describes the implementa-
tion of the IDT/sim user commands. The Communication/Host interface,
Execution control, Memory/Register and Assembly/Disassembly, Setup
and Environment, TLB, Trace, Network and Board specific commands are
discussed.

Chapter 11, “IDT/sim User Command Summary,”

 provides a quick
reference summary of the IDT/sim user commands.

About This Manual

About This Manual About This Manual

 iv

Chapter 12, “Using ITEM-Terminal Emulator for DOS,”

 describes
the use of the terminal emulator program supplied with some of IDT’s
products, which include IDT/C for the DOS development platform.

Chapter 13, “Motorola S-record Format,”

 contains an explanation of
the specifications for each S-record field.

Chapter 14, “Register Numbers and Names,”

 provides a list of regis-
ters with reference numbers, names and use. A separate table that refer-
ences the floating point register is included.

 v

Integrated Device Technology, Inc.

IDT/sim Debug Monitor OverviewChapter 1

What is IDT/sim?...1-1
What does IDT/sim do?... 1-1

Developing IDT/sim ...Chapter 2

IDT/sim source code installation.. 2-1
Compiler installation .. 2-1
Compiler test runs ... 2-1
Cross-compiling issues... 2-2
Building IDT/sim ... 2-2
Testing the IDT/sim executable .. 2-3

IDT/sim or Micromonitor ... 2-3

Minimum IDT/sim Start-up File Chapter 3

Overview of IDT/sim source files ..3-1
Directory structure.. 3-1

Modifying start-up file csu_idt.S... 3-3
SIM3000/csu_idt.S .. 3-3
CPU identification (R30xx).. 3-4
RAM accessibility (R30xx)... 3-4
Subroutine ‘initmem’ (R30xx) ... 3-4
Initialize device table (R30xx) ... 3-5
Initialize IDT/sim to known state (R30xx)... 3-5
Initialize command table (R30xx).. 3-6
Clear breakpoints (R30xx) .. 3-6
SIM4000/csu_idt.S .. 3-6
RAM accessibility (R4xxx)... 3-6
Board initialization - ‘sbdinit’ (R4xxx) ... 3-7
Subroutine ‘initmem’ (R4xxx) ... 3-7
Initialize device table (R4xxx).. 3-8
Initialize IDT/sim to known state (R4xxx) ... 3-8
Initialize command table (R4xxx) .. 3-8
Clear breakpoints (R4xxx) .. 3-8

Minimum IDT/sim User Commands................................. Chapter 4

Command table... 4-1
Commands not required for minimal IDT/sim versions 4-1

Adding & Deleting User Commands Chapter 5

Command Table Structure .. 5-1
Command Table Entries... 5-2

Adding & Deleting IDT/sim Device DriversChapter 6

Overview ... 6-1
Device Switch Table ... 6-1
Device Initialization Table .. 6-1
Device Switch Table ... 6-2
Device Initialization Table .. 6-2
Example Device Driver ... 6-3
Source File cendrvr.c ... 6-3
Source File centron.s ... 6-4
Header file centron.h.. 6-6
Make File Makecen .. 6-6

Using Micromonitor .. Chapter 7

Introduction .. 7-1
User Commands ... 7-1

Table of Contents

Table of Contents Table of Contents

 vi

Store ... 7-1
Load... 7-2
Jump ... 7-3
Dump... 7-3
Fill ... 7-3
Compare .. 7-4
Transfer ... 7-4
Scope Loops ... 7-4
Set Segment Default... 7-5
Print Stack ... 7-5
Memory check .. 7-5

Porting to new hardware ... 7-6
Recommended Debug Technique.. 7-7
Exception handling .. 7-7

Using the Systems Diagnostics Command Chapter 8

Introduction .. 8-1
Memory Test .. 8-1
Cache Memory Test.. 8-1
System Test ... 8-1
MMU Test .. 8-2
FPU Test .. 8-2
Set Options.. 8-2

IDT/sim PROM Entry Points .. Chapter 9

General Description and Use ..9-1
Prom Monitor Entry Point Functions .. 9-3

EXIT... 9-3
ATOB ... 9-3
CLEAR_CACHE .. 9-4
CLI... 9-5
CLOSE ... 9-5
EXC_CACHE_CODE ... 9-6
EXC_NORM_CODE... 9-6
EXC_UTLB_CODE.. 9-7
EXC_XTLB_CODE .. 9-7
FLUSH_CACHE .. 9-7
GET_MEM_CONF ... 9-8
GET_RANGE .. 9-8
GETCHAR .. 9-9
GETS ... 9-9
HELP ... 9-9
INSTALL_COMMANDS... 9-10
INSTALL_IMMEDIATE_INT .. 9-10
INSTALL_NEW_DEV .. 9-12
INSTALL_NORMAL_INT ... 9-13
IOCTL ... 9-15
OPEN .. 9-16
PRINTF/SPRINTF .. 9-16
PUTCHAR.. 9-18
PUTS... 9-18
READ.. 9-18
REINIT .. 9-18
RESET .. 9-19
RESTART .. 9-19
SET_MEM_CONF... 9-19
SETJMP/LONGJMP .. 9-20
STRING... 9-21

Table of Contents Table of Contents

 vii

TFTPCLOSE.. 9-21
TFTPOPEN.. 9-22
TFTPREAD ... 9-22
TIMER_START .. 9-22
TIMER_STOP .. 9-23
TOKENIZE.. 9-23
WRITE.. 9-24

IDT/sim User Commands... Chapter 10

Overview... 10-1
Issuing Commands... 10-1

Command Format .. 10-1
Documentation conventions ... 10-1
Command Specifications .. 10-2
Command categories .. 10-2
Communication/Host Interface Commands 10-3

Debug - DBX .. 10-3
Debug - GDB and IDT/c version 5.0 or later 10-4
Download Program from Host to Board 10-5
Set Baud rate of tty Port ... 10-6
Terminal Emulator ... 10-7

Execution Control Commands .. 10-7
Run User Benchmark ... 10-7
Set or Display Breakpoint ... 10-8
Call a Subroutine ... 10-8
Continue Execution .. 10-9
Go (Run Program) ... 10-9
GoTill ... 10-9
Next (step over subroutine) ... 10-9
Single Step ... 10-9
Unbreakpoint ... 10-10

Memory/Register & Assembly/Disassembly Commands 10-10
Assembler... 10-10
Cache Flush ... 10-13
Compare Block ... 10-13
Disassemble Contents Of Memory... 10-14
Dump Cache .. 10-14
Dump Memory.. 10-15
Dump Registers .. 10-15
Fill Memory .. 10-16
Fill Register .. 10-17
Move Block ... 10-18
Read Cache Memory ... 10-18
Search Memory... 10-18
Substitute Memory ... 10-19
Write Cache Memory... 10-20

Set-up and Environment Commands.. 10-21
Checksum .. 10-21
Help Command... 10-21
History Command... 10-21
Initialize ... 10-21
Register Set Select .. 10-21
Set Default Radix.. 10-21
Set Default Segment ... 10-22

TLB Commands.. 10-22
TLB Dump.. 10-22
TLB Flush .. 10-22
TLB Map... 10-22

Table of Contents Table of Contents

 viii

TLB Process ID ... 10-23
TLB Search For Physical Address Map 10-24

Trace Commands ... 10-24
Trace Command ... 10-24
Trace Stop Command ... 10-26
Trace Conditionally Command.. 10-27
Trace Dump Command... 10-28
Trace Exclude Command .. 10-29
Trace Command Examples ... 10-29

Network Related Commands... 10-30
Download and execute binary file (boot) 10-30
Ping a host ... 10-30

Board specific Commands .. 10-30
Set / display date and time... 10-31
Display settings of environment variables 10-31
Set environment variable values ... 10-31
Delete (unset) environment variable .. 10-31

IDT/sim User Command Summary................................ Chapter 11

Quick Reference .. 11-1
asm <addr> ... 11-1
benchmark|bm ... 11-1
brk|b [address list].. 11-1
boot [-n] [[HOST:]FILE]... 11-1
cacheflush|cf [-i|-d|-n] ... 11-1
call|ca <address> [arg1 arg2 ... arg8]... 11-1
checksum|cs [start_addr num_bytes] .. 11-1
compare|cp [-w|-b|-h] <RANGE> <destination> 11-1
cont|c ... 11-1
date [[[[[yy]mm]dd]hh]mm.[ss]] ... 11-1
dbgint|di [-e|-d] [DEVICE | Int. Line] .. 11-1
dc [-i|-d] RANGE ... 11-1
debug|db [DEV] .. 11-2
diag|dg ... 11-2
dis <RANGE>... 11-2
dr [reg#|name|reg_group] ... 11-2
dt ... 11-2
dump|d [-w|-h] <RANGE>... 11-2
env .. 11-2
fill|f [-w|-h|-b|-l|-r] <RANGE> [value_list] 11-2
fr [-s|-d] <reg#|name> <value>.. 11-2
go|g [-n] <address> ... 11-2
gotill|gt <address> .. 11-2
help|? [command list].. 11-2
history|h... 11-2
init|i ... 11-2
load|l [-b|-a|-s|-t] <device> .. 11-2
move|m [-w|-b|-h] <RANGE> <destination>................................ 11-3
next|n [count] ... 11-3
ping [-lnqrv] [-c COUNT] [-i WAIT] [-s SIZE] HOST 11-3
rad [-o|-d|-h ... 11-3
rc [-i] [-w|-b|-h] <RANGE> .. 11-3
regsel|rs [-c|-h]... 11-3
search|sr [-w|-b|-h] <RANGE> <value> [mask] 11-3
seg [-0|-1|-2|-s|-3|-u] ... 11-3
setbaud|sb DEV.. 11-3
setenv VAR VALUE .. 11-3

Table of Contents Table of Contents

 ix

step|s [count] .. 11-3
sub [-w|-h|-b|-l|-r] <address>.. 11-3
t [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m MSK]11-3
tc [-e BPNUM] [-d BPNUM] ... 11-3
te ... 11-3
tex [RANGE] .. 11-3
tlbdump|td [RANGE] ... 11-4
tlbflush|tf [RANGE] .. 11-4

tlbmap|tm [-i index] [-ndgv] <vaddress> <paddress> (for R30xx) 11-4
tlbmap|tm [-i INX} [-(v|d|g)[0\1]] [-g] [-p PAGESIZE] [-c CACHEALG]
VAD DR PADDR [PADDR] (for R4xxx) ... 11-4

tlbpid|ti [pid]... 11-4
tlbptov|tp <physaddr>... 11-4
ts [-b|-f|-o|-r RANGE|-w RANGE|-i INS|-m MSK]...................... 11-4
unbrk|ub <bpnumlist>.. 11-4
unsetenv VAR.. 11-4
wc [-i] [-w|-b|-h] <RANGE> [value_list] .. 11-4

Using ITEM-Terminal Emulator for DOS......................... Chapter 12

Introduction ... 12-1

Motorola S-record Format .. Chapter 13
Register Numbers and Names.. Chapter 14

Floating-Point Registers... 14-2
Control registers.. 14-2

1 – 1

Integrated Device Technology, Inc.

What is IDT/sim?

The System Integration Manager (IDT/sim) Debug Monitor is a soft-
ware/firmware tool that permits the convenient downloading, execution,
troubleshooting and diagnoses of code for a variety of IDT RISC system
products. IDT/sim is available in two forms:

•

Executable code programmed in a set of EPROMS as

firmware.

 In
this form, IDT/sim is present in the read-only-memory of all RISC
microprocessor evaluation boards (available through Integrated
Device Technology (IDT)) and is the operating system, the low-level
debugger and the system monitor, with textual user interface for the
boards.

•

Software source code on DOS disks or Unix tapes

. IDT/sim is also
available as

software source

 code written in ‘C’ and assembler. In this
form, IDT/sim function modifications or enhancements can be made
through a user configurable command table. This feature allows the
user to simply link and load the enhanced function into memory and
enter the entry point into the command table. Some special entry
points for supporting stand-alone systems are also available.

What does IDT/sim do?

IDT/sim performs several functions. On start-up, the monitor auto-
matically determines the cache and main memory sizes. It is also a real-
time operating system for the evaluation board on which it is installed; it
manages the hardware resources of the board; it provides the user with a
command line interface; it offers low-level debugging capabilities and an
interface for remote high-level debuggers.

IDT/sim is equipped with a built-in assembler, disassembler, entry
points for user-defined commands, interrupt handlers, a ROM resident C-
language library and I/O interface through a variety of devices that
include serial, parallel, SCSI, ethernet, and much more.

Who should read this manual?

The intention of this manual is to address the needs of both

 users

 and

developers

. So to effectively use this manual and obtain the most relevant
information, it is important to identify the scope of your task. You are
primarily a

 user

 of IDT/sim if you
• do not intend to change the available functions of IDT/sim, or
• are not interested in how IDT evaluation boards work but are inter-

ested in understanding the operating system commands for the
boards, or

• are interested in evaluating an IDT RISC microprocessor, using one of
the IDT evaluation boards as a vehicle for executing benchmarks, or

• have already decided to use an IDT RISC microprocessor for your
application and are now evaluating whether one of IDT’s existing eval-
uation boards—possibly with some modifications—will satisfy your
needs or should a completely new board be designed, or

• want to develop system independent application code (written in stan-
dard ‘C’ or assembler) to run on IDT evaluation boards while your
custom designed board, based on an IDT RISC microprocessor, is
under development

IDT/sim Debug Monitor
Overview

Chapter 1

IDT/sim Debug Monitor Overview Chapter 1

1 – 2

You are primarily a

developer

 of IDT/sim if you:
• want to understand how IDT/sim works
• want to evaluate the IDT/sim source code for portability
• want to gain an understanding of IDT RISC microprocessor behavior

and/or IDT evaluation boards; both processor and board documenta-
tion are good but not adequate and you want to verify documentation
and experiment more

• want to use an IDT evaluation board but do not want to use all of the
IDT/sim features; you want to reduce the IDT/sim code size and use
the memory space made available for some other purpose

• want to modify or enhance the functions of IDT/sim in IDT evaluation
boards

• want to “port” IDT/sim to your custom designed board, based on an
IDT RISC microprocessor

 Chapters 1 through 7 of this manual contain information of interest to
developers, chapters 8 through 14 contain references to IDT/sim
commands and are intended for all IDT/sim users.

2 – 1

Integrated Device Technology, Inc.

Before beginning any IDT/sim software development project, the

IDT/
sim 7.0 Release Notes

 should be reviewed. A copy of the release notes is
included with the IDT/sim source code and provides installation
commands, a list of bug-fixes and enhancements, build procedures and
technical assistance numbers.

IDT/sim source code installation

IDT/sim source code can be installed on the development platform of
your choice, or on a member of the network to which your development
platform is connected. The development platforms currently supported
are SunOS 4.1, SunOS 4.1.3 and DOS 5.0 or above. IDT/sim source code
installation is simple and will take approximately 20 minutes to complete.

Note:

With some modifications to the Makefiles, compilers other
than those from IDT/c 7.0 could build IDT/sim 7.0; however, none
have been used or tested by IDT.

SunOS 4.1 code is supplied on a 150 MB QIC tape in tar format. To
access the code, (1)

create

 a new directory on your hard disk, (2)

assign

 a
name to the new directory, and (3)

extract

 the tar formatted file over to
the newly created directory. To install SunOS, simply use the following
command:

tar xvof /dev/rst0

The DOS code is supplied on floppy disks. To access the code, (1)

create

 a new directory on your hard disk, (2)

assign

 a name to the new
directory, and (3)

copy

 all files from the disks over to the new directory,
using the ‘xcopy’ command. Sim7.0 consists of three diskettes that have
been compressed using a “pkzip” utility. When using the “pkunzip” or
“winzip” utilities, follow the installation instructions provided in the

IDT/
sim 7.0 Release Notes

mentioned above.

Compiler installation

Install IDT/C or another ‘C’ compiler tool-chain on the development
platform of your choice. Because each IDT RISC microprocessor family
(for example, the R30xx or R4xxx) has unique instructions, the tool-chain
should include assembler support for that family. Some members of a
family (for example, the R4600 or the R4650) also have instructions that
are unique to each other.

In a majority of the tool-chains, during the compilation process, the
target microprocessor is specified by the developer with a compile-time
switch (-mcpu=xxxxx, in the case of IDT/C). To verify that your target
processor is supported by your tool-chain, review the compiler’s docu-
mentation.

Compiler test runs

To test the basic function accuracy of the newly installed compiler,
compile one or more ‘C’ programs. A majority of the tool-chains provide
some sample code for this purpose. For example, IDT/C has two sample
source files that can be tried immediately after installation of the
compiler. All of the batch or makefiles required to compile the code are
provided. If you installed the IDT disk (DOS) or IDT tape (SunOS4.1) of
the IDT/C compiler in a directory called ‘IDTC,’ you will find the sample
code located in ‘IDTC/samples/hello’ and ‘IDTC/samples/stanford.’

Developing IDT/sim Chapter 2

Developing IDT/sim Chapter 2

2 – 2

Cross-compiling issues

The compiler you use for IDT/sim development will most likely be a
cross compiler. This means that the machine code generated by the
compiler/assembler/linker will be for a target processor quite different
from the native processor of your development platform; therefore, it is
important to use the correct compiler.

 During the initial phases of a project, because the commands used for
native and cross compilation are very similar, a commonly made mistake
is to use the native compiler—or some part of the native tool-chain—for
cross development, resulting in strange error messages during compila-
tion. If two or more cross-compilers are installed on the same machine,
complicated errors can occur.

However, in the single-user DOS environment, operating conditions are
relatively easy to manage by creating a unique batch file that establishes
the correct environment for each cross compiler. Once this has been
done, any cross-compiler can be used by first running the appropriate
batch file. Creation of the batch file is a one-time task usually completed
after installation of a new tool-chain.

In the UNIX environment, it is the system administrator’s responsibility
to educate users on all compiler set-ups and to correctly install each
cross-compiler so that operating environments do not conflict.

Building IDT/sim

To build a working version of IDT/sim requires minimal familiarity with
the on-tape source code provided, and the process of building executable
IDT/sim code can be as simple as running the ‘make’ utility on a specific
“makefile.” There are several ‘makefiles’ available that support a variety of
tool-chains, evaluation boards and endianness. Selection of the appro-
priate ‘makefile’ must be based on the evaluation board you will be
working with.

Make the directory where the IDT/sim source code was installed the
current directory. There are several subdirectories below the ‘mysim’
level: ‘common,’ ‘R385,’ ‘S361,’ ‘S464,’ ‘RS341,’ ‘S381,’ ‘S460,’ ‘S465,’
SIM3000,’ and ‘SIM4000’. If your evaluation board is based on a member
of the R30xx RISController family, change the directory to SIM3000. If
your evaluation board is based on a member of the R4xxx microprocessor
family, go into the SIM4000 subdirectory.

Listing the contents of the directory selected (either the SIM3000 or the
SIM4000) will reveal the following directories: SUN_MAKE and
DOS_MAKE, which contain the ‘makefiles’ for building IDT/sim on either
SUN host or DOS host machines. Both the SUN_MAKE and DOS_MAKE
directories contain a list of directories that contain build environments
(makefiles...) for a specific IDT evaluation target, as reflected in the each
file name.

After locating the correct ‘makefile,’ review it. Verify that the declara-
tions made in the file (such as paths and filenames) are applicable to your
installation and then modify, if needed. Because any necessary changes
will be made within the first few lines, studying the entire ‘makefile’ is not
necessary.

Next, run the ‘make’ utility and eliminate any errors noted in the ‘make’
process. At the end of a successful ‘make,’ depending on your evaluation
board, either one or four files with the extension ‘.sre’ will have been
created. These are the Motorola standard S-record files that can be down-
loaded to your EPROM programmer or ROM emulator. The number of S-
record files created is equal to the number of IDT/sim EPROMs on your
evaluation board.

Developing IDT/sim Chapter 2

2 – 3

Testing the IDT/sim executable

Now that the executable version of IDT/sim has been created, test it by
using the S-record files you created to program a set of EPROMs and
replace the existing ones in your evaluation board

1

. When the board is
powered up, the IDT/sim sign-on message should appear on the terminal
connected to the first serial port on the evaluation board (port labeled
TTY0).

If the sign-on message does not appear—and if your evaluation board
has IDT/sim split into four EPROMs—try reversing the order in which you
placed the EPROMs. The correct EPROM order can be derived from your
knowledge of (a) endianness of the evaluation board and (b) the “-b”
switch parameter used in the makefile while creating the S-record files;
however, it is quicker to reverse the board’s EPROM order. If you are
using a ROM emulator, reversing the pod order is even easier because it
simply takes a command to the emulator.

Once the sign-on message appears, try some simple commands. A
detailed knowledge of IDT/sim commands is not necessary, at this point.
Simply enter “help” or “?” and try commands such as “dump memory” or
“run diagnostics.”

If the IDT/sim created on your development platform does not function
properly, review the information in this chapter and look for simple clues
such as the following:

• Check the length of the S-record files. If they are not in tens or
hundreds of Kilobytes, an error might have occurred during the
process of creating the S-record files.

• Check the length of the executable file from which the S-record files
were generated. The name of the executable file can be found in the
makefile you used to create the current version of IDT/sim. If the
length of this executable file is not in tens or hundreds of Kilobytes,
the file was not created properly.

• Verify that all of the object files were created. Object files have an
extension of ‘.o’. The number of object files created must match the
number of files listed in the makefile. See if any of the object files have
a zero length.

Most of the errors mentioned above will be detected during the ‘make’
process itself; but it is possible to have not made a clean start through
your several iterations of ‘make.’ At the early stages of your development
efforts, it is a good practice to begin with a ‘make clobber’ or ‘make clean’
command, before actually running the ‘make’ to build the IDT/sim
executable. If additional assistance is needed, call the IDT RISC hotline.

IDT/sim or Micromonitor

Micromonitor is provided in source code form along with the IDT/sim
source code. This product is intended to assist hardware engineers in
bringing up and debugging their RISC-based board-level products.
Micromonitor is written in assembler language and needs minimal hard-
ware to function. If your board has a functioning CPU, a UART interface,
and an EPROM interface, you may port the Micromonitor code to your
hardware and begin using it (information on using Micromonitor is avail-
able in Chapter 7).

1.

To prevent the need to program EPROMs for each IDT/sim revision
throughout the development process, consider investment in a ROM
emulator. If you have access to one, download the newly created S-record
files to the ROM emulator. With the pods plugged into the evaluation
board, the IDT/sim sign-on message will appear on the terminal that is
connected to the evaluation board’s first serial port (port labeled TTY0).

Developing IDT/sim Chapter 2

2 – 4

When working with a newly designed board, it is advisable to begin by
porting the Micromonitor. Once the Micromonitor is functioning properly,
you may want to begin working with the IDT/sim in a progressive
manner: begin with minimum sim functions and add features as hard-
ware confidence grows. A new developer should decide to begin with
either the Micromonitor or with IDT/sim

When working with a modification of a working board or design, you
may want to begin porting IDT/sim right away. Under most circum-
stances, it is advisable to begin working with a version of IDT/sim that
has minimal functionality. Guidelines on how to create a stripped down
version of IDT/sim and how to progressively add features to it are
provided in the chapters ahead.

3 – 1

Integrated Device Technology, Inc.

Before you begin porting IDT/sim, a basic understanding of the source
code organization will be helpful.

Overview of IDT/sim source files

The IDT/sim source code that is used for all evaluation boards is orga-
nized into a single directory structure. Variations for different boards and
processors are created by using different tool-chains, aided by different
‘Makefiles’ and conditionally compiled code in the sources.

There are several files common to all IDT/sim variations. These partic-
ular files do not contain code that addresses unique board or processor
conditions. However, there are also files common to all IDT/sim variations
that do contain code that is used to address specific boards (a feature
implemented by using “#if defined()” or “#ifdef” conditional compile direc-
tives).

There are also files that have similar names but exist in different direc-
tories. These particular files contain code that performs similar tasks but
performs them for different target boards or processors. The implementa-
tions are so different that the source code compaction achieved by condi-
tional compiling would not justify the potential confusion while reading
the code.

Finally, there are also source files unique to one specific board. These
files contain no conditional compile statements, no equivalent files in any
other directory, and are called only for compiling and linking while
creating IDT/sim for that specific board.

Directory structure

1

The common/, header/, LIBRA/, RS341/, R385/, S361, S381/, S460/,
S464/, SIM3000/, SIM4000/, net/, binutils/, driver/, and lib/ directo-
ries are located at the top level of the IDT/sim source code installation.

common/:

 This subdirectory contains some “C” and “assembler” files
that are common to all flavors of IDT/sim. Some of these files contain
conditional compile directives for different boards or processors, or both.
For example, “#ifdef R381” indicates code specific to the 79S381 board; “if
defined(CPU_R4000)” indicates code applicable to all derivatives of
R4000, including the Orion family; and “if defined(CPU_R3000)” indicates
code applicable to all IDT derivatives of R3000 CPUs.

header/:

 This subdirectory contains header files common to all targets

LIBRA/:

This directory contains the R3710-support-chip-based UART
driver and centronics driver specific to LIBRA target.

RS341/:

This directory contains the start-up code, 2681 UART driver
and the PCIO16 driver that is specific to an RS341 target.

R385/:

 This directory contains the start-up code and 2681 UART
driver that is specific to an R385 target.

S361/:

 This directory contains the start-up code and R36100 specific
CPU initialization and 8530 UART initialization code.

S381/:

This directory contains the start-up code and 2681 UART
drivers specific to S381 target.

1.

For supplementary information on this topic, see Technical Note TN-20 in
the

RISC Microprocessor Application Guide

.

1

Minimum IDT/sim
Start-up File

Chapter 3

Minimum IDT/sim Start-up File Chapter 3

3 – 2

S460/:

This directory contains NEC UMCOMMUNIC088V30 pB-1-222
UART driver, NVRAM driver, and other drivers specific to an S460 target.

S464/:

This directory contains CD1284-based UART and centronics
drivers that are specific to an S464 target.

S465/:

This directory contains an 8530 UART driver and NVRAM
driver specific to an S465 target.

TIMERS/:

This directory contains timer routines that are based on
R4000 CPU count/compare registers and the SONIC-ethernet chip’s
watchdog timers.

SIM3000/:

This directory contains code that is common to boards
designed for derivatives of an R3000 core. In addition, this directory
contains the environments to create IDT/sim for each R3000 CPU target
under SUN-host and MSDOS-host respectively. For example, the ‘Make-
file’ for creating IDT/sim for a BigEndian S381 target under SUN-host can
be located under ‘./SUN_MAKE/S381.’

SIM4000/:

This directory contains code that is common to boards
designed for derivatives of an R4000 core. In addition, it contains the
environments for creating IDT/sim for each R4000 CPU target, under
SUN-host and MSDOS-host respectively. For example, the ‘Makefile’ for
creating IDT/sim for a BigEndian S465 target, under SUN-host, can be
found under ‘./SUN_MAKE/S465.’

net/:

This directory contains the ethernet code (from UC-Berkley) and
ethernet drivers that are specific to S381, S460, and S465 targets.

binutils/:

 This directory contains the “conv” utility—for SUN-host and
MSDOS host—that converts from ELF-executable to Motorola Style S3-
records.

drivers/:

This directory contains various, untested device drivers.

lib/:

 This directory contains BigEndian and LittleEndian math-emula-
tion libraries for 64-bit R4650 targets and is required by the diagnostics
(dg) command for an R4650 CPU. These libraries are not required if use of
the diagnostics command is not planned.

Creating a minimum version of IDT/sim

Porting the entire IDT/sim to a new board can be an overwhelming
task, especially if the new board is significantly different from IDT’s
existing evaluation boards. For example, in many cases, the functions of a
new board design may be similar to an existing board from IDT, but the
new board’s i/o interface hardware may be different from the IDT design.
In some cases, functions may have been removed from IDT’s design to
create a new board design. In other cases, functions may have been
added.

In general, it is best to begin by creating a version of IDT/sim that vali-
dates only the most basic features of the newly designed board. For
example, in the beginning of a project, although it is not critical to port
and verify the ethernet connections on the new board, it is crucial that
the target CPU registers be set-up correctly. Also, although at first it is
not important for the mechanism to automatically detect the size of avail-
able DRAM, it is very important that the DRAM interface be correctly
programmed and fully functional, to facilitate loading code into the DRAM
space. If the board has an SRAM interface, it should be considered the
next priority, and so on.

Assuming that the new board’s EPROM and Serial I/O interfaces are
both working (which can be tested with the Micromonitor), a good place to
begin the porting process is to identify the IDT eval board design that is
most similar to the new board’s design and to locate the ‘Makefile’

2

 that is
related to this IDT evaluation board.

Minimum IDT/sim Start-up File Chapter 3

3 – 3

As you reduce IDT/sim’s functionality, to create the smaller version,
you will change the ‘Makefile’ to reflect the intended modifications. It is
important that a copy of the known working ‘Makefile’ be kept in a
different name at all stages, to use as reference when needed.

Modifying start-up file csu_idt.S

The first piece of code in IDT/sim is located in the start-up file called
‘csu_idt.S’. This is an assembler file located in /SIM3000 or /SIM4000,
depending on the target CPU. When a board is powered up or reset, this is
the code that is executed first as it is placed at the reset vector. As one
would expect, the file ‘csu_idt.S’ contains majority of the code or subrou-
tine calls to code which does initial configuration (if needed) of the target
CPU and the board hardware.

In addition, the start-up file contains code to perform many other tasks
which are not necessarily required in a bare minimum IDT/sim. Let us
review the start-up files SIM3000/csu_idt.S and SIM4000/csu_idt.S and
see how we can come up with bare-minimum versions of these files. If
your interest is in boards based on R4xxx CPU, please skip over to the
section titled ‘SIM4000/csu_idt.S’. Others may continue to read the next
section and may ignore ‘SIM4000/csu_idt.S’ section.

SIM3000/csu_idt.S

Note:

While reading this section, please refer to a print-out of the
‘SIM3000/csu_idt.S’ file.

The first subroutine in the file is

start.

At the beginning of

 start,

 there
are a series of 80

jump

 instructions. This is a PROM entry point table,
which provides entry points into IDT/sim code that pertains to many
standard C language functions such as

open, close, printf, read, write,
gets, puts,

 etc. Some IDT-specific functions are also accessible through
this jump table. This

jump

 table is provided so that a user program
running out of RAM can simply use these entry points instead of linking
run-time library code, which may occupy large amounts of RAM space.

Linking C functions through the PROM entry point table will result in
slower code because the entry points and the actual functions are
programmed into PROM and will execute from the PROM as well.
However, where compactness of user code is more important than speed,
this entry point table is made available to the user. The prom entry point
table is not required for basic functionality of IDT/sim, and the entire
table may be removed or commented out. When deleted, your code will
start at the label

 idtstart

.
The SIM3000/csu idt.S file contains a number of

#ifdef

 statements. A
majority of these statements reflect conditional compile directives that are
specific to a particular IDT evaluation board. If your board is based on
one of IDT’s evaluation boards, you may leave code pertaining only to that
board in the csu_idt.S file and delete the code that is specific to other
boards. Leaving the unrelated code is harmless, but deleting it will
improve source code readability.

As an example, if your board is not based on the 79S341 board, you
may safely delete all lines of code between and including the lines #

ifdef
RS341

 and the corresponding occurrence of the line

 #else

 or

 #endif

 (if no
corresponding

#else

 was present). If

#else

was present and you deleted it,
remember to delete the corresponding

#endif

. It is critically important to
delete all

corresponding

 occurrences of these directives, especially in
cases where there are nested

 #ifdef

 statements.

2.

The process of locating a particular “Makefile’ is discussed in Chapter 2.

Minimum IDT/sim Start-up File Chapter 3

3 – 4

Let us assume now that the jump table and all unrelated code has been
deleted. The next step of the

start

 subroutine deals with initializing
specific registers in some of the R30xx processors. To locate this code,
search for the string ‘CPU identification’ in the file.

CPU identification (R30xx)

In this portion of code, the logic implemented is relatively uncompli-
cated. The coprocessor register that contains the product identification is
read into a temporary register. If the value read is hexadecimal 700 or
701, the target CPU is identified as an R3041 or 3041A, and the execution
jumps to the label

its4

 where the R3041

 BusCtrl

and

PortWidth

 registers
are initialized.

Also, if the product identification value is identified as hexadecimal 700
or 701, then a test for the presence of a floating point accelerator (FPA) is
performed. If an FPA is detected, the target CPU is identified as an R3081.
If an FPA is not detected, then the CPU is identified as an R3051 or
R3052. You could initialize the Config register to suit your needs, if you
detect an R3081.

If the R30XX CPU type is already known, code size can be reduced by
removing the portion of code that relates to CPU identification. The IDT/
sim port can then be hard coded for that particular CPU. You can always
bring the CPU identification code back into play if you desire more flexi-
bility in the future.

RAM accessibility (R30xx)

The next element to test for is on-board RAM accessibility. And a
simple data pattern

test is performed where

 hexadecimal AAAA5555

 is
written to the base address of the RAM, and a zero is written to the next
address. The base address location is read back and the data read is
compared with

hexadecimal AAAA5555

.
If the data does not match, it is determined that RAM is not properly

accessible and the current version of IDT/sim simply hangs in an infinite
loop (search for the string ‘memory not’ in the file ‘csu_idt.S’ for the loca-
tion of this infinite loop). At early porting stages, and even on a more
permanent basis, it may be useful to have an LED display indicate that a
RAM error has occurred, if the test fails.

However, if this first test is passed, a second test is performed with the
data pattern of -1. After it has been determined that RAM is accessible, a
number of important tasks are then performed. To evaluate which of
these are important and should be ported to a minimum version of IDT/
sim the sequence that these tasks are performed will be detailed in the
following section, using a ‘SIM3000/csu_idt.S’ file as an example.

Subroutine ‘initmem’ (R30xx)

The first task in the ‘initmem’ subroutine is to set the entire ‘bss’
section to zero. The ‘bss’ section (reference: C language) holds uninitial-
ized data. C programmers will expect the ‘bss’ section to be zeroed out
prior to code execution. However, unless your port of IDT/sim will specifi-
cally make use of the fact that all uninitialized data is set to zero at the
outset, you do not need this portion of the code.

A stack pointer is set up and the entire stack is set to zero for IDT/sim
execution. Leave this portion of the code untouched. The default size of
the stack is defined in

P_STACKSIZE,

which is set to 8 Kb in the file
‘header/idtmon.h.’

Minimum IDT/sim Start-up File Chapter 3

3 – 5

Next, the status register is read to see if the target CPU is of ‘E’ type
(TLB present) or not. To indicate the presence of TLB, a variable is set to a
non-zero value. Now a test for the presence of FPA is performed and the
PRID register of CP0 is read and a variable is set to a unique value to indi-
cate the type of CPU. If you already know what target you are going to
work with, you may delete all of these tests and simply set the variables to
known values. Note that this will make the code inflexible and you will not
be able to change CPUs on your board.

Next, a certain amount of cache related work is performed. First the
sizes of both data and instruction caches are determined and stored in
variables for future reference. This is done in the subroutine
‘config_cache’ which calls the subroutine ‘_size_cache’. Both subroutines
are for R3000 CPU targets and are defined in the file ‘common/except.S’.
If you know which CPU you are going to be using, the cache sizes are
already known, and you can simply set the appropriate variables
(

dcache_size, icache_size

) to the known values, deleting the remaining
code that sizes the caches.

Following cache configuration and sizing, the caches are flushed by the
subroutine ‘flush_cache’. Leave this code untouched. As a final attempt to
distinguish between R3051 and R3052, cache sizes are used. If you have
already hard coded the CPU type, you may delete this portion of the code
as well.

Initialize device table (R30xx)

The subroutine ‘init_dev-tab’ moves the i/o device handling table from
ROM to RAM for faster access. By default, only two serial i/o devices ‘tty0’
and ‘tty1’ are installed at this stage. If your board does not have the
second serial i/o port ‘tty1’, you may delete it from the table. The table is
defined as ‘device_init[]’ in the file ‘common/idtconf.c’. It should be veri-
fied that the i/o base address declared in the table matches the address
on your board. The definition of the ‘init_dev_tab’ subroutine is located in
the same file. Near the end of this subroutine is a call to install a
centronics port driver. Delete this line unless you absolutely wish to have
your minimal version of IDT/sim support centronics parallel port.

Initialize IDT/sim to known state (R30xx)

To initialize some of the remaining hardware aspects, the next step is to
assign known legitimate values to some of the system variables that are
used by IDT/sim.

A call is made to subroutine ‘init_memory’. The first step in this
subroutine is to invalidate the TLB. If you know that your target CPU does
not have a TLB (is not an ‘E’ type device), you may delete this portion of
the code. The rest of the code uses a couple of techniques to determine
the size of available RAM. If you already know the size of the RAM, hard
code it in the variable ‘mem_size’ in the subroutine ‘init_memory,’ which
is defined in the file ‘common/excepth.c’.

After assigning memory size, the next few lines of code set up global
variables related to the floating point unit. If you are not using the R3081,
you may delete these lines.

The next few lines, enclosed within the pair of

 #ifdef INET - #endif

,
should be deleted for the sake of clarity, although they are only condition-
ally compiled. These lines initialize the board’s ethernet ports, and it is
not necessary for a minimal version of IDT/sim to address ethernet inter-
face issues.

Minimum IDT/sim Start-up File Chapter 3

3 – 6

Initialize command table (R30xx)

The call to subroutine ‘init_cmd_tab’ copies the command table from
ROM space to RAM space for faster access. This command table is the
data structure that the IDT/sim command line interpreter uses as a look-
up mechanism for translating user commands into actions.

IDT/sim currently supports a large number of user commands. In the
minimal version, a majority of these commands may be disabled to reduce
the size of IDT/sim (Chapter 4 discusses which commands to disable). At
this point, leave the call to ‘init_cmd_tab’ (defined in file SIM3000/
imain.c) as it is.

Clear breakpoints (R30xx)

Leave this call untouched. During the testing phase, even a minimal
version of IDT/sim may need low level debugging facilities of IDT/sim.

SIM4000/csu_idt.S

Note:

While reading this section, please refer to a print-out of the
‘SIM4000/csu_idt.S’ file.

The first subroutine in the file is

start.

At the beginning of

 start

, there
are a series of 112

jump

 instructions. This is a PROM entry point table,
which provides entry points into IDT/sim code that pertains to standard
C language functions such as

open, close, printf, read, write, gets, puts,

etc. Some IDT-specific functions are also accessible through this jump
table, which is provided so that a user program running out of RAM can
simply use these entry points instead of linking run-time library code that
may occupy large amounts of RAM space.

Because the entry points and the actual functions are programmed
into PROM and execute from the PROM as well, linking C functions
through the PROM entry point table will result in slower code. However,
where compactness of user code is more important than speed, the entry
point table is made available to the user. The prom entry point table is not
required for basic functionality of IDT/sim, and the entire table may be
removed or commented out. When deleted, your code will start at the
label

 idtstart

.
When the R4xxx processors became available, the ‘SIM4000/csu_idt.S’

file was based on the ‘SIM3000/csu_idt.S’ file. For this historical reason,
there are still a number of conditional compile directives such as

#if
defined (CPU_R3000)

 in the ‘SIM4000/csu_idt.S’ file. Because this file is
used only for boards that are based on R4xxx, these conditional compile
directives, and the code activated by them, are redundant. Within this
build environment, for clarity and code readability, all lines of code that
are compiled if

CPU_R3000

 is defined can be deleted.

RAM accessibility (R4xxx)

After initializing the

Status

 and

Cause

 registers of CP0 to reasonable
default values, the next crucial element is to test the accessibility of on-
board RAM. A simple data pattern test is performed where

 hexadecimal
AAAA5555

 is written to the base address of the RAM, and a zero is written
to the next address. The base address location is read back and the data
read is compared with

hexadecimal AAAA5555

.

Minimum IDT/sim Start-up File Chapter 3

3 – 7

If the data does not match, it’s determined that RAM is not properly
accessible and the current version of IDT/sim simply hangs in an infinite
loop (search for the string ‘memory not’ in the file csu_idt.S for the loca-
tion of this infinite loop). If the first test passes, a second test is performed
with the data pattern of -1. If the test fails, at the early stages of porting,
or on a more permanent basis, it may be helpful to display a message or
have an LED display indicate that a RAM error has occurred.

Once RAM is determined to be accessible, a number of important tasks
are performed. Using a ‘SIM4000/csu_idt.S’ file example, let us review the
tasks in the sequence in which they are undertaken, to evaluate which of
them are important and should be ported to a minimal version of IDT/
sim.

Board initialization - ‘sbdinit’ (R4xxx)

A call is made to the subroutine ‘sbdinit’—which is defined in the file
‘S460/p4000s.S’. ‘sbdinit’—initializes a number of hardware registers on
the board, using a table called ‘sbditab’ which is defined in the ‘S460/
p4000c.c’ file. Note that most of this code and table are geared toward the
79S460 board. If your board is significantly different, please review the
table and delete references to devices that your board does not support.
Also, verify that the addresses of the unrelated devices are accurate. All
device specific addresses are defined in the file ‘S460/p4000.h.’ Please
review this file in its entirety.

The 79S460 board has a 4-unit 7-segment LED display that can be
used for diagnostic purposes. To write to this display, call the macro
‘DISPLAY’ which is defined in the file ‘S460/p4000s.S.’ If your board does
not have such a display, delete the contents of the definition of ‘DISPLAY.’
If you have a different mechanism for diagnostics display, incorporate its
code in place of the current ‘DISPLAY’ code.

Next, ‘sbdinit’ clears caches, sizes and clears RAM. This code can be left
as is.

Subroutine ‘initmem’ (R4xxx)

The first task in the ‘initmem’ subroutine is to set the entire ‘bss’
section to zero. The ‘bss’ section (reference: C language) holds uninitial-
ized data. C programmers will expect the ‘bss’ section to be zeroed out
prior to code execution. However, unless your port of IDT/sim specifically
makes use of the fact that all uninitialized data is set to zero at the outset,
you do not need this portion of the code.

A stack pointer is set up next, and the stack is set to zero for IDT/sim
execution. Leave this portion of the code untouched. The default size of
the stack is defined in

P_STACKSIZE,

which is set to 8 Kb in the file
‘header/idtmon.h.’

Next, the PRID register of CP0 is read and a variable to indicate the
type of CPU is set to a unique value. If you know the target you will be
working with, you may delete all of these tests and simply set the vari-
ables to known values. This will make the code inflexible and you will not
be able to change CPUs on your board, so please exercise caution. A test
for the presence of a floating point unit follows. All R4xxx have a floating
point unit, and you may delete this test.

Minimum IDT/sim Start-up File Chapter 3

3 – 8

Next, a certain amount of cache related work is done. First the sizes of
both data and instruction caches are determined and stored in variables
for future reference. This is done in the subroutine ‘config_cache’ which
calls the subroutine ‘_size_cache.’ Both subroutines are defined in the file
‘common/idtc4000.S.’ If you know the CPU type that you will be using,
the cache sizes are also known, and you can simply set the appropriate
variables (

dcache_size, icache_size, scache_size, icache_linesize,
dcache_linesize, scache_linesize

) to the known values. The rest of the code
that determines the cache sizes can be deleted. After performing cache
configuration and sizing, the caches are flushed by the subroutine
‘flush_cache.’ This code should remain untouched.

Initialize device table (R4xxx)

The subroutine ‘init_dev-tab’ moves the i/o device handling table from
ROM to RAM for faster access. By default, only two serial i/o devices ‘tty0’
and ‘tty1’ are installed at this stage. If your board does not have the
second serial i/o port ‘tty1,’ you may delete it from the table.

The initialize device table is defined as ‘device_init[]’ in the ‘common/
idtconf.c’ file. Verify that the i/o base address declared in the table
matches the address on your board. In the same file is the definition of
the ‘init_dev_tab’ subroutine. Near the end of this subroutine is a call to
install a centronics port driver. Delete this line unless you want the
minimal version of IDT/sim to support centronics port.

Initialize IDT/sim to known state (R4xxx)

The next step is to assign known legitimate values to some of the
system variables used by IDT/sim and to initialize some of the remaining
aspects of hardware.

A call is made to subroutine ‘init_memory’. The first step in this
subroutine is to invalidate the TLB. The rest of the code uses a couple of
techniques to determine the size of available RAM. If you already know
the size of the RAM, hard code it in the variable ‘mem_size’ in the subrou-
tine ‘init_memory’ which is defined in the file ‘common/excepth.c’.

The next line, enclosed within the pair of

 #ifdef INET - #endif

, should be
deleted for the sake of clarity even though it is only conditionally
compiled. This line deals with initializing the ethernet ports. A minimal
version of IDT/sim certainly should not be dealing with ethernet interface
issues even accidentally!

Initialize command table (R4xxx)

The call to subroutine ‘init_cmd_tab’ copies the command table from
ROM space to RAM space for faster access. The command table is the
data structure that the IDT/sim command line interpreter uses as a look-
up mechanism for translating user commands into actions. IDT/sim
currently supports a large number of user commands. In the minimal
version, majority of these commands may be disabled to reduce the size of
IDT/sim. The topic of which commands to disable is addressed in the
next chapter. At this point, leave the call to ‘init_cmd_tab’ (defined in file
SIM4000/imain.c) as it is.

Clear breakpoints (R4xxx)

Leave this call untouched. During the testing phase, even a minimal
version of IDT/sim may need low-level debugging facilities of IDT/sim.
This completes the treatment of the start-up file SIM4000/csu_idt.S

4 – 1

Integrated Device Technology, Inc.

Command table

The size of IDT/sim code largely depends upon the number of user
commands it supports. As shown in the previous chapter, ‘csu_idt.S’ is
the start-up file first loaded when linking IDT/sim. The ‘start’ subrou-
tine—explained in Chapter 3—performs all system initializations and
jumps to the function ‘main.’

The function ‘main’ is defined in the ‘SIM3000/imain.c’ file for R30xx
based boards and in the ‘SIM4000/imain.c’ file, for R4xxx based boards.
When an IDT RISC evaluation board is powered up, the function ‘main’
displays the sign-on message and calls a command line interpreter func-
tion named ‘cli,’ which accepts keyboard commands at the ‘<IDT>’ prompt
through one of the ‘tty’ ports.

Once a user’s command is received, a command table is looked up. If
the command is located in the table, it is executed, based on the action
that is specified in the table entry for that command. The command table
is defined as a structure called ‘command_tab[]’ in the file ‘imain.c.’ While
creating a minimal version of IDT/sim, begin with this table.

Commands not required for minimal IDT/sim versions

Table 9.1 contains a list of user commands that do not require support
during the initial port of IDT/sim, and you may delete these command
entries from ‘command_tab[]’ in the ‘imain.c’ file. In general, a single file
contains the code that supports a single command. Consequently, once
you delete a command from the table, you may also remove the line(s)
that correspond to compiling and linking of the related ‘Makefile’ used to
build the minimal version of IDT/sim.

The list includes command names (alternate command names are in
parentheses) in the first column and file names which support the
command in the second column. There are cases where one file contains
support for more than one command. In such cases, the relevant function
name is also listed in the last column. Modifications to these particular
files should only be to the extent of removing these specifically listed func-
tions.

If there is no function name listed in the third column, you may delete
the entire file. Also, please do not forget to delete the ‘extern’ declarations
of the functions that you are deleting from the file ‘imain.c’. For
networking commands such as ‘boot’, where many files in ‘SIM4000/net/’
are involved, it is easier to just modify the ‘Makefile’ by simply removing
each occurrence of the global define ‘-DINET’ from the ‘Makefile’.

Command File name Function

asm common/idtcmds1.c asm_cmd()

SIM3(4)000/disasm.c

benchmark (bm)
This command is
only valid in
R385, S381, and
RS341 targets

common/idtbrk.c benchmark()

(R385,S381,RS341)/s68681co.c timer_start(), timer_stop()

common/sonicfns.S

TIMERS/timer_t.c

TIMERS/r4ksonic.S

boot net/*.* delete ‘-DINET’ from Makefile

Table 9.1 Commands not required for minimal IDT/sim versions

Minimum IDT/sim
User Commands

Chapter 4

Chapter 4

4 – 2

call (ca) common/idtcmds2.c callcmd()

common/except.S do_call()

date only valid in
S460 target

S460/p4000cmd.c com_date()

dbgint (di) common/idtcmds2.c ri_sel()

debug (db) common/idtdebug.c

disable common/idtfio.c

dt common/idtbrk.c dump_trace()

enable common/idtfio.c

env (S381, S460, S465)/p4000cmd.c

gotill (gt) common/idtbrk.c gotill()

history (h) common/icli.c linebuf[], hist_init(), history()

ping net/*.* delete ‘-DINET’ from Makefile

setenv (set) (S381, S460, S465)/p4000cmd.c

term (te) common/idtcmds1.c em(), to_transpar(), from_transpar()

t common/idtbrk.c trace_cmd()

tc common/idtbrk.c cond_trace_cmd()

tex common/idtbrk.c excl_cmd(), exc_init()

ts common/idtbrk.c stop_trace()

unsetenv (S381, S460, S465)/p4000cmd.c

Table 9.1 Commands not required for minimal IDT/sim versions

5 – 1

Integrated Device Technology, Inc.

Depending on the target board, the command table is contained either
in the source file ‘SIM3000/imain.c’ or ‘SIM4000/imain.c’. All commands
are decoded through this table. To add or delete a command, the user
must either remove or add an entry to this table. When adding a
command, the user will have to supply the implementation code for the
command which may be in a separate file.

Note:

If a new file is created, compile lines pertaining to it in the
‘Makefile’ must be added.

Command Table Structure

struct command_tab {
char *cmdt_name; /* command name */
char *cmdt_abrv_str; /* cmd. name abbreviation */
int (*cmdt_routine)(); /* implementing function */
int (*cmdt_init_rt)(); /* cmd. init function */
char *cmdt_usage; /* help string/usage */

};

In the above structure:

cmdt_name

 is a null terminated string that contains the unabbreviated
command name.

cmdt_abrv_str

 is a null terminated string that corresponds to an abbre-
viated form of the command name (a second form of entering the
command).

cmdt_routine

 is a pointer to the function that implements the
command. The command line interpreter tokenizes the entire command
line then places the null-terminated strings into the

argv

 array and sets

argc

 to the count of arguments. Delimiters used by the tokenizer are:

space ' '
comma ,
tab \t
left parenthesis (
right parenthesis)

Each string is an argument from the command line; the command
name is in

argv[0]

. The function pointed to by cmdt_routine in the
command table is called with the following arguments:

cmdt_routine(argc, argv, cmd_table)
int argc; char **argv;
struct command_tab *cmd_table;

cmdt_init_rt

 - is a pointer to an initialization routine that is called on at
power-up to initialize the command (such as to set up default values).

cmdt_usage

 - is a pointer to a null terminated string that specifies the
usage or syntax of the command. In actuality this string may be anything
the user wants. It is used by the help function (see help).

Adding & Deleting User
Commands

Chapter 5

Adding & Deleting User Commands Chapter 5

5 – 2

Command Table Entries

Here is a listing of the complete command table currently implemented
in IDT/sim.

CONST static struct command_tab command_tab[] = {
{"asm","asm","", asm_cmd, NULL,"assemble:\tasm ADDR"},
{"benchmark","bm",benchmark,NULL,

"benchmark:\tbenchmark|bm <? for help>"},
{"brk, "b", brk_command, NULL, "breakpoint:\tbrk|b[ADDRLIST]"},

#ifdef INET
{"boot", "", boot_cmd, NULL,

"boot via tftp:\tboot [-n][[HOST:]FILE]"},
#endif

#if defined(CPU_R3000)
{"cacheflush","cf", cacheflush, NULL,

"cacheflush:\tcacheflush|cf [-i|-d]"},
#endif
#if defined(CPU_R4000)

{"cacheflush","cf", cacheflush, NULL,
"cacheflush:\tcacheflush|cf [-i|-d|-s|-n]"},

#endif

{"call", "ca", callcmd, NULL,
"call:\t\tcall|ca ADDR [ARGLIST]"},

{"checksum","cs",chk_sum,NULL,
"checksum:\tchecksum|cs [startaddr byte_count]"},

{"compare","cp",compare_cmd,NULL,
"compare:\tcompare|cp [-w|-h|-b] RANGE destination"},

{"cont","c", cont,NULL,"continue:\tcont|c"},

#if defined(P4000)
{"date","",com_date,NULL,

"get/set date:\tdate [yymmddhhmm.[ss]]"},
#endif

{"dbgint","di",ri_sel,NULL,
"debug int.:\tdbgint|di [-e|-d][DEVICE|Int. Line]"},

{"debug","db", idebug,NULL,
"debug (remote):\tdebug|db [DEVICE]"},

{"dis","", _disass, NULL, "disassemble:\tdis [RANGE]"},
{"disable", "", close_rem, NULL, "disab rem file:\tdisable"},
{"dc","",disp_tag,NULL,"dump cache:\tdc [-i|-d] RANGE"},
{ "dr","",dump_regs,NULL,

"dumpregs:\tdr [reg#|reg_name|reg_group]"},
{"dt","",dump_trace,NULL,"dump trace:\tdt"},
{"dump","d",dump,NULL,

"dump:\t\tdump|d [-w|-h|-b] [RANGE]"},
{"enable","",open_rem,NULL, "enab rem file:\tenable DEVICE"},

#if defined(P4000)
{"env","",com_env,NULL,"env display:\tenv"},

#endif

{"fill","f", fill, NULL,
"fill:\t\tfill|f [-w|-h|-b|-l|-r] RANGE [value_list]"},

{"fr","",fill_reg,NULL,
"fill regs:\tfr [-s|-d] <reg#|reg_name><value>"},

{"go","g",go,NULL, "go:\t\tgo [-n] [INITIAL_PC]"},
{"gotill","gt", gotill, NULL,

"go untill:\tgotill|gt <brk addr>"},
{"help","?",help,NULL,"help:\t\thelp|? [COMMAND(S)]"},
{"history","h", history, hist_init, "history:\thistory|h"},
{"idb","", idbdebug,NULL, "IDTC debugger:\tidb [DEVICE]"},
{"init","i",prominit,NULL,"initialize:\tinit|i"},

Adding & Deleting User Commands Chapter 5

5 – 3

#ifdef INET
{"load","l",load,NULL,

"load:\t\tload|l [-t][-b][-s][-a] DEVICE|FILE"},
#else

{"load","l",load,NULL, "load:\t\tload|l [-b][-s][-a] DEVICE"},
#endif

{"move","m",movecmd,NULL,
"move:\t\tmove|m [-w|-h|-b] RANGE destination"},

{"next","n",next,NULL, "next:\t\tnext|n [COUNT]"},

#ifdef INET
{"ping", "", ping_cmd, NULL,

"ping net host:\tping [-Rdnqrv]
[-c count][-i wait][-s size] HOST"},

#endif

{"rad","",select_base,s_b_init,
"radix select:\trad [-o|-d|-h]"},

#if defined(CPU_R3000)
{"rc","rc",do_rc,NULL,

"read cache:\trc [-i][-w|-h|-b] <RANGE>"},
#endif
#if defined(CPU_R4000)

{"rc","rc",do_rc,NULL, "read cache:\trc <RANGE>"},
#endif

{"rdfile","rf",read_file,NULL,
"read file:\trdfile|rf <filename> <RANGE>"},

{"regsel","rs",rs_sel,NULL,
"reg set select:\tregsel|rs [-c|-h]"},

{"setbaud","sb",setbaud,NULL,
"setbaud:\tsetbaud|sb [CHAR_DEVICE]"},

{"search","sr",search_cmd,NULL,
"search:\t\tsearch|sr [-w|-h|-b] RANGE value [MSK]"},

#if defined(CPU_R3000)
{"seg","",select_seg,s_s_init,

"select seg.:\tseg [-0|-1|-2|-u]"},
#endif
#if defined(CPU_R4000)

{"seg","",select_seg,s_s_init,
"select seg.:\tseg [-0|-1|-s|-3|-u]"},

#endif

#if defined(P4000)
{"setenv","set",com_setenv,NULL,
"set env var:\tsetenv VAR VALUE"},

#endif

{"step","s",single_step,NULL,"step:\t\tstep|s [COUNT]"},
{"sub","sub", sub,NULL,

"sub:\t\tsub [-w|-h|-b|-l|-r] ADDRESS"},
{"term","te", em,NULL, "terminal emul.:\tterm|te"},
{"tlbdump","td", tlbdump,NULL, "tlbdump:\ttlbdump|td [RANGE]"},
{"tlbflush","tf", tlbflush,NULL,

"tlbflush:\ttlbflush|tf [RANGE]"},

#if defined(CPU_R3000)
{"tlbmap","tm", tlbmap,NULL,

"tlbmap:\t\ttlbmap|tm [-i INX] [-(v/d/g/n)] VADDR PADDR"},
#endif
#if defined(CPU_R4000)

{"tlbmap","tm", tlbmap,NULL,
"tlbmap:\t\ttlbmap|tm [-i INX] [-(v/d/g)[01]]

[-p PAGESIZE] [-c CACHEALG] VADDR PADDR [PADDR]"},
#endif

Adding & Deleting User Commands Chapter 5

5 – 4

{"tlbpid","ti", tlbpid,NULL,"tlbpid:\t\ttlbpid|ti [PID]"},
{"tlbptov","tp", tlbptov,NULL,"tlbptov:\ttlbptov|tp ADDR"},
{"t","",trace_cmd,NULL,

"trace:\t\tt [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/
-m MSK]"},

{"tc","", cond_trace_cmd,NULL,
"trace cond.:\ttc [-e BPNUM][-d BPNUM]"},

{"tex","",excl_cmd,exc_init,"trace exclude:\ttex [RANGE]"},
{"ts","",stop_trace,NULL,

"trc stop cond.:\tts [-b/-f/-o/-r RANGE/-w RANGE/-i INS/-m
MSK]"},

{"unbrk","ub",unbrk,NULL, "unbrk:\t\tunbrk|ub BPNUMLIST|ALL"},

#if defined(P4000)
{"unsetenv","unset",com_unsetenv,NULL,

"unsetenv var:\tunsetenv|unset VAR"},
#endif
#if defined(CPU_R3000)

{"wc","wc", do_wc,NULL,
 "write cache:\twc [-i][-w|-h|-b] <RANGE> [value_list]"},

#endif
{"wrtfile","wf",write_file,NULL,

"write file:\twtfile|wf <filename> <RANGE>"},
{0,0, 0, 0,""}

};

6 – 1

Integrated Device Technology, Inc.

Overview

The tables that link the file functions to the hardware device driver are
contained in the source module

COMMON/c_asm/idtconf.c

. The file
functions are:

open, close, read, write, ioctl and strategy

. There are two
tables: the

device switch table

 and the

device initialization table

. To
add a device driver, a new entry must be made in the ‘device switch table’.

 A single device driver may control several devices. For example, a
driver named ‘tty’ controls two devices named ‘tty0’ and ‘tty1.’ There must
be an entry for each device in the ‘device initialization table’. Currently,
IDT/sim is set up for a maximum of 8 device drivers and 16 devices. This
is arbitrary and may be changed by the developer. To reduce the number
of drivers and devices, change the sizes of arrays ‘work_dev_tab[]’ and
‘work_init_tab[]’ in the module ‘COMMON/c_asm/idtconf.c’.

Note:

There is no protection for overrunning the tables ‘device switch
table’ and ‘device initialization table’. Developers must not install more
than 8 drivers and 16 devices. If more than 8 and 16 are required, the
arrays ‘work_dev_tab[]’ and ‘work_init_tab[]’ must be expanded.

Device Switch Table

The format of device switch table is shown below:

struct dev_sw_tab {
int (*d_open)(); /* open routine */
int (*d_close)(); /* close routine */
int (*d_read)(); /* read routine */
int (*d_write)(); /* write routine */
int (*d_init)(); /* initialization routine */
int (*d_strategy)(); /* io strategy routine */
int (*d_ioctl)(); /* io control routine */
char *d_driver_name; /* pointer to driver name */

};

Each of the members in the above structure points to implementation
routines that are supplied by the device driver. Currently there is only one
device driver built into IDT/sim. This is the ‘tty’ driver which is contained
in the source module

COMMON/c_asm/s68681cons.c

. If the device that
the driver is written for does not require a particular function (e.g.

strategy

), then that member should contain a pointer to a routine that
does nothing (see example below for ‘null device’ routine). There is one
entry in the device switch table for each driver in the system.

Device Initialization Table

The structure shown below is an entry in the device initialization table.

 struct dev_init_tab {
char *dev_name; /* device name */
char *dev_descrip; /* device description */
char *dev_drv_name; /* driver name */
int dev_cntl; /* device controller number */
int dev_unit; /* unit number */
int dev_part; /* partition number */
int dev_io_addr; /* device I/O base address */

};

1

Adding & Deleting IDT/sim
Device Drivers

Chapter 6

Adding & Deleting IDT/sim Device Drivers Chapter 6

6 – 2

The tables currently present in IDT/sim are shown below. The ‘device
switch table’ contains one device driver. This is the DUART (serial i/o)
driver called ‘tty.’ The ‘device switch table’ must be terminated with a null
entry. For the ‘tty’ driver, the implemented functions are:

open, read,
write, init and ioctl

. There is no hardware action necessary to

close

 the ‘tty’
devices, so this entry in the table points to the

nulldev

. There is also no
need for a

strategy

 routine.

Device Switch Table

 struct dev_sw_tab device_table[] = {
{

ttyopen, /* device open routine */
nulldev, /* device close routine */
ttyread, /* device read routine */
ttywrite, /* device write routine */
ttyinit, /* device init routine */
nulldev, /* device strategy routine */
ttyioctl, /* device ioctl routine */
"tty" /* device driver name */

},
{0,0,0,0,0,0,0,0} /* null entry to mark end of table */

};

In the above table, the entry nulldev points to a routine that just
returns zero.

 int
nulldev()
{

return(0);
}

The

device initialization table

 has an entry for each device in the
system. IDT/sim supports both channels of the DUART so there are two
entries in this table, the first for ‘tty0’ and the second for ‘tty1.’

 Device Initialization Table

 struct dev_init_tab device_init[] = {
{
 "tty0", /* name of device */
 "console", /* dev. description */

"tty", /* driver name */
 0, /* controller number */
 0, /* unit number */
 0, /* partition */
 0x1fe00000 /* io device base address */
},

{
"tty1", /* name of device */
"", /* dev description */
"tty", /* driver name */
0, /* controller number */
1, /* unit number */
0, /* partition number */
0x1fe00000 /* io device base address */

},

{0,0,0,0,0,0,0} /* null entry to terminate table */
};

Adding & Deleting IDT/sim Device Drivers Chapter 6

6 – 3

The device description for ‘tty0’ is console. ‘tty1’ has no description. The
name of the driver is ‘tty’ and provides the link between device name and
driver. The ‘tty’ driver does not embody the concept of controller, so both
devices are assigned to controller zero. ‘tty0’ is unit zero (0) and tty1 is
unit one (1). There is no partition. The i/o in the MIPS architecture is
memory mapped, and the final entry points to the base i/o address for the
DUART.

Example Device Driver

The listings for a centronics parallel interface driver are shown below.
This driver may be compiled and linked to run out of RAM on a target
board with the hardware to support this option. When the user invokes
this downloaded driver it will make calls to IDT/sim through the entry
points to install the driver. The user may then return to IDT/sim running
out of EPROMS and use the Centronics driver (such as the command load
cen<cr> - which would attempt to download an S-record format file to the
target).

Source File cendrvr.c

#include "idtio.h"
#include "idt_entrypt.h"
#include "centron.h"

int cenopen(); /* rtn to open centronics port */
int cenread(); /* rtn to read centronics port */
int nulldev(); /* Null device driver rtn */

CONST struct dev_init_tab centron_init[] = {
{

"cen", /* centronics device */
 "centronics", /* dev. description */
 "centron", /* driver name */
 0, /* controller number */
 0, /* unit number */
 0, /* partition */
 0 /* io base address */

},

{0,0,0,0,0,0,0}
};

CONST struct dev_sw_tab centron_table[] = {
{

cenopen, /* device open routine */
nulldev, /* device close routine */
cenread, /* device read routine */
nulldev, /* device write routine */
nulldev, /* device init routine */
nulldev, /* device strategy routine */
nulldev, /* device ioctl routine */
"centron" /* device driver name */

},

{0,0,0,0,0,0,0,0}
};

/*
** When the user prg starts up, this routine is called
** to install the drivers for the centronics parallel
** download port.
*/

Adding & Deleting IDT/sim Device Drivers Chapter 6

6 – 4

install_centron()
{

install_new_dev(centron_table,centron_init);
}

/*
** Null device driver
*/

int nulldev()
{

return(0);
}

/*
** cenopen -- initialize centronics interface
*/

cenopen(io)
int *io;

{
cenempty(); /* Empty anything in the fifo */
return(0);

}

/*
** cenread-- perform read operation
** This routine uses a circular buffer between the actual
** device char get routine (cengetc) and the users request
** for input.
*/

cenread(io, buf, count)
int *io;
char *buf;
int count;
{

int ocnt;

ocnt = count;

while (count > 0) {
if(!(censtat()&CEN_RXRDY)) /* chk fifo empty */

return(ocnt - count);

buf++ = cenin(); / char to users buf */
 count--; /*go get another */

}

return(ocnt);
}

Source File centron.s

#include "idtcpu.h"
#include "iregdef.h"
#include "centron.h"

.set noreorder

/*
** _start - entry point for installing centronics driver
*/

Adding & Deleting IDT/sim Device Drivers Chapter 6

6 – 5

_start::
mfc0 t1,C0_SR
nop
nop
or t1,0x40000000 /* set cp2 usable bit */
mtc0 t1,C0_SR
nop
jal install_centron
nop
j _exit
nop

/*
** cenempty - make sure the fifo is empty
*/

.globl cenempty

cenempty:
mfc0 t1,C0_SR
nop
nop
or t1,0x40000000
mtc0 t1,C0_SR
nop
li t0,0xa0600000

1:
bc2f 2f /* If empty jump to return */
nop
nop /* If not empty read a byte */
lbu zero,0(t0) /* Throw byte away */
nop
nop
b 1b /* Go check if another byte */
nop

2:
j ra
nop

/*
** input routine - waits for a character to be put in fifo
** and then reads it out and returns the character
*/

.globl cenin

cenin:
mfc0 t1,C0_SR
nop
nop
or t1,0x40000000
mtc0 t1,C0_SR
nop
li t0,0xa0600000

1:
bc2f 1b /* If empty loop */
nop
lbu v0,0(t0) /* fetch byte from port */
j ra /* return with byte in v0 */
nop

Adding & Deleting IDT/sim Device Drivers Chapter 6

6 – 6

/*
**censtat - checks for a character to input
** returns:
** zero - no character
** CEN_RXRDY - character in fifo
*/

.globl censtat

censtat:
mfc0 t1,C0_SR
nop
nop
or t1,0x40000000
mtc0 t1,C0_SR
nop
bc2t 1f /* Test the empty flag bit */
nop
j ra /* if empty return a zero */
move v0,zero

1:
j ra /* else return CEN_RXRDY */
li v0,CEN_RXRDY

Header file centron.h

/*
** Copyright 1989 Integrated Device Technology
** All Rights Reserved
** Header file for centronics interface
*/

#define NUM_UNIT 1
#define CEN_RXRDY 1

Make File Makecen

#
Copyright 1989 Integrated Device Technology, Inc.
All rights reserved.
Makefile for Centronics driver (assumes MIPS compiler)

CC2= cc $(INCDIRS) -G 0 -EL -g -c
AS2= as $(INCDIRS) -G 0 -EL -g -o
OBJS= centron.o cendrvr.o idtlink.o

all: centron

centron.o: centron.s iregdef.h idtcpu.h
$(AS2) centron.o centron.s

cendrvr.o: cendrvr.c
$(CC2) cendrvr.c

idtlink.o: idtlink.s
$(AS2) idtlink.o idtlink.s

centron: $(OBJS)
-rm -f centron centron.map centron.nm
ld -m -N -G 0 -T 80012000 -o centron\
 $(OBJS) > centron.map
size -x centron
nm -n -x centron > centron.nm
idtconv -f s3rec centron > centron.srec

7 – 1

Integrated Device Technology, Inc.

Introduction

Micromonitor is a small monitor written in assembly language for hard-
ware engineers to begin debugging hardware design features such as
DRAM and other I/O devices. The CPU, the EPROM and the UART are the
only hardware parts required to run the Micromonitor.

The monitor has two small stacks of three words each, an ‘operand’
stack and a ‘return’ stack. These stacks are stored in registers. The
operand stack is used by the monitor commands. For example, all ‘load’s
and ‘store’s are between the stack and memory. The return stack is used
by the routines that implement the commands.

All execution control instructions used in the monitor are relative
branches. In this way, the code is position independent and can be moved
to any location and executed using the ‘transfer’ and ‘jump’ commands.

Using Micromonitor

At the Micromonitor prompt ('|'), users can enter only two types of enti-
ties, hexadecimal numbers or commands in lower case. All numbers must
begin with a digit between 0 and 9; therefore, hex numbers that start with
'a' through 'f' must be prefixed by the digit 0. When a number is termi-
nated by an <Enter> key it is pushed on the stack. There is no limit to the
number of digits entered, only the last eight before the return and after
the prompt '|' for 32-bits and the last 16 for 64-bits will be parsed by the
Micromonitor.

Commands are entered as single lower case hex digits, and as soon as
the monitor recognizes the command, it will perform the function. It will
only echo characters that are appropriate at that point, all others will be
ignored.

There is a default segment address that is ORed into address parame-
ters of all commands that reference memory. This makes it unnecessary
for users to type entire addresses and prevents UTLB exceptions. The
default segment address can be changed by using the ‘segment’
command.

User Commands

Store

This command performs word, half word and byte stores. It stores the
value that is on the top of the stack to the memory address that is in the
slot next to the top of the stack. When the store command is executed, the
address of the store—incremented by the size of the store—becomes the
value on the top of the stack.

Stack

 Before

s# Enter Command Stack

 After

s#

 xxxxxx s2
0f10000 <Enter>

 0f10000 s2

 yyyyyy s1 xxxxxx s1

Using Micromonitor Chapter 7

Using Micromonitor Chapter 7

7 – 2

The monitor performs one store of the appropriate size (sw, sh or sb).
For example, to store the value "1234" at location "0f10000":

User types:

0f10000 <Enter>

1234 <Enter>

sw

Further values can be stored simply by entering a number <Enter> and
'sw' without entering a new address because the incremented address is
left on the stack. The following commands store the respective sized
values:

sb -Store a byte

sh -Store a half word

sw -Store a word

Load

The ‘load’ command performs word, half word and byte ‘load’s. It loads
from the location pointed to by the contents of the top of the stack. When
the load command is executed the address incremented by the size of the
datum loaded is left on the stack. The value is displayed on the terminal
but not placed on the stack. The monitor uses the load opcode for the
appropriate size (lw, lh or lb). For example, to view the value at location
"0f10000":

User types:

0f10000 <Enter>

lw

 Stack

Before

 xxxxxx S2

 yyyyyy S1

 Stack

 During

 1234 S2

 f10000 S1

 Stack

 After

 f10004 S2

 f10000 S1

 Stack

Before

 xxxxxx S2

 yyyyyy S1

 Stack

 During

 f10000 S2

Using Micromonitor Chapter 7

7 – 3

Further values can be viewed simply by entering 'lw' without entering a
new address because the incremented address is left on the stack.

The following commands load the respective sized values:

lb- Load a byte

lh- Load a half word

lw- Load a word

Jump

The ‘jump’ command branches execution to the address on the top of
the stack. To transfer control to location'1000' type:

1000 <Enter>

j

Dump

The ‘dump’ command displays a range of memory locations in word
format on the terminal. To use the command, first enter the starting
address and then the end address. A ^s or's' will stop the display and the
monitor will prompt to continue or quit. Here is a typical example which
will display all locations from 0x1000 to 0x2000:

1000 <Enter>

2000 <Enter>

d

The addresses are modified to the default segment address and forced
on word boundaries.

Fill

The ‘fill’ command stores a word data pattern in a range of word
memory locations. A typical example follows which will fill all locations
from 0x1000 to 0x2000 with the value 0x12345678:

1000 <Enter>

2000 <Enter>

12345678 <Enter>

f

The addresses are modified to the default segment address and forced
on word boundaries.

 xxxxxx S1

 Stack

 After

 f10004 S2

 xxxxxx S1

Using Micromonitor Chapter 7

7 – 4

Compare

The ‘compare’ command compares a word data pattern with all words
in a range of word memory locations. A typical example follows which will
compare all locations from 0x1000 to 0x2000 with the value 0x12345678:

1000 <Enter>

2000 <Enter>

12345678 <Enter>

c

If the value 0x12345678 is not present in any one of the word wide
memory locations, the monitor will display the address and the value
found at that address. This command can be used to verify a fill. Another
use is to clear all of memory (with fill), do one store and then check to see
that one and only one location was modified. The addresses on the stack
are modified to conform to the default segment address and forced to be
on word boundaries.

Transfer

The transfer command moves a block of words from the range specified
on the stack to a destination pointed to by an address on the stack. A
typical example follows which will transfer contents of all locations in the
range of 0x1000 and 0x2000 to locations starting at 0x3000:

1000 <Enter>

2000 <Enter>

3000 <Enter>

t

This command can be used to move the monitor itself from one location
in memory to another location in memory such that executing from
different parts of memory can be tested. Further testing can be accom-
plished with the monitor memory test when the monitor is running from
within Kseg0.

Scope Loops

The ‘scope loop’ commands transfer control to tight 2-instruction loops
which are composed of a ‘load’ or a ‘store’ instruction and a ‘branch.’ The
scope loop can read or write a word, half word or byte as specified by the
the command. For example, to loop on reading bytes from the loca-
tion'1000' type the following:

1000 <Enter>

rb

To write word value 12345678 to the location '1000' type the following:

12345678 <Enter>

1000 <Enter>

wb

The following is a summary of the available scope loop commands:

rb- Load a byte and loop

Using Micromonitor Chapter 7

7 – 5

rh- Load a half word and loop

rw- Load a word and loop

wb- Store a byte and loop

wh- Store a half word and loop

ww- Store a word and loop

Set Segment Default

The ‘segment’ commands set the default segment address which is
ORed into the addresses used to access memory. This avoids having to
type the full address (8 digits) and having unexpected UTLB exceptions.
The following two commands are used to set the default segment address:

k0- Set default to 0x80000000

k1- Set default to 0xa0000000

Print Stack

The stack can be viewed by entering '.' This will show the contents of
the top of the stack first and the next-to-top value last on the line.

Memory check

There are two basic memory checks that can be performed. The first
check writes to each location and reads/compares it before continuing to
the next location. This identifies faults immediately, which is very useful
when combined with a logic analyzer to locate and observe refresh arbi-
tration faults. The command is implemented using word wide loads and
stores only. Error reporting can be turned off with the 'mq' command. The
memory check command is invoked by entering the following (start value
first, termination value last):

1000 <Enter>

2000 <Enter>

x

Alternating '-' and '|' will be displayed on the terminal to indicate each
pass through the address range.

The second memory check is more effective at testing things such as
address line validity. In this test, a pattern of ascending values is first
written to memory across the entire specified address range. Then and
only then, the monitor reads/compares the range to verify that the values
are present. The range is then written to again, but starting with the next
larger value such that all locations will eventually receive all values
possible. This command is invoked to check byte memory by entering the
following (start value first, termination value last):

1000 <Enter>

2000 <Enter>

mb

The following is a summary of the available memory check commands
which write the entire address range first before read/comparing:

mb- Check memory as bytes

mh- Check memory as half words

Using Micromonitor Chapter 7

7 – 6

mw- Check memory as words

mq- Turns off error reporting

Both memory checks can be terminated by typing ^s or 's', at which
point the monitor prompts the user to either continue or terminate the
memory check.

Porting to new hardware

The hardware designer must verify that the EPROM and the UART
work, before using the Micromonitor. Next the UART code must be modi-
fied to match the addressing and control of the UART. There are four
routines in the monitor that involve the UART, as shown below in Table
7.1:

Table 7.1 Micromonitor’s UART Functions

 These routines can be found at the end of the Micromonitor source. It
is recommended that a stand-alone copy of these routines be assembled
into a set of EPROMS and tested separately before using the monitor.

All temporary variables are kept in registers. There are two stacks
implemented using these registers: the ‘operand’ stack and ‘return’ stack.
The operand stack uses registers

S2

,

S1

 and

S7

. The stack is operated on
and used by the monitor commands.

For example, all loads and stores are between the stack and memory.
The return stack is used by code which implements the commands.
Registers

k0

 and

k1

 along with

 ra

 are used as the return stack. In this
way, there can be two levels of subroutine calling. Macros (‘save’ &
‘return’) are provided to facilitate the handling of the return stack.

The code before the ‘start:’ and ‘memerror:’ labels and at the end of the
file is used to get the addresses of these locations at run time. The posi-
tional relationship of the code before the labels and the label must be
maintained.

init_uart Initializes the UART

conin Returns a character from the console in v0

constat Returns non-zero if character entered at keyboard

conout Outputs a character in the register a0 to the terminal

echo_test Endless loop to test console by echoing whatever is typed on keyboard

Using Micromonitor Chapter 7

7 – 7

Recommended Debug Technique

When using the Micromonitor to debug a fresh design, the following
sequence is recommended to catch various memory system errors before
moving onto the IDT/sim monitor:

1. Use store word, byte & halfword with the

dump

 command to test the
simple ability of the memory system to store data.

2. If a fundamental error occurs, use the

scope loop

 commands rb, rh,
rw, wb,... to focus on the timing of read/write cycles using an oscil-
loscope.

3. Use the

'x' memory check

 command to test for refresh arbitration
error problems (if DRAM). Trigger on the 'Main Memory Trigger Point'
address with the logic analyzer to observe timing and state machine
faults if an error occurs. If multiport memory is involved, then run
the memory test on the other port at the same the time as a final
check for this step before proceeding.

4. Use the

 'm' memory check

 command to test for refresh and
addressing problems (if DRAM). Trigger on the 'Main Memory Trigger
Point' address with the logic analyzer to observe timing and state
machine faults if error occurs. If multiport memory is involved, then
run the memory test on the other port at the same the time as a final
check for this step before proceeding.

5. Move the monitor to memory; repeat the memory tests; then use the
jump command to start executing from memory. This will further
exercise the DRAM memory system.

6. Change the default segment to'k0' by entering

'k0'

 and jump to the
monitor in memory. Next run the memory check test (words, bytes
and half words) in the'k1' address space. This will saturate the read/
write data bus and buffers in order to catch possible state machine
problems.

7. Install the IDT/sim monitor in the same EPROM with the Micromon-
itor. Put the IDT/sim first and Micromonitor second (the opposite is
possible but this order makes run time support for downloaded code
possible). Run debug command and try system tests.

Exception handling

When an exception is encountered, the monitor jumps to location
0xbfc00100 or 0xbfc00180, and the monitor stores the EPC, Status and
Cause registers to the memory location specified by EPC_LOC (usually
0xa0000000), in successive words respectively. In this way, if a logic
analyzer is to trigger at location 0xbfc00180 it will capture the values as
they are put on the memory/cache bus. If the monitor and UART are
functioning, the monitor will print the EPC and Cause registers on the
terminal.

9 – 1

Integrated Device Technology, Inc.

General Description and Use

IDT/sim supplies a set of entry points to the functions inside the PROM
code. Application programmers may access these functions by name
through linking the library ‘liblnk.a’ while building the application to run
on the target board. The library is supplied with IDT/C and can be
linked using the compile/link command line option ‘-llnk.’ The source
code for the library is a part of the IDT/kit.

Another method of accessing these PROM functions is to include the
file ‘idtlink.S’ (and its header file ‘idt_entrypt.h’) in the build process of the
application program. The files are available as a part of the source code of
IDT/sim.

With either method, a call to a function in IDT/sim PROM will cause a
jump to a fixed absolute address at the beginning of the monitor from
which in turn a jump will occur to the actual implementing routine within
the monitor.

Table 9.1 contains a comprehensive list of all entry points in IDT/sim.

Entry # Name Description

0 reset run diags/reinit

1 n/i

2 restart reenter monitor cmd loop - same as #17

3 reinit reinit then cmd loop

4 reenter_mon in current mode

5 n/i not implemented

6 open open device

7 read read device

8 write write device

9 ioctl i/o control

10 close close device

11 getchar get character from console

12 putchar put char to con

13 showchar show char

14 gets get string

15 puts put string

16 printf formatted print

17 _exit return to monitor init - same as #2

18 rfileinit initialize remote file access

19 ropen open remote file

20 rclose close remote file

21 rread read from remote file

22 rwrite write from remote file

23 rlseek seek remote file

24 rprintf remote printf (stdout)

Table 9.1 PROM Function Entry Points (Page 1 of 3)

IDT/sim PROM Entry Points Chapter 9

IDT/sim PROM Entry Points Chapter 9

9 – 2

Entry # Name Description

25 rgets remote gets (stdin)

26 n/i not implemented

27 n/i not implemented

28 flush_cache flush all caches completely

29 clear_cache flush portion of a cache

30 setjmp save stack state

31 longjmp restore stack state

32 exc_utlb_code utlbmiss boot vect (R30xx only)

33 n/i not implemented

34 sprintf sprintf

35 atob ASCII to bin

36 strcmp string comp

37 strlen string length

38 strcpy string copy

39 strcat string concat

40 cli command line interpreter

41 get_range parse - range

42 tokenize tokenizer

43 help show help menu

44 timer_start start timer

45 timer_stop stop timer & return time

46 n/i not implemented

47 n/i not implemented

48 exc_norm_code general exc boot vec(R30xx)

49-54 n/i not implemented

55 get_mem_conf Get memory configuration

56 set_mem_conf Set memory configuration

57-63 n/i not implemented

for R30xx target:

64 install_command user installed command

for R4xxx target:

64 exc_tlb_code R4000 TLB exc boot vector

for all targets:

65 install_new_dev user installed driver rt.

66 install_immediate_
int

user in. handler hook - fast response

67 install_normal_int user int.handler hook - normal response

for R4xxx targets:

68 install_command user installed command

for ethernet support:

69 tftpopen open TFTP file

70 tftpclose close TFTP file

Table 9.1 PROM Function Entry Points (Page 2 of 3)

IDT/sim PROM Entry Points Chapter 9

9 – 3

Prom Monitor Entry Point Functions

Entry point functions are arranged in alphabetical order, and the entry
point number is in parenthesis after the header.

_EXIT

- Exit User Mode (17)

FUNCTION:
_exit - exit from the current user program and return to monitor.

USAGE:

void _exit();

DESCRIPTION:
_exit() returns control to the IDT prom monitor. This will disable inter-

rupts, reset the stack pointer, flush the cache, initialize the exception
vectors and close any open i/o devices. The monitor command input
mode is entered and the monitor prompt is displayed on the system
console.

EXAMPLE:

 #include <idt_entrypt.h>

main(argc,argv)
int argc; char **argv;

{
/* <== user specific code here */

_exit(); /* return to prom monitor */
}

ATOB

- ASCII String Convert (35)

FUNCTION:
atob - convert an ASCII string to an integer.

USAGE:

char *atob(str,intptr,base,seg)
char *str; /* pointer to str */
unsigned *intptr; /* pointer to loc for result */
unsigned base; /* radix - 8,10,16 */
int seg; /* the segment 0x0,0x80000000 */

/* 0xa0000000 0xc0000000 */

Entry # Name Description

71 tftpread read TFTP file

72 tftpwrite write TFTP file

73 tftplseek seek TFTP file

74 soc_syscall Indirect socket "system call"

75-79 n/i not implemented

80 exc_xtlb_code R4000 XTLB exc boot vect

81-95 n/i not implemented

96 exc_cache_code R4000 cache exc boot vect

97-111 n/i not implemented

112 exc_norm_code R4000 general exc boot v.

Table 9.1 PROM Function Entry Points (Page 3 of 3)

IDT/sim PROM Entry Points Chapter 9

9 – 4

DESCRIPTION:
atob() converts an ASCII string to an integer. This is a non standard

conversion routine in that it allows for a base and segment to be specified.
Bases handled by atob() are octal, decimal and hexadecimal (8,10,16).
The string that is passed to atob() may override the base specification by
prefixing the number with one of the following base specifications:

0o Octal
0d Decimal
0x Hexadecimal

The conversion of the input string continues until a non-digit or digit
inappropriate for the base selected is encountered. Segment specifica-
tions may have the following values:

0x00000000, 0x80000000, 0xa0000000, 0xc0000000

atob() returns a pointer to the position in the string where it stopped
the conversion process.

EXAMPLE:

char *atob();

void
a_user_prog()
{

char *charptr = "1234AB";
unsigned rsltptr;
charptr = atob(charptr, &rsltptr, 16,0xa0000000);

}

CLEAR_CACHE

- Invalidate Caches (29)

FUNCTION:
clear_cache - clears a selected area in I and D cache

USAGE:

void clear_cache(begin_addr,num_bytes)
unsigned int begin_addr;
int num_bytes;

DESCRIPTION:
clear_cache() clears both the I and D caches, starting at address

begin_addr through begin_addr + num_bytes. This performs the same
function as flush_cache() except that instead of doing the entire cache it
does a selected portion beginning at begin_addr and continuing for
num_bytes bytes. The beginning cache address is the begin_addr modulo
cache size.

The effect of this function is to invalidate both caches for the address
range specified. This function should be invoked anytime the state of the
memory subsystem is unknown. If a DMA completes to the main memory
and the area in memory overlaps a section of cache that may be valid then
the cache should be flushed to prevent a cache inconsistency with main
memory.

For the R4xxx targets: This function writes back and invalidates the
primary instruction, primary data and secondary caches, starting at the
virtual address begin_addr and ending at begin_addr+num_bytes.
Because this function writes back any dirty lines present in the cache, it
is essential that it gets called before any DMA activity affecting the
memory takes place.

IDT/sim PROM Entry Points Chapter 9

9 – 5

EXAMPLE:
An example of calling clear_cache to invalidate the instruction cache.

clear_cache actually invalidates both i-cache and d-cache. The code
sequence has just moved code via kseg1 to the exception vector locations
in memory space at 0xa0000000. To make sure that the i cache at loc
0x800000000 does not have stale values in it, it is necessary to invalidate
the cache for just the area of the exception vector code.

li a0,0x80000000 /* begin_addr */
jal clear_cache /* args are passed in a0 and a1 */
li a1,12*4 /* length of vector code is 12 words

/* loaded in branch delay */

This will invalidate the i-cache and d-cache from location 0x0 to 0x30.

CLI

- Command Line Interpreter (40)

FUNCTION:
cli - General purpose command line interpreter

USAGE:

void cli(cmd_table,prompt)
struct command_tab *cmd_table;
char *prompt;

DESCRIPTION:
cli() is a general purpose command line interpreter. It reads from the

standard input until a new line is entered. It then tokenizes the input
string and searches 'cmd_table' for a match to the first token. The second
argument to 'cli' is to specify the prompt that the command line inter-
preter outputs prior to waiting for a command to be entered on the stan-
dard input device. The command table’s structure and semantics are
discussed in Chapter 5.

For systems with non-volatile RAM, the command line interpreter can
recognize and expand environment variables. Each variable consists of a

$

followed by an alphanumeric string. Environment variables are stored
in NVRAM and may be set by the ‘setenv’ command. Before tokenizing the
input line, ‘cli’ first searches the line for environment variables. The
alphanumeric string is looked up in the environment and the contents of
the variable are substituted in the command line. A '$' may be included in
the command line by using the sequence '$$'. To avoid ambiguity, the
variable name may be enclosed in braces: e.g. <IDT> boot ${path}filename.

INCLUDE FILES:

icli.h

CLOSE

- Close an open device (10)

FUNCTION:
close(fd) system - closes an open device

USAGE:

int close(fd)
int fd;

IDT/sim PROM Entry Points Chapter 9

9 – 6

DESCRIPTION:
close(fd) closes the open device specified by file descriptor (i/o control

block number) fd. This is the descriptor returned when the device was
successfully opened with the ‘open’ function. If there is no device open for
the passed file descriptor ‘close’ will return a '-1'. If the device is success-
fully closed then the‘ close’ function returns the value returned by the
device driver ‘close’ function (normally zero).

EXAMPLE:

int is_closed;

is_closed = close(stdin);

EXC_CACHE_CODE

- Cache error exception (96)

FUNCTION:
exc_cache_code - Entry point for cache error exception (R4xxx only).

USAGE:

exc_cache_code();

DESCRIPTION:
‘exc_cache_code’ is the entry point for the cache error exception for

IDT/sim. This entry point should only be called if a user program has
caught a cache exception that it cannot handle. The default R4000 cache
exception code attempts to fix up the cache error by invalidating the
appropriate cache entry and then continuing. If it is not possible to fix the
cache error then the system will halt.

EXC_NORM_CODE

- Normal interrupt entry point (R30xx:48, R4xxx:112)

FUNCTION:
exc_norm_code - Entry point for a normal (general) exception.

USAGE:

exc_norm_code();

DESCRIPTION:
The ‘exc_norm_code’ command is the entry point for the general excep-

tion for IDT/sim. Calling this is identical to getting a general exception.
The user should be aware that registers will be destroyed (v0 and ra) in
making this call. If the user has fielded an exception and determined that
it is a breakpoint exception and would like to get to the monitor’s excep-
tion handler without destroying any registers, then the following method
may be used.

la k0,(0xbfc00000 + (48 * 8))
j k0

The monitor's exception handler does not preserve k0, so this will work
as long as the user code is not using register k0. This register is normally
reserved for kernel function and will never be used by the 'C' or 'Ada'
compilers.

Note:

If the above method is not used, continuing from a breakpoint
will not be possible.

IDT/sim PROM Entry Points Chapter 9

9 – 7

SEE:

exc_utlb_code();

EXC_UTLB_CODE

- UTLB miss interrupt entry point (32)

FUNCTION:
exc_utlb_code - Entry point for a utlb/miss exception.

USAGE:

exc_utlb_code();

DESCRIPTION:
This is the entry point for the utlb miss exception for IDT/sim. Calling

this is identical to getting a utlb miss exception. The user should be aware
that registers will be destroyed (v0 and ra) in making this call. If the user
has fielded a utlb miss exception and would like to get to the monitor's
exception handler without destroying any registers, the following method
may be used:

la k0,(0xbfc00000 + (32 * 8))
j k0

The monitor's exception handler does not preserve k0, so this will work
as long as the user code is not using register k0. This register is normally
reserved for kernel functions and will never be used by the 'C' or 'Ada'
compilers.

SEE:

exc_norm_code();

EXC_XTLB_CODE

- Extended TLB miss exception (80)

DESCRIPTION:
This entry point is a place holder for catching extended tlb miss excep-

tions. The current version of IDT/sim will report these exceptions but will
not do anything sensible with them.

FLUSH_CACHE

- Invalidate all caches (28)

FUNCTION:
flush_cache - flushes both I cache and D cache.

USAGE:

flush_cache();

DESCRIPTION:
The flush_cache() command flushes (invalidates) both the Instruction

cache and the Data cache. This should be done on power up because the
state of RAM at power up is unknown. It should also be done after DMA
completion, exception processing or program crashes, to insure memory/
cache consistency when the state of the memory subsystem is unknown.

R4xxx specific: This function writes back and invalidates the primary
instruction, primary data and secondary caches. Because this function
writes back any dirty lines present in the cache, it is essential that it gets
called before any DMA activity affecting the memory takes place.

IDT/sim PROM Entry Points Chapter 9

9 – 8

SEE:
clear_cache();

GET_MEM_CONF

- Return memory Configuration Information(55)

FUNCTION:
get_mem_conf - Returns the memory configuration.

USAGE:

int get_mem_conf(mcptr)
mem_config *mcptr;

The mem_config structure is defined in the header file idtmon.h

typedef struct {
unsigned int mem_size;
unsigned int icache_size;
unsigned int dcache_size;

#if defined(CPU_R4000)
unsigned int scache_size;

#endif
} mem_config;

DESCRIPTION:
The ‘get_mem_conf’ command returns the memory configuration in the

structure pointed to by ‘mcptr’. The typedef for this structure is shown
above. The values placed in this structure are determined dynamically by
IDT/sim on power up. The values returned by this function are also
affected by the user making a call to set_mem_conf().

SEE:

set_mem_conf();

INCLUDE FILES:

idtmon.h

GET_RANGE

- Parse Range Specification (41)

FUNCTION:
get_range - Parses the range specification.

USAGE:

int get_range(range_ptr,start,end)
char *range_ptr;
unsigned *start;
int *end;

DESCRIPTION:
The ‘get_range’ command parses the ‘range’ specification pointed to by

‘range_ptr’. Ranges may be specified in one of two ways:

base_address/count
base_address-end_address

IDT/sim PROM Entry Points Chapter 9

9 – 9

There may not be any embedded blanks in the range specification.
‘get_range’ does the conversion and will put the ‘base_address’ into the
location pointed to by 'start' and will put the 'count' or 'end_address' into
the location pointed to by 'end'. It will return a code indicating if the range
was a base_address/count (CNT_RANGE) or a base_address-end_address
(ADDR_RANGE). CNT_RANGE and ADDR_RANGE are defined in the
include file ‘icli.h’. If there is an error during conversion ‘get_range’ will
return a code of ERROR_RANGE (also defined in ‘icli.h’).

INCLUDE FILES:

icli.h

GETCHAR

- Get Character Function (11)

FUNCTION:
getchar - get a character from the standard input device.

USAGE:

int getchar();

DESCRIPTION:
The ‘getchar’ command gets a character from the standard input

device. I/O characteristics depends on ioctl calls made to stdin prior to
making this call. ‘getchar’ returns a 7 bit character in an integer.

SEE:

putchar(),

GETS

- Get String Function (14)

FUNCTION:
gets - get a string from the standard input device.

USAGE:

char *gets(str);
char *str;

DESCRIPTION:
The ‘gets’ command reads a string from the standard input device and

puts it in the string pointed to by ‘str’. Line editing is supported for back-
space, quote next character, and line erase. Backspace is implemented
with control-h(^h) or the backspace/del key if your terminal has one. To
quote the next key stroke the user should depress the control-v(^v) key
and then the key that will be input without any preprocessing.

The control-u(^u) key will reset the input string pointer to the begin-
ning of the original buffer (effectively erasing any input already entered).
Entering a new-line character terminates the input and ‘gets’ places a
'null' in place of the new-line and returns its argument (str).

HELP

- Print Help Screen (43)

FUNCTION:
help - Print the usage line for all specified commands.

IDT/sim PROM Entry Points Chapter 9

9 – 10

USAGE:

int help(argc,argv,cmd_table)
int argc;
char **argv;
struct command_tab *cmd_table;

DESCRIPTION:
The ‘help’ function is called with three arguments. The first two are

standard argc/argv arguments, where argv is a pointer to an array of null
terminated strings that contains the names of the commands from the
command table that the user wants to print out the usage strings for. The
first string in the ‘argv’ array must be the name of the help command (i.e.
the ASCII string "help"). If ‘argc’ is equal to 1, ‘help’ will print out the
usage strings for all of the commands in the command table. The third
argument to this function is a pointer to the structure containing the
command table.

SEE:
cli(), - command table format.

INSTALL_COMMANDS

- Add user commands to the monitor (64)
FUNCTION:
install_commands - Allows the user to extend the command set of IDT/

sim.

USAGE:

install_commands(cmd_table)
struct command_tab *cmd_table;

DESCRIPTION:
The ‘install_commands’ command allows the user to extend and add to

the basic command set of the IDT Prom monitor. This function is called
with one argument which is a pointer to the structure 'command_tab'.

The following is an example of how the diagnostics command has been
added to the standard IDT/sim monitor command set.

include <icli.h>

int do_diag(); /* declare do_diag a function returning int */

struct command_tab diag_table[] = {
{"diag", "dg", do_diag, NULL, "diagnostics:\tdiag|dg" },
{0, 0,0,0, ""}

};

user_init_code()
{

install_commands(diag_command);
}

The new command can be invoked by entering either 'diag' or 'dg'.
The user should link the module containing code such as that above,

with the prom monitor linkage module'idtlink.S' when building the
executable module to resolve the reference to 'install_commands()'.

INSTALL_IMMEDIATE_INT

- Install user exception/interrupt Handler (66)

FUNCTION:
install_immediate_int - Installs a pointer to a user interrupt function

that will be called by the monitor when an exception/interrupt occurs.

IDT/sim PROM Entry Points Chapter 9

9 – 11

USAGE:

install_immediate_int(ptr_user_int_rt)
int (*ptr_user_int_rt)();

DESCRIPTION:
To effectively use a monitor to debug, the it must have access to the

exception vectors so that it can implement breakpoints and execution
control (e.g. single step). Often though, the client or user code also wants
to have control of the exception vectors.

The ‘install_immediate_int’ command allows the user to specify to the
monitor an address of a routine that is to be called when an exception/
interrupt occurs. There are two methods of putting hooks into the
monitor’s exception processing. One is by using this function and the
other is by using the function ‘install_normal_int’. The difference is that
‘install_immediate_int’ saves a minimum of state information and calls
the user interrupt handler before doing any of its normal exception
handling. The user exception handler will get control quickly but must
save any registers or state information it uses and restore them prior to
returning. ‘install_normal_int’ saves the complete state.

The user should return to the monitor by a normal jump register ra (j
ra) instruction with register v0 equal to zero(0) if it was an exception that
it did not process. If it was an exception that the user processed, then it
should return with register v0 not equal to zero(0).

The function pointed to by (*ptr_user_int_rt)() would normally be the
user's exception/interrupt handler as it would be in the final product,
with the exception that when exiting this function the user would return
with the epc (exception program counter) followed by an rfe instruction.
Below is an example of what the ‘return from exception’ code would look
like without hooks into the monitor and then with hooks into the monitor.

/* end of exception/interrupt code without hooks into or being
called by the IDT prom monitor. It is assumed that AT points to
the register save area. This example is R30xx specific.
*/

lw k0,R_EPC(AT) /* get epc contents into k0 */
lw v0,R_V0(AT) /* restore the contents of v0 */
lw AT,R_AT(AT) /* restore the contents of AT */
j k0 /* return to normal processing */
rfe /* execute rfe in branch delay slot */

/* The above code sequence assumes that the registers were saved
on entry to the exception/interrupt processing routine and also
that the EPC register contained the program counter of the next
instruction to be executed after the exception is processed.
*/

/* end of exception/interrupt code without hooks into or being
called by the IDT prom monitor. It is assumed that AT points to
the register save area and that SR has been restored with SR_EXL
set. This example is R4xxx specific.
*/

.set noreorder

.set noat

lw k0,R_EPC(AT) /* get epc contents into k0 */
lw v0,R_V0(AT) /* restore the contents of v0 */
lw AT,R_AT(AT) /* restore AT register*/

 mtc0 k0,CO_EPC /* put exception PC back */
nop
nop

IDT/sim PROM Entry Points Chapter 9

9 – 12

nop
eret

.set at

.set reorder

/* The above code sequence assumes that the registers were saved
on entry to the exception/interrupt processing routine and also
that the EPC register contained the program counter of the next
instruction to be executed after the exception is processed.
*/

 /* end of exception/interrupt code with hooks into and being
called by the IDT prom monitor.
*/

lw ra,R_RA(AT) /* restore the contents of ra.
This is the return address
into the IDT prom monitor.
Register v0 must be
set to zero if the user did not
process the interrupt
and non-zero if the user did process
the interrupt

*/
j ra
lw AT,R_AT(AT)

/* The above code sequence assumes that the registers were saved
on entry to the exception/interrupt processing routine. The jump
register ra will return to the monitor’s exception handler. The
IDT prom monitor code will then restore any state information
necessary and will return to the interrupted code via the
contents of the epc register and will execute the rfe instruction
for the user.
*/

There are some registers saved by the monitor prior to calling the user’s
interrupt handler. These have been kept to a minimum so response time
is as fast as possible. The registers saved are:

AT,v0,v1,a0,gp,sp and ra ($1,$2,$3,$4,$28,$29 and $31)

These registers are restored by the monitor prior to returning to the
interrupted code. This also means that if the user program did not save or
restore these registers, that would be fine.

SEE:

install_normal_int();

INSTALL_NEW_DEV

- Install New Device Driver (65)

FUNCTION:
install_new_dev - installs a new device driver in IDT/sim.

USAGE:

install_new_dev(dt_ptr,di_ptr)
struct dev_sw_tab *dt_ptr;
struct dev_init_tab *diptr;

IDT/sim PROM Entry Points Chapter 9

9 – 13

DESCRIPTION:
The ‘install_new_dev’ command dynamically links a new device driver

into the IDT prom monitor. Pointers to two structures need to be passed
as arguments to this call. The structures are discussed in Chapter 5.

SEE:

open(),close(), read(), write(), ioctl()

INSTALL_NORMAL_INT

- Install user exception/interrupt Handler (67)

FUNCTION:
install_normal_int - Installs a pointer to a user interrupt function that

will be called by the monitor when an exception/interrupt occurs.

USAGE:

install_normal_int(ptr_user_int_rt)
int (*ptr_user_int_rt)();

DESCRIPTION:
Before describing this function, a word or two as to why we would even

want such a function. To effectively use a resident monitor to debug with,
the resident monitor must have access to the exception/interrupt vectors
so it can implement breakpoints and execution control (e.g. single step).
Often though, the client or user code also wants to have control of the
exception/interrupt vectors. The following description explains how this
can be accomplished.

The ‘install_normal_int’ command allows the user to specify to the
monitor that it wants to be called when an exception/ interrupt occurs.
There are two methods of putting hooks into the monitors exception
processing. One is by using ‘install_normal_int’ and the other is by using
the function ‘install_immediate_int’.

The ‘install_normal_int’ command also saves all of the state informa-
tion and calls the user interrupt handler after doing its normal exception
handling. The user exception/interrupt handler will get control and will
determine if this interrupt is one that it wants to process and, if it is, it
will process it and return a true (non-zero) value. If it does not process it,
the user processor should return false (zero). The user interrupt routine
does not have to save state or restore it.

This function allows the user to write an interrupt handler in a high
level language without having to worry about saving registers or machine
state information. Following is an example of an interrupt routine for an
8254 timer/counter chip. The user does not have to deal with the normal
state saving code when using this hook into the monitor. The user appli-
cation code can execute normally and the routine timer_int(), will be
called asynchronously when the 8254 timer/counter chip generates an
interrupt signal to the R3000.

Some sample code written in 'C' is shown below. Code that does not
relate directly to the interrupt handler is not shown:

#include <idt_entrypt.h>

static int timer_int();

IDT/sim PROM Entry Points Chapter 9

9 – 14

main(argc,argv)
int argc;
char **argv;

{
/* application init code not shown to save space */

install_normal_int(timer_int);

/* timer_int() - timer interrupt routine - called from monitor
** when an external interrupt occurs.
*/

static int
timer_int()
{

int rtn_int;
/* check to see if this is a timer interrupt */
rtn_int = check_int(sintmask|hsintmask);
if ((rtn_int & sintmask)!= 0) {

second += 1; /* interrupt due to sec counter */
clear_int0();

}
if ((rtn_int & hsintmask)!= 0) {

halfsec += 1; /* interrupt due to half sec counter */
clear_int1();

}
return(rtn_int);

}

When the executable module is created, the user code must be linked
with the object module made from ‘idtlink.S’ to resolve the references to
‘install_normal_int’.

An example of assembly language routines called by the 'C' routines is
shown above:

/*
** check_int - checks to see if interrupt is one that was expected
** entry: a0 = mask of expected interrupts
** returns: mask of received expected interrupts
*/

FRAME(check_int,sp,0,ra)

.set noreorder

mfc0 v0,C0_CAUSE /* fetch the cause register */
nop /* contains interrupt pending bits */
and v0,a0 /* and with expected mask */
j ra /* returns interrupts set in v0 */
nop

.set reorder
ENDFRAME(check_int)

/*
** routine that clears the interrupt signal for the second timer
*/

FRAME(clear_int0,sp,0,ra)

.set noreorder

lw v0,TIMERCLR0

IDT/sim PROM Entry Points Chapter 9

9 – 15

j ra
nop

.set reorder
ENDFRAME(clear_int0)

/*
** routine that clears the interrupt signal for the half second
** timer
*/

FRAME(clear_int1,sp,0,ra)

.set noreorder

lw v0,TIMERCLR1
j ra
nop

.set reorder
ENDFRAME(clear_int1)

SEE:

install_immediate_int();

IOCTL

- I/O Control function (09)

FUNCTION:
ioctl - Sets flags for controlling the i/o characteristics of resources in

the system and/or calls driver ‘ioctl’ routines.

USAGE:

ioctl(fd,cmd,arg)
int fd;
int cmd;
int arg;

DESCRIPTION:
ioctl() allows the user to setup controls, modes, operations and param-

eters to open file descriptors. The actual operation is dependent on the
command and the device that is open. General ioctls defined by the
monitor:

#define FIOCNBLOCK ((f'<<8)|1) /*set non-blocking io */
#define FIOCSCAN ((f'<<8)|2) /* scan device for input */
#define FIOCINTBRK ('f'<<8)|3) /*enable break interrupt */
#define FIOCINTBRKNOT ((f'<<8)|4) /*disable break intr */
#define FIOCCLRINT ('f'<<8)|5) /*clear extrn interrupt */

#define FIOCRAW (('t'<<8)|1) /*don't process i/o*/
#define FIOCFLUSH (('t'<<8)|2) /* flush input*/
#define FIOCREOPEN (('t'<<8)|4) /*reopen to change baud */
#define FIOCBAUD (('t'<<8)|5) /*baud rate change*/

‘Ioctl’s usually affect one or more of the members in an i/o control
block. The format of i/o control blocks is shown below. The file descriptor
that is returned from doing an ‘open’ is an index into the i/o control block
structures. After opening a device all subsequent requests to that device
use the file descriptor returned when that device was opened.

The format of an i/o control block is discussed under open().

IDT/sim PROM Entry Points Chapter 9

9 – 16

 OPEN
- Open a device for reading or writing (6)

FUNCTION:
open - opens a device for reading and/or writing.

USAGE:

int open(device,flags)
char *device;
int flags;

DESCRIPTION:
‘open’ will open a device for reading and/or writing based on the value

of the flags passed as the second argument to the call. The device argu-
ment is a pointer to a null terminated string containing the device name.
This name must correspond to one of the device names in the device
initialization table. The flags argument will define the mode that the
device is to be opened in. Flags currently defined by the IDT monitor are:

 #define O_RDONLY 0 /* open for reading only */
 #define O_WRONLY 1 /* open for writing only */
 #define O_RDWR 2 /* open for reading and writing */

If the ‘open’ function successfully opens the device in the mode
requested, the returned value will be the file descriptor (i/o control block
number). The monitor currently has a limit of 8 open descriptors at any
one time. ‘open’ will return a value of ‘-1’ if there are no free i/o control
blocks or if the device name cannot be found in any of the entries in the
device initialization table members or if the driver ‘open’ routine runs into
an error.

struct iocntb {
char *icb_addr; /* user buffer address */
int icb_count; /* count of char to transfer */
int icb_blkno; /* random access block number */
int icb_errno; /* return error number */
int icb_flags; /* dev. type and status flags */
struct dev_init_tab *icb_di;
struct dev_sw_tab *icb_dt;

};

Each opened device is associated with an i/o control block. When the
device is opened the i/o control block entries icb_di and icb_dt (device init
table pointer and driver table pointer) are initialized. This provides the
link for subsequent calls, such as an ioctl call. The i/o control block flags
that are defined by the IDT monitor are:

#define F_READ 0x0001 /* file opened for reading */
#define F_WRITE 0x0002 /* file opened for writing */
#define F_NBLOCK 0x0004 /* non-blocking io */
#define F_SCAN 0x0008 /* device should be scanned */
#define F_STRAT 0x0010 /* use strategy routine */
#define F_REMOTE 0x0020 /* set up to gen interrupt */

PRINTF/SPRINTF
- Formatting Print routine (16/34)

FUNCTION:
printf - formatted print to the standard output
sprintf - formatted print to a string

IDT/sim PROM Entry Points Chapter 9

9 – 17

USAGE:

printf(format [,arg]...)
char *format;

sprintf(str,format [,arg]...)
char *str;
char *format;

DESCRIPTION:
‘printf’ outputs a string of characters specified by the format specifica-

tion to the standard output device. ‘sprintf’ places its output to the string
pointed to by ‘str’. The format specification contains two types of objects.
The first type of objects are just plain characters that are copied to the
target, unchanged. The second type of objects are conversion specifica-
tions which cause successive arguments to be fetched and reformatted
and then output to the target. A conversion specification object is always
preceded with the character '%'. This is a non-standard ‘(s)printf’ that is
tailored to stand-alone systems and debug type of operations. Conversion
specifications have the following format:

[[flag]width][.precision][c]

where:

flag - may be blank or minus(‘-’). If it is '-' then the converted string will
be left justified, otherwise it will be right justified. This only has meaning
if width is non-zero.

width - is the minimum width of the conversion. If the width specifica-
tion is preceded with a zero(0), the pad character will be a zero(0). If the
width specification does not start with a zero(0) then the pad character
will be a blank. Padding will be left or right justified based on the flag
above.

.precision - is the maximum width of the converted string. This is non-
standard. Truncation is always of the upper digits.

c - This is a character that indicates the type of conversion to do on the
associated argument. Conversion characters allowed:

D,d- The integer arg is converted to a decimal string.
O,o- The integer arg is converted to an octal string.
X- The integer arg is converted to a hexadecimal string using the hex.

characters (ABCDEF).
x- The integer arg is converted to a hexadecimal string using the hex.

characters (abcdef).
S,s- The arg is taken to be a pointer to a null terminated string. The

string is printed.
C,c- The character arg is printed.
G,g - The double precision argument is formatted as a floating point

number. The format is in the style [-]ddd.ddd or
[-]d.ddde=/-ddd depending on the size of the field and width and preci-

sion specifiers. The exponent will always contain at least two digits.
F,f - Same as above but also works for ‘float’ arguments.
E,e - The double precision argument is formatted as a floating point

number. The format is in the style [-]d.ddde+-ddd, where there is one digit
before the decimal point and the number of digits after it is equal to the
precision; when precision is missing, 6 digits are produced. The exponent
will always contain at least two digits.

IDT/sim PROM Entry Points Chapter 9

9 – 18

PUTCHAR
- Character Output Routine (12)
FUNCTION:
putchar - Output a character to the standard output device.

USAGE:

void putchar(c)
char c;

DESCRIPTION:
The ‘putchar’ command outputs a single character (c) to the standard

output device. Simple character mapping is performed. New-lines are
expanded to carriage return/new-line and tabs are expanded. All 8 bits of
the character are passed through without modification.

PUTS
- Output String Routine (15)

FUNCTION:
puts - Output a string to the standard output device.

USAGE:

void puts(str)
char *str;

DESCRIPTION:
‘puts’ outputs a null terminated string to the standard output device.

Simple character mapping is performed. New-lines are expanded to
carriage return/new- line and tabs are expanded.

READ
- System Read Routine (7)

FUNCTION:
read() - Read data from an external device.

USAGE:

read(fd, buf, cnt)
int fd; /* file descriptor */
char *buf; /* pointer to user buffer */
int cnt; /* count of chars to read */

DESCRIPTION:
‘read’ attempts to read ‘cnt’ number of characters from the device refer-

enced by file descriptor ‘fd’. On successful completion, ‘read’ returns the
actual number of characters read and placed in the buffer specified by
‘buf’. If the ‘read’ operation was unsuccessful, the return value is the
value returned by the driver’s ‘read’ routine.

REINIT
- Reinitialize the monitor (3)

FUNCTION:
reinit(), - Reinitialize monitor.

USAGE:

reinit();

IDT/sim PROM Entry Points Chapter 9

9 – 19

DESCRIPTION:
‘reinit’ reinitializes the monitor. This is very similar to the entry point

‘reset’. The only difference is that ‘reset’ reloads the status register and
cause register while ‘reinit’ does not.

RESET
- Reset Prom Monitor (0)

FUNCTION:
reset() - Resets the IDT prom monitor

USAGE:

reset();

DESCRIPTION:
‘reset’ will start executing the IDT prom monitor as if the target board

had just been powered up or reset.

RESTART
- Restart the debug monitor (2)

FUNCTION:
restart - Restarts the debug monitor after a client program finishes.

USAGE:

restart();

DESCRIPTION:
This entry point is the same as _exit().

SET_MEM_CONF
- Sets memory Configuration Information(56)

FUNCTION:
set_mem_conf - Sets the memory configuration.

USAGE:
int set_mem_conf(mcptr)
mem_config *mcptr;
The mem_config structure is defined in the header file idtmon.h

typedef struct {
unsigned int mem_size;
unsigned int icache_size;
unsigned int dcache_size;

#if defined(CPU_R4000)
unsigned int scache_size;

#endif
} mem_config;

DESCRIPTION:
‘set_mem_conf’ sets the memory configuration with the values in the

structure pointed to by ‘mcptr’. The type def for this structure is shown
above. The values in this structure override the values determined
dynamically by IDT/sim on power up. The values set by this function will
be the values returned by subsequent calls to ‘get_mem_conf’.

SEE

get_mem_conf();

INCLUDE FILES

idtmon.h

IDT/sim PROM Entry Points Chapter 9

9 – 20

SETJMP/LONGJMP
- Save/Restore current Context (30)/(31)

FUNCTION:
setjmp() - Save the current context so that non-local goto's may be

implemented.
longjmp() - Restores the saved context so that non-local goto's may be

implemented.

USAGE:

int setjmp(cur_cntx)
jmp_buf cur_cntx;

int longjmp(cur_cntx,val)
jmp_buf cur_cntx;
int val;

DESCRIPTION:
‘setjmp’ saves the stack environment, caller saved registers(s0-s7), sp

and pc registers. It always returns zero(0). This is meant to be used in
conjunction with ‘longjmp’ which will restore the environment saved by
‘setjmp’. ‘longjmp’ returns the value ‘val’ and will return to the location
right after the ‘setjmp’ call that established the environment.

If ‘longjmp’ is invoked from a fault(interrupt) handler, the flow of control
may be in a manner that is not visible to the compiler. If this is the case,
care must be taken so that variables that are being referenced are
declared 'volatile' so that they will be updated correctly. The ‘jmp_buf’
definition is shown below:

typedef int jmp_buf[JB_SIZE]; /* caller saved regs, sp, pc */

/*
 * jmp_buf indices
 */

#define JB_PC 0
#define JB_SP 1
#define JB_FP 2
#define JB_S0 3
#define JB_S1 4
#define JB_S2 5
#define JB_S3 6
#define JB_S4 7
#define JB_S5 8
#define JB_S6 9
#define JB_S7 10
#define JB_SIZE11

SHOWCHAR
- Make Char Visible (13)

FUNCTION:
showchar() - Prints the character passed to it in a visible manner.

USAGE:

void showchar(c)
int c;

DESCRIPTION:
‘showchar’ checks to see if the character ‘c’ is printable. If it is printable

it outputs the character to the standard output device. If it is a non-print-
able character, ‘showchar’ checks to see if it is one of the following charac-
ters:

IDT/sim PROM Entry Points Chapter 9

9 – 21

'\b' '\f' '\n' '\r' '\t'

If ‘c’ is one of the above characters, ‘showchar’ outputs the two char-
acter sequence for the single control character. If it is non-printable and
not one of the above characters then ‘showchar’ will output the octal
equivalent for the character: \ooo where: ooo are three octal digits

STRING
- String Manipulation Functions

FUNCTION:
strcat() - Concatenate two strings (39)
strcmp() - Compare two strings (36)
strcpy() - Copy one string to another (38)
strlen() - Determine the number of characters in a string. (37)

USAGE:

char *strcat(s,t)
char *s;
char *t;

int strcmp(s,t)
char *s;
char *t;

char *strcpy(s,t)
char *s;
char *t;

int strlen(s)
char *s;

DESCRIPTION:
All strings operated on by the string manipulation functions must be

null terminated.
‘strcat’ concatenates the string pointed to by ‘t’ after the string pointed

to by ‘s’. Returns ‘s’.
‘strcmp’ compares the string pointed to by ‘t’ with the string pointed to

by ‘s’. It returns the following:
 s<t return <0
 s=t return 0
 s>t return >0

‘strcpy’ copies the string pointed to by ‘t’ to the string pointed to by ‘s’.
Returns ‘s’.

‘strlen’ returns the length of the string pointed to by ‘s’.

TFTPCLOSE
- Close TFTP file (70)

FUNCTION:
tftpclose() - Closes a TFTP file.

USAGE:

int tftpclose(tfd)
int tfd;

DESCRIPTION:
‘tftpclose’ closes a TFTP file previously opened by ‘tftpopen’.

IDT/sim PROM Entry Points Chapter 9

9 – 22

SEE:

tftpopen(), tftpread()

TFTPOPEN
- Open TFTP file (69)
FUNCTION:
tftpopen() - Opens a TFTP file for reading or writing.

USAGE:

int tftpopen(path,flags)
char *path;
int flags;

DESCRIPTION:
‘tftpopen’ opens a file for reading or writing via TFTP. See the descrip-

tion of ‘open’ for a general description of this function.
The ‘path’ argument specifies the file to be opened. The path has the

following format:

[host:]remote_file_name

The ‘host’ section specifies the internet address of the remote host that
will be contacted to provide access to the file. If the ‘host’ section is
missing, the environment variable ‘tftphost’ will be used. The
‘remote_file_name’ section is a filename acceptable to the remote host.

Note: Files may be opened read-only or write-only; read-write is not
permitted. In both cases the files must already exist and be publicly
readable or writable

SEE:
tftpclose(), tftpread()

TFTPREAD
- Read a TFTP file (71)

FUNCTION:
tftpread() - Reads from a TFTP file.

USAGE:

int tftpread(tfd,buf,cnt)
int tfd;
char *buf;
int cnt;

DESCRIPTION:
‘tftpread’ reads ‘cnt’ bytes via TFTP from a file opened earlier by

‘tftpopen’ and whose file descriptor is ‘tfd’ into buffer "buf’. All limiting
conditions are similar to those of a ‘read’ command in Unix.

SEE:
tftpopen(), tftpclose()

TIMER_START
- Starts on-board timer (44)

FUNCTION:
timer_start() - Starts the timer for measuring code execution time and

is typically used for benchmarking purposes.

IDT/sim PROM Entry Points Chapter 9

9 – 23

USAGE:

timer_start();

DESCRIPTION:
‘timer_start’ initializes the appropriate timer hardware on-board for

measuring time. Different evaluation boards employ different mecha-
nisms to measure time. If a SONIC (ethernet controller) chip is available
on-board, it is used to measure time. In other cases, the second channel
of the UART chip is used.

Every call to ‘timer_start’ must be eventually followed by ‘timer_stop’ to
stop the timer and to read the value of elapsed time. ‘timer_stop’ returns
time in microseconds.

SEE:

timer_stop();

TIMER_STOP
- Stops on-board timer (45)
FUNCTION:
timer_stop() - Stops the timer and returns elapsed time in microsec-

onds. Typically used for benchmarking purposes.

USAGE:

unsigned int timer_stop() ;

DESCRIPTION:
‘timer_stop’ stops the timer started by an earlier call to ‘timer_start’ and

returns in milliseconds the time elapsed since the last call to ‘timer_start’.

SEE:

timer_start();

TOKENIZE
- Parses Command String (42)

FUNCTION:
tokenize() - parse command line and build argc/argv structure.

USAGE:

int tokenize(cmdline,argv)
char *cmdline;
struct argv_array *argv;

DESCRIPTION:
‘tokenize’ parses the command line pointed to by ‘cmdline’. Delimiters

used by the tokenizer are:

space ' '
comma ,
tab \t
left parenthesis (
right parenthesis)

As ‘tokenize’ parses the command line it fills in the members of the
‘argv’ structure pointed to by the second argument to this call. The format
of the ‘argv’ structure is shown below.

struct argv_array {
char *argv_ptrs[MAXARGS];
char der_strings[MAXSTRLNGTH];

};

IDT/sim PROM Entry Points Chapter 9

9 – 24

The maximum number of arguments (MAXARGS) is currently set at 16.
The total number of characters in all strings (MAXSTRLNGTH) is
currently set at 256. The user may easily change either of these values.
‘tokenize’ returns the number of tokens (argc). An example call to
‘tokenize’ would be as follows: .

int argc,i;
struct argv_array argv;
int command_count;

while (1) {
printf("%s", prompt);

 get_line(linebuf[i]);
 argc = tokenize(linebuf[i], &argv);
}

INCLUDE FILES:

icli.h

WRITE
- System Write Routine (8)

FUNCTION:
write() - Write data to an external device.

USAGE:

write(fd, buf, cnt)
int fd; /* file descriptor */
char *buf; /* pointer to user buffer */
int cnt; /* count of chars to write */

DESCRIPTION:
‘write’ attempts to write ‘cnt’ number of characters to the device refer-

enced by file descriptor ‘fd’. On successful completion ‘write’ returns the
actual number of characters written. If the write operation was unsuc-
cessful, then the return value is the value returned by the drivers write
routine.

10 – 1

Integrated Device Technology, Inc.

Overview

This chapter describes the implementation of the IDT/sim User
Commands. All commands, with the exception of the system diagnostics
command ‘diag | dg’, are covered. The ‘diag | dg’ command is described
in Chapter 8.

A majority of the user commands enable the user to ‘monitor’ both the
system hardware and software. It is for this reason that IDT/sim is some-
times referred to as a ‘monitor.’ This monitor permits the user to develop
stand-alone systems built around any of the MIPS R3000 ISA CPUs
including the R3041, R3051, R3052, R3071, R3081 and R4000 ISA CPUs
including R4400, R4600, R4640, R4650, R4700.

Facilities provided include operating the CPU under controlled condi-
tions, examining and altering the contents of memory, manipulating and
controlling resources for the CPU (such as cache, TLB and coprocessors),
loading programs from host machines and controlling the execution path
of these programs.

Issuing Commands

All commands to the monitor are entered on the command line when
the cursor is at the input prompt

<IDT>

. The command line can be edited
by using the following special characters.

Command Format

The general command format is as follows:

command

 [options] [argument 1] [argument 2]... [argument n]

All

options

 are entered as a minus sign (-) and followed by an alphanu-
meric character (e.g. -w -b).

Arguments

 may be such items as a device name, address or count.
Later in this chapter, the description of each command will specify the
options and arguments required or accepted by that command.

Documentation conventions

Conventions used in this document, to show the commands and their
arguments, are as follows:

< > - An option or argument surrounded by these symbols is ‘required’.
[] - An option or argument surrounded by these symbols is ‘optional’.
| - When options or arguments within brackets are separated by the

‘or’ (|) symbol, it means that only one of the options or arguments may be
specified.

/ - When options or arguments within brackets are separated by the (/)
symbol it means that one or more of the options or arguments may be
specified.

^c (control-c) Terminates current input/output and/or command in progress

^h (control-h) Backspaces and deletes the previous character

^p (control-p) Brings up the previous command on the command line

^u (control-u) Deletes the entire line

Break key if debug interrupt is enabled, returns control to <IDT>

prompt

1

IDT/sim User Commands Chapter 10

IDT/sim User Commands Chapter 10

10 – 2

Command Specifications

• To explicitly specify the radix when entering a number, the following
convention must be used:

The user command for selecting a default radix is provided in “Set
Default Radix” on page 21.

• RANGE - When a command specifies a RANGE to be entered, it can
be entered in one of the following three ways:
- start_address-end_address
- start_address/count
- start_address

Ranges cannot contain embedded blanks. Numbers entered by a user,
unless explicitly specified, will be assumed to be the selected default
radix. One exception to this is the ‘count’ which is always in decimal. If no
‘end_address’ or ‘count’ is entered, then a count of 20 is assumed.

• When entering an ‘address’ as an argument of a command, there is
also the concept of a default segment. In the context of R30xx, user
may be referring to one of four memory segments (kuseg, kseg0, kseg1
or kseg2). User may select a default segment such that all addresses
entered will be modified appropriately (e.g. default seg = kseg1 and
the address entered = 0x1000 would result in an address
0xa0001000). To override the default segment the user must enter all
8 nibbles for the 32 bit address.

• The command line interpreter will provide some shorthand methods
to reenter commands. To repeat a command just entered, the user
may enter

!c...

; where ‘c...’ are the first few characters of the previ-
ously entered command. Only enough characters need be entered to
uniquely identify the previously entered command. There is also a
‘history’ command which allows the user to repeat a command by
entering:

!#

 where ‘#’ is the number of the command from the history
list which is displayed when the ‘history’ command is entered.

Command categories

Commands accepted by the IDT/sim monitor are outlined below and
are divided into eight groups, for clarity. The groups are:

• Communication/Host interface commands
• Execution control commands
• Memory/Register and Assembly/Disassembly commands
• Setup and Environment commands
• TLB commands
• Trace commands
• Network related commands
• Board specific commands

Hexadecimal 0xnnnnnnnn

Octal 0onnnnnnnn

Decimal 0dnnnnnnnn

Default radix nnnnnnnn

IDT/sim User Commands Chapter 10

10 – 3

Communication/Host interface commands

Debug - DBX

debug|db [DEVICE]

This command enables remote debugging over serial i/o interface. The
user must have port b of the duart (tty1 on the target system) connected
to a host computer running MIPS RISC/os™.

This command uses the serial line ‘ptrace’ protocol to communicate
with the MIPS debugger 'DBX' running on the host machine.

A typical session would be for the user to first download application
code which is to be debugged to the target board. From the monitor
command line, the user would then enter the following command:

<IDT>debug

The default communication channel is 'tty1'. The user would then set
up the host machine so 'DBX' would use the serial line connected to 'tty1'
on the target system. On the host machine the user will need to enter the
following line in the /etc/remote.pdbx file to identify the serial line
connected to the target system:

rdebug:dv=/dev/ttyd4:br#9600:

The name 'rdebug' is arbitrary and the serial channel (/dev/ttyd4) is
the serial port that the cable running to the target machine is plugged
into. For example, on an M/120 if the cable was plugged into the
connector on the back labeled 'SIO1', the line in file /etc/remote.pdbx
would be:

rdebug:dv=/dev/tty1:br#9600

If you do not find the file /etc/remote.pdbx, create one. The command
line for invoking 'DBX' is as follows:

dbx -prom <filename>

The '-prom' option tells 'DBX' that the program under test is running
on a remote target and ptrace information will be exchanged with a
remote monitor. The 'filename' is the name of the executable downloaded
to the target board. There are some environment variables in 'DBX' that
must be correctly set to allow remote debugging over the serial channel.
These may be set once 'DBX' has been invoked. The 'DBX' commands to
set these are shown below:

set $use_sockets = 0

set $manual_load = 1

set $pdbxport = "rdebug"

The 'use_sockets = 0' setting specifies that the connection is via a serial
port. The 'manual_load' says that the downloading of the target software
was done manually (using the download command). The 'pdbxport =
"rdebug"' tells what the device-name is in the /etc/remote.pdbx file so
that proper connection can be established.

IDT/sim User Commands Chapter 10

10 – 4

At this time the user may begin using 'DBX' as if the program under
test was running under UNIX on the host machine. In order to avoid
having to enter these "set" commands manually, one may create a file
with these commands in it. The file must be named ".dbxinit" in order for
DBX to use it automatically during its initialization.

Debug - GDB and IDT/c version 5.0 or later

The user does not enter any command at the IDT/sim monitor prompt
to begin source level debugging using the debugger GDB which is a part
of IDT/c 5.0 and later versions. GDB running on the host computer will
do all the necessary work including initialization over the serial connec-
tion. Description of GDB is beyond the scope of this manual. Please refer
to the documentation of IDT/C 5.0 or later. Note that GDB works only on
the tty0 port of the target board; the serial link to host must be at tty0 of
the target board.

Debug Interrupt

dbgint|di [-e|-d] [DEVICE | Int. Line]

Enable or disable the debug interrupt. The debug interrupt allows a
user to interrupt an application program's execution and return to the
monitor. User may specify a DEVICE or a specific interrupt line to
generate the external interrupt. The monitor on many of the IDT develop-
ment boards takes advantage of the fact that the DUART interrupt is
connected to external interrupt line 5 on the R30xx. When the argument
to the '-e' option is

 cons, tty0

 or

 tty1,

 the duart is programmed so that
when the 'break' key is depressed an interrupt will be generated that will
return control to the monitor. An example is shown below.

<IDT>dbgint -e cons OR <IDT>di -e cons

The '-e' specifies that the console interrupt is to be enabled. The second
argument for this command may be the special name 'cons' or one of the
recognized device names (tty0 or tty1).

When the user specifies 'cons', the interrupt is enabled immediately.
When the user specifies a 'device name', the enabling of the external
interrupt only takes place when the user enters the remote debug mode.
To disable the debug interrupt use the '-d' option.

If the user enters

dbgint

 without any arguments, IDT/sim will display
one of the following messages:

If the debug interrupt is disabled -
<IDT>di
Debug int. disabled
<IDT>

If the debug interrupt is enabled -
<IDT>di
Debug int. enabled
Interrupt line

n

 (Where

n

 is 0-5)

<IDT>
If the user specifies an interrupt line number from 0-5, the monitor just

enables the interrupt line specified and it is up to the user to provide a
source for the interrupt (i.e. a switch).

IDT/sim User Commands Chapter 10

10 – 5

Note to R4xxx users: if the R4xxx internal timer is enabled on your
board, and if it uses a hardware interrupt line, to prevent unexpected
breaks to the monitor, the

dbgint

 command should not be used to enable
this particular interrupt.

Download Program from Host to Board

load|l [-b][-a][-s][-t] <device>

This command inputs s-records or binary code from the device speci-
fied on the command line. Devices supported depend on the drivers linked
or installed with IDT/sim. IDT/sim comes standard with a serial driver
that supports two serial devices (tty0 and tty1), and a centronics driver.
The 79S460, 79S465 and 79S381 boards come with the ethernet driver.
The 79S341 board comes with a "pcio16" driver which allows code
transfer over the IBM compatible PC bus, assuming the board is plugged
in as an add-on card inside a PC.

Formats currently supported are s-record and binary. Using the s-
record format the monitor expects to see 'S3' type records until a final 'S7'
record is received from the host. Currently the serial channel defaults to
9600 baud, 8 bits, one stop bit and no parity. The RTS, CTS, DSR, and
DTR hand shake signals on the UART are not used.

The command line options have the following effect:

-b - Binary format

. There is a utility supplied with IDT/sim called ‘bdl’
(binary download) that reads the same s-record files that are downloaded
as described above, however it will recombine the ASCII nibbles to form
binary data again, which it sends over the serial link at 19,200 baud.
Running under RISC/os ‘bdl’ on entry programmatically changes the
specified sio port to 19,200 baud. On exit, it resets it to the original
settings.

-a - turns off handshake

. Does not send ACK/NAK after receiving each
s-record.

-s - silent mode

. Does not echo periods (.) to console. Useful when
there is only one serial i/o channel on target (console and download port
are the same).

-t - download file via TFTP (ethernet)

. If the filename contains a non-
alphanumeric character, the file is automatically downloaded via TFTP
even if "-t" is not used. The entire path of the file including the internet
address of the host needs to be specified in the load command. For
example:

load -t 89.0.3.4:/usr/people/myhome/myfile.sre

This command will download a file called myfile.sre from directory /
usr/people/myhome on a machine which has the internet address
89.0.3.4. If you define the environment variable $tftphost, you do not
need to specify the host internet address. If the file is in the directory /
tftpboot on the host, you do not need to specify the entire path.

Typically, you can set an environment variable to remember the entire
address+path+filename and simply include that variable in the load
command as follows:

setenv f1 89.0.3.4:/usr/people/myhome/myfile.sre

l -t $f1

IDT/sim User Commands Chapter 10

10 – 6

Remember that you need to issue the ‘setenv’ command only once as
the environment variables are stored in the non-volatile RAM even if you
power off your board.

When using the -b option, the IDT/sim command setbaud is used to
set the baud rate on the selected channel to 19,200 baud. The following
sequence of commands would download a program from a host computer
at 19,200 baud in a binary format over tty1 The binary format is specified
by entering the following command line:

on target machine (running IDT/sim)

<IDT>setbaud tty1

19200

<IDT>l -b tty1

on host machine with the rs232 cable connected to tty3

bdl demoprog.srec /dev/tty3

This assumes that demoprog.srec is an s3-type record that is created
from user's executable file.

The default format is s-record,

1

 not binary. The type expected is the
'S3' type.

For example: assume a duart with channel b connected to a host
computer.

<IDT>load tty1

This would try to input s-records from the b channel of the duart

Set Baud rate of tty Port

setbaud|sb <DEVICE>

This command allows the user to select the baud rate for the device
specified by DEV. DEV may be either tty0 or tty1. This command is inter-
active in the sense that the user enters the command and then the
monitor will display a baud rate (19200) on the next line. If this is the
desired baud rate, the user may press carriage-return. If it is not, then
the user should press the space bar repeatedly until the desired baud rate
is displayed and then press carriage-return.

<IDT>setbaud tty1

19200

The choices of baud rates wrap around, so if you hit the space bar too
many times, continue hitting it until the desired baud rate is displayed
again. There is also a no change entry that can be selected.

1.

For more details on the s-record format, see Chapter 13.

IDT/sim User Commands Chapter 10

10 – 7

Terminal Emulator

te

The ‘te’ command puts IDT/sim in a "transparent" mode and connects
the console port straight through to another serial port which may be
connected to a host computer’s serial port or a modem. If it is connected
to a modem, a remote host may be dialed up and connected to. The port
connected to the host is tty1.

Once in the terminal emulation mode the escape character is ^z
(control-z). To exit the terminal emulation mode, the user should enter a
^z followed by the letter 'q'. Downloading a program to the target from a
remote host using the terminal emulation mode can be accomplished as
follows. On the target, get into emulation mode by entering the command:

<IDT> te

This will logically connect the host to tty1 port of the box. If tty1 is
physically connected to a RISC/os™ host, the user will need to login.
After logging on to the host, the user may use the standard UNIX copy
command (cp) to copy a program to the target. On the host enter the
following command - but do not hit carriage return:

cp program.srec /dev/tty3

It is assumed that host port ‘tty3’ is hooked up to the board port ‘tty1’.
To start the download the user must enter the escape character (^z)

followed by the letter 'l'.
UNIX "cat" command will work as well. In place of the "cp" command

above, use the following command:

cat program.srec

Do not hit the carriage return. Use ^zl as explained above. Once the
download is complete, the user should exit the emulation mode by
entering the escape character (^z) followed by the letter 'q'. This will
return the user to the IDT/sim prompt. At this point the user may start
execution of the downloaded program.

Execution Control Commands

Run User Benchmark

benchmark|bm

The ‘benchmark’ command provides an easy mechanism to obtain
quick estimates of execution times of user code. The ‘benchmark’
command measures code execution time and displays that time on the
console.

To run a benchmark, first compile and link the code to be bench-
marked. Convert the executable file to Motorola S-record format. Down-
load the file to the target board using the ‘load’ or ‘boot -n’ command.

At this point one would ordinarily use the ‘go’ command to execute the
code on the target board. Simply use the ‘benchmark’ command instead.
The time measurement starts immediately prior to the start of user's code
and stops immediately after user's call to exit(). The execution time (also
referred to as elapsed time) is displayed in units of ‘minutes, seconds,
milliseconds, microseconds’.

IDT/sim User Commands Chapter 10

10 – 8

Upon entering the ‘benchmark|bm’ command, the user is prompted for
whether the stack needs to be cached or uncached for that particular
execution of the benchmark. A response of "y" (for yes) or "n" (for no) is
expected.

In certain implementations of timers used for benchmarking purposes,
the second channel of an available UART is used to keep time. The baud
rate selected for that particular channel determines the accuracy and
duration of measurable time. User is offered a choice of baud rates to
select for the available channel. In general, the smaller the chosen baud
rate, the longer the period of time which can be measured and the lesser
the accuracy.

This is typically not a problem. If the benchmark is expected to take 16
minutes, the accuracy in terms of micro or even milliseconds is not of
great importance. On the other hand, if the measured time is within a few
milliseconds, then even the microseconds matter significantly. Once the
user selects a baud rate, the maximum limit of time which can be
measured (before time counters roll-over and offer incorrect results) is
displayed for user's reference.

Set or Display Breakpoint

brk|b [address list]

The ‘brk’ command will display all of the currently set breakpoints if no
address list is supplied. If an address list is supplied, breakpoints are set
at each of the addresses in the list. There can only be up to 16 break-
points set at any one time. It is also important to note that breakpoints
are segment-specific. That is to say, if the code to be executed is to run in
kseg0, then it is necessary to set the breakpoint in kseg0. For example, if
the program starts executing at address 0x80014000 (0x14000 in kseg0)
and a breakpoint is desired at address 0x14008, the following sequence of
commands ought be executed:

<IDT>seg -0

<IDT>b 14008

This assumes the default radix is hexadecimal. Once the default
segment has been set, it will remain in force until changed by the user or
until the board is reset. Setting breakpoints at the same address in both
kseg0 and kseg1 is not permitted.

Call a Subroutine

call|ca <address> [arg1 arg2... arg8]

This command invokes a subroutine under the monitor environment. It
will perform a

 jump and link

 to ‘address’ passing any arguments (up to 8)
while still in monitor mode. The arguments must be integers and will be
placed in the appropriate registers according to the MIPS calling conven-
tion.

IDT/sim User Commands Chapter 10

10 – 9

When a client program is started by executing a 'go' command, a client
environment is established which includes all registers, a stack and a set
of global data. When a 'call' command from the monitor mode is made this
client environment is maintained (i.e. the client's stack and register
contents are left unchanged). The 'gp' register is initialized to the value of
the client's 'gp' prior to invoking the

 jump and link

. Any effect that the
called procedure has on the client’s global data will persist after the call.

Continue Execution

cont|c

This command continues execution of the client process from where it
last halted execution as a result of a ‘brk’, ‘next’, ‘step’, or ‘gotill’
command.

Go (Run Program)

go|g [-n] [address]

The ‘go’ command will begin execution at ‘address’ if entered, or at the
address contained in the coprocessor zero (CP0) exception program
counter (EPC). This command should be used to start the initial execution
of a program downloaded to the board. The ‘go’ command clears the client
general purpose registers, so it should not be used to continue execution
once execution has been started. The ‘-n’ option is used to set the next
user PC to be executed at ‘address’ without starting execution. If the user
then executes a ‘step’ command, program execution will begin at the
address specified by ‘address’.

GoTill

gotill|gt <address>

The ‘gotill’ command will continue execution from the current value of
the user program counter. The program will stop execution just prior to
the execution of the instruction pointed to by ‘address’. This command
actually installs a breakpoint at ‘address’. This breakpoint will continue
to remain active as if it were set by the ‘brk’ command. To get a listing of
the currently active breakpoints the ‘brk|b’ command may be used.

Next (step over subroutine)

next|n [count]

The ‘next’ command is similar to the 'step' command, except that when
a

jal

 or

bal

 instruction is encountered, all of the instructions of the
subroutine are executed until the subroutine returns to the instruction
following the

jal

 or

bal

. In other words, ‘next’ skips over the subroutines
as far as single stepping is concerned.

Single Step

step|s [count]

The ‘step’ command executes a single step (if count is not specified) or
'count' number of steps.

IDT/sim User Commands Chapter 10

10 – 10

The ‘step’ command treats branch instructions and the following
instruction in the branch delay slot as atomic and a single step executes
both instructions.

Unbreakpoint

unbrk|ub <bpnumlist|ALL>

This command will remove all of the breakpoints listed in <bpnumlist>.
These are the ordinal numbers of the breakpoints and can be obtained by
doing a 'brk' command.

<IDT>ub 2 4 5

The above command will remove breakpoints 2, 4, and 5.

<IDT> ub ALL

This command will remove all of the currently set breakpoints.

Memory/Register and Assembly/Disassembly commands

The Memory/Register access commands handle the changing,
displaying and moving of data. Each of these commands can be entered
with an option to specify the data size and the range (not optional) of loca-
tions affected. The size options have the following meaning:

The default access type is ‘word’. This is true for all commands that
allow size types. Word accesses may be directed to non-word-aligned
addresses (i.e. fill memory with words starting at address offset 1). To
handle non-word-aligned writes the monitor will use the

swl

 and

swr

instructions.
This will allow the user to debug software utilizing data structures that

are not word aligned. In the ‘RANGE’ specification, the ‘count’ is the
number of words, halfwords or bytes to store (i.e. if the option is ‘-w’ and
‘RANGE = 1000/256’, then 256 words would be affected). Note that the
‘count’ is always a decimal number independent of default radix.

Assembler

asm <addr>

This command allows the user to examine and change the memory
interactively, using standard assembler mnemonics. When the user
enters this command, on the next line, the monitor will output the
address specified by ‘addr’ followed by the contents of this address in
hexadecimal and a disassembly of the contents.

At this point, the user may enter a new instruction mnemonic, a
carriage-return or a period(.).

-w Word access

-h Halfword access

-b Byte access

-l Tribyte left access

-r Tribyte right access

IDT/sim User Commands Chapter 10

10 – 11

If the user enters a new instruction, the current contents at the
address are replaced by the instruction and the monitor outputs the next
sequential address and its contents to the next line on the screen and
waits for the next user input.

If the user presses the ‘Enter’ key, the monitor will not alter the
contents of address and will just output the next sequential address and
its contents to the next line on the screen. This sequence can be repeated
over and over until the user enters a period (.). This terminates the ‘asm’
command and the monitor will output the standard command prompt
(<IDT>) and wait for the next command to be entered.

Examples: assume, seg=kseg1 and rad=hexadecimal.

Memory starting at 0xa0005000 contains:

0xa0005000: 24090001 li t1,1

0xa0005004: 00000000 nop

0xa0005008: 240a0002 li t2,2

0xa000500c: 0c001400 jal ra,0xa0005000

0xa0005010: 00000000 nop

User input is underlined in the following listing.

<IDT>asm 5000

0xa0005000: 24090001 li t1,1

 add t1,t1,t2

0xa0005004: 00000000 nop

 move t3,t1

0xa0005008: 240a0002 li t2,2

 nop

0xa000500c: 0c001400 jal ra,0xa0005000

 b -3

0xa0005010: 00000000 nop

 .

<IDT>

The above sequence would leave the following pattern in memory:

0xa0005000: 012a4820 add t1,t1,t2

0xa0005004: 01205821 move t3,t1

0xa0005008: 00000000 nop

0xa000500c: 1000fffc b 0xa0005000

0xa0005010: 00000000 nop

The assembler only accepts native instructions. For example, to enter:

la v0,0x80014000

IDT/sim User Commands Chapter 10

10 – 12

the user must enter:

lui v0,0x8001

ori v0,v0,0x4000

It should also be noted that the radix should be explicitly specified.
Shift amounts and signed and unsigned immediate values are assumed to
be decimal. Target values are assumed to be hexadecimal. For the R4xxx
architecture targets, the assembler accepts all MIPSII and MIPSIII archi-
tecture instructions. The list of cp0 register names that the assembler
accepts follows:

• MIPS-I (R30xx CPUs):

index - index register

random - random register

tlblo - tlb low entry

tlbhi - tlb high entry

context - context register

sr - status register

cr - cause register

epc - exception pointer register

config - configuration register

badvaddr - bad virtual register

• MIPS-II/III (R4xxx CPUs):

index - index register

random - random register

tlblo0 - tlb entry low 0

tlblo1 - tlb entry low 1

context - context register

pagemask - TLB pagemask register

wired - TLB wired register

badvaddr - bad virtual register

count - count register

tlbhi - TLB entry high

compare - count comparison register

sr - status register

cr - cause register

epc - exception pointer register

prid - processor id

config - configuration register

lladdr - load link address

IDT/sim User Commands Chapter 10

10 – 13

watchlo - watchpoint low register

watchhi - watchpoint high register

xcontext - extended context register

ecc - cache ECC register

cacheerr - cache error register

taglo - cache tag low register

taghi - cache tag hi register

errpc - cache error exception pointer

The list of CP1 register names that the assembler accepts is:

f0-f31 - floating point registers

feir - FPA implementation register

fcsr - FPA control and status register

Cache Flush

cacheflush/cf [-i|-d|-n]

For the R30xx CPU, the cache flush command invalidates both the I-
cache and the D-cache, if no option is specified. To flush only one cache,
the optional argument may be entered. For example:

To flush both the I and D caches, enter:

<IDT>cf

To flush only the i cache, enter:

<IDT>cf -i

For the R4xxx CPU the cache flush command flushes and invalidates
the primary instruction, primary data and secondary instruction/data
caches. Normally any dirty lines in the cache will be written out before the
cache line is invalidated. If the ‘-n’ option is specified, the caches are
simply flushed; any unwritten data in the cache will be discarded. If no
options are given or only the ‘-n’ option is used, all three caches will be
modified.

Compare Block

compare|cp [-w|-b|-h] <RANGE> <destination>

Compares the block of memory specified by ‘RANGE’ to the block of
memory that starts at ‘destination’. Overlapping blocks will be allowed,
however they probably do not make much sense. The comparison will
continue until a mismatch is found. The monitor will then output the
address, the 'should be' value, the destination address, and the 'is' value.
The user may either enter a carriage return to continue the comparison or
enter a period (.) to terminate the comparison.

Examples:

<IDT>cp 4000/128 5000

IDT/sim User Commands Chapter 10

10 – 14

Compares 128 words of data, starting at location 0xa0004000, to a 128
word block of data starting at location 0xa0005000.

Disassemble Contents Of Memory

dis <RANGE>

Disassemble the contents of memory specified by range. If ‘RANGE’
consists only of a beginning address then enough locations following the
beginning address are disassembled to fill one screen. To view disas-
sembly of long pieces of code, the ‘RANGE’ needs to be specified only the
first time. Subsequent ‘dis’ commands without any ‘RANGE’ will continue
to display subsequent pages of disassembly.

If ‘dis’ is used immediately after a ‘load’ command, ‘dis’ without a
‘RANGE’ will automatically display disassembly starting at the beginning
of the downloaded code. The names used for the registers depend on the
register set selected (compiler/hardware) with the 'regsel' command.

Dump Cache

dc [-i|-d] [RANGE]

This command displays the instruction or data cache contents and the
tag values if the cache location is valid. If no option is entered, the data
cache is dumped. ‘RANGE’ is always assumed to be in the range of zero(0)
to the size of the cache. If the addresses are larger than the cache size
entered, they are treated as modulo cache-size.

The display format for the data cache is shown below. For this example
cache location 0x5004 is valid and the tag value is 0x00030000 and the
data is 0x12345678. Cache location 0x500c is also valid with a tag of
0x00030000, however there is an inconsistency between cache contents
and main memory (cache contains 0x00000000 and main memory
contains 0x55555555).

<IDT>dc 5000/4

Tag/Invalid 0x00005000 Data/00000000

Tag/0x00030000 0x00005004 Data/12345678

Tag/Invalid 0x00005008 Data/00000000

Tag/0x00030000 0x0000500c ***000000000x55555555

The display format for the instruction cache is shown below. For this
example a program was executed in kseg0 starting at 0x80014000. Loca-
tion 0xa0014008 was purposely written to force an inconsistency between
main memory and the 'i' cache after the program was executed.

<IDT> dc -i 4000/8

Tag/0x00010000 0x00004000 0x24090001 li t1,1

Tag/0x00010000 0x00004004 0x240a0002 li t2,2

Tag/0x00010000 0x00004008 ***0x00000000 0x12345678

Tag/0x00010000 0x0000400c 0x240b0003 li t3,3

Tag/0x00010000 0x00004010 0x012a6020 add t4,t1,t2

Tag/0x00010000 0x00004014 0x3c028001 lui v0,0x8001

IDT/sim User Commands Chapter 10

10 – 15

Tag/0x00010000 0x00004018 0x34426000 ori v0,v0,0x6000

Tag/0x00010000 0x0000401c 0xac4c0100 sw t4,0x100(v0)

Dump Memory

dump|d [-w|-h] <RANGE>

The ‘dump’ command displays the memory specified by ‘RANGE’ to the
display screen. The start and end addresses of the range are rounded
down modulo 16 and up modulo 16 respectively (i.e. if the range
requested was 24 to 53, then addresses 16 through 63 will be displayed
to the screen). The memory contents are dumped in the default radix. The
options have the following meaning:

-w - Word access.

-h - Halfword access

The format of the memory dump is shown below. Each line will contain
4 words of data either in word format (32 bits) or halfword (16 bits)
format. The right- hand portion of the display will dump the 4 words of
data as ASCII characters. If the data is a non-printing character, an apos-
trophe will be output in its place. If the user specifies byte access, the
data is read from memory with byte instructions, however, because of
screen width, the display will be formatted like the halfword access.

Examples:

assume: seg.=kseg1 and rad=hexadecimal.

<IDT>d 200/4

a0000200: 41424344 31003220 45464739 01020304 *ABCD1'2 EFG9''''*

<IDT>dump -h 200/4

a0000200: 4142 4344 3100 3220 4546 4739 0102 0304 *ABCD1'2 EFG9''''*

The default access type is ‘word’.

Dump Registers

dr [reg#|name|reg_group]

This command will print out the current contents of registers. It should
be noted that the register contents only have sense after running (single
stepping) or after encountering a breakpoint in a client program. After
IDT/sim is first started all registers are cleared, the cache is cleared and
the TLB is invalidated. If the user requests a specific register from the
group of CPU registers (r0-r31, hi, lo or pc) then that particular register is
displayed in the default radix. If the user requests a dump of a particular
coprocessor register then these registers are dumped in a special format
for ease of reading.

To dump all of the coprocessor zero registers, enter the following
command:

<IDT>dr cp0

IDT/sim User Commands Chapter 10

10 – 16

All of the coprocessor zero registers may be dumped individually and
will be displayed with the individual fields separated, for easy identifica-
tion by the user. For example, the user could enter the following
command:

<IDT>dr sr

The contents of the status register would be displayed in a field by field
display as follows:

sr: cu bev ts pe cm pz swc isc intmsk kuo ieo kup iep kuc iec

 x b b b b b b b x b b b b b b

Where: ‘x’ is a hex digit and ‘b’ is a binary (0/1) digit.

To dump all of the floating point registers in a hexadecimal format,
enter the command:

<IDT>dr fpr

To dump all of the floating point registers in a single precision format,
enter the command:

<IDT>dr fps

To dump all of the floating point registers in a double precision format,
enter the command:

<DT>dr fpd

Fill Memory

fill|f [-w|-h|-b|-l|-r] <RANGE> [value_list]

The ‘fill’ command fills memory specified by ‘RANGE’ with the contents
of ‘value_list’. ‘Value_list’ is a list of 0 to 8 blank-separated values that will
be repeated over and over until the amount of memory specified by
RANGE is exhausted. If ‘RANGE’ is smaller than the number of values,
only enough values, starting at the beginning of the list will be used. If
‘value_list’ is empty, memory specified by ‘RANGE’ will be cleared to zero.

Examples:

assume: seg.=kseg1 and rad=hexadecimal.

<IDT>fill 0x80060000-0x80060100 0x12345678 0xabcdef00

The above command fills memory inclusive between 0x80060000 and
0x80060100 with the repeating pattern 0x12345678,0xabcdef00.

<IDT>f -h 50000/256 aaaa 5555 0000 ffff

The above command fills memory inclusive between 0xa0050000 and
0xa00050200 with a repeating pattern 0xaaaa5555 0x0000ffff.

<IDT>f 50001/64 22334455

IDT/sim User Commands Chapter 10

10 – 17

The above command fills memory as shown below:

a0050000: 00223344

a0050004: 55223344

a0050008: 55223344

: :

: :

a00500fc: 55223344

a0050100: 55000000

Fill Register

fr [-s|-d] <reg#|name> <value>

Puts ‘value’ into the register specified by ‘reg#|name’. However, an
exception is made for double precision floating point registers. The regis-
ters in case of double precision must be accessed as "dn" where "n" is an
even number. To fill register r3 with the value ox12345678 the user may
enter either of the commands below:

<IDT>fr r3 0x12345678

<IDT>fr v1 0x12345678

The options -s and -d are used to specify either single or double preci-
sion values for the floating point registers f0-f30. When entering values
into the floating point registers in the floating point format, only even
numbered registers may be specified. The commands below are examples
of entering values into the floating point registers:

<IDT>fr -s f4 1.375

<IDT>fr -d d10 3.45e10

As a convenience, the special name ‘pc’ is used for the current program
counter. In the MIPS architecture, the current program counter is not
contained in any register. The name ‘pc’, as far as the IDT monitor is
concerned, refers to the contents of the exception program counter (EPC)
register in coprocessor zero (CP0).

When the execution control commands (go, continue, gotill) are used,
execution will continue from the contents of the EPC. The names ‘pc’ and
‘co_epc’ are identical internally. The command sequence shown below
would start execution at location 0xa0020000. In that the ‘fill register’
command does not assume that an address is being entered, it should be
noted that the entire 32 bit virtual address needs to be entered.

<IDT>fr pc 0xa0020000

<IDT>go

IDT/sim User Commands Chapter 10

10 – 18

Move Block

move|m [-w|-b|-h] <RANGE> <destination>

Moves the block of memory specified by RANGE to the address speci-
fied by ‘destination’. The destination address may be before, after or
within the block of memory to be moved, and the ‘move’ algorithm will
move through the block forward or backward so as not to destroy any
data. The second example shows the case of overlapped source and desti-
nation regions as specified by the addresses.

Examples:

 assume: seg.=kseg1 and rad=hexadecimal.

<IDT>m 5000/128 5800

The above command moves 128 words of data, starting at location
0xa0005000 to a 128 word block of data starting at location 0xa0005800.

<IDT>move 5000-5fff 5800

The above command moves the block data between addresses
0xa0005000 and 0xa0005fff to the block of data between addresses
0xa0005800 and 0xa00067ff. The ‘move’ algorithm is such that this will
not result in destroying the original data between addresses 0xa0005800
and 0xa0005fff.

Read Cache Memory

rc [-i] [-w|-b|-h] <RANGE>

Addresses are automatically set to Kseg0 and the caches are isolated
(in the R30xx). Memory contents are read starting at ‘start_addr’ until
‘end_addr’ is reached. If a ‘count’ was specified instead of an end address
then memory is read from ‘start_addr’ to ‘start_addr+count’.

The options have the following meaning:

-i - Select the instruction cache.

-w - Word access.

-b - Byte access.

-h - Halfword access.

The default access type is ‘word’ and the default cache is the ‘data’
cache.

Search Memory

search|sr [-w|-b|-h] <RANGE> <value> [mask]

This command will search the area of memory specified by ‘RANGE’ for
the ‘value’. Prior to the check, each memory location and value will be
'anded' with the mask, if specified. When a match is found, the address is
displayed and the user may enter a carriage return to continue searching
or a period (.) to terminate the search operation. User input is underlined
below.

IDT/sim User Commands Chapter 10

10 – 19

Examples:

assume: seg.=kseg1 and rad=hexadecimal.

<IDT>sr 5000/128 12345678

Match: a0005010=12345678

<IDT>
The above command searches 128 words of data, starting at location

0xa0005000, for the word containing the value 0x12345678. A match is
found at location 0xa0005010. Only one match was found and the
monitor then returned to the command line displaying the command line
prompt when the search completed.

<IDT>sr 4000/128 12345678 00ffff00

The above command searches 128 words of data, starting at location
0xa0004000, for a word containing the value xx3456xx. Where the ‘x’ are
any hex value from ‘0’ to ‘f’. Halfword access use only the least significant
16 bits of the mask and byte accesses use only the least significant 8 bits
of the mask.

Substitute Memory

sub [-w|-h|-b|-l|-r] <address>

The ‘sub’ command allows the user to examine and change memory
interactively. When the user enters the ‘sub’ command, the ‘address’
followed by the contents of memory at the address are displayed on the
next line. At this point the user may enter a new value or a carriage
return (‘Enter’ key) or a period (.).

If the user enters a new value, the current contents of memory at
‘address’ are replaced by the new value. The monitor then displays the
next sequential address and its contents on the next line on the console
and waits for the next user input.

If the user presses the ‘carriage return’ or ‘Enter’ key, the monitor will
not alter the contents of memory at ‘address’ and will just display the next
sequential address and its contents on the next line.

This sequence can be repeated over and over until the user enters a
period (.) which terminates the ‘sub’ command and the monitor will
return to the standard command prompt ‘<IDT>’ and wait for the next
command.

Examples:

assume: seg=kseg0 and rad=hexadecimal. User input is underlined.

Memory starting at 0x80005000 contains:

0x80032001 0x32402200 0x00230444 0x3309765.

<IDT>sub 4000

80005000: 80032001 12345678

80005004: 32402200 aaaa5555

80005008: 00230444 <Enter>

8000500c: 33809765.

<IDT>

IDT/sim User Commands Chapter 10

10 – 20

The above sequence would leave the following pattern in memory
starting at 0x80005000: 0x12345678 0xaaaa5555 0x00230444
0x33809765

<IDT>sub -h 5000

80005000: 1234 8765

80005002: 5678 4321

80005004: aaaa <Enter>

80005006: 5555 9999

80005008: 0023 <Enter>

8000500a: 0444.

<IDT>

The above sequence would leave the following pattern in memory
starting at 0x80005000:

 0x87654321

 0xaaaa9999

 0x00230444

Write Cache Memory

wc [-i] [-w|-b|-h] <RANGE> [value_list]

Note: This command is not available in the IDT/sim for the R4xxx
CPU.

Addresses are automatically set to Kseg0 and the selected cache is
isolated. This command will fill the selected cache memory specified by
‘RANGE’ with the pattern specified by ‘value_list’. The user may access
either the data cache or the instruction cache. If the ‘-i’ option is selected
the instruction cache will be accessed, otherwise the data cache is
accessed. If the user enters:

<IDT>wc 0x1000-1100

data cache locations 0xc000 -0x1100 will be filled with zeros. The
options have the following meaning:

-i - Select the instruction cache.

-w - Word access.

-b - Byte access.

-h - Halfword access.

Writing a word to the cache while it is isolated will validate that partic-
ular entry. The default access type is ‘word’ and the default cache is the
data cache. All addresses should be within the actual cache limit. Cache
size is determined dynamically at initialization time of IDT/sim.

IDT/sim User Commands Chapter 10

10 – 21

Set-up and Environment Commands

Checksum

checksum|cs [start_addr num_bytes]

This command calculates the checksums for each of the EPROMs on
the target board and displays the results on the console. If the optional
arguments are entered, the checksums for the area of memory specified
are calculated. By default it is assumed that the EPROMs begin at
address 0xbfc00000 and are 0x20000 bytes deep. The two forms of the
command below would do the same operation.

<IDT>cs

<IDT>cs 0xbfc00000 0x20000

Help Command

help|? [commandlist]

This command will print out the list of commands available in IDT/sim.
If a command list is supplied, only the syntax for the commands in the
list is displayed.

History Command

history|h

The ‘history’ command will display the last 16 commands entered with
identifying numbers so that the user may re-execute one of those
commands by entering ‘!#’ where ‘#’ is the command number from the
list. This is a circular list in that at any time the latest 16 commands are
available.

Initialize

init|i

This command is a ‘warm reset’ and is analogous to pressing the hard-
ware reset switch. The ‘init’ command will initialize the 'bss' area and
stack designated by IDT/sim. It also clears the breakpoint table, but does
not clear the user memory space.

Register Set Select

regsel|rs [-c|-h]

This command allows the user to select the format of the register
names. There are two formats for the register names - ‘compiler’ names or
‘hardware’ names. The ‘compiler’ names are: a0, t1, s0, etc. The ‘hard-
ware’ names are: r0, r1,..., r31. The default selection when the monitor
first powers up is ‘compiler’ names.

Set Default Radix

rad [-o|-d|-h]

Set the default radix to the requested base.

IDT/sim User Commands Chapter 10

10 – 22

-o - Octal

-d - Decimal

-h - Hexadecimal
If no argument is supplied, the radix in force at the time is displayed.

Set Default Segment

seg [-0|-1|-2|-s|-3|-u]

The ‘seg’ command sets the default segment to the requested segment.

-0 - Kseg0 0x80000000

-1 - Kseg1 0xA0000000

-2 - Kseg2 0xC0000000 (R30xx only)

-s - Kseg 0xC0000000 (R4xxx only)

-3 - Kseg3 0xE0000000 (R4xxx only)

-u - Kuseg 0x00000000

When the user enters an address and does not specify all 8 nibbles of
the 32 bit address, the address entered is ‘or’-ed with the default segment
value. If no argument is supplied with the ‘seg’ command, the segment in
force at the time is displayed.

TLB Commands

TLB Dump

tlbdump|td [RANGE]

This command displays the contents of the Translation Lookaside
Buffer (TLB). If a ‘RANGE’ is specified just the contents within the
‘RANGE’ are dumped, otherwise the entire buffer is dumped.

TLB Flush

tlbflush|tf [RANGE]

This command flushes the contents of the TLB. If a ‘RANGE’ is specified
just the contents of the ‘RANGE’ are flushed, otherwise the entire buffer is
flushed.

TLB Map
For R30xx CPU:

tlbmap|tm [-i index] [-ndgv] <vaddress> <paddress>

The ‘tlbmap’ command establishes a virtual to physical mapping in the
TLB. A particular entry may be specified with the -i option; if no TLB entry
is specified, a random entry is selected between 8 and 63. The -n, -d, -g
and -v options cause the corresponding bits in the TLB entry to be set to
1, otherwise they are set to 0. The default segment is not applied to these
addresses.

IDT/sim User Commands Chapter 10

10 – 23

For an R4xxx CPU:
tlbmap|tm [-i INX] [-(v/d/g)[0|1]] [-g] [-p PAGESIZE] [-c CACHEALG]

VADDR PADDR [PADDR]
The ‘tlbmap’ command establishes a virtual to physical mapping in the

TLB. A particular entry may be specified with the -i option; if no entry is
specified, the entry specified by the R4xxx ‘wired’ register is used. The -v, -
d and -g options allow the valid, dirty and global bits of the TLB low
entries to be set.

These switches may optionally be followed by ‘0’ or ‘1’ to specify an
individual TLB low entry. By default, both TLB low entries are affected.
The -p switch allows the TLB page size to be set. It may take one of the
following values:

0x00001000 4 kbyte page

0x00004000 16 kbyte page

0x00010000 64 kbyte page

0x00040000 256 kbyte page

0x00100000 1 Mbyte page

0x00400000 4 Mbyte page

0x01000000 16 Mbyte page

The -c switch allows the TLB cache algorithm to be set. It may take one
of the following values:

0- Reserved

1- Reserved

2- Uncached

3- Cached Noncoherent

4- Cached Coherent Exclusive

5- Cached Coherent Exclusive Write

6- Cached Coherent Update

7- Reserved

In general, only the values 2 and 3 should be used. Using other values
(particularly reserved ones) may cause mysterious problems with the
caches.

If two physical addresses are supplied, the two ‘tlblo’ entries are set to
use them. If one physical address is supplied, ‘tlblo0’ entry is set to the
physical address and ‘tlblo1’ entry is set to the physical address plus the
selected page size.

TLB Process ID

tlbpid|ti [pid]

The ‘tlbpid’ command without argument displays the current process
identifier in the system coprocessor register 'tlbhi'. If an argument is
supplied, the current process identifier in 'tlbhi' is set to ‘pid’.

IDT/sim User Commands Chapter 10

10 – 24

TLB Search For Physical Address Map

tlbptov|tp <physaddr>

This command searches the TLB for translations which map to ‘phys-
addr’. Any translations found, valid or invalid, are displayed. The default
segment is not applied to ‘physaddr’.

Trace Commands
The trace commands allow the user to trace memory accesses of a user

program. Such things as the path of execution, writes/reads to a specific
address or range of addresses, execution of a specific instruction and/or
all calls may be traced. The trace occurs in a non-real-time execution
mode. There is a trace mode that allows real-time execution for all but a
specified range or set of ranges of program execution. For example, to
accommodate programs which call ROM-based code, an address range
not to be traced can be specified. Calls to the excluded address range will
be executed real-time.

Trace Command

t [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m MSK]

The ‘trace’ command defines the ‘trace equation’ and/or enables/
disables tracing. The options are explained below:

-a - trace all instructions executed.

-o - turn off all previously selected trace conditions.

-e - enable tracing.

-d - disable tracing

-r RANGE - trace all reads from address range 'RANGE'

-w RANGE - trace all writes to address range 'RANGE'

-c RANGE - trace all calls to address range 'RANGE'

-i INS - trace all execution of instruction 'INS'

-m MSK - Mask value for tracing a specific instruction

Options may be specified in any combination and are interpreted in the
order that they appear on the command line. An example of setting up
trace conditions to trace ‘all’ memory accesses and ‘enable’ tracing is
shown below:

<IDT>t -a -e

To trace all writes to a particular area of memory (for example, the user
stack) the following command may be used:

<IDT>t -w 0x800fe000-0x800ffffc -e

If the stack is in the area of 0x800fe000-0x800ffffc, the above
command will capture all writes to the stack. It also enables tracing.

The command shown below will trace all reads and writes to an area:

<IDT>t -r 0x800fe000-0x800ffffc -w 0x800fe000-0x800ffffc -e

IDT/sim User Commands Chapter 10

10 – 25

To see the current trace selection the user enters the ‘trace’ command
with no arguments (user input underlined below):

<IDT>t -o

<IDT>t -e -r bfe00000-bfe0003f -w 50000-60000

<IDT>t

Trace reads - bfe00000-bfe0003f

Trace writes - a0050000-a0060000

Trace enabled

Note that the range specification uses the default radix and segment.
All of the trace commands interact with each other. The trace buffer size
is set to 512 entries. The ‘ts’ (trace stop condition) command is used to
determine when to stop tracing. The tc (trace conditionally) command will
allow switching from real-time mode to trace mode automatically. An
example of how to trace a specific instruction is shown below:

<IDT>t -i "mfc0 t0,sr"

The above command will trace every occurrence of the instruction 'mfc0
t0,sr'. Note that the instruction is entered with the same syntax that is
used for the incremental assembler. The entered instruction must be
enclosed in quote marks.

Breakpoints will not halt execution with trace enabled unless the ‘trace
stop’ condition is set to stop on breakpoint. The trace may be disabled
without erasing the trace equation. With the trace disabled, breakpoints
work normally. Using the ‘trace conditionally’ command with breakpoints,
will automatically toggle trace enable.

By specifying a mask (-m MSK) the user can trace classes of instruc-
tions. For example to trace all 'mfc0' instructions regardless of the regis-
ters involved, the following trace command could be used:

<IDT>t -i "mfc0 t0,sr" -m 0xffe007ff -e

The mask is applied to the values before the test for equality is made. It
masks out the 'rt' and 'rd' values for the 'mfc0' instructions.

<IDT>t -i "mfc0 t0,sr" -m 0xffff07ff -e

The above command would cause all "move from coprocessor zero
status register" instructions to be traced. Below are tables of useful
masks for some of the instructions:

Store to memory/Load from memory

Any register 0xffe0ffff

Any base 0xfc1fffff

Any offset 0xffff0000

Add,Addu,And,Nor,Or,Sllv,Slt,Sltu,Sub,Subu,Xor

Any destination 0xffff07ff

Any operands/specific destination 0xfc00ffff

IDT/sim User Commands Chapter 10

10 – 26

Obviously, some combinations do not make sense. Example:

 <IDT>t -o -d -a -r 0xa0010000/10

The -o disables tracing, so the -d is superfluous. The trace conditions
are ‘and’-ed, so the -a will trace everything including the trace conditions
specified by the -r option.

Trace Stop Command

ts [-b|-f|-o|-r RANGE|-w RANGE|-i INS|-m MSK]

The ‘ts’ command defines the conditions necessary to halt execution of
the client program and return to monitor mode so the user may examine
the trace buffer. The trace buffer wraps so that when execution stops only
the last 512 or less events are available. The options are explained below:

-b - Stop on occurrence of a breakpoint

-f - Stop on trace buffer full

-o - Cancel all trace stop conditions

-r RANGE - Stop on reads from address range 'RANGE'

-w RANGE - Stop on writes to address range'RANGE'

-i INS - Stop on execution of instruction 'INS'

-m MSK - Mask value for instruction to stop tracing

Any or all options may be specified. Execution will stop on the first
condition to be satisfied. Entering the 'ts' command without arguments
will display the trace conditions. This is the same as the 't' command.

Examples:

<IDT>ts -f

The above command will continue tracing until the trace buffer is full.

<IDT> ts -f -b -i "mfc0 t1,sr" -m 0xffe0ffff

The above command will trace until the buffer is full or a breakpoint is
encountered or a 'mfc0' instruction moves any general register to 'sr'.

Any operands/destination 0xfc0007ff

Mfcz,Mtcz,Cfcz,Ctcz Where 'z' is 0 - 3

Any coprocessor reg.ister 0xffff07ff

Any general reg.ister 0xffe0ffff

IDT/sim User Commands Chapter 10

10 – 27

Trace Conditionally Command

tc [-e BPNUM] [-d BPNUM]
This command defines the limits of tracing. By placing breakpoints at

the start of a code segment and at the end and using the trace condition-
ally command a user may specify a section of code to trace. The user
should use the ‘trace’ (t) command to define the items traced and the
‘trace stop’ (ts) command to specify when to halt execution.

Typically the client program would be started with trace disabled.
When the enabling breakpoint is reached, tracing will commence and
continue until the disabling breakpoint is reached. Except for the time
that tracing is enabled the program will execute in real time. An example
of how to use this command is shown below (user input underlined):

<IDT>t -a -d

<IDT>ts -f

<IDT>b 40100 40188

<IDT>b

bp 0= 0x80040100:24090000li t1,0x0

bp 1= 0x80040188:03e00008jr ra

<IDT>tc -e 0 -d 1

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040100:24090000 li t1,0x0 Start Trace

bp 1= 0x80040188:03e00008 jr ra Stop Trace

<IDT>

The ‘tc’ command specifies to enable tracing when breakpoint 0 (-e 0) is
reached and to disable tracing when breakpoint 1 (-d 1) is reached. Up to
16 breakpoints may be specified and the ‘trace conditionally’ command
may be used to set enable/disable tracing on any or all of the break-
points. It is not legal nor does it make any sense to try and enable and
disable tracing on the same breakpoint.

<IDT>t -a -d

<IDT>ts -f

<IDT>ub all

<IDT>b 40100 40188 40200 40214

<IDT>b

bp 0= 0x80040100:24090000 li t1,0x0

bp 1= 0x80040188:03e00008 jr ra

bp 2= 0x80040200:240c0000 li t4,0x4

bp 3= 0x80040214:03e00008 jr ra

<IDT>tc -e 0 -e 2 -d 1 -d 3

IDT/sim User Commands Chapter 10

10 – 28

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040100:24090000 li t1,0x0 Start Trace

bp 1= 0x80040188:03e00008 jr ra Stop Trace

bp 2= 0x80040200:240c0000 li t4,0x4 Start Trace

bp 3= 0x80040214:03e00008 jr ra Trace Stop

<IDT>

The above sequence specifies a couple of ranges to trace. If the enabling
breakpoint is never reached then no information will be placed in the
trace buffer. Even if the breakpoint is reached and after the trace is
enabled no conditions for capturing trace information are satisfied, then
no information will be placed in the trace buffer.

Trace Dump Command

dt

The ‘dump trace’ command displays the contents of the trace buffer.
The format is shown below:

<IDT>dt

Dump Trace Buffer - 512 entries

<line#> <virtual addr> <disassembled instr> <register contents>

 : : : :

 : : : :

<line#> <virtual addr> <disassembled instr> <register contents>

<up(u) down(space) line #(l nnnn) search addr(s addr) next(n) quit(q)>

When the user has captured a buffer full of trace data and enters the
‘dt’ command, the contents of the buffer will be displayed to the console
21 lines at a time in the format shown above. The last line of the display
prompts the user to enter either an 'u' to scroll up or a 'space' to scroll
down, or the letter 'l' followed by a line number from 0-511, or search the
trace buffer starting at line 0 for an address, or next(n) to search for the
next occurrence of address, or to quit(q).

In case of specifying a line number, the contents of the trace buffer
starting at the line number and continuing for 21 entries will be
displayed. If ‘search for address’ is used and the specified address is
found in the trace buffer then 10 entries before and 10 entries after are
displayed with the found line marked with (****). If the specified address is
not found, the next page of trace buffer contents is displayed.

IDT/sim User Commands Chapter 10

10 – 29

Trace Exclude Command

tex [RANGE]

The trace exclude command allows the user to specify an address area,
the calls to which will not be traced. The main reason for this is to prevent
calls to library or ROM space from being traced. Trying to trace calls to
ROM space will not work.

This command is very useful if the user is linking with IDT/sim's
library functions (i.e. printf, string rts...). If the user has linked with
IDT/kit or IDT/C 5.0 or later, the area addressed by the routines from
‘liblnk.a’ should be excluded. Tracing is done by actually single stepping
and examining the instruction being executed and its operands. If the
instruction is a branch-and-link or a jump-and-link the target address is
calculated and tested to see if it falls in the excluded area. If it does, the
branch or jump is executed real time with a breakpoint inserted at the
return address, where tracing will continue normally.

Examples:

<IDT>tex 45110-47000

Any calls to the area 45110-47000 would be stepped over (similar to executing a 'next'
command on the 'jal' instruction).

<IDT>tex

Exclude a0045110-a004700

The "tex" command entered without any arguments will display the
currently excluded area. On power up, the default excluded area is
0xbfc00000-0xbffffffc. The default segment and radix are applied to the
address specification at the time the tex command is entered. Changing
the segment or radix later does not effect the current exclusion area.

Trace Command Examples
Assume a client program with a kernel running in real time and

starting at location 0x80020000. There is a subroutine starting at loca-
tion 0x80040000 and ending at 0x80040120 that gets called infrequently.
The user would like to trace this subroutine. The following command
sequence could be used (user input underlined):

<IDT>seg -0

<IDT>t -a

<IDT>ts -f

<IDT>b 40000 40120

<IDT>tc -e 0 -d 1

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040000:24090000 li t1,0x0 Start Trace

bp 1= 0x80040120:03e00008 jr ra Stop Trace

<IDT>

IDT/sim User Commands Chapter 10

10 – 30

The above sequence sets the default segment to kseg0, trace all, stop
tracing on buffer full, bracket the subroutine with breakpoints at loca-
tions 0x80040000 and 0x80040120, start tracing when breakpoint
zero(0) is encountered and trace all until breakpoint one(1) is encoun-
tered.

To see the trace conditions that are set, the ‘trace’(t) command with no
arguments is entered. With the trace conditions set, the user may start
the program and it will run real time, except for the portion of time that it
is executing in the range of 0x80040000- 0x80040120.

Network Related Commands
Network related commands assume that an ethernet device driver has

been installed on the board and the required hardware is also present.

Download and execute binary file (boot)

boot [-n] [[HOST:]FILE]

The ‘boot’ command downloads and executes an executable binary file
via TFTP. If the -n option is given, the file is simply downloaded ready for
execution by the ‘go’ command.

The ‘boot’ command recognizes MIPS ECOFF and ELF format files. The
file to be downloaded is specified by the HOST:FILE argument. The HOST
section is the internet address of the remote TFTP server in internet dot
notation. If the HOST section is not specified, a default value is obtained
from the ‘bootaddr’ environment variable. The FILE section is a filename
in a suitable format for the remote file server. If the FILE section is not
specified, a default value is obtained from the ‘bootfile’ environment vari-
able.

Ping a host

ping [-lnqrv] [-c COUNT] [-i WAIT] [-s SIZE] HOST

This command allows a remote host to be ‘pinged’ to see if it is avail-
able. ICMP echo packets are sent to the host and the reply packets are
displayed showing the round-trip time.

The HOST argument selects the host to be ‘ping’ed. It is given in
internet dot notation.

The -c option allows a specified number of packets to be sent. By
default "ping" will send packets continuously until it is interrupted by
typing control-c.

The -l option allows a specified number of packets to be sent before
timing commences. This allows the network load to reach a steady state.

The -n option forces internet addresses to be printed out in dot notation
(this is the default behavior).

The -q option stops "ping" from displaying the results of each packet
sent.

The -r option prevents the low level network code from routing packets.
The -v option enables verbose messages when unexpected packets are

received.
The -s option allows you to specify a different packet size (maximum

1432, default 56).

Board specific commands
The following commands will work on boards with real-time capability

and non-volatile memory.

IDT/sim User Commands Chapter 10

10 – 31

Set / display date and time

date [[[[[yy]mm]dd]hh]mm.[ss]]
The Set / display date and time command is used to display and set

real time clock. With no arguments, the current date and time is simply
displayed. The optional argument allows the time to be set. Each section
of the string consists of two digits: yy - the year modulo 100, mm - the
month (1-12), dd - the day (1-31), hh - the hour (0-23), mm - the minute
(0-59) and ss - the seconds (0-59). Any unspecified field defaults to the
current value.

Display settings of environment variables

env

Displays the environment strings set in theNVRAM.

Set environment variable values

setenv <VAR> <VALUE>

Sets the environment variable ‘VAR’ to ‘VALUE’. The environment is
stored in NVRAM and is preserved when the power is off. Spaces may be
included in the ‘VALUE’ string by encompassing them inside quote marks.

For example:

<IDT> setenv cmd "load -b -a tty1"

<IDT> $cmd

Environment variables is a great way of saving repetitious typing at the
sim command line.

Delete (unset) environment variable

unsetenv <VAR>

Deletes the environment variable ‘VAR’ from the NVRAM environment.

11 – 1

Integrated Device Technology, Inc.

Quick Reference:

IDT/sim User Commands

asm <addr>

Allows the user to interactively examine and change memory, using
standard assembler mnemonics.

benchmark|bm

Before issuing this command, the code to be benchmarked should be
downloaded to the target board. This command returns the total elapsed
time for executing the entire downloaded code, in microseconds. The time
is displayed on the monitor.

brk|b [address list]

Displays all of the currently set breakpoints, if an address list is not
supplied. If an address list is supplied, breakpoints are set at each of the
addresses in the list.

boot [-n] [[HOST:]FILE]

Downloads a binary file via ethernet and executes it on the target
board. ‘-n’ prevents execution.

cacheflush|cf [-i|-d|-n]

Flushes both the i-cache and the d-cache, if no option is specified. If
the user wants to just flush one or the other, the optional argument may
be entered. In the R4xxx, ‘-n’ prevents write-back.

call|ca <address> [arg1 arg2 ... arg8]

Invokes a sub-procedure under the monitor environment. Executes a
jump-and-link to the address passing up to eight arguments while still in
monitor mode.

checksum|cs [start_addr num_bytes]

Displays the checksum for each of the IDT/sim EPROMS.

compare|cp [-w|-b|-h] <RANGE> <destination>

Compares the block of memory specified by RANGE to the block of
memory that starts at destination.

cont|c

Continues execution of the client process from where it last halted
execution.

date [[[[[yy]mm]dd]hh]mm.[ss]]

Displays and sets date and time. Available on boards with NVRAM only.

dbgint|di [-e|-d] [DEVICE | Int. Line]

Enables or disables the facility that allows the user to interrupt an
application program’s execution and return to the monitor.

dc [-i|-d] RANGE

Displays the instruction or data cache contents and the tag values, if
the cache location is valid.

1

IDT/sim User Command
Summary

Chapter 11

IDT/sim User Command Summary Chapter 11

11 – 2

debug|db [DEV]

Enters remote debug mode. ‘DEV’ can be ‘tty0’ or ‘tty1’.

diag|dg

Runs low-level system diagnostics.

dis <RANGE>

Dis-assembles the contents of memory specified by RANGE. If RANGE
consists only of a beginning address, enough locations following the
beginning address are disassembled to fill one page.

dr [reg#|name|reg_group]

Prints out the current contents of register(s).

dt

Displays the contents of the trace buffer.

dump|d [-w|-h] <RANGE>

Displays the contents of memory specified by RANGE.

env

Displays the environment variable string settings in boards with
NVRAM.

fill|f [-w|-h|-b|-l|-r] <RANGE> [value_list]

Fills memory specified by RANGE with ‘value_list’.

fr [-s|-d] <reg#|name> <value>

Puts <value> into the register specified by <reg#|name>.

go|g [-n] <address>

Begins execution at address <address>.

gotill|gt <address>

Continues execution from the current value of the program counter.
The program will stop execution just prior to the execution of the instruc-
tion pointed to by ‘address’.

help|? [command list]

Prints out a list of commands available in the monitor. If a command
list is supplied, only the syntax for the commands in the list is displayed.

history|h

Displays the last eight commands entered with identifying numbers so
that the user may re-execute the command by entering ‘!#’, where ‘#’ is
the command number.

init|i

Initializes prom monitor (warm reset).

load|l [-b|-a|-s|-t] <device>

Input S-records from ‘device’.
-b: binary download; needs the program ‘bdl’.
-a: turns off handshake protocol which indicates end of each S-record.
-s: silen mode; no dots are printed on screen.
-t: download via ethernet; needs entire ip address and filename

followinf ‘-t’.

IDT/sim User Command Summary Chapter 11

11 – 3

move|m [-w|-b|-h] <RANGE> <destination>

Moves the block of memory specified by RANGE to the address speci-
fied by destination.

next|n [count]

Similar to the 'step' command except that when a

jal

or

bal

 instruction
is encountered, all instructions of the sub-procedure are executed until
the sub-procedure returns to the instruction following the

jal

or

bal

.

ping [-lnqrv] [-c COUNT] [-i WAIT] [-s SIZE] HOST

Sends ICMP echo packages to remote host to check if the host is avail-
able.

rad [-o|-d|-h]

Sets the default radix to the requested base (Octal / Decimal / Hexa-
decimal).

rc [-i] [-w|-b|-h] <RANGE>

Reads the cache memory specified by RANGE. Addresses are automati-
cally set to Kseg0 and the caches are isolated.

regsel|rs [-c|-h]

Selects either the compiler names or the hardware names for registers.

search|sr [-w|-b|-h] <RANGE> <value> [mask]

Searches the area of memory specified by RANGE for ‘value’.

seg [-0|-1|-2|-s|-3|-u]

Set the default segment to the requested k-segment.

setbaud|sb DEV

Allows user to select the baud rate for the device specified by DEV
which may be either ‘tty0’ or ‘tty1’.

setenv VAR VALUE

Allows the user to set environment variables in NVRAM.

step|s [count]

Executes a single step or if <count> is supplied then 'count' number of
steps.

sub [-w|-h|-b|-l|-r] <address>

Allows user to examine and change memory interactively.

t [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m MSK]

Defines the trace equation and/or enables/disables tracing.

tc [-e BPNUM] [-d BPNUM]

This command defines the limits of tracing. By placing breakpoints at
the beginning and end of a code segment and using the ‘trace condition-
ally’ command a user may specify the section of code to trace.

te

Puts IDT/sim in a transparent mode and connects the console port
straight through to another serial port.

tex [RANGE]

Excludes a memory range from being traced.

IDT/sim User Command Summary Chapter 11

11 – 4

tlbdump|td [RANGE]

Dumps the contents of the translation look aside buffer. If a range is
specified, just the range is dumped, otherwise the entire buffer is
dumped.

tlbflush|tf [RANGE]

This command flushes the contents of the translation buffer. If a range
is specified, just the range is flushed, otherwise the entire buffer is
flushed.

tlbmap|tm [-i index] [-ndgv] <vaddress> <paddress>

(for R30xx)

tlbmap|tm [-i INX} [-(v|d|g)[0\1]] [-g] [-p PAGESIZE] [-c CACHEALG]
VADDR PADDR [PADDR]

(for R4xxx)

Establishes a virtual-to-physical mapping in the translation buffer.

tlbpid|ti [pid]

Without arguments, this command displays the current process identi-
fier in the system coprocessor register 'tlbhi'. If an argument is supplied,
then the current process identifier in 'tlbhi' is set to < pid >.

tlbptov|tp <physaddr>

This command searches the translation buffer looking for translations
which map to <physaddr>. Any translations found, valid or invalid, are
displayed. The default segment is not applied to <physaddr>.

ts [-b|-f|-o|-r RANGE|-w RANGE|-i INS|-m MSK]

Defines the conditions necessary to halt execution while tracing of the
client program and to return to monitor mode so the user may examine
the trace buffer.

unbrk|ub <bpnumlist>

Uninstalls all of the breakpoints listed in <bpnumlist>. These are the
ordinal numbers of the breakpoints and can be obtained using the 'brk'
command.

unsetenv VAR

This command allows the user to delete environment variables from
NVRAM.

wc [-i] [-w|-b|-h] <RANGE> [value_list]

Addresses are automatically set to Kseg0 and the selected cache is
isolated. This command will fill the selected cache memory specified by
RANGE with the pattern specified by value_list.

12 – 1

Integrated Device Technology, Inc.

Introduction

A terminal emulator known as ‘ITEM’ (IDT Terminal Emulator) is
supplied with some of IDT’s products, including IDT/C for DOS develop-
ment platform. ‘ITEM’ is a terminal emulator and downloader program
that can be used with target boards running IDT/sim.

‘ITEM’ can communicate over DOS-PC’s COM1 or COM2 serial port at a
speed of 9600 bps. You may use any of the public domain terminal
emulation programs available instead of ‘ITEM’. In most cases, the public
domain programs are more user-friendly than ‘ITEM’.

If translation of escape sequences as cursor control is desired, insert
the line 'DEVICE=ANSI.SYS' in the ‘config.sys’ file on the boot disk. To
invoke 'ITEM,' use the following format on the DOS command line:

item download_file [P{1|2}]

where the command line options are defined as follows:
download_file -Full name of file to be downloaded (S-record file).
P1 -'item' will use COM1 (default).
P2 -'item' will use COM2.

Once the 'ITEM' starts, it functions as a terminal emulator for the
target board. Control keys can be used to command 'ITEM' to perform
functions such as terminate, download a file or capture data printed on
the screen.

'ITEM' recognizes the following keys as commands:
CTRL-X: Terminates ‘ITEM’.
CTRL-A: Start downloading to the targetboard. The user will be

prompted for a file name (default being the one on the command line).
Prior to this command, the IDT monitor should be given the 'load tty0'
command. A serial link must exist between ‘tty0’ port of the target board
and the selected COM port of the DOS machine.

CTRL-Y: Takes input from a file instead of the keyboard and sends it to
the target board. A prompt for the file name appears in response to CTRL-
Y.

CTRL-W: Closes any active capture file, then opens a new capture file
(there is a prompt for the name of the new file) and puts everything that
appears on the screen from that moment on into it. If a name for the new
capture file is not given, then the current file is closed.

For example, to talk to the target board connected to the COM1 port
and set default download file name to 'calc.sre', enter the following:

<DOS> item calc.sre <ret>
Once communication with the target board has been established the

following message will appear on the DOS terminal:
IDT.PC<->RISC: COM1 status:6000 <ret>

To begin downloading from a PC to the target board, enter:

<IDT> load tty0 <ret> ^A

‘ITEM’ will respond with:
IDT.PC<->RISC: Load from calc.sre? [<ret> or filename]: <ret>

1

Using ITEM-Terminal
Emulator for DOS

Chapter 12

Using ITEM-Terminal Emulator for DOS Chapter 12

12 – 2

If the file name is correct, press the ‘Enter’ key or enter a file name.
At this stage, the file will quietly download. Once the operation is

complete, the <IDT> prompt will be displayed. You may then choose to
run the downloaded program with the IDT/sim ‘GO’ command as follows:

<IDT> go <ret>

(your downloaded program executes here)

^X (terminate ITEM)

<DOS> (Back to DOS prompt)

Once ITEM is started, the DOS-PC acts as a terminal for the IDT/sim
on the target board until download or capture mode is initiated by a
control key sequence.

'ITEM' only works on DOS machines such as IBM/AT and compatibles.
Downloading to target boards that contain the IDT/sim can also be
accomplished with most modem/terminal emulator programs that
provide an ASCII file transmit function.

13 – 1

Integrated Device Technology, Inc.

Each S-record is made up of 6 fields in the following format:

The specifications for each S-record field are as follows:

S

- ASCII character 'S' (\0123 octal). Signal the start of the S-record.

type

 - Record type of one of the digits 0, 1, 2, 3, 5, 7, 8, 9 with the
following meaning:

length

 - One half of the total number of characters in the address,
data and checksum fields. This number is encoded as two characters
representing the number in hexadecimal (one-byte quantity). Valid hexa-
decimal numbers are 0-9 and A-F.

address

 - Address at which the data portion of the record is to be
stored in memory.

data

 - Actual data, each byte represented as a pair of hex digits in
ASCII.

checksum

 - Computed over the length, address and data fields. All
bytes (represented as hex character pairs) from these fields are added
together, one's complement of the result is taken and the least significant
byte represented by 2 ASCII hex digits is put into checksum field.

Field

 S type length address data checksum

Characters

 1 1 2 4, 6 or 8 var 2

0 -

Header record. Address field is 2 bytes long and zero. Data
field may contain any identifying information (or be omitted
completely).

1 -

Data. Address field is 2 bytes (4 chars) long.

2 -

Data. Address field is 3 bytes (6 chars) long.

3 -

Data. Address field is 4 bytes (8 chars) long. IDT SDS 2.0 uses
this data format.

5 -

Address field contains count of type 1, 2 and 3 records in a
group. Data field is omitted.

7 -

Terminating record - signals the end of block of type 3
records. The address field (4 bytes - 8 chars) may contain
transfer address.

8 -

Terminating record - signals the end of block of type 2
records. The address field (3 bytes - 6 chars) may contain
transfer address.

9 -

Terminating record - signals the end of block of type 1
records. The address field (2 bytes - 4 chars) may contain
transfer address.

Motorola S-record Format Chapter 13

	About This Manual
	Table of Contents
	IDT/sim Debug Monitor Overview Chapter 1
	Developing IDT/sim Chapter 2
	Minimum IDT/sim Start-up File Chapter 3
	Minimum IDT/sim User Commands Chapter 4
	Adding & Deleting User Commands Chapter 5
	Adding & Deleting IDT/sim Device Drivers Chapter 6
	Using Micromonitor Chapter 7
	IDT/sim PROM Entry Points Chapter 9
	IDT/sim User Commands Chapter 10
	IDT/sim User Command Summary Chapter 11
	Using ITEM-Terminal Emulator for DOS Chapter 12
	Motorola S-record Format Chapter 13

