

Version 2.1
August 1998

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 492-8674

Printed in U.S.A.
© 1998 Integrated Device Technology, Inc.

�����������������������������	�	�	�	

������������

����
�
�
�
���

��� �� �� �� �����

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in
order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any
circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described
herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a
specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sus-
tain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be rea-
sonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port, FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/
c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REAL8, RC3041, RC3051, RC3052, RC3081, RC36100, RC4600, RC4640, RC4650, RC4700, RC5000,
RISController, RISCore, RISC Subsystem, RISC Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trademarks of Integrated Device Tech-
nology, Inc.
MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/os, R3000, and R3010 are trademarks of MIPS Computer Systems, Inc. Postscript
is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are registered trademarks of Apple Computer, Inc. Centronics is a registered trademark of Genicom,
Inc. Ethernet is a registered trademark of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.

�����

����� ��	
 ��
���
This hardware user’s manual provides updated functional overviews and operational details on the
IDT79RC36100 Integrated RISController™. As noted below, a MIPS-I architectural overview is included.
However, for more detailed software information or descriptions on individual CPU/FPU instructions,
refer to the IDT MIPS Microprocessor Family Software Reference Manual.

���������������������������� �	�	�	�	
�
�
�
������
�
�
�
������������

Chapter 1, “RC36100 Device Overview,” presents an introduction to the operation of the RC36100
device and provides a revised block diagram that illustrates system components. This chapter includes
an updated features list, pin description table, logic diagram and performance overview.

Chapter 2, “Instruction Set Architecture,” contains an overview of the MIPS-1 architecture set and
discusses the programmers’ model for this device. This chapter also provides a summary of the CPU
registers.

Chapter 3, “Cache Architecture,” reviews the fundamentals of general cache operation and
provides a discussion on the organization of the RC36100’s on-chip caches.

Chapter 4, “Virtual-to-Physical Address Translation and Address Map,” explains the devices
two operating states (kernal and user) as well as the virtual-to-physical address translation mechanisms
provided in the RC36100.

Chapter 5, “Coprocessor 0 Register Set,” describes the implementation of the RC36100’s system
control coprocessor (CPO). This chapter provides complete descriptions of registers and includes field
actions and values.

Chapter 6, “Interruption and Exception Handling,” discusses the pipeline stages implemented in
the RC36100 and provides a structure for understanding the device’s exception handling processes.
This chapter also contains a section on “Basic Software Techniques For Handling Interrupts.”

Chapter 7, “System Bus Interface Unit Overview,” provides an operational overview on the
RC36100’s execution core, as well as operation of the various memory controllers during both internal
and external peripheral transactions.

Chapter 8, “Memory Controller,” addresses the RC36100’s on-chip memory controller interface
and includes pin descriptions and timing diagrams. This chapter includes an explanation on how this
interface relates to typical external hardware ROMs and RAMs.

Chapter 9, “I/O Controller,” provides an overview of the I/O controller interface, pin descriptions
and timing diagrams. A discussion on the relationship between this interface and typical external hard-
ware I/O devices is also included.

Chapter 10, “DRAM Controller,” presents an overview on the DRAM controller interface of the
RC36100 and includes pin descriptions, timing diagrams and a discussion on the relationship between
the interface and typical external hardware DRAM systems.

Chapter 11, “Direct Memory Access (DMA) Controller,” explains the DMA Controller interface
and its relationship to typical internal and external hardware DMA systems. Complete pin definitions,
signal information, timing diagrams, and register drawings are also provided.

Chapter 12, “Parallel Input/Output (PIO),” provides an operational overview on the PIO program-
ming interface and includes register descriptions and a table indicating the alternate functions that are
mapped to the PIO pins.

Chapter 13, “Peripheral Expansion Interrupt Controller,” overviews the features and operation of
this controller. A block diagram as well as pin and register descriptions are also provided.

Chapter 14, “Timers,” overviews the features and operation of the RC36100’s timer programming
interface. This chapter also provides pin descriptions and a discussion on how these timers relate to
typical internal and external systems.

Chapter 15, “Serial Ports,” provides an operational overview on the RC36100’s two independent
serial port channels and includes a block diagram, register descriptions and pin definitions.
���

�����

����� �	�
 ��
��� �	��� �� ��
� ���� ������� �
��������

Chapter 16, “Bidirectional Parallel Port,” explains the interfacing functions of the bidirectional
parallel port and provides information on the various modes and options available. Register defini-
tions and a system connection example are also included.

Chapter 17, “Reset Initialization and Input Clocking,” details the RC36100’s initialization
selectable features and discusses the processor’s required reset sequence.

Chapter 18, “Debug Mode Features,” describes features that have been included to facilitate
the debugging of RC36100-based systems.

��������������������

���� ��
� ����
� ����
� ����
� ������� �� �� �� ���������� �
������� �
������� �
������� �
��������������������
��
��
��

Details on this device’s electrical interface can be found in the product’s data sheet, which also
includes packaging, pin-out, and ordering information.

For information on development tools and how to use this product in various applications, refer to
IDT’s on-line library of data sheets, application notes, evaluation board manuals, software reference
manuals, and the IDT Advantage Program Guides.

Your local IDT sales representative can help you identify and use any of these resources.
��

�����

����� �� 	�
��
��
RC36100 Device Overview ... Chapter 1
RC36100 Features List... 1-2

Device Overview ... 1-3
CPU Core ... 1-3
System Control Co-Processor .. 1-3
Clock Generator Unit .. 1-3
Instruction Cache.. 1-3
Data Cache.. 1-4
Bus Interface Unit .. 1-4
Memory Controller ... 1-4
DRAM Controller ... 1-5
I/O Controller ... 1-5
DMA Control and Interface .. 1-5
Counter/Timers.. 1-5
PIO Interface ... 1-5
Serial Communications Controller ... 1-5
Interrupt Controller... 1-5
IEEE 1284 Bidirectional Centronics... 1-6

Pin Information.. 1-7
Logic Symbol... 1-7
Pin Descriptions .. 1-8
System Usage... 1-12
Development Support ... 1-12
Performance Overview.. 1-13
Instruction Set Architecture.. Chapter 2
Introduction ... 2-1
Processor Features Overview... 2-1
CPU Registers Overview .. 2-1
Instruction Set Overview ... 2-2
Programming Model.. 2-5

Data Formats and Addressing... 2-5
CPU General Registers ... 2-7
CP0 Special Registers... 2-7

Operating Modes... 2-8
Pipeline Architecture ... 2-8
Pipeline Hazards ... 2-9
Instruction Set Summary... 2-11

Instruction Formats.. 2-11
Instruction Notational Conventions.. 2-11

Load and Store Instructions .. 2-11
Big-Endian (32-bit memory system) .. 2-12
Little-Endian (32-bit memory system).. 2-12
Big-Endian (16-bit memory system) .. 2-13
Little-Endian (16-bit memory system)... 2-13
Computational Instructions ... 2-14
Jump and Branch instructions ... 2-18
Special Instructions ... 2-19
Co-processor Instructions.. 2-19
System Control Co-processor (CP0) Instructions.. 2-20

RC36100 Opcode Encoding ... 2-21
�

�����

����� �	
������
 ����� �	
������

Cache Architecture .. Chapter 3
Introduction .. 3-1
Fundamentals of Cache Operation ... 3-1
RC36100 Cache Organization .. 3-1

Basic Cache Operation .. 3-1
Memory Address to Cache Location Mapping ... 3-2

Cache Addressing ... 3-2
Write Policy ... 3-3
Partial Word Writes ... 3-3
Instruction Cache Line Size... 3-3
Data Cache Line Size.. 3-4
Summary ... 3-4
Cache Operation ... 3-4

Basic Cache Fetch Operation.. 3-4
Cache Miss Processing ... 3-5
Instruction Streaming... 3-5

Cacheable References.. 3-6
Software Directed Cache Operations.. 3-6

Cache Sizing.. 3-6
Cache Flushing.. 3-7
Forcing Data into the Caches .. 3-7

Cache-Locking Operation.. 3-8
Summary ... 3-12
Virtual-to-Physical Address Translation and Address Map ... Chapter 4
Virtual Memory in the RISCore32 series Architecture ... 4-1
Privilege States ... 4-2

User Mode Virtual Addressing ... 4-2
Kernel Mode Virtual Addressing .. 4-2

RC36100 address translation.. 4-3
On-Chip Registers... 4-4
Cache Miss Area ... 4-5
Summary ... 4-6
Coprocessor 0 Register Set .. Chapter 5
Introduction.. 5-1
Coprocessor 0 Bus Interface Control .. 5-1
Cache Configuration Register ... 5-2

Lock ('Lock') ... 5-2
Reserved-High ('1') .. 5-3
Reserved-Low ('0') ... 5-3
DBlockRefill ('DBR') ... 5-3
D-CacheIndexControl ('DCI') ... 5-3
Halt Mode ('Halt') ... 5-3
I-CacheIndexControl ('ICI') .. 5-4
ReduceFrequency ('RF') .. 5-4
ForceDCacheMiss ('FDCM') .. 5-5
ForceICacheMiss ('FICM') ... 5-5
DCacheWriteDisable('DWrD') .. 5-5
I-CacheWriteDisable ('IWrD') ... 5-5

The Cause Register .. 5-6
The EPC (Exception Program Counter) Register.. 5-7
Bad VAddr Register... 5-8
The Status Register... 5-8
PRId Register .. 5-10
Interrupt and Exception Handling ...Chapter 6
Introduction.. 6-1
RC36100 Exception Model.. 6-1
��

�����

����� �	
������
 ����� �	
������

Precise vs. Imprecise Exceptions.. 6-2
Exception Processing.. 6-3
Exception Handling Registers ... 6-3

The Cause Register ... 6-3
The EPC (Exception Program Counter) Register .. 6-4
Bad VAddr Register ... 6-4
The Status Register ... 6-4

Exception Vector Locations... 6-6
Exception Prioritization.. 6-6
Exception Latency ... 6-7
Interrupts Inputs in the RC36100 .. 6-8
Interrupt Operation in the RC36100 .. 6-8

Using the BrCond Inputs.. 6-9
Interrupt Handling .. 6-10
Interrupt Servicing.. 6-11

Basic Software Techniques For Handling Interrupts ... 6-11
Preserving Context.. 6-12
Examining Exception... 6-13
Returning From Exceptions... 6-14
Special Techniques ... 6-15

Interrupt Masking ... 6-15
Using BrCond For Fast Response ... 6-15
Cache Locking ... 6-17
Nested Interrupts ... 6-18
Catastrophic Exceptions .. 6-18

Handling Specific Exceptions .. 6-18
Address Error Exception ... 6-18

Cause .. 6-18
Handling... 6-18
Servicing .. 6-19

Breakpoint Exception .. 6-19
Cause .. 6-19
Handling... 6-19
Service... 6-19

Bus Error Exception ... 6-19
Cause .. 6-19
Handling... 6-19
Servicing .. 6-20

Co-processor Unusable Exception.. 6-20
Cause .. 6-20
Handling... 6-20
Servicing .. 6-20

Interrupt Exception .. 6-20
Cause .. 6-20
Handling... 6-21
Servicing .. 6-21

Overflow Exception ... 6-21
Cause .. 6-21
Handling ... 6-21
Servicing .. 6-21

Reserved Instruction Exception... 6-21
Cause .. 6-21
Handling... 6-21
Servicing .. 6-21

Reset Exception .. 6-22
Cause .. 6-22
���

�����

����� �	
������
 ����� �	
������

Handling... 6-22
Servicing .. 6-22

System Call Exception .. 6-22
Cause .. 6-22
Handling... 6-22
Servicing .. 6-23

System Bus Interface Unit Overview.. Chapter 7
Introduction.. 7-1
Bus Interface Overview ... 7-1
Pin Description ... 7-2
System Bus Interface Signals ... 7-2
Clock and Reset Signals ... 7-2
Bus Interface Control Signals.. 7-3
CPU Core Transaction Types ... 7-4

Read Operation ... 7-4
Write Operations.. 7-5
Multiple Operations.. 7-5

Execution Engine Fundamentals... 7-6
Execution Core Cycles .. 7-6

Cycles .. 7-6
Run Cycles .. 7-6

Stall Cycles.. 7-6
Internal Acknowledgment .. 7-7
Read Interface Timing Overview ... 7-8

Initiation of a Read Request .. 7-8
Memory Addressing ... 7-8
Initiation of the Data Phase.. 7-9
Bringing Data into the Processor ... 7-9
Terminating the Read .. 7-10

Latency Between Processor Operations ... 7-11
Processor Internal Activity... 7-12
The Write Interface.. 7-14

Importance of Writes in RC36100 Systems... 7-14
Types of Write Transactions.. 7-15

32-Bit Write Transactions .. 7-15
16-Bit Transactions.. 7-15
8-Bit Transactions.. 7-16

Write Interface Timing Overview 7-16
Initiating the Write .. 7-16
Memory Addressing ... 7-16
The Data Phase... 7-16
Terminating the Write .. 7-17
Write Buffer Full Operation .. 7-18

Memory Controller ... Chapter 8
Introduction.. 8-1
Features .. 8-1
Block Diagram ... 8-1
Memory Controller Signals .. 8-2
BIU Controller Signals ... 8-4
Memory Controller Overview... 8-4

Chip Selects... 8-5
Transceiver Control Interface .. 8-5
Wait-State Generator ... 8-5
Register Option Programmability ... 8-5

Register Descriptions .. 8-6
����

�����

����� �	
������
 ����� �	
������

Memory MSB Base Address Register for Bank 7..0
('MemMSBBaseAddrReg(7..0)’) and Memory LSB Base Address Register for Bank 7..0
('MemLSBBaseAddrReg(7..0)’) ... 8-7
Memory MSB Bank Mask Register for Bank 7..0 ('MemMSBBankMaskReg(7..0)’),
and Memory LSB Bank Mask Register for Bank 7..0
('MemLSBBankMaskReg(7..0)’) .. 8-8
Memory and I/O Control Register for Bank 7..0.
('MemControlReg(7..0)’) ... 8-10
Port Size Width (‘MemSize’) Field ... 8-10
Memory LSB Wait-State Register for Bank 7..0
('MemLSBWaitStateReg(7..0)’) ... 8-11
Read Start Cycle to the First Datum (‘RdStart2Datum’) Field: .. 8-12
Write Start Cycle to the First Datum (‘WrStart2Datum’) Field: .. 8-12
Read Datum to Datum (‘RdDatum2Datum') Field: .. 8-12
Write Datum to Datum (‘WrDatum2Datum') Field: .. 8-12
Memory MSB Wait-State Register for Bank 7..0
('MemMSBWaitStateReg(7..0)’) .. 8-12
Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field.. 8-13
Start of Read to AckN on Burst Reads (‘Start2BurstAck’) Field .. 8-13
Byte Enables on Reads (‘BEn’) Field .. 8-13
Read Cycle Bus Turn-Around (‘RdBTA’) Field .. 8-14
Formulas for Calculating Memory Controller Start2BurstAck Field Value 8-14
Memory Controller Timing Diagrams... 8-16
Read Transactions .. 8-16

Basic 1-Datum Read with 0 Wait-States.. 8-16
 1-Datum Read with 0 Wait-States using Odd Chip Select.. 8-17
Read with Wait-State using Start Repeat Field ... 8-18
Read with Wait-State using RdStart2Datum Field ... 8-19
Read with Wait-State using SysWait ... 8-20
4-Word Burst Read with 0 Wait-States .. 8-21
 Basic 16-bit PCMCIA-style Memory Read with Zero Wait-States .. 8-23

Write Transactions .. 8-23
Single Datum Write.. 8-24
1-Datum Write with 0 Wait-States using FCT245-Type Field .. 8-25
1-Datum Write with Wait-State using StartRepeat Field .. 8-26
1-Datum Write with Wait-State using WrStart2Datum Field .. 8-27
1-Datum Write with Wait-State using SysWait... 8-28
Multi-Datum Burst Write... 8-29
Multi-Datum Burst Write using Wait-State with WrDatum2Datum ... 8-30
Basic PCMCIA-Type Memory Write with 0 Wait-States .. 8-31

Interleaved-Type Transactions.. 8-32
Interleaved Read using FCT260-Type Field.. 8-32
Interleaved Read using FCT543-Type Field.. 8-36
Interleaved Writes.. 8-39

System Examples.. 8-41
32-bit SRAM using 245 Transceivers .. 8-42
16-bit SRAM/ROM ... 8-46
8-bit SRAM/ROM ... 8-47

Dual-Port-Type .. 8-48
PCMCIA-Style Application... 8-48
I/O Controller .. Chapter 9
Introduction.. 9-1
Features .. 9-1
Block Diagram ... 9-1
I/O Bus Controller Interface Signals .. 9-2
BIU Controller Signals ... 9-3
��

�����

����� �	
������
 ����� �	
������

Overview of the I/O Controller ... 9-4
Chip Selects .. 9-4
Signal Control Interface... 9-4

Wait-State Generator ... 9-5
Register Option Programmability ... 9-5

Register Descriptions .. 9-5
Memory and I/O Control Register7..0
('MemIoCntrlReg(7..0)’) ... 9-7
Memory Type (‘MemType’) Field ... 9-7
Portsize Width (‘MemSize’) Field ... 9-7

I-Type I/O Type: .. 9-8
M-Type I/O Type: .. 9-8
PCMCIA-I/O Style: .. 9-8
I/O Controller Timing Diagrams... 9-8
I/O Datum Size .. 9-8
Read Transactions .. 9-8

Basic I-Type I/O Read with 0 Wait-States ... 9-8
Basic M-Type I/O Read with 0 Wait-States ... 9-9
Basic 16-bit PCMCIA-style I/O Read with 0 Wait-States ... 9-10
Basic I-Type I/O Write with 0 Wait-States.. 9-11
Basic M-Type I/O Write with 0 Wait-States.. 9-12
Read with Wait-State using Start Repeat Field ... 9-14
Read with Wait-State using RdStart2Datum Field ... 9-14
Read with Wait-State using SysWait ... 9-15
1-Datum Write with Wait-State using StartRepeat Field .. 9-16
1-Datum Write with Wait-State using WrStart2Datum Field .. 9-16
1-Datum Write with Wait-State using SysWait... 9-17

System Examples.. 9-18
32-bit I/O Device Directly Connected to Bus ... 9-18

I/O Reset Application... 9-19
32-bit I/O Device using 245 Transceivers.. 9-19
32-bit I/O Device using 543 Transceivers.. 9-20

Using more than one device behind each transceiver .. 9-21
16-bit I/O Devices.. 9-21
8-bit I/O Devices.. 9-22
DRAM Controller .. Chapter 10
Introduction.. 10-1
Features .. 10-1
Block Diagram ... 10-1
DRAM Bus Controller Interface Signals .. 10-2
BIU Controller Signals ... 10-3
Overview of the DRAM Controller ... 10-4

Address mapping... 10-4
32-bit and16-bit mode support ... 10-4
Types of memory supported .. 10-5
Programmable wait state generation ... 10-5
Page Comparator Algorithm .. 10-5
Unaligned page accesses.. 10-6
Refresh Timing .. 10-6
Initialization .. 10-6
Programmable features ... 10-6
Signal Control Interface ... 10-6
Wait State Generator ... 10-6
Register Option Field Programmability .. 10-7

Register Descriptions .. 10-7
DRAM Refresh Count Register (‘DramRefreshCountReg’) ... 10-7
�

�����

����� �	
������
 ����� �	
������

Staggered Refresh .. 10-8
Refresh Arbitration .. 10-8
Panic Mode Refresh Application ... 10-8
Reduced Frequency Mode Application ... 10-8

DRAM Refresh Compare Register .. 10-8
DRAM RAS Multiplexer Select Register for Pair(1:0, 3:2)
(‘DramRasMuxSelReg'1_0, 3_2) ... 10-10
DRAM CAS Multiplexer Select Register for Pair (1:0, 3:2)
(‘DramCasMuxSelReg'1_0, 3_2) ... 10-10
DRAM MSB Bank Mask Register for Bank 0..3
(‘DramMSBBankMaskReg(0..3)’) .. 10-14
DRAM LSB Control Register for Bank 0..3
(‘DramLSBControlReg(0..3)’)... 10-15
RASPageMask (‘RASPageMask’) Field (bits 15:8) ... 10-15
DRAM Type (‘DramType’) Field (bits 7:5).. 10-16

FCT543-Type (Latched Non-Multiplexer Type) ... 10-17
FCT245 Type (Non-latched Transceiver Type) ... 10-17
FCT260-Type (Latched Multiplexer Type)... 10-17
Port Size (‘Size’) Field (bits 4:3) .. 10-17
DRAM MSB Control Register for Bank 0..3
(‘DramMSBControlReg'0..3).. 10-18

RAS Precharge Period (‘RASP’) Field (bit 15:14).. 10-18
RAS Address Hold Time (‘RASAddrHold’) Field (bit 13) ... 10-18
Address Setup Time to RAS and to CAS (‘AddrSetup’) Field (bit 12) 10-19
CAS Active Pulse Width (‘CASW’) Field (bit 11:10)... 10-19
DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field (bit 9:8) 10-20
DRAM Write Cycle Bus Turn Around (‘DramWrBTA’) Field (bit 6) 10-20
Burst Acknowledge Placement (‘DramBurstAck’) Field (bit 4:0) .. 10-21

Timing Diagrams ... 10-21
Standard DRAM Chip Summary ... 10-22
Basic New Page DRAM Read... 10-22
RAS Asserted at End of Transfer .. 10-23
RAS Asserted at Start of Transfer ... 10-24
RAS Asserted Throughout Transfer .. 10-24
RAS Precharge Field... 10-25
RAS Address Hold Field.. 10-26
Address Setup Field .. 10-27
CAS Width Field .. 10-28
Multiple Data Reads .. 10-29
Basic DRAM Write... 10-30
RAS Asserted at Start of Write.. 10-31
RAS Asserted at End of Write ... 10-32
RAS Asserted Throughout Write ... 10-32
Other DRAM timing Controls... 10-32
Write Bus Turn-Around.. 10-33
Two Datum Write Transaction... 10-34
Interleaved Read Timing Diagrams... 10-34
Interleaved FCT245 Reads ... 10-34
Interleaved FCT260 Reads ... 10-35
Interleaved FCT543 Reads ... 10-38
Interleaved Writes ... 10-41
Single Word Interleaved FCT245 Write... 10-41
Interleaved FCT245 Writes ... 10-41
Single Word Interleaved FCT260 Write... 10-42
Interleaved FCT260 Writes ... 10-42
Interleaved FCT543 Writes ... 10-43
��

�����

����� �	
������
 ����� �	
������

Refresh.. 10-44
System Examples.. 10-44

DRAM System using FCT245 Transceivers .. 10-45
Low Cost DRAM System using FCT245 Transceivers .. 10-45
Very Low Cost DRAM System without Transceivers ... 10-46
DRAM System using FCT260 Multiplexers ... 10-46
DRAM System using FCT543 Registered Transceivers.. 10-47

Direct Memory Access (DMA) Controller ... Chapter 11
Introduction.. 11-1
Features .. 11-1
Block Diagram Overview ... 11-2
Functional Overview.. 11-2
Internal DMA Channels ... 11-2
Internal DMA Algorithm ... 11-3
External DMA Channels .. 11-4
Pin Descriptions .. 11-5
Direct Memory Access (DMA) Controller Signals.. 11-5
System Control Signals used during DMA Controller Accesses ... 11-6
Register Descriptions .. 11-6

Internal DMA Controller Register Descriptions .. 11-6
DMA LSB Source Address Register for Channel 0..3
(‘DmaLSBSourceAddrReg(0..3)’) .. 11-8
DMA LSB Source Address Register for Link A..D
(‘DmaLSBSourceAddrReg(A..D)’) ... 11-8
DMA MSB Source Address Register for Channel 0..3
(‘DmaMSBSourceAddrReg(0..3)’) ... 11-8
DMA MSB Source Address Register for Link A..D
(‘DmaMSBSourceAddrReg(A..D)’) .. 11-8
DMA LSB Target Address Register for Channel 0..3
(‘DmaLSBTargetAddrReg(0..3)’) ... 11-9
DMA LSB Target Address Register for Link A..D
(‘DmaLSBTargetAddrReg(A..D)’) .. 11-9
 DMA MSB Target Address Register for Channel 0..3
(‘DmaMSBTargetAddrReg(0..3)’) .. 11-9
DMA MSB Target Address Register for Link A..D
(‘DmaMSBTargetAddrReg(A..D)’) ... 11-9
DMA LSB Count Register for Channel 0..3 ... 11-9
DMA LSB Count Register for Link A..D .. 11-9
DMA MSB Count Register for Channel 0..3
(‘DmaMSBCountReg(0..3)’)... 11-10
DMA MSB Count Register for Link A..D
(‘DmaMSBCountReg(A..D)’) .. 11-10
DMA LSB Control Register for Channel 0..3
(‘DmaLSBControlReg(0..3)’) .. 11-10
DMA LSB Control Register for Link A..D
(‘DmaLSBControlReg(A..D)’) ... 11-10

Arbitration Type (‘Arb’) Field (Bit 15): .. 11-11
Keep Bus (‘Bus’) Field (Bit 14):.. 11-11
Allow DMADone (‘Done’) Field Bit (13):... 11-11
Wait for Interrupt (‘WInt’) Field (Bit 12): ... 11-11
Burst Type (‘Burst’) Field (Bit 9)... 11-12
Source Byte Enable Type (‘SBE’) Field (Bit7:6): ... 11-12
Target Byte Enable Type (‘TBE’) Field (Bit 5:4):.. 11-12
Source Endianness Type (‘SEndian’) Field (Bit 3):.. 11-13
Target Endianness Type (‘TEndian’) Field (Bit 2): ... 11-13
Increment Source Address (‘SInc’) Field (Bit 1):.. 11-13
���

�����

����� �	
������
 ����� �	
������

Increment Target Address (‘TInc’) Field (Bit 0): ... 11-13
DMA MSB Control Register for Channel 0..3
(‘DmaMSBControlReg(0..3)’) .. 11-13
DMA MSB Control Register for Link A..D
(‘DmaMSBControlReg(A..D)’) ... 11-13

Stop (‘Stop’) Field (Bit 15):... 11-14
Break (‘Break’) Field (Bit 14):... 11-14
ReservedLink Field (‘RsvdLink’) (Bit 13:10):.. 11-14
Link (‘Link’) Field (Bit9:8): .. 11-14
Burst Size (‘BurstSize’) Field (Bit 3:0) .. 11-15

External DMA Controller Registers .. 11-15
External DMA Control Register 0..1
(‘ExtDmaControlReg(0..1)’) ... 11-15
Stop Channel (‘EC’) Field (Bit 15):... 11-16
Bus Request Protocol High (‘ReqH’) Field (Bit 14): ... 11-16
Sample MemWrEn and SysBurstFrame 1 Clock Later ...
(‘SampleLate’) Field (Bit 11): ... 11-16

External DMA Transactions... 11-16
External DMA Operation Timing Diagrams .. 11-17
System Examples.. 11-19

Memory-to-Memory Copying ... 11-19
Transfers between I/O and Memory .. 11-19

Distinguishing Between CPU and Internal DMA Accesses ... 11-20
Internal DMA Channel Chaining.. 11-20
Parallel Input/Output (PIO) .. Chapter 12
Introduction.. 12-1
Features .. 12-1
Block Diagram ... 12-1
Overview ... 12-1
Pin Descriptions .. 12-1
Register Definitions ... 12-2

PIO Data Register 0..2 (‘PioDataReg'0..2) .. 12-3
PIO Data (‘PIOData’) Field: ... 12-3

PIO Direction Register 0..2 (‘PioDirReg'0..2) .. 12-3
Lock (‘Lock’) Field: ... 12-4
Direction (‘Dir’) Field: ... 12-4

PIO Effect Select Register 0..2 (‘PioEffectSelReg'0..2)... 12-4
Lock (‘Lock’) Field: ... 12-4
Effect Select (‘EffectSel’) Field: ... 12-5

Peripheral Expansion Interrupt Controller... Chapter 13
Introduction.. 13-1
Features .. 13-1
Block Diagrams ... 13-1
Overview ... 13-2
Pin Descriptions .. 13-2
Exception Signals.. 13-2

ExcSInt(2:0), .. 13-2
ExcInt(4:3) Input .. 13-2
ExcSBrCond(3:2) Input.. 13-2

Expansion Interrupt Mask Register 0..1 (‘ExpIntMaskReg0..1)’)... 13-3
Expansion Interrupt Pending Register 0..1 (‘ExpIntPendReg0..1)’) .. 13-3

Reserved Low (‘0’) Field: ... 13-3
Mask Bits (‘Mask’) Field: .. 13-3
Pending Bits (‘Pend’) Field: ... 13-4

Expansion Interrupt DMA Select Register (‘ExpIntDMASelReg’) .. 13-4
Select Interrupt ‘SelInt()’ Field: .. 13-5
����

�����

����� �	
������
 ����� �	
������

Timers ..Chapter 14
Introduction.. 14-1
Features .. 14-1
Block Diagram ... 14-1
Overview ... 14-2
Pin Descriptions .. 14-3
Timer Peripheral Signals ... 14-3

TC(2:0), Input/Output ... 14-3
TimerGate(2:0) .. 14-3

Register Descriptions .. 14-3
Timer Prescaler Count Register (‘TimerPrescalerCountReg’) ... 14-4
Timer Count Register 0..2, Timer PWM Count Register.. 14-4
(‘TimerCountReg’0..2, TimerPWMCount Reg’0) ... 14-4
Timer Compare Register 0..2
(‘TimerCompareReg'0..2) .. 14-4
Timer Pulse Width Modulation Register 0
(‘TimerPWMReg0’) .. 14-5
Timer Control Register 0..2 (‘TimerControlReg'0..2) ... 14-5
Lock (‘Lock’) Field (Bit 15): .. 14-6
Lock Count and Compare (‘LockCC’) Field (Bit 14):.. 14-6
Write Compare Ack (‘Ack’) Field (Bit13): ... 14-6
PIO is Input Gate (‘Gate’) Field (Bit 11): .. 14-6
BusTimeout (‘BTO’) Field (Bit 10): ... 14-7
Timer Disable (‘TimerDis’) Field (Bit 9): ... 14-7
Prescaler Select (‘PSel’) Field (Bit 3:0):... 14-7

Serial Ports ... Chapter 15
Introduction.. 15-1
Features .. 15-1
Overview ... 15-1
Registers ... 15-3
Interrupts ... 15-3
DMA .. 15-4

External connections of the SCC... 15-4
SCC Operations .. 15-5

Polled Operation .. 15-5
Interrupt operation ... 15-5

The SCC’s Interrupt Structure ... 15-7
DMA operation... 15-8
Data Encoding ... 15-9
Digital Phase Locked Loop (DPLL).. 15-9

External Connections .. 15-9
SDLC Loop Mode .. 15-9

Clocking Options ... 15-9
SCC Operating Sequence... 15-10
I/O.. 15-11
SCC Registers... 15-11

Write Register 0 ... 15-11
Write Register 1 ... 15-11
Write Register 2 ... 15-12
Write Register 3 ... 15-12
Write Register 4 ... 15-12
Write Register 5 ... 15-12
Write Register 6 ... 15-13
Write Register 7 ... 15-13
Write Register 7’ .. 15-14
Write Register 8 is the Data Register. ... 15-14
���

�����

����� �	
������
 ����� �	
������

Write Register 9 ... 15-14
Write Register 10 ... 15-14
Write Register 11 ... 15-15
Write Register 12 carries the low byte of the
Baud Rate Generator Time Constant. ... 15-15
Write Register 13 carries the high byte of the
Baud Rate Generator Time Constant .. 15-15
Write Register 14 ... 15-15
Write Register 15 ... 15-16
Read Register 0... 15-16
Read Register 1... 15-16
Read Register 2: Reads back WR2 in channel A, includes interrupt status
(in bits 3:1) in Channel B. .. 15-16
Read Register 3 (Channel A only) ... 15-17
Read Register 4 is the readback register for WR4
if WR7’ bit 6 is set. ... 15-17
Read Register 5 is the readback register for WR5
 if WR7’ bit 6 is set. .. 15-17
Read Register 6 carries the lowest byte of the Frame Size value within
the topmost entry (if any) of the SDLC receive Frame Status FIFO. 15-17
Read Register 7... 15-17

Bidirectional Parallel Port.. Chapter 16
Introduction.. 16-1
Features .. 16-1
Block Diagram ... 16-1
Overview ... 16-2
Negotiation Phase ... 16-3
Nibble Mode Phase ... 16-4
Byte Mode Phase .. 16-4
Extended Capabilities Port (ECP) Mode Phase .. 16-4
Enhanced Parallel Port (EPP) Mode Phases .. 16-4
CPU Control Mode Phases ... 16-5
Programmable Timing ... 16-5
Centronics, Interrupts & DMA Requests ... 16-5

CentRtcInt.. 16-5
CentRdInt... 16-5
CentrWrInt ... 16-5
DMARdReq.. 16-5
DMAWrReq.. 16-6

Pin Descriptions .. 16-6
Bidirectional Parallel Port Centronics Interface Signals .. 16-6

CentStrobe Input.. 16-6
CentAck Output ... 16-6
CentBusy Output ... 16-6
CentPaperError Output.. 16-6
CentSelect Output ... 16-6
Centronics Select... 16-6
CentAutoFeed Input... 16-7
Centronics Auto Feed .. 16-7
CentInit Input ... 16-7
Centronics Initialize.. 16-7
CentFault Output ... 16-7
Centronics Fault:.. 16-7
CentSelectIn Input ... 16-7
Centronics Select Input.. 16-7

Bidirectional Parallel Port Centronics Peripheral
��

�����

����� �	
������
 ����� �	
������

 and Host Interface Signals ... 16-7
CentCS(7:6) Output... 16-7

CentWrStrobe Output .. 16-8
CentRdOEn Output.. 16-8
CentHostStrobe Output ... 16-8
CentHostOEn Output ... 16-8
Register Definitions.. 16-8

Centronics Sub Mode Register (‘CentSubModeReg’) ... 16-9
Centronics Compatible Sub Modes (‘SubMode’) Field.. 16-9
Centronics Status Register (‘CentStatusReg’) .. 16-9

Extended Capabilities Port Buffer Full (BufFul) ... 16-10
Extended Capabilities Peripheral Acknowledge Field (nPerAck) .. 16-10
Extended Capabilities Peripheral Request Field (nPerReq) .. 16-10
Printer Error (‘PError’) Field ... 16-11
Printer On Line Select (‘Select’) Field: ... 16-11
Printer Fault (‘Fault’) Field: .. 16-11
Printer Acknowledge Negated (‘AckN’) Field ... 16-11
Printer Busy (‘Busy’) Field ... 16-11

Centronics Control Register (‘CentControlReg’) ... 16-11
Iprime Interrupt Pending Field ... 16-12
IoCS(7), IoCS(6) Mask Enable .. 16-12
Centronics Negotiation Interrupt Pending.. 16-13
Centronics Negotiation Interrupt Enable.. 16-13
Centronics Reset Interrupt Pending... 16-13
Centronics Reset Interrupt Enable... 16-13
DMA or Interrupt Field in ECP/EPP Mode ... 16-14
Nibble ID Mode Field ... 16-14
Host Busy Data Available Enable Field (HBDA).. 16-14
Negotiation XFlag Reply (‘NegRep’) Field ... 16-15
Negotiation Mode (‘NegMode’) Field ... 16-15

Centronics Nibble Data Register (‘CentNibbleDataReg’) .. 16-15
Centronics Host Status Register (‘CentHostStatusReg’) .. 16-16

AutoFeed Negated (‘nAutoFeed’) Field ... 16-16
Initialize Negated (‘nInit’) Field... 16-16
Select In Negated (‘nSelectIn’) Field ... 16-17
Host Strobe Negated (‘nStrobe’) Field ... 16-17

Centronics Minimum Delay Register (‘CentDelayReg’)... 16-17
2500ns Delay Type Field (‘D2500ns’) Field ... 16-18
500ns Delay Type Field (‘D500ns’) Field ... 16-18

LSB/MSB Host Time-Out Register .. 16-18
LSB/MSB Host Time-Out Counter Register .. 16-18
Timing Diagram ... 16-18
System Example ... 16-19
Reset Initialization and Input Clocking .. Chapter 17
Introduction.. 17-1
Reset Timing ... 17-1
Reset Configuration Mode Features ... 17-1
Reset Configuration Mode Pin Descriptions.. 17-1
Exception Signals.. 17-1

SysReset Input .. 17-1
ExcSInt(2:0) Input .. 17-1

LittleEndian.. 17-2
BootProm8 .. 17-2
BootProm16 .. 17-2
RISCore32 series Equivalent Modes .. 17-2
Reset Behavior.. 17-2
���

�����

����� �	
������
 ����� �	
������

Boot Software Requirements .. 17-3
Detailed Reset Timing Diagrams... 17-3
Reset Pulse Width... 17-3
Mode Initialization Timing Requirements .. 17-4
Reset Setup Time Requirements .. 17-5
ClkIn Requirements... 17-6
Debug Mode Features.. Chapter 18
Introduction.. 18-1
Features .. 18-1
Tri-Stateable Outputs .. 18-1
Tracepoint Registers ... 18-1
Extended CP0 Cache Configuration Register ... 18-1
Cause and EPC Register Writes ... 18-1
Features specific to debug/emulators ... 18-2
Pin Descriptions .. 18-2
Debug/Emulator and Diagnostic Signals ... 18-2

DiagCache/UnCache Output ... 18-2
DiagInst/Data Output ... 18-2
DiagRun Output ... 18-2
DiagBranchTaken Output .. 18-2
DiagJRorExe Output.. 18-2
DiagInternalWr Output ... 18-2
DiagTriState Input.. 18-3
DiagInstCacheWrDis Input .. 18-3
DiagFCM Input... 18-3
DiagIntDis Input ... 18-3
DiagNoCS Output .. 18-3
DiagInternalDmaBusGnt Output .. 18-3

Register Descriptions .. 18-3
MSB Debug Tracepoint Address Register
LSB Debug Tracepoint Address Register (‘DebugTraceAddrReg’) .. 18-4
Debug Tracepoint Control Register (‘DebugTraceControlReg’) .. 18-4

Reserved Low (‘0’) Field .. 18-5
Cause is Tracepoint (‘CTP’) Field.. 18-5
Tracepoint (‘TP’) Field ... 18-5

Debug Control Register (‘DebugControlReg’) ... 18-5
Reserved Low (‘0’) Field .. 18-6
Writability (‘Wr’) Field ... 18-6

Initializing SysClk for Test ... 18-6
Using Diag for Instruction Disassembly... 18-6
Other Considerations .. 18-7
����

�����

����� �	
������
 ����� �	
������

�����

�����

���� �� �	
���
Table No. Table Title Page

Table 1.1 RC36100 Pin Descriptions ... 1-8
Table 2.1 Instruction Set Mnemonics ... 2-5
Table 2.2 RC36100 CP0 Registers ...2-8
Table 2.3 Big-Endian (32-bit memory system) ..2-12
Table 2.4 Byte Addressing in Load/Store Operations (32-bit memory)...............................2-12
Table 2.5 Big-Endian (16-bit memory system) ..2-13
Table 2.6 Byte Addressing in Load/Store Operations (16-bit memory)...............................2-13
Table 2.7 Load and Store Instructions ..2-14
Table 2.8 ALU Immediate Operations ...2-15
Table 2.9 Three Operand Register-Type Operations ..2-16
Table 2.10 Shift Operations...2-17
Table 2.11 Multiply and Divide Operations..2-17
Table 2.12 Jump Instructions ..2-18
Table 2.13 Branch Instructions..2-19
Table 2.14 Special Instructions ...2-19
Table 2.15 Co-Processor Operations..2-20
Table 2.16 System Control Co-Processor (CP0) Operations..2-21
Table 2.17 Opcode Encoding..2-23
Table 3.1 Instruction Cache to Address Mapping under Various

Cache Locking Conditions..3-11
Table 3.2 Data Cache to Address Mapping under Various

Cache Locking Conditions..3-12
Table 4.1 Virtual and Physical Address Relationships in Base Versions4-4
Table 4.2 RC36100 On-Chip Resources and Address Map ...4-5
Table 4.3 Example: FIFO load code using FCM memory space...4-6
Table 5.1 RC36100 CPO Register Addresses ..5-2
Table 5.2 RC36100 Cache Configuration Register Lock Field..5-3
Table 5.3 RC36100 DBlockRefill Field ..5-3
Table 5.4 RC36100 D-Cache Index Control Field...5-3
Table 5.5 RC36100 Halt Field ...5-4
Table 5.6 RC36100 I-Cache Index Control Field ..5-4
Table 5.7 RC36100 Reduced Frequency Mode Field ...5-4
Table 5.8 RC36100 ForceDCacheMiss Field..5-5
Table 5.9 RC36100 ForceICacheMiss Field ...5-5
Table 5.10 RC36100 Data Cache Write Disable Field ..5-5
Table 5.11 RC36100 Instruction Cache Write Disable Field ...5-6
Table 5.12 Cause Register Exception Codes ...5-7
Table 6.1 RISCore3000 Family Architecture Exceptions ..6-2
Table 6.2 Cause Register Exception Codes ...6-4
Table 6.3 Exception Vectors When BEV = 0 ...6-6
Table 6.4 Exception Vectors When BEV = 1 ...6-6
Table 6.5 RC36100 Exception Priority ..6-7
Table 8.1 List of the Memory and I/O Controller Registers (1 of 2)8-6
Table 8.2 List of the memory and I/O Controller Registers (2 of 2)8-7
Table 8.3 Memory and I/O Controller Base Addresses...8-8
Table 8.4 Memory Mask Field Definitions and Values .. 8-9
Table 8.5 Memory and I/O Control Register Bit Assignments...8-10
���

�����

���� �� 	
��
� ���� �� 	
��
�
Table 8.6 Memory Type Field ('MemType') Encoding .. 8-10
Table 8.7 PortSize ('MemSize') Encoding .. 8-11
Table 8.8 Memory LSB Wait-State Register ('MemLSBWaitStateReg')

Bit Assignments... 8-11
Table 8.9 Start to the first Datum (‘RdStart2Datum’ and 'WrStart2Datum')

Field Encoding. .. 8-12
Table 8.10 Datum-to-Datum (RdDatum2Datum, WrDatum2Datum) Field Encoding8-12
Table 8.11 Memory MSB Wait-State Register ('MemMSBWaitStateReg')

Bit Assignments..8-13
Table 8.12 Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field Encoding....................8-13
Table 8.13 First Read to AckN on Burst Reads (‘Start2BurstAck’) Field Encoding........ 8-13
Table 8.14 Byte Enables on Reads (‘BEn’) Field Encoding ..8-14
Table 8.15 Bus Turn-Around (‘BTA’) Field Encoding ...8-14
Table 8.16 PCMCIA and RC36100 Functional Equivalents ..8-49
Table 9.1 Memory and I/O Controller Register Addresses and Description9-6
Table 9.2 Memory Type (MemType) Field Values and Descriptions 9-7
Table 9.3 Portsize Width Field Values and Definitions ... 9-7
Table 10.1 DRAM Controller Registers ...10-7
Table 10.2 DRAM Refresh Count Register (DramRefreshCountReg’)

Bit Assignments..10-8
Table 10.3 DRAM Refresh Compare Register (‘DramRefreshCompareReg’)

Bit Assignments..10-9
Table 10.4 Refresh Disable (‘RefreshDis’) Field Encodings..10-9
Table 10.5 Common Refresh Settings for 8ms/512 or 16ms/1024 DRAMs10-9
Table 10.6 DRAM RAS Mux Select Register Bit Assignments......................................10-10
Table 10.7 DRAM CAS Mux Select Register (‘DramCasMuxSelReg’)

Bit Assignments..10-11
Table 10.8 Example ‘DramRasMuxSelReg’ and

‘DramCasMuxSelReg’ Settings ..10-13
Table 10.9 Example Bank Base Address Register

(‘DramMSBBaseAddrReg’) Assignment ...10-14
Table 10.10 Example Bank Base Address Register

(‘DramMSBBaseAddrReg’) Assignment ...10-14
Table 10.11 DRAM MSB Bank Mask Bit Settings ...10-14
Table 10.12 DRAM LSB Control Register (‘DramLSBControlReg’) Bit Assignments......10-15
Table 10.13 PageMask (‘PMask’) Bits...10-16
Table 10.14 DRAM LSB Page Mask Bit Settings ..10-16
Table 10.15 DRAM Type (‘DramType’) Settings..10-16
Table 10.16 DRAM Port Width (‘Size’) Encoding Field ...10-17
Table 10.17 DRAM MSB Control Register Bit Assignments ...10-18
Table 10.18 RAS Precharge (‘RASP’) Field Encodings ..10-18
Table 10.19 RAS Address Hold Time (‘RASAddrHold’) Field Encoding..........................10-19
Table 10.20 Address Setup Time to RAS or to CAS (‘AddrSetup’) Field Encoding10-19
Table 10.21 CAS Width (‘CASW’) Field Encoding ..10-20
Table 10.22 DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field Encoding.........10-20
Table 10.23 DRAM Write Cycle Bus Turn-Around

(‘DramWrBTA’) Field Encoding ...10-20
Table 10.24 DRAM Burst Read Acknowledge

(‘DramBurstAck’) Encoding...10-21
Table 10.25 Typical DRAM Burst Read Acknowledge Settings10-21
Table 11.1 Fixed Priority Encoding.. 11-3
Table 11.2 Internal Channel DMA Controller Register Address Map11-7
Table 11.3 Internal DMA LSB Control Register

(‘DmaLSBControlReg’) Bit Assignments...11-10
Table 11.4 Arbitration Type (‘Arb’) Field Encoding .. 11-11
Table 11.5 Keep Bus (‘Bus’) Field Encoding ... 11-11
��

�����

���� �� 	
��
� ���� �� 	
��
�
Table 11.6 Allow DMADone (‘Done’) Field Encoding .. 11-11
Table 11.7 Wait for Interrupt (‘Int’) Field Encoding ..11-12
Table 11.8 Burst Type (‘Burst’) Field Encoding ...11-12
Table 11.9 Source Byte Enable Type (‘SBE’) Field Encoding11-12
Table 11.10 Target Byte Enable Type (‘TBE’) Field Encoding...11-12
Table 11.11 Source Big Endianess Type (‘SEndian’) Field Encoding11-13
Table 11.12 Target Big Endianess Type (‘TEndian’) Field Encoding...............................11-13
Table 11.13 Increment Source Address (‘HInc’) Field Encoding11-13
Table 11.14 Increment Target Address (‘TInc’) Field Encoding.......................................11-13
Table 11.15 Internal DMA MSB Control Register

(‘DmaMSBControlReg’) Bit Assignments ...11-14
Table 11.16 Stop (‘Stop’) Field Encoding ..11-14
Table 11.17 Break (‘Break’) Field Encoding ...11-14
Table 11.18 Reserved Link (‘RsvdLink’) Field Encoding ...11-14
Table 11.19 Link (‘Link’) Field Encoding..11-14
Table 11.20 Burst Size (‘BurstSize’) Field Encoding ...11-15
Table 11.21 External DMA Controller Register Address Assignments............................11-15
Table 11.22 External DMA Control Register

(‘ExtDmaControlReg’) Bit Assignments..11-16
Table 11.23 Enable Channel (‘EC’) Field Encoding ..11-16
Table 11.24 Bus Request Protocol High (‘ReqH’) Field Encoding11-16
Table 11.25 Sample MemWrEn and SysBurstFrame 1 clock later

(‘SampleLate’) Field Encoding..11-16
Table 12.1 Alternate RC36100 functions mapped to PIO pins..12-2
Table 12.2 PIO Register Address Assignments ..12-3
Table 12.3 PIO Data (‘PIOData’) Field Encoding ..12-3
Table 12.4 Lock (‘Lock’) Field Encoding..12-4
Table 12.5 Direction (‘Dir’) Field Encoding ..12-4
Table 12.6 Lock (‘Lock’) Field Encoding..12-4
Table 12.7 Effect Select (‘EffectSel’) Field Encoding ..12-5
Table 13.1 Expansion Interrupt Controller Register Address Assignments.....................13-2
Table 13.2 Expansion Interrupt Mask Register 1 and Expansion

Interrupt Pending Register 1 Bit Assignments..13-3
Table 13.3 Expansion Interrupt Mask Register 0 and

Expansion Interrupt Pending Register 0 Bit Assignments13-4
Table 13.4 Pending Interrupt Field Encoding ..13-4
Table 13.5 Interrupt Mask Field Encoding ...13-4
Table 13.6 DMA Channel versus Interrupt De-Multiplexer ..13-5
Table 13.7 Select Interrupt (‘SelInt()’) Field Encoding ...13-5
Table 14.1 Timer0 Count Algorithm...14-2
Table 14.2 Timer1 and Timer2 Count Algorithm...14-2
Table 14.3 Timer Register Physical Address Map.. 14-3
Table 14.4 Timer Pulse Width Modulation Register (‘TimerPWMReg’) Bit Fields 14-5
Table 14.5 Timer Control Register (‘TimerControlReg’) Bit Assignments 14-6
Table 14.6 Lock (‘Lock’) Field Encoding... 14-6
Table 14.7 Lock Count and Compare (‘LockCC’) Field Encoding 14-6
Table 14.8 Write Compare Ack (‘Ack’) Field Encoding... 14-6
Table 14.9 PIO is Input Gate (‘Gate’) Field Encoding .. 14-7
Table 14.10 BusTimeout (‘BTO’) Field Encoding ... 14-7
Table 14.11 Timer Enable (‘TimerEn’) Field Encoding ... 14-7
Table 14.12 Prescaler Select (‘PSel’) Field Encoding .. 14-7
Table 15.1 Bit Assignment for the interrupt outputs ..15-4
Table 15.2 Steering Register .. 15-4
Table 16.1 Compatible Forward Data Transfer Variations.. 16-3
Table 16.2 Bidirectional Parallel Port Interface Centronics Controller Registers16-8
Table 16.3 Centronics Sub ModeRegister (‘CentSubModeReg’) Bit Assignments 16-9
���

�����

���� �� 	
��
� ���� �� 	
��
�
Table 16.4 Centronics Compatible Sub Mode (‘SubMode’) Field Encoding................... 16-9
Table 16.5 Centronics Status Register (‘CentStatusReg’) Bit Assignments................. 16-10
Table 16.6 ECP Buffer Full Field .. 16-10
Table 16.7 ECP Peripheral Acknowledge Field.. 16-10
Table 16.8 ECP Peripheral Request Field...16-10
Table 16.9 Printer Error Field (‘PError’) Field Encoding ... 16-11
Table 16.10 Select (‘Select’) Field Encoding .. 16-11
Table 16.11 Printer Fault (‘Fault’) Field Encoding .. 16-11
Table 16.12 Printer Acknowledge Negated (‘AckN’) Field Encoding.............................. 16-11
Table 16.13 Printer Busy Field (‘Busy’) Encoding .. 16-11
Table 16.14 Centronics Control Register (‘CentControl’) Bit Assignments16-12
Table 16.15 Iprime Interrupt Pending Field Encoding ...16-12
Table 16.16 IoCS(7:6) Mask Enable Field Encoding...16-13
Table 16.17 Centronics Negotiation Interrupt Pending Field ...16-13
Table 16.18 Centronics Negotiation Interrupt Enable Field ...16-13
Table 16.19 Centronics Reset Interrupt Pending Field..16-13
Table 16.20 Centronics Negotiation Interrupt Enable Field ...16-13
Table 16.21 DMA or Interrupt in ECP/EPP Mode Field Encoding16-14
Table 16.22 Nibble ID Mode Field Encoding ...16-14
Table 16.23 Host Busy Data Available Enable Field Encoding16-14
Table 16.24 Negotiation XFlag Reply (‘NegRep’) Field Encoding16-15
Table 16.25 Negotiation Mode (‘NegMode’) Field Encoding ...16-15
Table 16.26 Centronics Nibble Data Register

(‘CentNibbleDataReg’) Bit Assignments ...16-16
Table 16.27 Centronics Host Status Register

(‘CentHostStatusReg’) Bit Assignments ...16-16
Table 16.28 AutoFeed Negated (‘nAutoFeed’) Field Encoding16-16
Table 16.29 Initialize Negated (‘nInit’) Field Encoding ..16-16
Table 16.30 Select In Negated (‘nSelectIn’) Field Encoding ...16-17
Table 16.31 Host Strobe Negated (‘nStrobe’) Field Encoding...16-17
Table 16.32 Centronics Minimum Delay Register

(‘CentDelayReg’) Bit Assignments..16-17
Table 16.33 2500ns Delay Type Field (‘D2500ns’) Field Encoding16-18
Table 16.34 500ns Delay Type Field (‘D500ns’) Field Encoding16-18
Table 16.35 Example Settings for Delay Type Fields..16-18
Table 17.1 RC36100 Reset Configuration Mode Features ...17-1
Table 17.2 Boot Prom Reset Configuration Modes for ExcSIntN(2:1) pins.....................17-2
Table 18.1 Reserved Emulator Addresses..18-2
Table 18.2 Debug Interface Register Address Assignments ...18-3
Table 18.3 Debug Tracepoint Address Register

(‘DebugTraceAddrReg’) Bit Assignments ...18-4
Table 18.4 Table Debug Tracepoint Control Register

(‘DebugTraceControlReg’) Bit Assignments ...18-5
Table 18.5 Cause is a Tracepoint (‘CTP’) Field Encoding...18-5
Table 18.6 Tracepoint Enable (‘TP’) Field Encoding ...18-5
Table 18.7 Debug Control Register (‘DebugControlReg’) Bit Assignments18-6
Table 18.8 Writability (‘Wr’) Field Encoding...18-6
����

�����

���� �� ��	
���
Figure 1.1 RC36100 Block Diagram.. 1-1
Figure 1.2 RC36100 Logic Symbol.. 1-7
Figure 1.3 Low-cost RC36100 Based System... 1-12
Figure 1.4 Development Support... 1-13
Figure 2.1 CPU Registers.. 2-2
Figure 2.2 Instruction Encoding... 2-3
Figure 2.3 Byte Ordering Conventions .. 2-6
Figure 2.4 Unaligned Words .. 2-7
Figure 2.5 5-Stage Pipeline ... 2-9
Figure 2.6 5-Instructions per Clock Cycle.. 2-9
Figure 2.7 Load Delay ... 2-10
Figure 2.8 Branch Delay.. 2-10
Figure 3.1 Cache Line Selection ... 3-2
Figure 3.2 RC36100 Execution Core and Cache Interface ... 3-4
Figure 3.3 Phased Access of Instruction and Data Caches .. 3-5
Figure 3.4 RC36100 Instruction Cache Index Address Path... 3-8
Figure 3.5 RC36100 Cache in One Portion... 3-10
Figure 3.6 RC36100 Cache in Two Portions ... 3-10
Figure 3.7 RC36100 Cache in Four Portions .. 3-11
Figure 4.1 Virtual Address Format... 4-1
Figure 4.2 Virtual-to-Physical Address Translation in RC36100.. 4-4
Figure 5.1 RC36100 CPO Registers ... 5-1
Figure 5.2 RC36100 Cache Control Register.. 5-2
Figure 5.3 RC36100 Cause Register .. 5-6
Figure 5.4 RC36100 Status Register... 5-8
Figure 5.5 RC36100 PrID Register.. 5-10
Figure 6.1 RC36100 Cause Register .. 6-3
Figure 6.2 The Status Register.. 6-5
Figure 6.3 Pipelining in the RC3051 family ... 6-6
Figure 6.4 Synchronized Interrupt Operation Wave Forms ... 6-8
Figure 6.5 Direct Interrupt Operation Wave Forms.. 6-9
Figure 6.6 Synchronized BrCond Inputs.. 6-10
Figure 6.7 Kernel and Interrupt Status Being Saved on Interrupts...................................... 6-11
Figure 6.8 Code Sequence to Initialize Exception Vectors.. 6-12
Figure 6.9 Preserving Processor Context.. 6-13
Figure 6.10 Exception Cause Decoding .. 6-13
Figure 6.11 Exception Service Branch Table... 6-14
Figure 6.12 Returning from Exception... 6-15
Figure 6.13 Polling System Using BrCond .. 6-16
Figure 6.14 Using BrCond for Fast Interrupt Decoding ... 6-17
Figure 7.1 RC36100 Bus Interface Unit Block Diagram ...7-1
Figure 7.2 CPU Latency to Start of Read .. 7-8
Figure 7.3 Start of Bus Read Operation .. 7-9
Figure 7.4 Data Sampling.. 7-10
Figure 7.5 Read Cycle Termination ... 7-12
Figure 7.6 Internal Processor States on 4-word Burst Read ... 7-13
Figure 7.7 Instruction Streaming Internal Operation Example... 7-14
Figure 7.8 Write Cycle Termination ... 7-17
Figure 7.9 Write-Buffer-Full Operation .. 7-18
Figure 8.1 RC36100 Memory Bus Controller Block Diagram .. 8-2
�����

�����

���� �� 	�
��
� ���� �� 	�
��
�
Figure 8.2 Memory and I/O MSB Base Address Register
('MemMSBBaseAddrReg').. 8-7

Figure 8.3 Memory and I/O LSB Base Address Register
('MemLSBBaseAddrReg').. 8-7

Figure 8.4 Memory and I/O MSB Bank Mask Register
('MemMSBBankMaskReg').. 8-9

Figure 8.5 Memory and I/O LSB Bank Mask Address Register
('MemLSBBankMaskReg')... 8-9

Figure 8.6 Memory and I/O Control Register Bit Assignments 8-10
Figure 8.7 Memory LSB Wait-State Register

('MemLSBWaitStateReg') .. 8-11
Figure 8.8 Memory MSB Wait-State Register

(‘MemMSBWaitStateReg).. 8-12
Figure 8.9 1-Datum Read with 0 Wait-States .. 8-17
Figure 8.10 1-Datum Read with 0 Wait-States

Using an Odd Chip Select ... 8-18
Figure 8.11 1-Datum Read with 1 Wait-State

using StartRepeat Field ... 8-19
Figure 8.12 Read with Wait-State

using RdStart2Datum Field.. 8-20
Figure 8.13 Read with Wait-State using SysWait .. 8-21
Figure 8.14 4-Word Burst Read with 0 Wait-States ... 8-22
Figure 8.15 4-Word Burst Read with Wait-States

using RdDatum2Datum Field... 8-22
Figure 8.16 PCMCIA-Style Memory Read with 0 Wait-States ... 8-23
Figure 8.17 1-Datum Write with 0 Wait-States... 8-25
Figure 8.18 1-Datum Write with 0 Wait-States

using FCT245-Type Field .. 8-26
Figure 8.19 1-Datum Write with Wait-State

using StartRepeat Field ... 8-27
Figure 8.20 1-Datum Write with Wait-State

using WrStart2Datum Field.. 8-28
Figure 8.21 1-Datum Write with Wait-State using SysWait .. 8-29
Figure 8.22 Multi-Datum Burst Write ... 8-30
Figure 8.23 Multi-Datum Burst Write using Wait-State

with WrDatum2Datum.. 8-31
Figure 8.24 PCMCIA-Style Memory Write with 0 Wait-State ... 8-32
Figure 8.25 Interleaved Read using FCT260-Type Field... 8-33
Figure 8.26 Interleaved “Even” Read of FCT260-Type Memory...................................... 8-34
Figure 8.27 Interleaved “Odd” Read of FCT260-Type Memory 8-35
Figure 8.28 Interleaved Read using FCT245-Type Field... 8-36
Figure 8.29 Interleaved Read using FCT543-Type Field... 8-37
Figure 8.30 “Even” Read of FCT543-Type Memory ... 8-38
Figure 8.31 “Odd” Read of FCT543-Type Memory .. 8-39
Figure 8.32 Interleaved Write using FCT260-Type and FCT543-Type Fields 8-40
Figure 8.33 Interleaved Write using FCT245-Type Field ... 8-41
Figure 8.34 32-bit SRAM System .. 8-42
Figure 8.35 32-bit SRAM System using an Odd Chip Select .. 8-42
Figure 8.36 32-bit SRAM System using FCT245-Type.. 8-43
Figure 8.37 Interleaved FCT245-Type System.. 8-44
Figure 8.38 Interleaved FCT260-Type System.. 8-45
Figure 8.39 Interleaved FCT543-Type System.. 8-46
Figure 8.40 16-bit Big Endian SRAM System.. 8-47
Figure 8.41 16-bit Little Endian SRAM System ... 8-47
Figure 8.42 8-bit Big Endian SRAM System.. 8-48
Figure 8.43 8-bit Little Endian SRAM System ... 8-48
����

�����

���� �� 	�
��
� ���� �� 	�
��
�
Figure 9.1 RC36100 I/O Bus Controller Block Diagram .. 9-2
Figure 9.2 Memory and I/O Control Register

(‘MemIoCntrlReg(7..0)’) ... 9-7
Figure 9.3 I-Type I/O Read with 0 Wait-States ... 9-9
Figure 9.4 I/M-Type I/O Read, 0 Wait-States... 9-10
Figure 9.5 PCMCIA-Style I/O Read with 0 Wait-States ... 9-11
Figure 9.6 I-Type I/O Write with 0 Wait-States.. 9-12
Figure 9.7 M-Type I/O Write with 0 Wait-States... 9-13
Figure 9.8 PCMCIA-Style I/O Write with 0 Wait-States ... 9-14
Figure 9.9 I/O Read with Internal Wait-States ... 9-15
Figure 9.10 I/O Read with external SysWait Wait-State .. 9-16
Figure 9.11 I/O Write with Internal Wait-States.. 9-17
Figure 9.12 I/O Write with external SysWait Wait-State... 9-18
Figure 9.13 I-Type I/O System with Direct Bus Connection.. 9-18
Figure 9.14 M-Type I/O System with Direct Bus Connection... 9-19
Figure 9.15 I-Type I/O System using FCT245 Transceivers.. 9-19
Figure 9.16 M-Type I/O System using FCT245 Transceivers.. 9-20
Figure 9.17 I-Type I/O System using FCT543 Transceivers.. 9-20
Figure 9.18 M-Type I/O System using FCT543 Transceivers.. 9-21
Figure 9.19 16-bit I/O System with Big Endian Connection .. 9-22
Figure 9.20 16-bit I/O System with Little Endian Connection .. 9-22
Figure 9.21 8-bit I/O System with Big Endian Connection... 9-23
Figure 9.22 8-bit I/O System with Little Endian Connection .. 9-23
Figure 10.1 RC36100 DRAM Bus Controller Block Diagram... 10-2
Figure 10.2 DRAM Refresh Count Register

(‘DramRefreshCountReg’) ... 10-7
Figure 10.3 DRAM Refresh Compare Register ... 10-8
Figure 10.4 DRAM RAS Mux Select Register

(‘DramRasMuxSelReg’)... 10-10
Figure 10.5 DRAM CAS Mux Select Register ... 10-10
Figure 10.6 DRAM MSB Base Address Register

(“DramMSBBaseAddrReg’) ... 10-13
Figure 10.7 DRAM MSB Bank Mask

(‘DramMSBBankMask(3:0)’) Registers.. 10-14
Figure 10.8 DRAM LSB Bank Control Register

(‘DramLSBControlReg’)... 10-15
Figure 10.9 DRAM MSB Bank Control Register

(‘DramMSBControlReg’) .. 10-18
Figure 10.10 Basic DRAM Read.. 10-23
Figure 10.11 RAS asserted at End of Transfer.. 10-24
Figure 10.12 RAS asserted at Start of Transfer... 10-25
Figure 10.13 RAS Precharge at start of Transfer .. 10-26
Figure 10.14 Extended Row Address Hold.. 10-27
Figure 10.15 Extended Address Set-up... 10-28
Figure 10.16 Extended CAS Width.. 10-29
Figure 10.17 Multiple Data read .. 10-30
Figure 10.18 Basic DRAM Write .. 10-31
Figure 10.19 RAS Asserted Throughout DRAM Write... 10-32
Figure 10.20 Write Bus Turn-around ... 10-33
Figure 10.21 Two Datum Write .. 10-34
Figure 10.22 Interleaved ‘FCT245 type read ... 10-35
Figure 10.23 Interleaved FCT260 Read .. 10-36
Figure 10.24 Single word access to even bank of FTC260-type system......................... 10-37
Figure 10.25 Single word access to odd bank of FCT260-type system 10-38
Figure 10.26 Interleaved FCT543 Read .. 10-39
Figure 10.27 Single word access to even bank of FCT543-type system......................... 10-40
���

�����

���� �� 	�
��
� ���� �� 	�
��
�
Figure 10.28 Single word access to odd bank of FCT543-type system 10-41
Figure 10.29 Interleaved FCT245-type Writes... 10-42
Figure 10.30 Interleaved FCT260, FCT543-type Writes.. 10-43
Figure 10.31 DRAM Staggered Refresh .. 10-44
Figure 10.32 Interleaved FCT245 Interface... 10-45
Figure 10.33 Interleaved FCT260 Interface... 10-46
Figure 10.34 Interleaved FCT543 Interface... 10-47
Figure 11.1 DMA Controller Address and Data Flow Diagram .. 11-1
Figure 11.2 Rotating Priority Scheme.. 11-3
Figure 11.3 Internal DMA Algorithm .. 11-4
Figure 11.4 Internal DMA LSB Source Address Register

(‘DmaLSBSourceAddrReg’)... 11-8
Figure 11.5 Internal DMA MSB Source Address Register

(‘DmaMSBSourceAddrReg’).. 11-8
Figure 11.6 Internal DMA LSB Target Address Register

(‘DmaLSBTargetAddrReg’) .. 11-9
Figure 11.7 Internal DMA MSB Target Address Register

(‘DmaMSBTargetAddrReg’) ... 11-9
Figure 11.8 DMA LSB Count Register

(‘DmaLSBCountReg’) .. 11-9
Figure 11.9 Internal DMA MSB Count Register

(‘DmaMSBCountReg’) ... 11-10
Figure 11.10 Internal DMA LSB Control Register

(‘DmaLSBControlReg’) .. 11-10
Figure 11.11 Internal DMA MSB Control Register

(‘DmaMSBControlReg’) ... 11-13
Figure 11.12 External DMA Control Register

(‘ExtDmaControlReg’).. 11-15
Figure 11.13 External DMA Single Data Read using the Memory Controller

(Data Transfer from Memory to Device) .. 11-17
Figure 11.14 External DMA Single Data Write using the Memory Controller

(Data Transfer from Device to Memory ... 11-18
Figure 11.15 External DMA Two-Data Burst Read using the Memory Controller

(Data Transfer from Memory to Device) .. 11-18
Figure 11.16 External DMA Two-Data Burst Write using the Memory Controller

(Data Transfer from Device to Memory) .. 11-19
Figure 12.1 PIO Block Diagram ... 12-1
Figure 12.2 PIO Data Register (‘PioDataReg’) .. 12-3
Figure 12.3 PIO Direction Register (‘PioDirReg’) .. 12-3
Figure 12.4 PIO Effect Select Register (‘PioEffectSelReg’)... 12-4
Figure 13.1 Expansion Interrupt Controller (to CPU Interrupt) .. 13-1
Figure 13.2 Expansion Interrupt Controller:

Steering Interrupts to DMA Requests .. 13-2
Figure 13.3 Expansion Interrupt Mask Register

(‘ExpIntMaskReg’) ... 13-3
Figure 13.4 Expansion Interrupt Pending Register

(‘ExpIntPendReg’) ... 13-3
Figure 13.5 Expansion Interrupt DMA Select Register

(‘ExpIntDMASelReg’)... 13-4
Figure 14.1 Block Diagram of the RC36100 Timers .. 14-1
Figure 14.2 Timer Prescaler Count Register

(‘TimerPrescalerCountReg’) .. 14-4
Figure 14.3 Timer Count Register (‘TimerCountReg’) ... 14-4
Figure 14.4 Timer Compare Register (‘TimerCompareReg’) ... 14-4
Figure 14.5 Timer Pulse Width Modulation Register (‘TimerPWMReg’).......................... 14-5
Figure 14.6 Timer Control Register (‘TimerControlReg’) ... 14-5
����

�����

���� �� 	�
��
� ���� �� 	�
��
�
Figure 15.1 Block Diagram of Serial Communication Controller 15-2
Figure 15.2 Programmer access to the Serial Communications Controller 15-3
Figure 15.3 Write Register 0 (WR0) Bit Values and Field Descriptions 15-11
Figure 15.4 Write Register 1 (WR1) Bit Values and Configurations 15-11
Figure 15.5 Write Register 2 (WR2) .. 15-12
Figure 15.6 Write Register 3 (WR3) Bit Values and Configurations 15-12
Figure 15.7 Write Register 4 (WR4) Bit Values and Configurations 15-12
Figure 15.8 Write Register 5 (WR5) Bit Values and Configurations 15-12
Figure 15.9 Write Register 6 (WR6) Bit Values and Configurations 15-13
Figure 15.10 Write Register 7 (WR7) Bit Values and Configuration 15-13
Figure 15.11 Write Register 7’ (WR7’) Bit Values and Configuration............................... 15-14
Figure 15.12 Write Register 9 (WR9) Bit Values and Configuration 15-14
Figure 15.13 Write Register 10 (WR10) Bit Values and Configuration 15-14
Figure 15.14 Write Register 11 (WR11) Bit Values and Configuration............................. 15-15
Figure 15.15 Write Register 14 (WR14) Bit Values and Configuration 15-15
Figure 15.16 Write Register 15 (WR15) Bit Values and Configuration 15-16
Figure 15.17 Read Register 0 (RR0) Bit Values and Configuration................................. 15-16
Figure 15.18 Read Register 1 (RR1) Bit Values and Configuration................................. 15-16
Figure 15.19 Read Register 3 (RR3) (Channel A only)

Bit Values and Configuration ... 15-17
Figure 15.20 Read Register 7 (RR7) Bit Values and Configuration................................. 15-17
Figure 16.1 Block Diagram of the Bidirectional Parallel Port ... 16-1
Figure 16.2 Centronics Sub ModeRegister (‘CentSubModeReg’) 16-9
Figure 16.3 Centronics Status Register (‘CentStatusReg’) ... 16-9
Figure 16.4 Centronics Control Register (‘CentControlReg’)... 16-11
Figure 16.5 Centronics Nibble Data Register (‘CentNibbleDataReg’) 16-15
Figure 16.6 Centronics Host Status Register (‘CentHostStatusReg’)............................ 16-16
Figure 16.7 Centronics Minimum Delay Register (‘CentDelayReg’) 16-17
Figure 16.8 Typically Classic Compatible Mode Transaction .. 16-19
Figure 16.9 Typical Parallel Port System Connections .. 16-19
Figure 17.1 Cold Start.. 17-4
Figure 17.2 Warm Reset.. 17-4
Figure 17.3 Configuration Mode Initialization Logic... 17-5
Figure 17.4 Mode Vector Timing.. 17-5
Figure 17.5 Reset Timing ... 17-6
Figure 17.6 RC36100 Clocking.. 17-6
Figure 18.1 Debug Tracepoint Address Register

(‘MSB DebugTraceAddrReg’) .. 18-4
Figure 18.2 Debug Tracepoint Address Register

(‘LSB DebugTraceAddrReg’). .. 18-4
Figure 18.3 Debug Tracepoint Control Register

(‘DebugTraceControlReg’)... 18-4
Figure 18.4 Debug Control Register (‘DebugControlReg’) .. 18-5
Figure 18.5 RC36100 SysClk Phase Initialization Case A .. 18-6
Figure 18.6 RC36100 SysClk Phase Initialization Case B .. 18-6
�����

�����

���� �� 	�
��
� ���� �� 	�
��
�
������

�����

������� �	
��	

	�
�	�

������� 	
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 is a highly integrated member of the IDT RISC MIPS processor family. The

RC36100 processor incorporates the “system on a chip” philosophy and is well-suited for a wide variety
of low-cost embedded applications.

The RC36100 uses a RISCore32 series CPU core, implements the MIPS instruction set architecture,
and contains substantial amounts of on-chip Instruction (I-Cache) and Data Cache (D-Cache) memory.
In addition, the RC36100 integrates four on-chip Memory Controllers, including ROM, DRAM, I/O, and
DMA; data communication peripherals, including an IEEE 1284 Parallel Port, and two Serial Communi-
cations Ports; and standard embedded peripherals, including an Interrupt Controller, Timers, and
Parallel Inputs and Outputs. Such extensive integration simplifies the overall system design, reduces
external component requirements, system cost, and development time.

Figure 1.1 RC36100 Block Diagram

The RC36100 is software compatible with all of the IDT RISC processor family, including the low-cost
32-bit RISCore3000 family RISControllers and the RC4000/RC5000 family of high-performance 64-bit
CPUs. Common instruction set architecture (ISA) enables the same applications software to be used
across a wide variety of price/performance points.

The RC36100 integrates four on-chip Bus Controllers, allowing seamless interfacing with a wide
variety of standard memories and peripherals that include:

◆ Standard page-mode DRAMs
◆ EPROMs, FLASH, SRAM, Dual-Port SRAM
◆ FIFOs, SCSI, A/D, and other I/O peripherals
◆ Ethernet, Data Compression, and other coprocessors

CPU
Integer
Core

CoProcessor

4 KB I
Cache

1KB D
Cache

4 deep Rd/Wr
Buffer

DRAM
Ctrl

Memory
Ctrl I/O Ctrl

Wait-state
generation

Serial Com. Ctrl

Interrupt Ctrl

DMA Channels

Bidirectional
Centronics

PIO

BIU

O
n-

ch
ip

 I/
O

32-bit Virtual
Address bus 32-bit

Physical
Address bus

32-bit
data bus
� � �

�����

������� 	
��

 ��
���
� ������� �
����
� ����
The RC36100 integrates asynchronous and synchronous Serial Ports, an IEEE Parallel Port, and multiple tim-
ers, to serve data communications applications that include:

◆ Local Area Network (LAN) interface cards
◆ CSU/DSU SDLC/HDLC line driver cards
◆ Routers, switches, and data compressor cards

������������������������ ����������������

������ ������ ������ ������ ����
◆ Instruction set compatible with the RISCore3000 family and the IDT RC4000/RC5000 64-bit

family of RISC CPUs
◆ System cost minimized through a high level of integration

- RISC CPU
- Instruction Cache
- Data Cache
- Flexible Bus Interface
- Controllers
- Peripheral

◆ 31 MIPS/ 55K Dhrystones-2.1 at 33 MHz
◆ 5V operation
◆ Low-cost MQUAD packaging
◆ On-chip instruction and data caches

- 4KB of Instruction Cache
- 1KB of Data Cache
- Improved Cache Control for fast data movement and cache locking

◆ Flexible bus interface allows simple, low cost designs
- Separate de-multiplexed Address Bus and Data Bus
- Synchronized Bus Interface Timing
- On-chip 4-deep write buffer eliminates memory write stalls
- On-chip 4-word read buffer supports burst or simple block reads
- Programmable port width interface (8-,16-, and 32-bit memory sub-regions)

◆ On-chip DRAM Controller with Address Multiplexer
- Supports non-interleaved or Interleaved DRAM memory

◆ On-chip Memory and I/O Controller
- Chip Selects
- Wait-State Generator
- Supports non-interleaved or interleaved ROMs
- Boot from 8-bit, 16-bit, 32-bit or interleaved ROMs
- Supports CS/Rd/Wr I/O protocol
- Supports CS/Wr/Strobe I/O protocol

◆ On-chip DMA Controller for autonomous burst data movement
- 4 internal channels
- 2 external channels
- On-chip Parallel I/O pins
- On-chip Interrupt Expansion controller

◆ On-chip Timers
◆ On-chip Serial Port(s)
◆ On-chip IEEE 1284 Bidirectional Centronics Target Interface Controller
◆ “Reduced Frequency Mode” assists in power-managed applications
◆ Complete software support

- Optimizing compilers
- Real-time operating systems
- Monitors/debuggers
- Floating Point emulation software
- Printer Page Description Languages
- Built-in Debug/Emulator Support
� � �

�����

������� 	
��

 ��
���
� 	
��

 ��
���
�
������������ ����� ����� ����� �����������������������������
 The RC36100 can be viewed as a “system on a chip,” the embodiment of a discrete system built

around the RISCore32 series CPU. Integrating system functions onto a single chip reduced the
system’s cost, complexity, size, power requirements and minimized system development time.

 Figure 1.1 on page 1 provides a block-level representation of the RC36100’s functional units.
This section includes the RC36100’s logic symbol diagram (Figure 1.2 on page 7) and provides a
complete pin description table (Table 1.1 on page 8). An overview of the RC36100’s CPU Core,
System Control Co-processor (CPO), Clock Generator Unit, Instruction and Data Caches, Bus Inter-
face Unit (BIU), Memory Controller, DRAM Controller, I/O Controller, DMA Control and Interface,
Counter/Timers, PIO Interface, Serial Communications Controller, Interrupt Controller, and Bidirec-
tional Centronics devices is presented below. More detailed information on each topic is available in
subsequent chapters.

�
�
�
�
���� ����������������

The RC36100 is based on the RISCore32 series CPU core. Through the use of its five-stage
pipeline, the RISCore32 series is a full 32-bit RISC integer execution engine that is capable of
sustaining a peak single cycle execution rate. The CPU core contains an integer ALU unit and bit
shifter with a separate integer multiplier/divider unit, address adder and program counter generator,
and 32 orthogonal 32-bit registers. The RC36100 execution core implements the MIPS-I Instruction
Set Architecture (ISA); therefore, the RC36100 is binary compatible with all other MIPS CPU
engines, including the low-cost RISCore3000 family and the high-speed RC4000 64-bit family.

�
�
�
����������������� ������������������������� �� �� �� ������
�
�
�
��������������������������������

The RC36100 integrates an on-chip System Control Co-processor (CP0). CP0 manages the
RC36100’s exception handling operations, its virtual-to-physical address memory mapping, and its
various programmable bus-to-cache interface capabilities. Each topic is discussed in detail
throughout the manual.

The RC36100 does not include the optional TLB found in other members of the IDT processor
families. Instead, the RC36100 uses a mechanism of virtual-to-physical address mapping that is
identical to that of the RISCore3000 family’s Base Versions. These Base Version devices still
support distinct kernel and user mode operation but do not require page management software or an
on-chip TLB, leading to a simplified operating system software model and a lower cost processor.

�������������������� ������������������������������������ ����������������

The RC36100 is driven from a single, 2x-frequency input clock. An on-chip clock generator unit is
responsible for managing the interaction of the CPU core, caches, and bus interface. The clock
generator unit replaces the external delay line that was required in discrete RISCore32 series based
systems.

For power sensitive or “Green” applications, the RC36100 supports a reduced frequency mode,
allowing the system to reduce power consumption in idle periods.

�� ��������������������

The RC36100 integrates 4KB of on-chip Instruction Cache, organized with a line size of 16 bytes
(four 32-bit entries). This relatively large cache contributes substantially to the high performance
inherent in the RC36100, which allows systems based on the RC36100 to achieve high performance
even from low-cost memory systems. The cache is implemented as a direct mapped cache and is
capable of caching instructions from anywhere within the larger physical address space. The cache is
implemented using physical addresses and physical tags (rather than virtual addresses or tags),
which does not require flushing on context switches.

The RC36100 implements special features that allow the instruction cache to be split into halves
or quarters; each section then services a different area of the large address space. This feature
enables the system software to “lock” time-critical code—such as router address hash-table look-up
algorithms and interrupt service routines—into one of the halves or quarters while allowing other
tasks to use unused portions without disrupting the time-critical code. This technique permits soft-
ware to perform instruction cache “locking” without requiring memory management support.
� � �

�����

������� 	
��

 ��
���
� 	
��

 ��
���
�
���������������� ��������������������

The RC36100 incorporates an on-chip data cache of 1KB organized as a 4 bytes (one word) line
size. This relatively large data cache substantially contributes to the RC36100’s high performance.
As with the instruction cache, the data cache is implemented as a direct mapped physical address
cache and is capable of mapping any word within the larger physical address space.

The data cache is implemented as a write-through cache, to ensure that main memory is always
consistent and coherent with the internal cache. To minimize processor stalls due to data write oper-
ations, the bus interface unit incorporates a 4-deep write buffer that captures address and data at the
processor execution rate, allowing the data to be retired to main memory at a much slower rate
without impacting the performance of the CPU core.

The RC36100 contains special features that allow the data cache to be split into halves or quar-
ters; each section services a different area of the larger address space. This feature enables the
system software to “lock” time-critical data—such as routing address information tables and the inter-
rupt stack—into one of the halves or quarters while allowing other tasks to use unused portions
without disrupting the critical data. This technique permits software to perform data cache “locking”
without requiring memory management support.

������������ ������������������������������������ ����������������

The RC36100 uses its large internal caches to provide the execution engine with most of its
memory bandwidth requirements. The execution engine pipeline can then perform both 1 instruction
fetch and 1 data load/store per clock cycle. Only on the rare occasion of a cache miss or on writes
does the RC36100 require its external bus interface; therefore, the RC36100 is able to use a simple
bus interface that connects to slower, inexpensive memory devices.

The RC36100 bus interface uses a de-multiplexed address and data bus. The bus interface
readily connects to memory subsystems that are 8-, 16-, 32-bits wide, and/or interleaved 32-bit.

The RC36100 incorporates a 4-deep write buffer to decouple the speed of the execution engine
from the speed of the memory system. The write buffers capture and FIFO the processor's address
and data information during internal store operations at the CPU pipeline rate. The write buffer then
presents the bus interface write transactions at the rate the memory system can accommodate.

During main memory writes, the RC36100 can break large data—such as a 32-bit word—into a
series of smaller transactions—such as bytes—according to the width of the memory port being
written. This operation is transparent to the software that initiated the store, ensuring that the same
software is able to run in a variety of memory systems.

The RC36100 read interface performs both single data reads and quad word reads. To accommo-
date slower reads, the RC36100 incorporates a 4-deep read buffer FIFO, allowing the external inter-
face to queue up data within the processor before releasing it to perform a burst fill of the internal
caches.

In addition, the RC36100 can perform on-chip data packing when performing large data reads—
such as quad words—from narrower memory systems—such as 16-bits. Once again, this operation
is transparent to the software, simplifying migration of software to different memory systems and
simplifying field upgrades to wider memory. Because this capability works for either instruction or
data reads, the RC36100 easily supports 8-, 16-, 32-bit, or interleaved boot PROMs.

As described throughout this manual, it is actually one of the on-chip memory bus controllers that
services bus transactions. The bus interface unit merely provides a common translation between
these memory bus controllers and the CPU core.

������������������������ ��

The RC36100 uses the on-chip memory controller to gluelessly attach external ROM—including
FLASH—and/or SRAM in a number of system configurations. For example, the memory controller
supports interleaved ROM and/or SRAM, 8-bit boot ROM, 32-bit burst ROMs, as well as an array of
simple 32-bit wide EPROMs. Under the control of boot software, the memory controller integrates all
control signals and manages the access timing and wait-state generation for multiple banks.
� � �

�����

������� 	
��

 ��
���
� 	
��

 ��
���
�
���������������� ��

The RC36100 integrates an on-chip DRAM controller. The DRAM controller directly manages up
to four banks of standard page mode DRAMs in a number of configurations, including systems with
varying densities of DRAM; 32-bit wide, interleaved DRAM; and 16-bit wide DRAM subsystems.

���� !!!! ��

To perform all necessary address decoding and wait-state generation for external I/O devices, the
RC36100 has an on-chip I/O controller. The I/O controller interfaces to both M- and I-style standard
peripherals.

��������� �� �� �� ������������������� ��� ��� ��� �����" �" �" �" ���������������������������������

The RC36100 features on-chip DMA control for internal peripherals, external peripherals, and
external memory. Multiple internal channels are provided, allowing block moves of data between any
combination of memory and I/O device. Each channel can also be interrupt controlled so that an I/O
peripheral—like the serial port—can regulate the individual transactions of a block move.

 The RC36100 also supports external DMA masters that take over the external system bus via a
bus request and grant handshake. Once in control, the external DMA master can read and write to
memory, I/O, and internal peripherals via the RC36100's bus controllers.

���������������������������� #�#�#�#�����������������

The RC36100 contains three general purpose timers. Each timer consists of a 16-bit count
register as well as a 16-bit compare register. The count register resets to zero and then counts
upward until it equals the compare register. When the count register equals the compare register, the
TCN output is asserted and the count is reset back to zero.

To increase the amount of time each timer can handle, the timers use a common 16-bit prescaler
counter. Each timer is programmable to select a power-of-2 divisor of the prescaler. When the default
mode is used, each timer can also be used as a general purpose real-time clock. Some special
effects include:

◆ Bus time-out timer
◆ Watch-dog timer
◆ PWM/square wave/baud rate generator
◆ Gated clock external event counter

�
�
�
�!!!! ������������������������������������

For controlling multi-purpose utility pins, the RC36100 has a Parallel Input/Output (PIO) interface.
The PIO pins can be programmed to act as general purpose inputs or outputs.

Each PIO pin is multiplexed with other controller’s inputs or outputs. This flexible arrangement
allows the system designers to customize RC36100’s resources according to their needs. Therefore,
designs needing a special purpose controller—such as the IEEE Parallel Port—can allocate the IEEE
Parallel Port pins for that purpose; other applications can use those pins for general purpose inputs
or outputs.

�������� ����� ����� ����� ��� ��

The RC36100 integrates a dual channel serial port. This peripheral controller performs a variety of
synchronous and asynchronous protocols, including RS-232C, LocalTalk, SDLC, and HDLC. To
maximize throughput, the on-chip Serial Port is optionally serviced by the auto-initiated on-chip DMA
controller, which can automatically move data blocks to and from the port.

������������������������������������ ��

The RC36100 integrates an on-chip interrupt controller to manage both external interrupts and
interrupts signaled from the on-chip peripherals. The interrupt controller speeds interrupt service of
the internal interrupts and assists in interrupt prioritizing and nesting as well as interfacing with the
auto-initiated DMA.
� � �

�����

������� 	
��

 ��
���
� 	
��

 ��
���
�
�$$$�$$$�$$$�$$$ 	%&	%&	%&	%&'''' ��������""""�� ��

The RC36100 includes an internal IEEE1284 parallel port peripheral, which implements a true
bidirectional Centronics port. Features include:

◆ 8-bit input Target Compatible protocol (for backward compatibility with Centronics)
◆ Nibble and byte mode output protocol (for backward compatibility with PCs)
◆ EPP protocol (for communications applications)
◆ External transceiver interface control pins
◆ Auto-initiated DMA via internal interrupts
� � �

�����

������� 	
��

 ��
���
� ��� �����������
��� ����� ����� ����� ��������������������������������������

(�(�(�(�)�)�)�)�����
�
�
�
��*��*��*��*�����

Figure 1.2 RC36100 Logic Symbol

RC36100
Logic

Symbol

26SysAddr(25:0)

SysData(31:0)

SysClkIn

SysClk*

Dram RAS*(3:0)

Dram CAS*(3:0)

Dram RdEnEven*

Dram RdEnO dd*

32

2

2

8

SysReset*

SysWait*

SysBusError*

SerialPClkIn*(1:0)/

SerialSClk*(1:0)/

SerialRxData(1:0)/

SerialTxData(1:0)/

SerialCTS*(1:0)/

SerialRTS*(1:0)/

SerialSync*(1:0)/

SerialDCD*(1:0)/

SerialDTR*(1:0)/

Dm aBusGnt*(1:0)/

Dm aBusReq*(1:0)/

Dm aDone*
Tim erTC/Gate*(2:0)/

Mem CS*
IoCS*(7:0)

Mem RdEnEven*

Mem RdEnOdd*

Mem WrEnEven*

Dram WrEnEven*

Dram WrEnO dd*

Ti
m

er

drw 03

CentStrobe*/

CentAck*/

CentBusy/

PIO(8)
PIO(25)
PIO(24)
PIO(23)

DiagC/ UnC *

DiagInst/Data*

DiagRun*

DiagBranchTaken*

ExcSInt*(2:0)
ExcInt*(4:3)/

ExcSBrCond*(3:2)/

VCC

Gnd

Mem WrEnOdd*

Mem WrEn*(3:0)
IoRdEn*
IoDStrobe*
IoWrEn*
IoRdWr*

DiagJRorExe*

DiagInternalWr*

DiagInstCacheWrDis*

DiagTriState*

DiagFCM*

DiagIntDis*

DiagNoCS*

DiagInternalDMA*

4

4
4

CentFault*/

CentSelectIn*/

CentHostStrobe/

CentHostOEn*/

CentPaperError/

CentSelect/

CentAutoFeed*/

CentInit*/

3

2

2

2

2

2

2

2

2

2

SysALEn*

SysBurstFram e*

SysDataRdy*

SysRd*

SysWr*

Sy
st

em
 In

te
rf

ac
e

an
d

B
us

 C
on

tr
ol

le
r

3

3

2

Vcc

Gnd

D
ed

ic
at

ed
Pa

ra
lle

l P
or

t I
nt

er
fa

ce
Se

ria
l P

or
ts

D
R

A
M

 B
us

C

on
tr

ol
le

r
M

em
or

y
&

 I/
O

 B
us

 C
on

tr
ol

le
rs

D
M

A
 B

us
C

on
tr

ol
le

r
Ex

ce
pt

io
n

In
te

rf
ac

e
D

ia
gn

os
tic

 In
te

rf
ac

e
Po

w
er

/
G

ro
un

d

PIO (0)

PIO (19)

PIO(17,18)

PIO(16,15)

PIO(35:33)

PIO (29,40)

PIO(37,39)

PIO(30,41)

PIO(11,14)

PIO(28,32)

PIO(10,13)

PIO(36,38)

PIO(27,31)

PIO(9,12)

PIO(23)

PIO(7)

PIO(6)

PIO(5)

PIO(4)

PIO(22)

PIO(21)

PIO(3)

PIO(20)

PIO(1)

PIO(2)

Note: For configurable (programmable)
PIO assignments, also see

page 2. Chapter 12
� �

�����

������� 	
��

 ��
���
� ��� 	
�
��!�����
��� �������� �������� �������� ���������������������������������
Table 1.1 contains the RC36100’s various bus interface, controller, timer, serial port, diagnostic,

and exception handling pin names and signal descriptions. Those signals marked with an asterisk
are active when low.

��� #��
 $%!
 	
�
��!����

System Bus Interface Pins

SysAddr(25:0) O System Address Bus.
Also serves as the DramAddr(13:2) Bus.

SysData(31:0) I/O System Data Bus.

SysClkIn I System Clock Input.
Twice (2x) the internal CPU frequency.

SysClk* O System Clock Output.
All other outputs are referenced to this system clock.

SysReset* I System Reset.
Initializes entire chip, except for JTAG circuitry.

SysWait* I System Wait.
Extends current bus transaction.

SysBusError* I System Bus Error.
Signals a bus error exception on the current read transaction.

SysALEn* O/I(DMA) System Address Latch Enable.
Indicates valid address at the beginning of a bus transaction.

SysBurstFrame* O/I(DMA) System Burst Frame.
First indicates the beginning of a bus transaction. Then indi-
cates if the bus transaction is a burst and if the next data is
the last data.

SysDataRdy* O System Data Ready.
Indicates valid data during each data of a bus transaction
(except when SysWait is asserted).

SysRd* O/I(DMA) System Read.
Indicates current bus transaction is a read.

SysWr* O/I(DMA) System Write.
Indicates current bus transaction is a write.

DRAM Controller Pins

DramRAS*(3:0) O DRAM Row Address Strobe.

DramCAS*(3:0) O DRAM Column Address Strobe.

DramRDEnEven* O DRAM Read Enable for Even FCT245/543 Type Banks. On
FCT260 type banks, it is the read enable for both.

DramRdEnOdd* O DRAM Read Enable for Odd FCT245/543 Type Banks. On
FCT260 Type Banks, it is the path select.

DramWrEnEven* O DRAM Write Enable for Even Banks.

DramWrEnOdd* O DRAM Write Enable for Odd Banks.

Table 1.1 RC36100 Pin Descriptions (Page 1 of 4)
� � "

�����

������� 	
��

 ��
���
� ��� 	
�
��!�����
Memory Controller Pins

MemCS*/loCS*(7:0) O Memory or I/O Chip Selects.
MemCS*(0) and optionally MemCS*(1) are reserved for the
Boot PROM. loCS*(6) and/or loCS*(7) are optionally reserved
for the Centronics Port if used.

MemRdEnEven* O Memory Read Enable for Even FCT245/543 Type Banks.
On FCT260 Type banks, it is the read enable for both even
and odd banks.

MemRdEnOdd* O Memory Read Enable for Even FCT245/543 Type Banks.
On FCT260 Type Banks, it is the path select.

MemWrEn*(3:0) O Memory Write Enable for each byte lane.
Memories can directly connect their byte write enables to the
RC36100 MemWrEn*(3:0) signals. During 16-bit accesses,
either MemWrEn*(3:2) or MemWrEn*(1:0) are used, both
pairs are equivalent.

loRdEn*/DStrobe* O I/O Read Enable or I/O Data Strobe.

loWrEn*/RdWr* O I/O Write Enable or I/O Read/Write.

DMA Controller Pins

DmaBusGnt*(1:0) O DMA Bus Grant
Indicates that the CPU has tri-stated the bus and other DMA
related signals.

DmaBusReq*(1:0) I DMA Bus Request.
Indicates that external DMA agent would like control of the
bus and other DMA related signals.

DmaDone* I/O DMA transaction done

Serial Port Pins

SerialPClkIn*(1:0) I Optional Primary Serial Clock Input.

SerialSClk*(1:0) I/O Optional Secondary Serial Clock Input or Output.

SerialRxData(1:0) I Serial Receiver Data Stream.

SerialTxData(1:0) O Serial Transmitter Data Stream.

SerialCTS*(1:0) I Serial Clear To Send.

SerialRTS*(1:0) O Serial Request To Send.

SerialSync*(1:0) I/O Serial Frame Sync.

SerialDCD*(1:0) I Serial Data Carrier Detect.

SerialDTR*(1:0) O Serial Data Terminal Ready.

Timer Pins

TimerTC*(2:0)
/TimerGate*(2:0)

I/O Timer Terminal count output or Timer Count Gate Enable
input.
Terminal count asserts when Timer Count equals 0. Timer
Gate enables counter to count upward or to stop.

��� #��
 $%!
 	
�
��!����

Table 1.1 RC36100 Pin Descriptions (Page 2 of 4)
� � &

�����

������� 	
��

 ��
���
� ��� 	
�
��!�����
PI0 Pins

PI0(41:0) I/O Parallel Inputs or Parallel Outputs.
Parallel inputs and parallel outputs are multiplexed with vari-
ous peripheral inputs and peripheral outputs. If the peripheral
is unused, the input or output pin can be reconfigured to be a
general purpose input or output.

Bi-Directional Centronics Interface Pins

CentStrobe* I Centronics Strobe.
In compatible mode, strobes data into the printer. Has other
uses for other modes.

CentAck* O Centronics Acknowledge.
In compatible mode, acknowledges a strobe. Has other uses
for other modes.

CentBusy O Centronics Busy.
In compatible mode, delays the host from sending more data.
Has other uses for other modes.

CentPaperError O Centronics Paper Out/Jam Error.
In Compatible mode, indicates that the printer has a paper
error when asserted with CentFault*. Has other uses for other
modes.

CentSelect O Centronics Select.
In Compatible mode, used to indicate that this printer is on-
line. Has other uses for other modes.

CentAutoFeed* I Centronics Auto Page Feed.
In compatible mode, sends a paper feed to the printer. Has
other uses for other modes.

CentInit* I Centronics Initialization/Reset.
In Compatible mode, resets the printer. Has other uses for
other modes.

CentFault* O Centronics Fault.
In Compatible mode, indicates that the printer has a problem.
Has other uses for other modes.

CentSelectIn* I Centronics Select In.
In Compatible mode, indicates that the Host wants to select
this printer on a shared cable. Has other uses for other modes

CentHostStrobe O Centronics Host Strobe.
Used to clock/latch Host data on the external FCT952/374
data transceiver during a Host write.

CentHostOEn* O Centronics Host Output Enable.
Used to enable the external FCT952/374 data transceiver
during a Host read.

Diagnostic Pins

DiagC/UnC* O Diagnostic Cached versus Uncached.
On read bus transactions indicates whether the read is
cached or uncached.

DiagInst/Data* O Diagnostic Instruction versus Data.
On read bus transactions indicates whether the read is for
instructions or data.

��� #��
 $%!
 	
�
��!����

Table 1.1 RC36100 Pin Descriptions (Page 3 of 4)
� � ��

�����

������� 	
��

 ��
���
� ��� 	
�
��!�����
DiagRun* O Diagnostic Run.
Indicates an internal pipeline run cycle. This pin has iso-syn-
chronous timing.

DiagBranchTaken* O DiagBranchTaken
Indicates that a branch, jump, or exception has been taken.
This pin has asynchronous timing.

DiagJRorExe* O Diagnostic Jump Register or Exception occurring.
Indicates that a jump register or exception is executing. This
pin has asynchronous timing.

DiagInternalWr* O Diagnostic Internal Write.
Indicates that a MTCO to CP0 register $3 is occurring.

DiagInstCacheWrDis* O Diagnostic Cache Write Disable.
Disables writes to the instruction cache. This pin has iso-syn-
chronous timing and is not recommended for functional use.

DiagTriState* I Diagnostic Tri-State all outputs.
All outputs are tri-stated including SysClk. This pin is asyn-
chronous such that tri-stating asserts or de-asserts output
enables immediately.

DiagFCM* I Diagnostic Force Cache Miss.
This pin has iso-synchronous timing. If used for functional
board tests, it is recommended that it be (de-)asserted stati-
cally at reset time and left (de-)asserted.

DiagIntDis* I Diagnostic Interrupt Disable.

DiagNoCS* O Diagnostic No Chip Select.
On clock 0, indicates no internal or external chip select has
occurred for the current bus transaction. On clock 1, indicates
an internal peripheral register read or write has occurred for
the current bus transaction.

DiagInternalDMA* O Diagnostic Internal DMA.
Asserts whenever any of the Internal DMA channels is gener-
ating the current bus transaction.

Exception Handling Pins

ExcSInt*(2:0) I Exception Synchronized Interrupts.
Also used as the reset initialization vector for 2:Boot16,
1:Boot8, and 0:BigEndian modes.

ExcInt*(4:3) I Exception Interrupts.

ExcSBrCond(3:2) I Exception Synchronized Branch Condition inputs.

Power/Ground Pins

Vcc I Power pin.
All power pins must be connected, 5V.

Gnd I Ground pin (VSS).
All ground pins must be connected, 0V.

��� #��
 $%!
 	
�
��!����

Table 1.1 RC36100 Pin Descriptions (Page 4 of 4)
� � ��

�����

������� 	
��

 ��
���
� '%��
� (��)

� ���� !� ���� !� ���� !� ���� !��������""""����
The IDT79RC36100 is specifically designed to easily implement low-cost memory based

systems. Typical low-cost memory based systems use EPROMs and DRAM as well as application
specific peripherals. Some embedded systems also optionally contain or substitute DRAM with static
RAMs.

Figure 1.3 illustrates the low-system cost inherent in using the RC36100. In this example, the
system uses a low cost 8-bit EPROM for boot and start-up operation. A peripheral connected to the
bus uses 16 bits and for maximum memory bandwidth the DRAM is 32-bits wide. This programmable
bus width allows the designer maximum flexibility in price/performance trade-off.

Figure 1.3 Low-cost RC36100 Based System

�������������#�#�#�#��������� �
�������� �
�������� �
�������� �
�����������
The IDT RC36100 is supported by a rich set of development tools through the AdvantageIDT

development tools program.
Figure 1.4 shows an overview of the system development process that is typically used with the

RC36100. Tools that allow timely, parallel development of hardware and software for RC36100
family-based applications support all phases of RC36100 project development.

Some of the available support tools are:
◆ Optimizing compilers from a number of leading compiler vendors.
◆ The IDT/c compiler, based on the GCC/GNU tool chain.
◆ The high-performance IDT floating-point library software.
◆ The IDT Evaluation Board, which includes RAM, EPROM, I/O, and the IDT PROM Monitor.
◆ The IDT/sim PROM Monitor, which implements a full PROM monitor (diagnostics, remote

debug support, downloading utilities).
◆ IDT/kit (Kernel Integration Tool Kit), provides library support and a frame work for the system

run-time environment.

Timers

Misc I/O
Interrupts

32 16 8

DRAM Peripheral Boot EPROM

RC36100

Term inal
� � ��

�����

������� 	
��

 ��
���
� �
�������

 ��
���
�

Figure 1.4 Development Support

����������������������������� ������ ������ ������ �����������������������������
The RC36100 achieves a high level of performance based on the following features:

◆ An efficient execution engine.
The CPU executes almost all instructions at a single-cycle rate. Thus, the RC36100
achieves over 31 Dhrystones MIPS performance at 33MHz. By using a traditional 5-stage
pipeline, the performance of the RC36100 does not degrade in applications with a high-
degree of data dependency.

◆ Large on-chip caches.
The RC36100 contains caches which are larger than those on the majority of low-cost
embedded microprocessors. These large caches minimize the required number of bus
transactions and allow the RC36100 to achieve actual sustained performance that is very
close to its peak execution rate, even with low-cost memory systems.

◆ Autonomous multiply and divide operations.
The RC36100 features an on-chip integer multiplier/divide unit that is separate from the
other ALU. This allows the RC36100 to perform multiply or divide operations in parallel
with other integer operations, using a single multiply or divide instruction rather than with
“step” operations.

◆ Integrated write buffer.
The RC36100 features a four deep write buffer, which captures store target addresses and
data at the processor execution rate and retires it to main memory at the slower main
memory access rate. Use of on-chip write buffers eliminates the need for the processor to
stall when performing store operations.

◆ Burst read support.
The RC36100 enables the system designer to utilize page, static or nibble mode RAMs
when performing read operations, to minimize the main memory read penalty and increase
the effective cache hit rates.

◆ Tightly coupled memory system.
Integration of on-chip memory controllers allows system resources to be accessed and
managed efficiently for the needs of the execution core.

Benchmarks

Evaluation Board

Stand-Alone Libraries
Floating Point Library
Cross Development Tools
IDT/sim device drivers
IDT/kit

Hardware Models
General CAD Tools
Evaluation Board

Logic Analysis
Diagnostics
IDT/sim Monitor
Remote Debug
Real-Time OS

Software

Hardware

System
Integration and
Verfification

System
Development
Phase

System
Architecture
Evaluation

IDT/c Compiler
� � ��

�����

������� 	
��

 ��
���
� �
�������

 ��
���
�

� � ��

�����

���������	� ���

�����������

������� 	
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 contains the RISCore3000, which allows achievement of dramatic performance

levels through execution engine efficiency.
The RC36100 is software compatible throughout the RC3000 family as well as address map compat-

ible with the base versions of the RISCore3000 family. However, to reduce system cost, the TLB func-
tions that are present in the "E" versions are not available in the RC36100.

This chapter presents an overview of the MIPS-I architecture implemented in the RC36100 and
discusses the programmers' model for this device. Further details on the processor software model can
be found in the IDT MIPS Microprocessor Family Software Reference Manual.

�������������������������������� ����������������

������������ ��������������������������������
The RC36100 has many of the same attributes of the IDT RISCore3000 family, at a higher level of

integration geared to lower system cost. These features include:
◆ Full 32-bit Operation.

The RC36100 contains thirty-two 32-bit general-purpose registers, and all instructions and
addresses are 32- bits.

◆ Efficient Pipeline.
To achieve an execution rate approaching one instruction per cycle, the CPU uses a 5-stage
pipeline design. Pipeline stalls, hazards, and exceptional events are handled precisely and
efficiently.

◆ Large On-Chip Instruction and Data Caches.
The RC36100 uses large on-chip caches to provide the execution engine with a high-band-
width. The large size of the caches insures high hit rates, minimizing stalls due to cache miss
processing, and dramatically contributing to overall performance. Both the instruction and
data cache can be accessed during a single CPU cycle.

◆ On-chip Memory Management.
The RC36100 is compatible with the base versions of the IDT RISCore3000 family, which do
not use a TLB, but perform fixed segment-based mapping of the virtual space to physical
addresses. In addition, through programming of the on-chip memory controllers and peripher-
als, the RC36100 allows kernel software to manage the system interface.

����

���� ������������������������������������ ��������������������������������
The RC36100 provides thirty-two general purpose 32-bit registers, an internal 32-bit Program

Counter, and two dedicated 32-bit registers that hold the result of an integer multiply or divide operation.
The CPU registers, illustrated in Figure 2.1, are discussed later in this chapter.

Note that the MIPS architecture does not use a traditional Program Status Word (PSW) register. The
functions normally provided by such a register are instead provided through the use of “Set” instructions
and conditional branches. By avoiding the use of traditional condition codes, the architecture can be
more finely pipelined. This, coupled with the fine granularity of the instruction set, allows the compilers to
achieve dramatically higher levels of optimizations.

Overflow and exception conditions are then handled through the use of the on-chip Status and Cause
registers, which reside on-chip as part of the System Control Coprocessor (Coprocessor 0). These regis-
ters contain information about the run-time state of the machine and any exception conditions it has
encountered.
� � �

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� ���	����
Figure 2.1 CPU Registers

��������������������
����� �
����� �
����� �
����� ��������� ��������������������������������
All RC36100 instructions are 32-bits long and include three basic instruction formats. This

approach dramatically simplifies instruction decoding, permitting higher frequency operation. More
complicated (but less frequently used) operations and addressing modes are synthesized by the
compiler/assembler, using sequences of the basic instruction set. This approach enables object code
optimizations at a finer level of resolution than achievable in micro-coded CPU architectures.

Figure 2.2 shows the instruction set encoding used by the MIPS architecture. This approach
simplifies instruction decoding in the CPU.

The RISCore32 series instruction set (implemented in the RC36100) can be divided into the
following three basic groups:

◆ Load/Store instructions move data between memory and the general registers. They are all
encoded as “I-Type” instructions, and the only addressing mode implemented is base reg-
ister plus signed, immediate offset. This directly enables the use of three distinct address-
ing modes: register plus offset; register direct; and immediate.

◆ Computational instructions perform arithmetic, logical, and shift operations on values in reg-
isters. They are encoded as either “R-Type” instructions, when both source operands as
well as the result are general registers, and “I-Type,” when one of the source operands is a
16-bit immediate value. Computational instructions use a three address format so that
operations will not needlessly interfere with the contents of source registers.

◆ Jump and Branch instructions change the control flow of a program. A Jump instruction can
be encoded as a “J-Type” instruction, in which case the Jump target address is a paged
absolute address formed by combining the 26-bit immediate value with the upper four bits
of the Program Counter. This form is used for subroutine calls.

Alternately, Jumps can be encoded using the “R-Type” format, in which case the target address is
a 32-bit value contained in one of the general registers. This form is typically used for returns and
dispatches.

Branch operations are encoded as “I-Type” instructions. The target address is formed from a 16-
bit displacement, relative to the Program Counter. The Jump and Link instructions save a return
address in General Register r31. These are typically used as subroutine calls, where the subroutine
return address is stored into r31 during the call operation.

◆ Coprocessor instructions perform operations on the co-processor set. Coprocessor Loads
and Stores are always encoded as “I-Type” instructions; in the MIPS architecture, co-pro-
cessor operational instructions have co-processor dependent formats.

In the RC36100, the System Control Coprocessor (CP0) contains registers that are used in
system interface control, cache control, and exception handling.

◆ Special instructions perform a variety of tasks, including movement of data between special
and general registers, system calls, and breakpoint operations. Special instructions are
always encoded as “R-Type” instructions.

0
r1
r2

r31
r30
r29

•
•

31
31

31

31

0
0

0

0

HI

LO

PC

General Purpose
Registers

Multiply/Divide Result
Registers

Program Counter
� � �

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� ���	����

Figure 2.2 Instruction Encoding

Table 2.1 lists the instruction set mnemonics of the RC36100. These operations are presented in
more detail later in this chapter and in the IDT MIPS Microprocessor Family Software Reference
Manual.

where:
op is a 6-bit operation code

op rs rt rd shamt funct

31 25 20 15 10 526 21 16 11 6 0

R-Type (Register)

op target

31 2526 0

J-Type (Jump)

op rs rt immediate

31 25 20 1526 21 16 0

I-Type (Immediate)

rs is a 5-bit source register specifier

rt is a 5-bit target register or branch condition

immediate is a 16-bit immediate, or branch or address displacement

target is a 26-bit jump target address

rd is a 5-bit destination register specifier

shamt is a 5-bit shift amount

funct is a 6-bit function field
� � �

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� ���	����
�� ����	����
� �� ����	����
�

Load/Store Instructions Multiply/Divide
Instructions

LB Load Byte MULT Multiply

LBU Load Byte Unsigned MULTU Multiply Unsigned

LH Load Halfword DIV Divide

LHU Load Halfword Unsigned DIVU Divide Unsigned

LW Load Word

LWL Load Word Left MFHI Move From HI

LWR Load Word Right MTHI Move To HI

SB Store Byte MFLO Move From LO

SH Store Halfword MTLO Move To LO

SW Store Word

SWL Store Word Left Jump and Branch
Instructions

SWR Store Word Right J Jump

JAL Jump and Link

Arithmetic Instructions
(ALU Immediate)

JR Jump to Register

JALR Jump and Link Register

ADDI Add Immediate BEQ Branch on Equal

ADDIU Add Immediate Unsigned BNE Branch on Not Equal

SLTI Set on Less Than Immediate BLEZ Branch on Less than or
Equal

SLTIU Set on Less Than Immediate to Zero

Unsigned BGTZ Branch on Greater Than
Zero

ANDI AND Immediate BLTZ Branch on Less Than
Zero

ORI OR Immediate BGEZ Branch on Greater Than
or

XORI Exclusive OR Immediate Equal to Zero

LUI Load Upper Immediate BLTZAL Branch on Less Than
Zero and

Link

BGEZAL Branch on Greater Than
or Equal to Zero and
Link

Arithmetic Instructions
(3-operand, register-type)

ADD Add Special Instructions

ADDU Add Unsigned SYSCALL System Call

SUB Subtract BREAK Break
� � �

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
Table 2.1 Instruction Set Mnemonics

�� ��	����	����	����	��
This section describes the organization of data in the general registers and in memory and

discusses the set of available general registers. A summary of all of the CPU registers is presented.

�
�
�
��������� ������������
�
�
�
��������� ������������ ��

The MIPS-I architecture defines a word as 32-bits, a half-word as 16-bits, and a byte as 8-bits.
The byte ordering convention is configurable during hardware reset into either a big-endian or little-
endian convention.

When configured as a big-endian system, byte 0 is always the most significant (leftmost) byte in a
word. But when configured as a little-endian system, byte 0 is always the least significant (rightmost)
byte in a word.

SUBU Subtract Unsigned

SLT Set on Less Than Coprocessor Instruc-
tions

SLTU Set on Less Than Unsigned LWCz Load Word from Copro-
cessor

AND AND SWCz Store Word to Copro-
cessor

OR OR MTCz Move To Coprocessor

XOR Exclusive OR MFCz Move From Copro-
cessor

NOR NOR CTCz Move Control To Copro-
cessor

CFCz Move Control From
Coprocessor

Shift Instructions COPz Coprocessor Operation

SLL Shift Left Logical BCzT Branch on Coprocessor
z True

SRL Shift Right Logical BCzF Branch on Coprocessor
z False

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable System Control Copro-
cessor

SRLV Shift Right Logical Variable (CP0) Instructions

SRAV Shift Right Arithmetic Variable MTC0 Move To CP0

MFC0 Move From CP0

TLBR† Read indexed TLB entry

TLBWI† Write indexed TLB entry

TLBWR† Write Random TLB entry

TLBP† Probe TLB for matching
entry

RFE Restore From Exception

†These instructions are not valid with the RC36100, which does not include a TLB.

�� ����	����
� �� ����	����
�
� �

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
Figure 2.3 shows the ordering of bytes within words and the ordering of words within multiple
word structures for the big-endian and little-endian conventions.

Figure 2.3 Byte Ordering Conventions

The RC36100 uses byte addressing for all accesses, including half-word and word. The MIPS
architecture has alignment constraints that require half-word accesses to be aligned on an even byte
boundary and word accesses to be aligned on a modulo-4 byte boundary. Thus, in big-endian
systems, the address of a multiple-byte data item is the address of the most-significant byte, while in
little-endian systems it is the address of the least-significant byte of the structure.

The MIPS instruction set provides special instructions for addressing 32-bit words that are not
aligned on 4-byte boundaries. These instructions—Load/Store Left/Right—are used in pairs to
provide addressing of misaligned words. This means that these types of data movements require
only one-additional instruction cycle over that required for properly aligned words (note that
unaligned data is read by the CPU in the same number of cycles as would be required for a full hard-
ware solution and provides a much more efficient way of dealing with this case than is possible using
sequences of loads/stores and shift operations or by using traps).

Various tool chains, such as the IDT/c compiler, can automatically generate these instructions for
"packed" data. Figure 2.4 shows the bytes accessed when addressing a mis-aligned word with a byte
address of 3, for each of the two byte ordering conventions.

Higher
Address

Lower
Address

24 23 16 15 8 731 0
Word

Address
8
4
0

Higher
Address

Lower
Address

24 23 16 15 8 731 0
Word

Address
8
4
00123

4567
89B A

0 1 2 3
4 5 6 7
8 9 A B

Big-Endian Byte Ordering

Little-Endian Byte Ordering

• Most significant byte is at lowest address

• Word is addressed by byte address of
 most significant byte

• Least significant byte is at lowest address

• Word is addressed by byte address of
 least significant byte
� � !

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
Figure 2.4 Unaligned Words

������������ ���������������������������� ������������������������������������

The RC36100 contains 32 general registers, each containing a single 32-bit word. The 32 general
registers are treated symmetrically (orthogonally), with two notable exceptions: general register r0 is
hardwired to a zero value, and r31 is used as the link register in Jump and Link instructions

When used as a source register, register r0 maintains the value zero under all conditions and
discards data written to it. Thus, instructions that attempt to write to r0 may be used as No-Op
Instructions. The use of a register wired to the zero value allows the simple synthesis of different
addressing modes, no-ops, register or memory clear operations, etc., without requiring expansion of
the basic instruction set.

Register r31 is used as the link register in jump and link instructions. These instructions are used
in subroutine calls, and the subroutine return address is placed in register r31. This register can be
written to or read as a normal register in other operations.

In addition to the general registers, the CPU contains two registers (HI and LO) which store the
double-word, 64-bit result of integer multiply operations, and the quotient and remainder of integer
divide operations.

������������ ���������������������������� ������������������������������������

In addition to the general CPU registers, the RC36100 contains a number of special on-chip regis-
ters. These registers logically reside in the on-chip System Control Co-processor, CP0, and are used
in memory management and exception handling.

Table 2.2 on page 8 shows the logical CP0 address of each of the registers. The format of these
registers, and their use, is discussed in later chapters. Note that the MIPS architecture allows CP0 to
vary by implementation. The RC36100 contains some new CP0 registers; however, their definition is
such that it still remains possible to use a single binary program across all family members, in that
these registers are typically managed only at reset.

Higher
Address

Lower
Address

24 23 16 15 8 731 0

24 23 16 15 8 731 0

3
456

3
4 5 6 Big

Endian

Little
Endian
� � "

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
� � #

Table 2.2 RC36100 CP0 Registers

������������������������������������ ��������������������

The RC36100 supports two operating modes: User and Kernel. The RC36100 operates in User
mode until an exception is detected, forcing it into kernel mode. It remains in Kernel mode until a
Return From Exception (RFE) instruction is executed, returning it to its previous operation mode.

The processor supports these levels of protection by segmenting the 4GB virtual address space
into 4 distinct segments. One segment is accessible from either the User state or the Kernel mode,
and the other three segments are only accessible from kernel mode.

In addition to providing memory address protection, the kernel can protect the co-processors (in
the case of the RC36100, CP0) from access or modification by the user task. Chapter 4 discusses
the memory management facilities of the processor.

�������������������������������� ��

The RC36100 uses the same basic pipeline structure as that implemented in the RISCore32
series. Thus, the execution of a single instruction is performed in the following five distinct stages:

◆ Instruction Fetch (IF). In this stage, the instruction virtual address is translated to a physical
address and the instruction is read from the internal Instruction Cache.

◆ Read (RD). During this stage, the instruction is decoded and required operands are read
from the on-chip register file.

◆ ALU. The required operation is performed on the instruction operands.
◆ Memory Access (MEM). If the instruction was a load or store, the Data Cache is accessed.

Note that there is a skew between the instruction cycle which fetches the instruction and
the one in which the required data transfer occurs. This skew is a result of the intervening
pipeline stages.

◆ Write Back (WB). During the write back pipestage, the results of the ALU stage operation
are updated into the on-chip register file.

$
�%�	 ����
��� ����	����
�

0 Reserved(1)

1 Reserved(1)

2 Reserved(1)

3 Config(3) Cache Usage Configuration

4 Reserved(1)

5:7 Reserved

8 BadVAddr Bad Virtual Address

9 Reserved(3)

10 Reserved(3)

11 Reserved(3)

12 SR Status Register

13 Cause Cause of Last Exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16:31 Reserved

NOTES:
This register is used in Extended Architecture CPUs to control the TLB and virtual memory

system. In the “E” versions, register $2 is "TLB EntryLo", and register $10 is "TLB EntryHi".
This register is reserved in other family members and has a different meaning in them.

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
Each pipestage requires approximately one CPU cycle, as shown in Figure 2.5. Parts of some
operations lap into the next cycle, while other operations require only 1/2 cycle.

The net effect of the pipeline structure is that a new instruction can be initiated every clock cycle.
Thus, the execution of five instructions at a time is overlapped, as shown in Figure 2.6.

Figure 2.5 5-Stage Pipeline

The pipeline operates efficiently, because different CPU resources such as address and data bus
access, ALU operations, and the register file, are used on a non-interfering basis.

Figure 2.6 5-Instructions per Clock Cycle

�������������������������������� �� ��� ��� ��� �������������

In a pipelined machine such as the RC36100, there are certain instructions which, based on the
pipeline structure, can potentially disrupt the smooth operation of the pipeline. The basic problem is
that the current pipestage of an instruction may require the result of a previous instruction, still in the
pipeline, whose result is not yet available. This class of problems is referred to as pipeline hazards.

An example of a potential pipeline hazard occurs when a computational instruction n+1) requires
the result of the immediately prior instruction (instruction n). Instruction n+1 wants to access the
register file during the RF pipestage. However, instruction n has not yet completed its register write-
back operation, and thus the current value is not available directly from the register file. In this case,
special logic within the execution engine forwards the result of instruction n’s ALU operation to
instruction n+1, prior to the true writeback operation. The pipeline is undisturbed, and no pipeline
stalls need to occur.

PAddr

IDI-Cache

IF RD ALU MEM WB

One Cycle

OP

PAddr

D-Cache WB

IF

Current
CPU
Cycle

I#1 ALURD MEM WB

IFI#2 ALURD MEM WB

IFI#3 ALURD MEM WB

IFI#4 ALURD MEM WB

IFI#5 ALURD MEM WB
� � &

�����

����	
���
� ��� �	�������
	� �	
�	������ �
���
Another example of a pipeline hazard handled in hardware is the integer multiply and divide oper-
ations. If an instruction attempts to access the HI or LO registers prior to the completion of the
multiply or divide, that instruction will be interlocked (held off) until the multiply or divide operation
completes. Thus, the programmer is isolated from the actual execution time of this operation. The
optimizing compilers attempt to schedule as many instructions as possible between the start of the
multiply/divide and the access of its result, to minimize stalls.

However, not all pipeline hazards are handled in hardware. There are two notable categories of
instructions which require software intervention to insure logical operation. The optimizing compilers
(and peephole scheduler of the assembler) are capable of insuring proper execution. These two
instruction classes are:

◆ Load instructions have a delay, or latency, of one cycle before the data loaded from memory
is available another instruction. This is because the ALU stage of the immediately subse-
quent instruction is processed simultaneously with the Data Cache access of the load
operation. Figure 2.7 illustrates the cause of this delay slot.

Figure 2.7 Load Delay

◆ Jump and Branch instructions have a delay of one cycle before the program flow change can
occur. This is due to the fact that the next instruction is fetched prior to the decode and
ALU stage of the jump/branch operation. Figure 2.8 illustrates the cause of this delay slot.

Figure 2.8 Branch Delay

The RC36100 continues execution, despite the delay in the operation. Thus, loads, jumps and
branches do not disrupt the pipeline flow of instructions, and the processor always executes the
instruction immediately following one of these “delayed” instructions.

Note: Note that there may also be latencies associated with changes to various of the CP0
registers; for example, changing the bus interface control register may require multiple cycles
before the change is actually reflected in the chip interface.

IF RD ALU MEM WB

Data
Available

I#1

(Load)

I#2
(Delay Slot)

I#3

One Cycle

ID OP D-Cache WB

I-Cache ID OP

ID OP

I-Cache

I-Cache

IF RD ALU MEM WB

I#1

(Branch)

(Delay Slot)

I#3
Address
Available

One Cycle

ID OP D-Cache WB

I-Cache ID OP

ICache ID OP

I-Address

I#2

I-Cache
� � �'

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
Rather than include extensive pipeline control logic, the MIPS-I instruction set gives responsibility
for dealing with “delay slots” to software. Thus, peephole optimizations (which can be performed as
part of compilation or assembly) can re-order the code to insure that the instruction in the delay slot
does not require the logical result of the “delayed” instruction. In the worst case, a NOP can be
inserted to guarantee proper software execution.

Chapter 6 discusses the impact of pipelining on exception handling. In general, when an instruc-
tion causes an exception, it is desirable for all instructions initiated prior to that instruction to
complete, and all subsequent instructions to abort. This insures that the machine state presented to
the exception handler reflects the logical state that existed at the time the exception was detected. In
addition, it is desirable to avoid requiring software to explicitly manage the pipeline when handling or
returning from exceptions. The IDT RC36100 pipeline is designed to properly manage exceptional
events.

��������������������
����� �
����� �
����� �
����� ��������� �
����
����
����
�����������
This section provides an overview of the RC36100 instruction set by presenting each category of

instructions in a tabular summary form. Refer to the "IDT RISCore3000 Family Software Reference
Manual", for a detailed description of each instruction.

!!!!�� ������������
�
�
�
���������

Every instruction consists of a single word (32 bits) aligned on a word boundary. There are only
three instruction formats, as shown in Figure 2.2 on page 3. This approach simplifies instruction
decoding. More complicated or less frequently used operations and addressing modes are synthe-
sized by the compilers.

!!!!�� "�"�"�"������������������������������ �� �� �� ���������#�#�#�#�������������������������

In this manual, all variable sub-fields in an instruction format (such as rs, rt, immediate, and so on)
are shown in lower-case names.

For the sake of clarity, an alias is sometimes used for a variable sub-field in the formats of specific
instructions. For example, “base” rather than “rs” is used in the format for Load and Store instruc-
tions. Such an alias is always lower case, since it refers to a variable sub-field.

Instruction opcodes are shown in upper case.
The actual bit encoding for all the mnemonics is specified at the end of this chapter.

$���$���$���$��� ������������ ����������������� !� !� !� !��

Load/Store instructions move data between memory and general registers. They are all I-type
instructions. The only addressing mode directly supported is base register plus 16-bit signed imme-
diate offset. This can be used to directly implement immediate addressing (using the r0 register) or
register direct (using an immediate offset value of zero).

All load operations have a latency effect of one instruction. That is, the data being loaded from
memory into a register is not available to the instruction that immediately follows the load instruction:
the data is available to the second instruction after the load instruction. An exception to this rule is
that for the target register for the “load word left” and “load word right” instructions may be specified
as the same register used as the destination of the related unaligned load instruction that immedi-
ately precedes it.

The Load/Store instruction opcode determines the size of the data item to be loaded or stored, as
shown in Table 2.1 on page 5. Regardless of access type or byte numbering-order (endianness), the
address specifies the byte that has the smallest byte address of all bytes in the addressed field. For a
big-endian access, this is the most significant byte; for a little-endian access, this is the least signifi-
cant byte.

Note: In an RC36100 based system, the endianness of a given access is dynamic, in that
the RE (Reverse Endianness) bit of the Status Register can be used to force user space
accesses of the opposite byte convention of the kernel.
� � ��

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
%�%�%�%�����&'&'&'&'�������������������� (((())))	&&&&****��������
�
�
�
�

��������++++ ����++++���������
�
�
�
,,,,

Table 2.3 Big-Endian (32-bit memory system)

$$$$��������������������&'&'&'&'�������������������� (((())))	&*�&*�&*�&*�����

�
�
�
�
��������++++ ����++++������������

,,,,

Table 2.4 Byte Addressing in Load/Store Operations (32-bit memory)

��)�

*�+

*
	�

,��	-

.�/

*�+

*
	�

,��	-

.'/

01.�/

����

.��2��/

01.�/

����

.��2�!/

01.�/

����

.� 2#/

01.'/

����."2'/

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes Yes No

Tri-Byte 0 1 No Yes Yes Yes

16-Bit 0 0 Yes Yes No No

16-Bit 1 0 No No Yes Yes

Byte 0 0 Yes No No No

Byte 0 1 No Yes No No

Byte 1 0 No No Yes No

Byte 1 1 No No No Yes

��)�

*�+

*
	�

,��	-

.�/

*�+

*
	�

,��	-

.'/

01.�/

����

.��2��/

01.�/

����

.��2�!/

01.�/

����

.� 2#/

01.'/

����

."2'/

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 No Yes Yes Yes

Tri-Byte 0 1 Yes Yes Yes No

16-Bit 0 0 No No Yes Yes

16-Bit 1 0 Yes Yes No No

Byte 0 0 No No No Yes

Byte 0 1 No No Yes No

Byte 1 0 No Yes No No

Byte 1 1 Yes No No No
� � ��

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
%�%�%�%�����&'&'&'&'�������������������� ((((-.-.-.-.&&&&****��������
�
�
�
�

��������++++ ����++++���������
�
�
�
,,,,

Table 2.5 Big-Endian (16-bit memory system)

$$$$��������������������&'&'&'&'�������������������� ((((-.-.-.-.&*�&*�&*�&*�����

�
�
�
�
��������++++ ����++++������������

,,,,

Table 2.6 Byte Addressing in Load/Store Operations
(16-bit memory)

Note that the size of the operand requested by the load instruction is independent of the memory
width of the addressed memory. Thus, if the actual size of the data is 32-bits, software can safely use
a load or store word instruction, even if the addressed memory is actually only 8- or 16-bits wide. The
bus interface unit will interact with CP0 to determine the width of the addressed memory, and will, if
necessary, perform multiple data transfers to satisfy a single load or store instruction.

The bytes within the addressed word that are used can be determined directly from the access
size and the two low-order bits of the address, as shown in Table 2.3, Table 2.4, Table 2.5, and Table
2.6. Note that certain combinations of access types and low-order address bits can never occur: only
the combinations shown in these tables are permissible.

Table 2.7 shows the load/store instructions supported by the MIPS-I ISA.

3�	�� 4	���5�	 ���
�� 4	���5�	

Size CPU Core
VAdrLo(1)

CPU Core
VAdrLo(0)

BE16(1)
Data(31:24)

 BE16(0)
Data(23:16)

BE16(1)
Data(31:24)

BE16(0)
Data(23:16)

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes Yes No

Tri-Byte 0 1 No Yes Yes Yes

16-Bit 0 0 Yes Yes N/A N/A

16-Bit 1 0 Yes Yes N/A N/A

Byte 0 0 Yes No N/A N/A

Byte 0 1 No Yes N/A N/A

Byte 1 0 Yes No N/A N/A

Byte 1 1 No Yes N/A N/A

3�	�� 4	���5�	 ���
�� 4	���5�	

��)�

*�+

*
	�

,��	-

.�/

*�+

*
	�

,��	-

.'/

01�!.�/

����

.� 2#/

01�!.'/

����

."2'/

01�!.�/

����

.� 2#/

01�!.'/

����

."2'/

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes No Yes

Tri-Byte 0 1 Yes No Yes Yes

16-Bit 0 0 Yes Yes N/A N/A

16-Bit 1 0 Yes Yes N/A N/A

Byte 0 0 No Yes N/A N/A

Byte 0 1 Yes No N/A N/A

Byte 1 0 No Yes N/A N/A

Byte 1 1 Yes No N/A N/A
� � ��

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(

Table 2.7 Load and Store Instructions

�����
��
��
��
������������������������������������� !!!!��

Computational instructions perform arithmetic, logical, and shift operations on values in registers.
They occur in both R-type (both operands are registers) and I-type (one operand is a 16-bit imme-
diate) formats. There are four categories of computational instructions:

����	
���
� 3
	��� ��� ����	����
�

Load Byte LB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Byte Unsigned LBU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.

Load Halfword LH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed half-word and load into rt.

Load Halfword
Unsigned

LHU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed half-word and load into rt.

Load Word LW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt.

Load Word Left LWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register
rt.

Load Word Right LWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register
rt.

Store Byte SB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant byte of register rt at addressed location.

Store Halfword SH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant halfword of register rt at addressed location.

Store Word SW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant word of register rt at addressed location.

Store Word Left SWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that leftmost byte of the word is in position of
addressed byte. Store bytes containing original data into corresponding bytes at
addressed byte.

Store Word Right SWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that rightmost byte of the word is in position of
addressed byte. Store bytes containing original data into corresponding bytes at
addressed byte.
� � ��

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
◆ ALU Immediate instructions are summarized in Table 2.8.
◆ 3-Operand Register Type instructions are summarized in Table 2.9 on page 16.
◆ Shift instructions are summarized in Table 2.10 on page 17.
◆ Multiply/Divide instructions are summarized in Table 2.11 on page 17.

Table 2.8 ALU Immediate Operations

����	
���
� 3
	��� ��� ����	����
�

ADD Immediate ADDI rt, rs, immediate
Add 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt. Trap on two’s complement overflow.

ADD Immediate
Unsigned

ADDIU rt, rs, immediate
Add 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt. Do not trap on overflow.

Set on Less Than Imme-
diate

SLTI rt, rs, immediate
Compare 16-bit sign-extended immediate with register rs as signed 32-bit inte-
gers. Result = 1 if rs is less than immediate; otherwise result = 0.
Place result in register rt.

Set on Less Than
Unsigned Immediate

SLTIU rt, rs, immediate
Compare 16-bit sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt. Do not trap on overflow.

AND Immediate ANDI rt, rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs and place
result in register rt.

OR Immediate ORI rt, rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs and place result
in register rt.

Exclusive OR Immediate XORI rt, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place result in register rt.

Load Upper Immediate LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word to
zeroes. Store result in register rt.
� � �

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
Table 2.9 Three Operand Register-Type Operations

����	
���
� 3
	��� ��� ����	����
�

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Trap on
two’s complement overflow.

ADD Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Do not trap
on overflow.

Subtract SUB rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd. Trap on
two’s complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd. Do not
trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed 32-bit integers).
If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than
Unsigned

SLTU rd, rs, rt
Compare contents of register rt to register rs (as unsigned 32-bit integers). If regis-
ter rs is less than rt, result = 1; otherwise, result = 0.

AND AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in register rd.

OR OR rd, rs, rt
Bit-wise OR contents of registers rs and rt and place result in register rd.

Exclusive OR XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rt and place result in register rd.

NOR NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rt and place result in register rd.
� � �!

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
Table 2.10 Shift Operations

Table 2.11 Multiply and Divide Operations

����	
���
� 3
	��� ��� ����	����
�

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeroes into low order bits.
Place 32-bit result in register rd.

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeroes into high order bits.
Place 32-bit result in register rd.

Shift Right Arithmetic SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high order bits.
Place 32-bit result in register rd.

Shift Left Logical
Variable

SLLV rd, rt, rs
Shift contents of register rt left. Low-order 5 bits of register rs specify number of
bits to shift. Insert zeroes into low order bits of rt and place 32-bit result in register
rd.

Shift Right Logical
Variable

SRLV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify number of
bits to shift. Insert zeroes into high order bits of rt and place 32-bit result in register
rd.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify number of
bits to shift. Sign-extend the high order bits of rt and place 32-bit result in register
rd.

����	
���
� 3
	��� ��� ����	����
�

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement values. Place 64-bit
result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit result in spe-
cial registers HI/LO

Divide DIV rs, rt
Divide contents of register rs by rt treating operands as twos complements values.
Place 32-bit quotient in special register LO, and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt
Divide contents of register rs by rt treating operands as unsigned values. Place 32-
bit quotient in special register LO, and 32-bit remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.

Move From LO MFLO rd
Move contents of special register LO to register rd.

Move To HI MTHI rd
Move contents of special register rd to special register HI.

Move To LO MTLO rd
Move contents of register rd to special register LO.
� � �"

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
/�/�/�/�
�
�
�
� ������������ %%%%�������������������� ��

Jump and Branch instructions change the control flow of a program. All Jump and Branch
instructions occur with a one instruction delay: that is, the instruction immediately following the jump
or branch is always executed while the target instruction is being fetched, regardless of whether the
branch is to be taken.

An assembler has several possibilities for utilizing the branch delay slot productively:
◆ It can insert an instruction that logically precedes the branch instruction in the delay slot since

the instruction immediately following the jump/branch effectively belongs to the block pre-
ceding the transfer instruction.

◆ It can replicate the instruction that is the target of the branch/jump into the delay slot provided
that no side-effects occur if the branch falls through.

◆ It can move an instruction up from below the branch into the delay slot, provided that no side-
effects occur if the branch is taken.

◆ If no other instruction is available, it can insert a NOP instruction in the delay slot.
The J-type instruction format is used for both jumps-and-links for subroutine calls. In this format,

the 26-bit target address is shifted left two bits, and combined with high-order 4 bits of the current
program counter to form a 32-bit absolute address.

The R-type instruction format, which takes a 32-bit byte address, contained in a register is used
for returns, dispatches, and cross-page jumps.

Branches have 16-bit offsets relative to the program counter (I-type). Jump-and-Link and Branch-
and-Link instructions save a return address in register r31.

Table 2.12 summarizes the RC36100’s Jump instructions and Table 2.13 on page 19 summarizes
the Branch instructions.

Table 2.12 Jump Instructions

����	
���
� 3
	��� ��� ����	����
�

Jump J target
Shift 26-bit target address left two bits, combine with high-order 4 bits of PC and jump
to address with a one instruction delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with high-order 4 bits of PC and jump
to address with a one instruction delay. Place address of instruction following delay
slot in r31 (link register).

Jump Register JR rs
Jump to address contained in register rs with a one instruction delay.

Jump and Link
Register

JALR rs, rd
Jump to address contained in register rs with a one instruction delay. Place address
of instruction following delay slot in rd.
� � �#

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
Table 2.13 Branch Instructions

���������������� !���� !���� !���� !��

The two Special instructions let software initiate traps. They are always R-type. Table 2.14
summarizes Special Instructions.

Table 2.14 Special Instructions

��������&&&&��������������������������������� !� !� !� !��

Co-processor instructions perform operations in the co-processors. Co-processor Loads and
Stores are I-type. Co-processor computational instructions have co-processor-dependent formats.
The only co-processor operations of relevance for the RC36100 are those targeted at the on-chip
CP0. Table 2.15 summarizes the Co-processor Instruction Set of the MIPS ISA.

����	
���
� 3
	��� ��� ����	����
�

Branch Target All Branch instruction target addresses are computed as follows: Add address of
instruction in delay slot and the 16-bit offset (shifted left two bits and sign-
extended to 32 bits). All branches occur with a one instruction delay.

Branch on Equal BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not Equal BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or
Equal Zero

BLEZ rs,offset
Branch to target address if register rs less than or equal to 0.

Branch on Greater
Than Zero

BGTZ rs,offset
Branch to target address if register rs greater than 0.

Branch on Less Than
Zero

BLTZ rs,offset
Branch to target address if register rs less than 0.

Branch on Greater than
or Equal Zero

BGEZ rs,offset
Branch to target address if register rs greater than or equal to 0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).
Branch to target address if register rs less than 0.

Branch on greater than
or Equal Zero And Link

BGEZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).
Branch to target address if register rs is greater than or equal to 0.

����	
���
� 3
	��� ��� ����	����
�

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.
� � �&

�����

����	
���
� ��� �	�������
	� ����	
���
� ��� �
���	(
Table 2.15 Co-Processor Operations

�+�+�+�+���������
�
�
�
 ������������������������� �� �� �� �����&&&&��������������������������������� (� (� (� (������������, !, !, !, !��

Co-processor 0 instructions perform operations on the System Control Co-processor (CP0)
registers to manipulate the memory management, bus programmability, timer, and exception
handling facilities of the processor. Memory management, bus programmability, and exception
handling are described in later chapters.

����	
���
� 3
	��� ��� ����	����
�

Load Word to Co-pro-
cessor

LWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Load contents of
addressed word into co-processor register rt of co-processor unit z.

Store Word from Co-
processor

SWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Store contents of
co-processor register rt from co-processor unit z at addressed memory word.

Move To Co-processor MTCz rt, rd
Move contents of CPU register rt into co-processor register rd of co-processor
unit z.

Move from Co-proces-
sor

MFCz rt,rd
Move contents of co-processor register rd from co-processor unit z to CPU reg-
ister rt.

Move Control To Co-
processor

CTCz rt,rd
Move contents of CPU register rt into co-processor control register rd of co-pro-
cessor unit z.

Move Control From Co-
processor

CFCz rt,rd
Move contents of control register rd of co-processor unit z into CPU register rt.

Co-processor Operation COPz cofun
Co-processor z performs an operation. The state of the RC36100 is not modified
by a co-processor operation.

Branch on Co-processor
z True

BCzT offset
Compute a branch target address by adding address of instruction in the 16-bit
offset (shifted left two bits and sign-extended to 32-bits). Branch to the target
address (with a delay of one instruction) if co-processor z’s condition line is true.

Branch on Co-processor
z False

BCzF offset
Compute a branch target address by adding address of instruction in the 16-bit
offset (shifted left two bits and sign-extended to 32-bits). Branch to the target
address (with a delay of one instruction) if co-processor z’s condition line is
false.
� � �'

�����

����	
���
� ��� �	�������
	� 6*�!�'' ���
�� 1��
����
Table 2.16 summarizes the instructions available to work with CP0.

Table 2.16 System Control Co-Processor (CP0) Operations

�������������������� �!��	� "�� �!��	� "�� �!��	� "�� �!��	� "������	���	���	���	���
◆ Table 2.17 shows the opcode encoding for the MIPS architecture.

����	
���
� 3
	��� ��� ����	����
�

Move To CP0 MTC0 rt, rd
Store contents of CPU register rt into register rd of CP0. This follows the conven-
tion of store operations.

Move From CP0 MFC0 rt, rd
Load CPU register rt with contents of CP0 register rd.

Read Indexed TLB
Entry

TLBR†
Load EntryHi and EntryLo registers with TLB entry pointed at by Index register.

Write Indexed TLB
Entry

TLBWI†
Load TLB entry pointed at by Index register with contents of EntryHi and EntryLo
registers.

Write Random TLB
Entry

TLBWR†
Load TLB entry pointed at by Random register with contents of EntryHi and
EntryLo registers.

Probe TLB for Match-
ing Entry

TLBP†
Load Indexed register with address of TLB entry whose contents match EntryHi
and EntryLo. If no TLB entry matches, set high-order bit of Index register.

Restore From Excep-
tion

RFE
Restore previous interrupt mask and mode bits of status register into current sta-
tus bits. Restore old status bits into previous status bits.

†These operations are undefined/reserved in the RC36100, which does not include an on-chip TLB.
� � ��

�����

����	
���
� ��� �	�������
	� 6*�!�'' ���
�� 1��
����
28..26 OPCODE

31..29 0 1 2 3 4 5 6 7

0 SPECIAL BCOND J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 COP1 COP2 COP3 † † † †

3 † † † † † † † †

4 LB LH LWL LW LBU LHU LWR †

5 SB SH SWL SW † † SWR †

6 LWC0 LWC1 LWC2 LWC3 † † † †

7 SWC0 SWC1 SWC2 SWC3 † † † †

2..0 SPECIAL

5..3 0 1 2 3 4 5 6 7

0 SLL † SRL SRA SLLV † SRLV SRAV

1 JR JALR † † SYSC
ALL

BREA
K

† †

2 MFHI MTHI MFLO MTLO † † † †

3 MULT MULTU DIV DIVU † † † †

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 † † SLT SLTU † † † †

6 † † † † † † † †

7 † † † † † † † †

18..16 BCOND

20..19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ

1

2 BLTZAL BGEZAL

3

4

23..21 COPz

25..24 0 1 2 3 4 5 6 7

0 MF CF MT CT

1 BC † † † † † † †

2

3

18..16 Co-Processor Specific Operations
� � ��

�����

����	
���
� ��� �	�������
	� 6*�!�'' ���
�� 1��
����
Table 2.17 Opcode Encoding

20..19 0 1 2 3 4 5 6 7

0 BCzF BCzT

1

2

3

2..0 CP0

4..3 0 1 2 3 4 5 6 7

0 TLBR TLBWI TLBW
R

1 TLBP

2 RFE

3

� � ��

�����

����	
���
� ��� �	�������
	� 6*�!�'' ���
�� 1��
����

� � ��

�����

�����

����	
��
���

����
	� �
��������������������	
�����	
�����	
�����	
�����
The RC36100 achieves its high standard of performance by combining a fast, efficient execution

engine (that of the RISCore32 series) with high-memory bandwidth, supplied from its large internal
instruction and data caches. These caches insure that the majority of processor execution occurs at the
rate of one instruction per clock cycle, and serve to decouple the high-speed execution engine from
slower, external memory resources.

Portions of this chapter review the fundamentals of general cache operation and may be skipped by
readers already familiar with these concepts. This chapter also discusses the particular organization of
the on-chip caches of the RC36100. However, as these caches are managed by the RC36100 itself, the
system designer does not typically need to be explicitly aware of this structure.

�	�������� ���	�������� ���	�������� ���	�������� �� �������������� ����� ����� ����� ���������������������������
High-performance microprocessor-based systems frequently borrow from computer architecture prin-

ciples long used in mini-computers and mainframes. These principles include instruction execution pipe-
lining (discussed in Chapter 2) and instruction and data caching.

A cache is a high-speed memory store that contains the instructions and data most likely to be
needed by the processor. That is, rather than implement the entire memory system with zero wait-state
memory devices, a small zero wait-state memory is implemented. This memory, called a cache, contains
the instructions/data most likely to be referenced by the processor. If indeed the processor issues a
reference to an item contained in the cache, then a zero wait-state access is made; if the reference is not
contained in the cache, then the longer latency associated with the true processor memory is incurred.
The processor will achieve its maximum performance as long as its references “hit” (are resident) in the
cache.

Caches rely on the principles of software locality. These principles state that when a data/instruction
element is used by a processor it, and its close neighbors, are likely to be used again soon. The cache is
then constructed to keep a copy of instructions and data referenced by the processor so that subsequent
references occur with zero wait-states.

Since the cache is typically many orders of magnitude smaller than main memory or the virtual
address space, each cache element must contain both the data (or instruction) required by the
processor and the information that can be used to determine whether a cache “hit” occurs. This informa-
tion, called the cache “TAG”, is typically some or all of the address in main memory of the data item
contained in that cache element as well as a “Valid” flag for that cache element. Thus, when the
processor issues an address for a reference, the cache controller compares the TAG with the processor
address to determine whether a hit occurs.

To minimize cost while maintaining high-performance, the RC36100 integrates a reasonable amount
of cache internal to the chip, eliminating the cost and complexity of external caches.

������� ��������� ��������� ��������� ����������� �� �� �� ���
There are a number of algorithms possible for managing a processor cache. This section describes

the cache organization and operation of the RC36100.

�������������������� ����������������				
�
�
�
�				�����
��
��
��
���������

When the processor makes a reference, its 32-bit internal physical address bus contains the address
it desires. The processor address bus is split into two parts: (1) the low-order address bits that specify a
location in the cache to access and (2) the remaining high-order address bits that contain the value
expected from the cache TAG.
� � �

�����

����	
����
	�
��	 ������� ����	 ��������
���
Thus, both the instruction/data element and the cache TAG are simultaneously fetched from the
cache memory. If the value read from the TAG memories is the same as the high-order address bits,
a cache hit occurs and the processor is allowed to operate on the instruction/data element retrieved.
Otherwise, a cache miss is processed. This operation is illustrated in Figure 3.1.

Figure 3.1 Cache Line Selection

To maximize performance, the RC36100 implements a Harvard Architecture caching strategy.
That is, there are two separate caches: one contains instructions (operations), and the other contains
data (operands). By separating the caches, higher overall bandwidth to the execution core is
achieved, and thus higher performance is realized.

����	�	�	�	������������� �������	����	����	����	��
�
�
�
���� �������������	�	�	�	 �������������
��
��
��
��������� ����������������������������

The RC36100’s caches are direct-mapped. That is, each main memory address can be mapped
to (contained in) only one particular cache location. This is different from set-associative mappings,
where each main memory location has multiple candidate cache locations for address mapping.

This organization, coupled with the relatively large cache sizes resident on the RC36100, achieve
extremely high hit rates while maximizing speed and minimizing complexity and power consumption.

�������������	�	�	�	 �������	����	����	����	�����������������

The address presented to the cache and cache controller is that of the physical (main) memory
element to be accessed. That is, the virtual address to physical address translation is performed by
the memory management unit prior to the processor issuing its reference address.

Some microprocessors utilize virtual indexing and virtual tagging in the cache, where the
processor virtual address is used to specify the cache element to be retrieved. This type of cache
structure complicates software and slows embedded applications:

◆ When the processor performs a context switch, a virtually tagged cache must be flushed.
This is because two different tasks can use the same virtual address but mean totally dif-
ferent physical addresses. This cache flushing for a large cache dramatically slows context
switch performance.

◆ Software must be aware of and specifically manage against “alias” problems. An alias occurs
when two different virtual addresses correspond to the same physical address. If that
occurs in a virtually indexed cache, then the same data element may be present in two dif-
ferent cache locations. If one virtual address is used to change the value of that memory
location, and a different address used to read it later, then the second reference will not get
the current value of that data item.

PID Virtual
Address

Virtual Physical
Address

Translation

→

?

=

Present?
PID Match?

Valid?

Physical
Addres
s

Compare?

32

Cache
Index

32

Cache
Tag

Cache
Data

Tag

Valid

32

TLB Miss

Cache Hit

Data

Execution
Core
� � �

�����

����	
����
	�
��	 ������� ����	 ��������
���
By providing for the virtual-to-physical address translation in the processor pipeline, physical
cache addressing is used with no inherent performance penalty.

To support cache locking, the RC36100 allows the kernel software to select certain high-order
physical address bits to replace normal high-order cache index lines. This separates the cache into
two portions: a lower portion, which services physical addresses below the high-order address; and a
higher portion, which services physical addresses above the high-order address. Even when this
mode is enabled, the RC36100 implements direct-mapped, physically indexed, physically tagged
caches.

������
��
��
��
				 ������������������������

The RC36100 utilizes a write-through cache. That is, whenever the processor performs a write
operation to memory, then both the cache (data and TAG fields) and main memory are written. If the
reference is uncacheable, then only main memory is written.

To minimize the delays associated with updating main memory, the RC36100 contains a 4
element write buffer. The write buffer captures the target address and data value in a single
processor clock cycle, and subsequently performs the main memory write at its own, slower rate. The
write buffer can FIFO up to 4 pending writes, as described in a later chapter.

������������
�
�
�
��������� ���������������� ������������

	�	�	�	�

In the case of partial word writes (store operations of less than 32-bits), the RC36100 operates by
performing a read-modify-write sequence in the cache: the store target address is used to perform a
cache fetch; if the cache “hits”, then the partial word data is merged with the cache and the cache is
updated. If the cache read results in a hit, the memory interface will see the full word write, rather
than the partial word. This allows the designer to observe the actual activity in the on-chip caches.

If the cache lookup of a partial word write “misses” in the cache, then only main memory is
updated.

������
��
��
��
������������

������������ �������������	�	�	�	 ���������	�	�	�	 ������������				

The “line size” of a cache refers to the number of cache elements mapped by a single TAG
element. In the RC36100, the instruction cache line size is 16 bytes, or four words.

This means that each cache line contains four adjacent words from main memory. In order to
accommodate this, an instruction cache miss is processed by performing a quad word (block) read
from the main memory, as discussed in a later chapter. This insures that a cache line contains four
adjacent memory locations. Note that since the instruction cache is typically never written into directly
by user software, the larger line size is permissible. If software does explicitly store into the instruc-
tion cache (perform store operations with the caches “swapped”), the programmer must insure that
either the written lines are left invalidated, or that they contain four adjacent instructions.

Block refill uses the principle of locality of reference. Since instructions typically execute sequen-
tially, there is a high probability that the instruction address immediately after the current instruction
will be the next instruction. Block refill then brings into the cache those instructions immediately near
the current instruction, resulting in a higher instruction cache hit rate.

Block refill also takes advantage of the difference between memory latency and memory band-
width. Memory latency refers to the amount of time required to perform a processor request, while
bandwidth refers to the rate at which subsequent transfers can occur. Factors that affect memory
latency include address decoding, bus arbitration, and memory pre-charge requirements; factors
which maximize bandwidth include the use of page mode or nibble mode accesses, memory inter-
leaving, and burst memory devices.

The processing of a quad word read is discussed in a later chapter; however, it is worth noting
that the RC36100 can support either true “burst” accesses or can utilize a simpler, slower memory
protocol for quad word reads. Also note that the variable bus sizing capability of the RC36100 means
that block reads can occur from 8- or 16-bit memory systems. This includes the case of instruction
fetches; the bus interface unit will automatically translate the block read protocol into a larger number
of sub-word reads, depending on the memory width programmed for the target memory location.

Finally, note that the RC36100 performs “streaming” during instruction cache refill. That is, the
processor will simultaneously refill the instruction cache and execute the incoming instructions.
Streaming contributes an average of 5% of performance.
� � �

�����

����	
����
	�
��	 ����	 ��	��
���
��������
�
�
�
� ����������������				 ������������	 ���	 ���	 ���	 ���				

The data cache line size is different from that of the instruction cache, based on differences in
their use. The data cache is organized as a line size of one word (four bytes).

This is optimal for the write policy of the data cache: since an individual cache word may be
written by a software store instruction, the cache controller cannot guarantee that four adjacent words
in the cache are from adjacent memory locations. Thus each word is individually tagged. The partial
word writes (less than 4 bytes) are handled as a read-modify-write sequence, as described above.

Although the data cache line size is one word, the system may elect to perform data cache
updates using quad word reads (block refill). The performance of the data cache update options can
be measured in an actual system, by turning on the two different options under software control and
using the DBlock Refill (‘DBR’) option in the Coprocessor 0 Cache Configuration Register (for more
information on this register, see Chapter 5, “Coprocessor 0 Register Set”).

����������������������������

The on-chip caches of the RC36100 family can be thought of as constructed from discrete
devices around the RISCore32 series. Figure 3.2 shows the block diagram of the cache interface for
the RC36100.

Figure 3.2 RC36100 Execution Core and Cache Interface

�������������������� ������������������������������������
The operation of the on-chip caches is very straightforward, and is automatically handled by the

processor.

�������������������� �������������	�	�	�	 				
�
�
�
�����
�
�
�
�				�����
��
��
��
���������

As with the RISCore32 series, the RC36100 can access both the instruction and data caches in a
single clock cycle, resulting in high bandwidth to the execution core. It does this by time multiplexing
the cycle in the cache interface:

◆ During the first phase, a data cache address is presented, and a previous instruction cache
read is completed.

◆ During the second phase, the data cache is read into the processor (or written by the proces-
sor). Also, the instruction cache is addressed with the next desired instruction.

◆ During the first phase of the next cycle, the instruction fetch begun in the previous phase is
completed and a new data transaction is initiated.

AddrLo DClk

Data

DWr

DRd

IRd

IWr

IClk

TAG(31:10)
Valid

Execution
Core

Latch

D-Cache
Data

256x32

D-Cache
Tags

256x23

Latch

I-Cache
Data

1024x32

I-Cache
Tags

256x21

IAd(11:4)IAd(11:2)

IClkDClk

DWr

DRd

IWr

IRd

AdrLo Bus

Data Bus

Tag Bus (Plus Valid)

DAd(9:2)
� � �

�����

����	
����
	�
��	 ����	 ��	��
���
This operation is illustrated in Figure 3.3 on page 5. As long as the processor hits in the cache,
and no internal stall conditions are encountered, it will continue to execute run cycles. A run cycle is
defined to be a clock cycle in which forward progress in the processor pipeline occurs. Note that data
in the cache is organized into 32-bit words, regardless of the width associated with main-memory
from which the datum was taken. Thus, cache hits can retrieve a full 32-bits in a single cycle, mini-
mizing the performance impact of the narrower memory system.

Figure 3.3 Phased Access of Instruction and Data Caches

�������������	�	�	�	 ���� ����� ����� ����� �������������	�	�	�	�����������������

In the case of a cache miss (due to either a failed tag comparison or because the processor
issued an uncacheable reference), the main memory interface (discussed in a later chapter) is
invoked. If, during a given clock cycle, both the instruction and data cache miss, the data reference
will be resolved before the instruction cache miss is processed.

While the processor is waiting for a cache miss to be processed, it will enter stall cycles until the
bus interface unit indicates that it has obtained the necessary data.

When the bus interface unit returns the data from main memory, it is simultaneously brought to the
execution unit and written into the on-chip caches. This is performed in a processor fixup cycle.

During a fixup cycle, the processor re-issues the cache access that failed; this occurs by having
the processor re-address the instruction and data caches, so that the data may be written into the
caches and brought into the execution core. If the cache miss was due to an uncacheable reference,
the write is not performed, although a fixup cycle does occur to allow the data to be brought into the
execution core.

������
��
��
��
������������

������������ ����
�	
�	
�	
�	��������������������

A special feature of the RC36100 is utilized when performing block reads for instruction cache
misses. This process is called instruction streaming. Instruction streaming is simultaneous instruction
execution and cache refill.

As the block is brought in, the processor refills the instruction cache. Execution of the instructions
within the block begins when the instruction corresponding to the cache miss is returned by the bus
interface unit to the execution core. Execution continues until the end of the block is reached (in
which case normal execution is resumed), or until some event forces the processor core to discon-
tinue execution of that stream. These events include:

◆ Taken branches
◆ Data cache miss
◆ Internal stalls (TLB miss, multiply/divide interlock)
◆ Exceptions

When one of these events occur, the processor re-enters simple cache refill until the rest of the
block has been written into the cache, to insure that one TAG describes all four adjacent words.

Latch

Instruction
Cache

Execution
Core

Data
Cache

Low Order
Address

Phase 1

Data, TAG,
Valid

Instruction
Cache

Data
Cache

Low Order
Address

Phase 2

Data, TAG,
Valid

Latch

Execution
Core

4000 drw
14

LatchLatch
� � �

�����

����	
����
	�
��	 ����	���	 �	�	�	��	�
������������������������������������ ��
Chapter 4 explains how the processor determines whether a particular reference (either instruc-

tion or data) is to a memory location that may reside in the cache. The fundamental mechanism is
that certain virtual addresses are considered to be “cacheable”. If the processor attempts to make a
reference to a cacheable address, then it will employ its cache management protocol through that
reference. Otherwise, the cache will be bypassed, and the execution engine core will directly commu-
nicate with the bus interface unit to process the reference.

Whether a given reference should be cacheable or not depends on the application and on the
target of the reference. Generally, I/O devices should be referenced as uncacheable data; for
example, if software was polling a status register, and that register was cached, then it would never
see the device update the status (note that most compiler suites support the “volatile” data type to
insure that the I/O device status register data in this case never gets allocated into an internal
register). In the RC36100, the cacheability of the on-chip registers in the I/O and peripheral devices is
automatically selected to be “non-cacheable”.

There may be other instances where the uncacheable attribute is appropriate. For example, soft-
ware which directly manipulates or flushes the caches can not be cached; similarly, boot software can
not rely on the state of the caches, and thus must operate uncached at least until the caches are
initialized.

���� ����� ����� ����� ������ !�� !�� !�� !���������	 ������	 ������	 ������	 ����������� ���� ���� ���� �������������������������������
In order to support certain system requirements, the RC36100 provides mechanisms for software

to explicitly manipulate the caches. These mechanisms support diagnostics, cache and memory
sizing, and cache flushing. In general, these mechanisms are enabled/disabled through the use of
the Status Register in CP0.

The primary mechanisms for supporting these operations are cache swapping and cache isola-
tion. Cache swapping forces the processor to use the data cache as an instruction cache, and vice
versa. It is useful for allowing the processor to issue store instructions which cause the instruction
cache to be written. Cache isolation causes the current data cache to be “isolated” from main
memory; store operations do not cause main memory to be written, and all load operations “hit” in the
data cache.

These mechanisms are enabled through the use of the “IsC” (Isolate Cache) and “SwC” (Swap
Cache) bits of the status register, which resides in the on-chip System Control Co-Processor (CP0).
The 5 instructions which immediately precede and succeed these operations must not be cacheable,
so that the actual swapping/isolation of the cache does not disrupt operation.

�������������	�	�	�	 ������������������������

It is possible for software to determine the amount of cache resident on any given RISCore3000
family-based chip (note that the RC3041, RC3051, RC3052, and RC3081 each feature differing
amounts of cache on chip). Having software determine the size of the cache at boot time, rather than
building static values into the software, allows for maximum flexibility in using various members of the
RISCore3000 family, including future devices.

Cache sizing in an RC36100 is performed much like traditional memory sizing algorithms, but with
the cache isolated. This avoids side-effects in memory from the sizing algorithm, and allows the soft-
ware to use the “Cache Miss” bit of the status register in the sizing algorithm.
� � �

�����

����	
����
	�
��	 ���
 ��	 !��	�
	" ����	 ��	��
����
To determine the size of the instruction cache, software should:
 1. Swap Caches (not needed for D-Cache sizing)
 2. Isolate Caches
 3. Write a value at location 8000_0000
 4. Write a value at location 8000_0200 (8000_0000 + 512B)

Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a cache miss, then the cache is
512B; otherwise, the cache is 1kB or larger.

 5. Write a value at location 8000_0400 (8000_0000 + 1kB)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a cache miss, then the cache is
1KB; otherwise, the cache is 2KB or larger.

 6. etc...
Of course a more generalized algorithm could be developed to determine the cache size; this may

be desirable for compatibility with other RISCore3000 family members. However, any algorithm will
probably include the Swap and Isolate of the Instruction Cache, and the use of the Cache Miss bit.
Sizing the data cache is done with a similar algorithm, although the caches need not be swapped,
and smaller cache sizes need to be considered.

Note that this software should operate as uncached. Once this algorithm is done, software should
return the caches to their normal state by performing either a complete cache flush or an invalidate of
those cache lines modified by the sizing algorithm.

�������������	�	�	�	 ����������������������������

Cache flushing refers to the act of invalidating (indicating a line does not have valid contents) lines
within either the instruction or data caches. Flushing must be performed before the caches are first
used as real caches, and might also be performed during main memory page swapping or at certain
context switches (note that the RC3051 family implements physically addressed caches, so that
cache flushing at context switch time is not generally required).

The basic concept behind cache flushing is to have the “Valid” bit of each cache line set to indi-
cate invalid. This is done in the RC36100 by having the cache isolated, and then writing a partial
word quantity into the current data cache. Under these conditions, the CPU will negate the “Valid” bit
of the target cache line.

Again, this software should operate as uncached. To flush the data cache:
 1. Isolate Caches
 2. Perform a byte write every 4 bytes, starting at location 0, until 256 such writes have been

performed (128 in the RC3041, more for other RISCore3000 family members).
 3. Return the data cache to its normal state by clearing the IsC bit.
To flush the instruction cache:
 1. Swap Caches
 2. Isolate Caches
 3. Perform a byte write every 16 bytes (based on the instruction cache line size of 16 bytes). This

should be done until each line (256 lines in the RC36100, more or less for other RISCore3000 family
devices) have been invalidated. Note that treating the RC36100 as if it had larger on-chip caches, and
flushing/invalidating more than 256 lines is acceptable though less efficient.

 4. Return the caches to their normal state (unswapped and not isolated).
To minimize the execution time of the cache flush, this software should probably use an “unrolled”

loop. That is, rather than have one iteration of the loop invalidate only one cache line, each iteration
should invalidate multiple lines. This spreads the overhead of the loop flow control over more cache
line invalidates, thus reducing execution time.

Also, of course it is preferable to use the cache sizing algorithm described earlier to determine the
number of lines to be flushed.

 ������������������������ �����
�
�
�
���� ��������

����

�	�	�	�	 ����������������	�	�	�	�

Using these basic tools, it is possible to have software directly place values into the caches. When
combined with appropriate software techniques, this could be used to “lock” values into the on-chip
caches, by insuring that software does not issue other cacheable address references which may
displace these locked values.
� � #

�����

����	
����
	�
��	 ����	�$��%��� ��	��
���
In order to force values into a cache, the cache should be Isolated. If software is trying to write
instructions into the instruction cache, then the caches should also be swapped.

When forcing values into the instruction cache, software must take care with regards to the line
size of the instruction cache. Specifically, a single TAG and Valid field describe four words in the
instruction cache; software must then insure that any instruction cache line tagged as Valid actually
contains valid data from all four words of the block.

��������������"��"��"��"####��������$��� ���$��� ���$��� ���$��� ���������������������������
The RC36100 implements the ability to segregate the caches into 2 or 4 portions, or to allow it to

operate as a normal single contiguous entity. Either or both the instruction and data cache can be run
in any split or non-split mode independently.

As an example, splitting the cache into halves or quarters allows interrupt service routines and
data to be locked into part of the cache, while the remainder of the cache is used for the user
program and data.

If run in the normal mode (as a single contiguous entity), the cache index (used internally to
address the Cache Data and Tag RAMs) is derived solely from the low-order physical address bits.
For example, the cache index for the data cache is PhysAddr(9:2); and for the instruction cache, the
cache index is PhysAddr(11:2).

Figure 3.4 RC36100 Instruction Cache Index Address Path

In the normal mode case, a reference with the same low-order PhysAddr bits but different high-
order PhysAddr tags will cause the current cache contents to be replaced. For example, location
0x0000_1008 will be entered into the line at cache index 0x0000; if that line previously was cached
with main memory location 0x0000_0008, it would be replaced with new data and tag. Any address
which is modulo 4kB (for instance 0x1004_0008) could cause replacement of that cache line.

Physical Address Latch

AddrLoIndex(9:2)TagAddr(31:10)

Data Cells
(256x32)

Tag Cells
(256x22)

CacheRamData(31:0)

CacheRamAddr(9:2)

28 27 09 08

Tag and Index Bit Swap Multiplexer

CacheRamAddr(9:2)CacheTag(31:10)

CacheRamTagData(32:10)
� � &

�����

����	
����
	�
��	 ����	�$��%��� ��	��
���
On the other hand, in the split modes, the system software can instruct the cache controller to use
either or both of PhysAddr(28:27) as the uppermost two index bits (2 or 4 portions). In this case, the
cache simultaneously direct-maps multiple distinctly different memory spaces. The 10 bits for the
instruction cache index can be constructed as PhysAddr(28, 10:2), for example.

When the caches are operated in split mode, typically the MSBs going to main memory (bits 31-
29) are masked out from the physical address decode. On the RC36100, the physical address
decode is part of either the DRAM Controller's or the Memory/IO Controller's Page Register and
Page Mask Register (which ever one is used to control main memory). Masking out the MSBs allows
physical RAM space to be contiguous (for instance contained within a 1MB block), while the virtual
program space can vary the MSBs.

For instance the virtual program space can consist of a 512KB block beginning at 0x0000_0000
and a second virtual program space with a 512KB block beginning at 0x1004_0000. The two virtual
addresses will translate (see the next chapter for more details) to physical addresses 0x4000_0000
and 0x5004_0000, respectively, as far as cache memory is concerned. Since bits 31-29 are ignored
by the main memory controller, the two physical addresses are effectively 0x0000_0000 and
0x0004_0000 as far as main memory RAM is concerned. Thus by using the Page Mask Register, the
caches can see 2 or 4 blocks of address spaces, while main memory sees a single large block of
address space.

To continue the instruction cache example, the upper 2kB portion of the I-cache services physical
addresses in the range of 0x1000_0000 and above; physical addresses in the range 0x0fff_ffff and
below are serviced by the lower 2kB I-cache portion.

In this example, the instruction at physical location 0x1004_0008 will not replace the contents of
the line which holds memory location 0x0000_0008. These two portions of software will not interfere
with each other in the caches. The software developer typically specifies the address region for code
in either the kernel, or with the linker. This mechanism allows the programmer to separate code into
portions and independently lock them, without requiring page management software or complex
operating system software.

Physical address 0x0000_0008 is accessed via Kuseg (explained in the next chapter), and is typi-
cally in the area of the exception vector. Physical address 0x1000_0008 is spaced 256MB higher in
memory. In this system, system tasks operating higher in kuseg or in kseg0 do not “knock out” the
exception service code, effectively locking this time critical code into one half of the on-chip cache.

 Table 3.1 on page 11 shows the correlation between physical address lines, cache index lines,
and cache sub-segments supported by the RC36100. Figure 3.5, Figure 3.6, and Figure 3.7 on
page 11 shows the mapping of physical addresses to cache when the cache is 1, 2, or 4 portions.

Note that these tables and drawings assume that the code operates out of kuseg (explained in the
next chapter). Since the RC36100 implements 32-bit virtual and physical addressing, the patterns
shown repeat every time a very high-order (PhysAddr(29) and above) is changed; thus, there are 8
such copies of each cache region, separated by 512MB each. The tables and example assume that
PhysAddr(31:29) are all '0' throughout system software. However, memory spaces larger than
512MB are rarely used with embedded systems, the example in these tables will suffice for almost all
systems.
� � '

�����

����	
����
	�
��	 ����	�$��%��� ��	��
���
Figure 3.5 RC36100 Cache in One Portion

Figure 3.6 RC36100 Cache in Two Portions

Cache

Main Memory

4Gb

Cache

Main Memory

256 Mb

256 Mb
� � ��

�����

����	
����
	�
��	 ����	�$��%��� ��	��
���
Figure 3.7 RC36100 Cache in Four Portions

Table 3.1 Instruction Cache to Address Mapping under Various Cache
Locking Conditions

Cache IndexAddr(11) Cache IndexAddr(10) Physical Address Range Cache Size

PhysAddr(11) PhysAddr(10) 0x0000_0000 0x1FFF_FFFF 4kB

PhysAddr(28) PhysAddr(10) 0x0000_0000 -
0x0FFF_FFFF

2kB

0x1000_0000 -
0x1FFF_FFFF

2kB

PhysAddr(28) PhysAddr(27) 0x0000_0000 -
0x07FF_FFFF

1kB

0x0800_0000 -
0x0FFF_FFFF

1kB

0x1000_0000 -
0x17FF_FFFF

1kB

0x1800_0000 -
0x1FFF_FFFF

1kB

This table describes byte-addressable caches, with the lsb of the cache index == 2.

Cache

Main Memory

128 Mb

128 Mb

128 Mb

128 Mb
� � ��

�����

����	
����
	�
��	 ��((��)
Table 3.2 Data Cache to Address Mapping under Various Cache
 Locking Conditions

�
����
����
����
�������%%%%
The on-chip caches of the RC36100 are key to the inherent performance of the processor. The

RC36100 design, however, does not require the system designer (either software or hardware) to
explicitly manage this important resource, except to correctly choose virtual addresses which may or
may not be cached and to flush the caches at system boot. This contributes to both the simplicity and
performance of an RC36100 system.

Cache Index Addr(9) Cache Index Addr(8) Physical Address Range Cache Size

PhysAddr(9) PhysAddr(8) 0x0000_0000 - 0x1FFF_FFFF 1kB

PhysAddr(28) PhysAddr(8) 0x0000_0000 - 0x0FFF_FFFF 512B

0x1000_0000 - 0x1FFF_FFFF 512B

PhysAddr(28) PhysAddr(27) 0x0000_0000 - 0x07FF_FFFF 256B

0x0800_0000 - 0x0FFF_FFFF 256B

0x1000_0000 - 0x17FF_FFFF 256B

0x1800_0000 - 0x1FFF_FFFF 256B

This table describes byte-addressable caches, with the lsb of the cache index == 2.
� � ��

�����

���������	�
��
���� �����

����
����	� ��� �����

 ���

������� 	
The RC36100 provides the same basic virtual-to-physical address translation as the rest of the
RISCore3000 family base versions (the RC3041, RC3051, RC3052, and RC3081). These devices
provide segment-based virtual-to-physical address translation, and support the segregation of kernel
and user tasks without requiring extensive virtual page management.

The extended versions of the RISCore3000 family (the RC3051 RC3052, and RC3081) provide a full
featured memory management unit (MMU). The extended MMU uses an on-chip translation lookaside
buffer (TLB) and dedicated registers in CP0 to provide for software management of page tables. There is
no Extended Architecture version of the RC36100.

This chapter describes the operating states of the processor (kernel and user), and describes the
virtual-to-physical address translation mechanisms provided in the RC36100.

����������������	
�
�	
�
�	
�
�	
�
�������������� �� ��� ���� �� ��� ���� �� ��� ���� �� ��� ������������������ ������ ���� ������ ���� ������ ���� ������ ������������������������	���	���	���	��������
There are two primary purposes of the memory management capabilities of the RISCore32 series

Architecture:
◆ Various areas of main memory can have individual sets of attributes associated with them. For

example, some segments may be indicated as requiring kernel status to be accessed; others
may have cacheable or uncacheable attributes. The virtual-to-physical address translation
establishes the rules appropriate for a given virtual address. The RC36100 memory manager
provides for these mechanisms, without requiring the use of a TLB.

◆ The virtual memory system can be used to logically expand the physical memory space of the
processor, by translating addresses composed in a large virtual address space into the physi-
cal address space of the system. This is particularly important in applications where software
may not be explicitly aware of the hardware resources of the processor system, and includes
applications such as X-Window display systems. These types of applications may be better
served by the “E” (extended architecture) versions of the RISCore3000 family. On the other
hand, certain real-time operating systems offer similar functionality without requiring an MMU;
for example, the IDT/c tool chain supports position-independent code without requiring a page
fault manager in the operating system.

Figure 4.1 shows the virtual address format. The most significant 20 bits of the 32-bit virtual address
are called the virtual page number, or VPN. In the extended architecture versions, the VPN allows
mapping of virtual addresses based on 4kB pages; in the base versions (and thus in the RC36100), only
the three highest bits (segment number) are involved in the virtual-to-physical address translation.

Figure 4.1 Virtual Address Format

31 12 11 0

VPN Offset

30 29 20 1231

kuseg
kseg0
kseg1
kseg2

x
0
0
1

x
0
1
x

0
1
1
1

� � �

�����

����	
�����
�����
� ������� ��
���
����
�� ������� �
�
�������� ��
���
The three most significant bits of the virtual address identify which virtual address segment the
processor is currently referencing; these segments have associated with them the mapping algorithm
to be employed, and whether virtual addresses in that segment may reside in the cache. The transla-
tion of the virtual address to an equivalent privilege level/segment is the same for the base and
extended versions of the architecture.

������������������������������ ���� ���� ���� ��
�
�
�
���������
The RC36100 provides for two unique privilege states: the “Kernel” mode, which is analogous to

the “supervisory” mode provided in many systems, and the “User” mode, where non-supervisory
programs are executed. Kernel mode is entered whenever the processor detects an exception; when
a Restore From Exception (RFE) instruction is executed, the processor will return either to its
previous privilege mode or to User mode, depending on the state of the machine and when the
exception was detected.

������������ ����

�������� ������������������������� �� �� �� �������������������������������������

While the processor is operating in User mode, a single, uniform virtual address space (kuseg) of
2GB is available for Users. All valid user-mode virtual addresses have the most significant bit of the
virtual address cleared to 0. An attempt to reference a Kernel address (most significant bit of the
virtual address set to 1) while in User mode will cause an Address Error Exception. Kuseg begins at
virtual address 0 and extends linearly for 2GB. This segment is typically used to hold user code and
data, and the current user processes.

Also note that the physical address space corresponding to kuseg is independent of the physical
address spaces of the various kernel only segments. Thus, systems can be constructed which
preclude user tasks from affecting kernel memory. On the other hand, simple systems can, by virtue
of the address decode, compress the mapping into a single address region.

��������������������� �� �� �� �
��
��
��
�� ������������������������� �� �� �� �������������������������������������

When the processor is operating in Kernel mode, four distinct virtual address segments are simul-
taneously available. The segments are:

◆ kuseg. The kernel may assert the same virtual address as a user process, and have the
same virtual-to-physical address translation performed for it as the translation for the user
task. This facilitates the kernel having direct access to user memory regions. The virtual-
to-physical address translation, including the Port Size attributes, is identical with User
mode addressing to this segment.

◆ kseg0. Kseg0 is a 512MB segment, beginning at virtual address 0x8000_0000. This seg-
ment is always translated to a linear 512MB region of the physical address space starting
at physical address 0. All references through this segment are cacheable.
When the most significant three bits of the virtual address are “100”, the virtual address
resides in kseg0. The physical address is constructed by replacing these three bits of the
virtual address with the value “000”. As these references are cacheable, kseg0 is typically
used for kernel executable code and some kernel data.

◆ kseg1. Kseg1 is also a 512MB segment, beginning at virtual address 0xa000_0000. This
segment is also translated directly to the 512MB physical address space starting at
address 0. All references through this segment are uncacheable.
When the most significant three bits of the virtual address are “101”, the virtual address
resides in kseg1. The physical address is constructed by replacing these three bits of the
virtual address with the value “000”. Unlike kseg0, references through kseg1 are not
cacheable. This segment is typically used for I/O registers, boot ROM code, and operating
system data areas such as disk buffers.

◆ kseg2. This segment is analogous to kuseg, but is accessible only from kernel mode. This
segment contains 1GB of linear addresses, beginning at virtual address 0xc000_0000. As
with kuseg, the virtual-to-physical address translation depends on whether the processor
is a base or extended architecture version.
� � �

�����

����	
�����
�����
� ������� ��
���
����
�� ������� �
� ��� �!!
������ ��
���
����
When the two most significant bits of the virtual address are “11,” the virtual address
resides in the 1024MB segment kseg2. The virtual-to-physical translation is done either
through the TLB (extended versions of the processor) or through a direct segment map-
ping (base versions). An operating system would typically use this segment for stacks, per-
process data that must be re-mapped at context switch, user page tables, and for some
dynamically allocated data areas.

Base versions of the RISCore3000 family (including the RC36100) are distinguishable from
extended versions in software by examining the TS (TLB Shutdown) bit of the Status Register after
reset, before the TLB is used. If the TS bit is set (1) immediately after reset, indicating that the TLB is
non-functional, then the current processor is a base version of the architecture. If the TS bit is cleared
after reset, then the software is executing on an extended architecture version of the processor.

The PRId register—described in a later chapter—can be used to distinguish the RC36100 from
other members of the RISCore3000 family.

�������������������������
 �
 �
 �
 ���������������� ��������
���
���
���
���
�
�
�
�������������
Processors which only implement the base versions of memory management perform direct

segment mapping of virtual-to-physical addresses, as illustrated in Figure 4.2. Thus, the mapping of
kuseg and kseg2 is performed as follows:

◆ Kuseg is always translated to a contiguous 2GB region of the physical address space, begin-
ning at location 0x4000_0000. That is, the value “00” in the two highest order bits of the vir-
tual address space are translated to the value “01”, and “01” is translated to “10”, with the
remaining 30 bits of the virtual address unchanged.

◆ Virtual addresses in kseg2 are directly output as physical addresses; that is, references to
kseg2 occur with the physical address unchanged from the virtual address.

◆ Virtual addresses in kseg0 and kseg1 are both translated identically to the same physical
address region.

The base versions of the architecture allow kernel software to be protected from user mode
accesses, without requiring virtual page management software. User references to kernel virtual
address will result in an address error exception.

Note that the special areas of the virtual address space shown in Figure 4.2 are translated to
physical addresses identically with the remainder of their virtual address segment. In the
RISCore3000 family, these address areas were indicated as “reserved” for compatibility with future
devices.
� � �

�����

����	
�����
�����
� ������� ��
���
����
�� ������� �
� ��� �!!
������ ��
���
����
Figure 4.2 Virtual-to-Physical Address Translation in RC36100

Some systems may elect to protect external physical memory as well. That is, the system may
include distinct memory devices which can only be accessed from kernel mode. The physical
address output determines whether the reference occurred from kernel or user mode, according to
Table 4.1. Some systems may wish to limit accesses to some memory or I/O devices to those phys-
ical address bits which correspond to kernel mode virtual addresses.

Alternately, some systems may wish to have the kernel and user tasks share common areas of
memory. Those systems could choose to have their address decoder ignore the high-order physical
address bits, and compress all of memory into the lower region of physical memory. The high-order
physical address bits may be useful as privilege mode status outputs in these systems.

Table 4.1 Virtual and Physical Address Relationships in Base Versions

���������������������������� ������������������������������������

The top 1MB of virtual memory—which resides in the protected kernel space, kseg2—is treated
as “non-cacheable” by the cache controller. The rest of kseg2 is treated as cacheable. The on-chip
memory controllers and peripherals have their register sets mapped into this address space; these
registers need to be uncached to insure proper operation. Table 4.2 shows the address map for the
on-chip resources.

�����
� ������� "��#�$% ����	
� ������� ���&���

‘000’ Kseg0 or Kseg1

‘001’ Inaccessible

’01x’ Kuseg

’10x’ Kuseg

’11x’ Kseg2

VIRTUAL PHYSICAL

Kernel Cached
(kseg2)

Kernel Uncached
(kseg1)

Kernel Cached
(kseg0)

Kernel/User
Cached
(kuseg)

Kernel Cached
Tasks

1023 MB

Kernel/User
Cached
Tasks

2047 MB

Inaccessible
512 MB

Kernel Boot
and I/O
512 MB

0xfff00000

0xc0000000

0xa0000000

0x00000000

0xffffffff

0x80000000
0x7fffffff

0x7ff00000
0x7fefffff

0x9fffffff

0xbfffffff

0xffefffff

Cache Miss Space
1MB

On-chip registers
(uncached) 1MB 0xfff00000

0xc0000000

0xbff00000

0x00000000

0xffffffff

0x40000000
0x3fffffff

0x20000000
0x1fffffff

0xbfefffff

0xbfffffff

0xffefffff

On-chip registers
(uncached) 1MB

Cache Miss Space
1MB
� � �

�����

����	
�����
�����
� ������� ��
���
����
�� ������� �
� ��� �!!
������ ��
���
����
Note that writes to addresses above 0xFFFF_E000 are propagated out to the external bus.
However, none of the memory controllers are activated. This feature is provided to facilitate debug
and in-circuit emulation equipment. Reads in this address range are propagated to the external bus.

Table 4.2 RC36100 On-Chip Resources and Address Map

As a general rule, the registers residing above 0xFFFF_E000 are 16-bits and, in some cases, 8-
bits wide. Thus, technically, these registers should use either halfword or byte unsigned load and
store instructions for proper access.

Because of this less-than-a-word access, if the system is big endian, the registers will either need
a halfword offset of 0x2 or a byte offset of 0x3. Little endian systems do not need an offset; however,
if the software system can ignore or mask the unused bits, then regular word load-and-store instruc-
tions may be used. In this case, neither Endianness needs an offset.

�������������������� ���������������� ����������������

The top 1MB of kuseg is also special. In the RC36100, this area is the “Cache Miss” area.
If software attempts to “load” data with a modulo 16 address (lowest 4 address bits == 0), the

cache controller will consider the access to have “missed” in the cache, regardless of the current tag
contents.

(
�� ����	
� �������)������ ����	���

0xFFFF 8000 External Debug/Emulator Controller

0xFFFF 9000 Reserved

0xFFFF A000

0xFFFF B000

0xFFFF C000

0xFFFF D000

0xFFFF E000

0xFFFF E100 DRAM Controller

0xFFFF E200 Memory and IO Controller

0xFFFF E300 Internal DMA Controller

0xFFFF E400 External DMA Controller

0xFFFF E500 Internal Debug/Emulator Controller

0xFFFF E600 Reserved

0xFFFF E700 Reserved

0xFFFF E800 Serial Port Interface

0xFFFF E900 Timer Interface

0xFFFF EA00 PIO Interface

0xFFFF EB00 Interrupt Peripheral Interface

0xFFFF EC00 Centronics Interface (P1284 interface)

0xFFFF ED00 Reserved

0xFFFF EE00

0xFFFF EF00

0xFFFF F000
� � '

�����

����	
�����
�����
� ������� ��
���
����
�� ������� �
� �	&&
��
This operation can speed certain types of data movement operations, especially when the
contents of the corresponding main memory area may be updated externally to the processor. For
example (See Table 4.3) if the main memory is a FIFO type memory, the code may perform a load to
the FIFO address; the memory controller would burst four words into the cache (presuming a data
block refill setting of four words) and load word “0” into the target register. The remaining words of the
quad word read would be accessed from the cache. Once all four words are consumed, the code
would issue another load with an offset of “0”, causing another cache miss process to the FIFO. Burst
data movement is faster, since the software does not need to explicitly flush the cache line between
bursts, nor does it need to use slower “uncached” single datum transfers.

Table 4.3 Example: FIFO load code using FCM memory space.

�	��
�	��
�	��
�	��
��������
The RISCore3000 family architecture provides two models of memory management: a very

simple, segment based mapping, found in the base versions of the architecture, and a more sophisti-
cated, TLB-based page mapping scheme, present in the extended versions of the architecture. Each
scheme has advantages to different applications. The RC36100 only implements the base version
address translation in order to support low-cost systems.

#define FIFO_BASE 0x7FF00000 /* phys addr is 0xBFF00000 */

get_fifo:

li t0, FIFO_BASE

lw t1, 0x00(t0)

lw t2, 0x04(t0)

lw t3, 0x08(t0)

lw t4, 0x0C(t0) /* 13 cached clocks per 4 words */
� �

�����

����������� 	

����
�� ��

������� 	
��������������������	
�����	
�����	
�����	
�����
The MIPS architecture separates a processor into two (in the case of a device with an on-chip FPA,

there are three) functional units: (1) the general purpose CPU, which executes the actual code and
remains device compatible and (2) the system control coprocessor (CP0), which manages the machine
state, virtual-to-physical address translation, exception handling, and any other device-specific
attributes.

Through modifications to CPO, each device can be tailored to the needs of specific applications, and
yet, through the compatible CPU unit, software compatibility for the actual application is retained.

Implementation of the RC36100’s CP0 is discussed in this chapter. In general, the exception handling
methods of the RC36100 are identical to those remaining members of the RISCore3000 family, and the
memory management resources are identical to those of the base versions of the RISCore3000 family.
In fact, the only significant difference between the RC36100 and the RISCore3000 family is in the imple-
mentation of the Cache Control register.

������������������� � �
� �������� � �
� �������� � �
� �������� � �
� ���������������������������������

������������������������
Figure 5.1 illustrates the coprocessor 0 registers found in the RC36100. Note that the MIPS architec-

ture allows the register set of CP0 to vary by implementation; software can easily identify the RC36100
(and its CP0 registers) from other devices by reading the PRId from CP0.

The fields of these registers are described below. Table 5.1 lists the register numbers for the various
RC36100 CP0 registers.

Figure 5.1 RC36100 CPO Registers

STATUS $12

CAUSE $13

EPC $14

BADVA $8

Used with Exception
Processing

CONFIG $3

Used for Cache
Control

PRID $15

Used for CPU
Identification
� � �

�����

�����	
���� �

����
� �
� ��	�
 �������������

����
�
Table 5.1 RC36100 CPO Register Addresses

�
�
�
�������������

�����
�����
�����
�����
������������������������ ��������������������������������
The cache configuration register allows the kernel to control various operational aspects of the

on-chip caches of the RC36100. These features can be used to improve performance and/or imple-
ment debug capability for the RC36100. The Config register is both readable and writable.

Figure 5.2 illustrates the various fields of the cache configuration register. The reset defaults for
this register insure RISCore3000 compatible operation.

Figure 5.2 RC36100 Cache Control Register

�
�
�
��
 ��
 ��
 ��
 ��
��
��
��
��
�
�
�
��������

The lock bit can be used by the kernel to inhibit subsequent write operations to this register. It is
useful in ensuring that operating systems written for other RISCore3000 family-based applications do
not inadvertently change the fields of the Cache Configuration register.

��
����	 ���

����
� � �
�	�������

Config $3 Cache and CPU configuration control

BadVA $8 Bad Virtual Address for last Addressing Exception

Status $12 Processor status, control, and diagnostic information

Cause $13 Cause of current exception/exception state

EPC $14 Exception Program Counter; return address for exception
handler

PrID $15 Identification information for current processor

28

0

DBR1

0

16

293031 27

15

24

1

Lock:
'1':
DBR:
DCI:
'0':
Halt:
ICI:
RF:
FDCM:
FICM:

DWrD:
IWrD:

Register Write Lock
Reserved: Must be written as '1'
Data Burst Refill Mode
Data Cache Index
Reserved: Must be written as '0'
Halt Mode
Instruction Cache Index
Reduced Frequency Mode
Force Data Cache Miss
Force Instruction Cache Miss

Data Cache Write Disable
Instruction Cache Write Disable

Halt

2 3

26 25 2223 1720 19 18 16

0DCILock ICI RF
FD
CM

FI
CM

D
WrD

I
WrD

1 1 1 1 1 1 1 12
� � �

�����

�����	
���� �

����
� �
� ��	�
 �������������

����
�
Table 5.2 illustrates the Cache Configuration Register Lock Field. At reset, the register is unlocked
(Lock bit is '0'). Thus, the Config register can be written and re-written as the operating system
chooses. Once the Lock bit is written with a '1', subsequent writes to the Config register will be
ignored.

Table 5.2 RC36100 Cache Configuration Register Lock Field

�� ��������������������

This bit is reserved for testing of the RC36100. At reset, the bit will be set high ('1'). Writes to the
Config register must maintain this bit as high ('1').

������������������������������������

�� ��� ��� ��� �����������������

These fields are reserved for testing and for future RISCore3000 family-based devices. At reset,
these bit fields are reset ('0'). Writes to the Config register must maintain these bit fields as low ('0').

��������������������

������������������ ��� ��� ��� �������������������������

Table 5.3 indicates the value and action of the DBR. If this bit is set high ('1'), data cache misses
will be processed as a quad (four-word) read. If this bit is reset low ('0'), data cache misses will be
processed as a single word read. At reset, this bit is reset low ('0').

Table 5.3 RC36100 DBlockRefill Field

���������������������������� !�!�!�!�����"�"�"�"�����!���!���!���!������� ������������� � � � ��������

This two bit field controls which bits of the physical address provide the high-order data cache
index, as described in Chapter 3. Table 5.4 shows the actions of the various bit combinations. At
reset, this field is cleared to '00', resulting in normal operation.

Table 5.4 RC36100 D-Cache Index Control Field

���������������� ####��������� �� �� �� �����������������������������

If this bit is set high ('1'), the CPU pipeline will be stalled until either an interrupt is asserted
(regardless of current masking) or a reset exception is signalled. If this bit is set low ('0'), the pipeline
will continue operation.

If the halt mode is exited, for example by an interrupt, the RF mode (described below) will also be
exited. Table 5.5 shows the actions and values of the RC36100 Halt Mode (‘Halt’).

����
 	����

'0' Leave Unlocked (Default)

'1' Lock register from future writes

����
 	����

'0' Data cache misses use single word refill (default).

'1' Data cache misses use quad word refill.

����
 ���	�
 !�"
#$%& ���	�
 !�"
#$'& ��	�
 ��������

'00' PhyAddr(9) PhyAddr(8) 1 (default)

'01' reserved reserved Not useful. Reserved

'10' PhyAddr(28) PhyAddr(8) 2

'11' PhyAddr(28) PhyAddr(27) 4
� � �

�����

�����	
���� �

����
� �
� ��	�
 �������������

����
�
Table 5.5 RC36100 Halt Field

 ���� ���� ���� ������������ !�!�!�!�����""""�����!�!�!�!���������� ��� ��� ��� ����� ���� � � � �����

This two bit field controls which bits of the physical address provide the high-order instruction
cache index, as described in chapter 3. Table 5.6 shows the actions of the various bit combinations.
At reset, this field is cleared to '00', resulting in normal operation.

Table 5.6 RC36100 I-Cache Index Control Field

������$��$��$��$��������%%%%��������&$�!&$�!&$�!&$�!�' ��' ��' ��' ���������%�%�%�%�����

This 3 bit field can be used to divide the normal pipeline frequency down to a lower frequency,
thus lowering device power consumption. Table 5.7 shows the actions of the various bit settings. At
reset, this field is cleared to '000', resulting in normal operation. Similarly, whenever the halt mode is
exited, this field will be cleared to '000'.

Table 5.7 RC36100 Reduced Frequency Mode Field

When a reduced frequency mode is enabled, both the pipeline frequency and the system inter-
face frequency will be reduced by the programmed amount. The minimum allowed frequency is a
CPU pipeline frequency of 0.5MHz. To prevent internal synchronization problems, software should
always switch from the Normal frequency to a particular divide by frequency or vice-versa. Thus if a
switch between 64 and 32 is desired, first switch from 64 to Normal and then to 32.

Note that the "RF" mode also impacts the frequency of the bus interface, including the on-chip
devices. System software may need to adjust timer values, baud rates, DRAM refresh, and other
frequency sensitive system variables when entering and exiting "RF" mode.

����
 	����

'0' Normal pipeline operation (default).

'1' Halt until interrupt or Reset

����
 !��	�
 !�"
#$��& !��	�
 !�"
#$��& ��	�
 ��������

'00' PhyAddr(11) PhyAddr(10) 1 (default)

'01' reserved reserved Not useful. Reserved

'10' PhyAddr(28) PhyAddr(10) 2

'11' PhyAddr(28) PhyAddr(27) 4

����
 	����

'000' Normal Pipeline frequency (default)

'001' Divide by 2

'010' Divide by 4

'011' Divide by 8

'100' Divide by 16

'101' Divide by 32

'110' Divide by 64

'111' Reserved
� � (

�����

�����	
���� �

����
� �
� ��	�
 �������������

����
�
%%%%��#�#�#�#������ �� �� �� ��%�%�%�%��������####��������

Table 5.8 shows the values and actions for the RC36100 ForceDCacheMiss field, Bit 19. If Bit 19
is set high ('1'), all cacheable data load references will be forced to miss in the data cache. The data
references will then be supplied using the Data Cache miss protocol (including DBlockRefill). Store
operations will continue to update the cache, and the cache miss processing will update the cache.
Thus, this bit provides a quick method of initializing or reloading the cache from an external device.

To maintain used line coherency, partial word stores in the ‘FDCM’ mode will continue to read data
and tags directly from the data cache. At reset, Bit 19 is reset low ('0'), allowing normal operation of
the data cache. Note also that this bit is logically "OR'ed" with the emulator interface "FCM" pin.

Table 5.8 RC36100 ForceDCacheMiss Field

%%%%���������������� ��� ��� ��� �����������#��#��#��#������ ��������%%%% �#�#�#�#��������

Table 5.9 shows the values and actions for the ForceICacheMiss field. If this bit is set high ('1'), all
cacheable instruction references will be forced to miss in the instruction cache. The instruction refer-
ences will then be supplied using the Instruction Cache miss protocol (a quad word read). Cache
miss processing will update the cache. Thus, this bit provides a quick method of initializing the cache
or reloading the cache from an external device.

At reset, this bit is reset low ('0'), allowing normal operation of the instruction cache. Note also that
this bit is logically "OR'ed" with the emulator interface "FCM" pin.

Table 5.9 RC36100 ForceICacheMiss Field

���������������������(�(�(�(��������������������������������))))��������������������((((����������������

Table 5.10 shows the values and actions for the Data Cache Write Disable field. According to this
table, when set high ('1'), this field causes data cache writes to be ignored. The data cache will thus
contain the older value, regardless of the reason for the cache miss processing. Similarly, store
instructions will not cause the D-cache to be updated. When cleared low ('0'), normal cache operation
results.

Table 5.10 RC36100 Data Cache Write Disable Field

 ���� ���� ���� ������������((((��������������������������)��)��)��)�� ��� ��� ��� ����� ((((����������������

Table 5.11 shows the values and actions for the Instruction Cache Write Disable field. According
to this table, when set high ('1'), this field causes instruction cache writes to be ignored. The instruc-
tion cache will thus contain the older value, regardless of the reason for the cache miss processing.
When cleared low ('0'), normal cache operation results.

����
 	����

'0' Normal data cache operation (default).

'1' Force data cache operations to miss.

����
 	����

'0' Normal instruction cache operation (default).

'1' Force instruction cache operations to miss.

����
 	����

'0' Normal data cache operation (default).

'1' Data cache writes inhibited.
� � �

�����

�����	
���� �

����
� �
�)�
 ����

����
�
Table 5.11 RC36100 Instruction Cache Write Disable Field

���������
�
���
�
���
�
���
�
�� ��������������������������������
The contents of the Cause register describe the last exception. A 5-bit exception code indicates

the cause of the current exception; the remaining fields contain detailed information specific to certain
exceptions.

All bits in this register, with the exception of the SW bits, are read-only. The SW bits can be written
to set or reset software interrupts. Figure 5.3 illustrates the format of the Cause register. Table 5.12
details the meaning of the various exception codes.

Figure 5.3 RC36100 Cause Register

����
 	����

'0' Normal data cache operation (default).

'1' Instruction cache writes inhibited.

BD 0 CE 0 IP[5..0] Sw 0 ExcCode 0

1 1 2 12 6 2 1 5 2

31 0

BD: Branch Delay

CE: Co-processor Error

IP: Interrupts Pending

Sw: Software Interrupts*

*Read AND Write. The remaining bits are read-only.

ExcCode: Exception Code

0 : RESERVED

 Must be written as 0

 Returns 0 when Read

29:28 15:10 9:8 6:2
� � *

�����

�����	
���� �

����
� �
�)�
 ����

����
�
Table 5.12 Cause Register Exception Codes

Definitions of the other cause register bits are as follows:

BD The Branch Delay bit is set (1) if the last exception was taken while the processor
was executing in the branch delay slot. If so, then the EPC will be rolled back to
point to the branch instruction, so that it can be re-executed and the branch direc-
tion re-determined.

CE The Coprocessor Error field captures the coprocessor unit number referenced
when a Coprocessor Unusable exception is detected.

IP The Interrupt Pending field indicates which interrupts are pending. Regardless of
which interrupts are masked, the IP field can be used to determine which inter-
rupts are pending.

SW The Software interrupt bits can be thought of as the logical extension of the IP
field. The SW interrupts can be written to force an interrupt to be pending to the
processor, and are useful in the prioritization of exceptions. To set a software in-
terrupt, a “1” is written to the appropriate SW bit, and a “0” will clear the pending
interrupt. There are corresponding interrupt mask bits in the status register for
these interrupts.

ExcCode The exception code field indicates the reason for the last exception. Its values are
listed in Table 5.12 on page 7.

����*��*�� +,� �+"+,� �+"+,� �+"+,� �+"���������������������!�!�!�! ,,,,��������������-��-��-��- ��������$$$$!�!�!�!������������� ��������������������������������

The 32-bit EPC register contains the virtual address of the instruction which took the exception,
from which point processing resumes after the exception has been serviced. When the virtual
address of the instruction resides in a branch delay slot, the EPC contains the virtual address of the
instruction immediately preceding the exception (that is, the EPC points to the Branch or Jump
instruction).

,��-
� ��
����	 �
�	�������

0 Int External Interrupt

1 MOD† TLB Modification Exception

2 TLBL† TLB miss Exception (Load or instruction fetch)

3 TLBS† TLB miss exception (Store)

4 AdEL Address Error Exception (Load or instruction fetch)

5 AdES Address Error Exception (Store)

6 IBE Bus Error Exception (for Instruction Fetch)

7 DBE Bus Error Exception (for data Load or Store)

8 Sys SYSCALL Exception

9 Bp Breakpoint Exception

10 RI Reserved Instruction Exception

11 CpU Co-Processor Unusable Exception

12 Ovf Arithmetic Overflow Exception

13:31 - Reserved

†These exceptions will not occur in RC36100.
� � +

�����

�����	
���� �

����
� �
�)�
 ����

����
�
������������////������������ ��������������������������������

The Bad VAddr register saves the entire bad virtual address for any addressing exception.

����*��*�� 0��0��0��0������$$$$���� ��������������������������������

The Status register contains all the major status bits; any exception puts the system in Kernel
mode. All bits in the status register, with the exception of the TS (TLB Shutdown) bit, are readable
and writable; the TS bit is read-only. Figure 5.4 on page 8 shows the functions of the various bits in
the status register.

Figure 5.4 RC36100 Status Register

The status register contains a three-level stack (current, previous, and old) of the kernel/user
mode bit (KU) and the interrupt enable (IE) bit. The stack is pushed when each exception is taken
and popped by the Restore From Exception instruction. These bits may also be read or written to
directly.

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and the value of the TS bit
is set to "1". The rest of the bit fields are undefined after reset. The various bits of the status register
are defined as follows:

CU Coprocessor Usability. These bits individually control user level access to copro-
cessor operations, including the polling of the BrCond input pins and the manipu-
lation of the System Control Coprocessor (CP0).

RE Reverse Endianness. The RISCore3000 family architecture allows the system to
determine the byte ordering convention for the Kernel mode, and the default set-
ting for user mode, at reset time. If this bit is cleared, the endianness defined at
reset is used for the current user task. If this bit is set, then the user task will op-
erate with the opposite byte ordering convention from that determined at reset.
This bit has no effect on kernel mode. Also note that the setting of this bit does not
affect the byte lanes used in 16- and 8-bit memory ports; thus, external byte lane
shift logic is not required.

Note: When RE = 1, set to Big Endian
 When RE = 0, set to Little Endian.

28293031

CU(n):
'0':

RE:
BEV:

TS:
PE:

CM:
PZ:

SwC:
IsC:

Co-processor 'n' Usable
Reserved: must be written as '0'
Reverse Endian enable
Boot-time Exception vector
TLB Shutdown
Parity Error
Cache Miss
Parity Zero
Swap Caches
Isolate Cache

RE

2

1719 18 16

CU3

1 1 1 1

CU2 CU0CU1 0 BEV

21 20

TS

1 1

PE CM PZ SwC IsC

2224 2326 2527

1 1 1 1 2 11

IntMask
Int(5:0);

SWInt(1:0)

2

0

13 2 0

1 1 1 1

5 4

KUo

1 1

IEo KUp IEp KUc IEc

5 68 7

8

IntMask:
KUo:

IEo:
KUp:

IEp:
KUc:

IEc:

Interrupt Mask field
Kernel/User mode (old)
Interrupt Enable (old)
Kernel/User mode (previous)
Interrupt Enable (previous)
Kernel/User mode (current)
Interrupt Enable (current)

0

� � '

�����

�����	
���� �

����
� �
�)�
 ����

����
�
BEV Bootstrap Exception Vector. The value of this bit determines the locations of the
exception vectors of the processor. If BEV = 1, then the processor is in “Bootstrap”
mode, and the exception vectors reside in uncacheable space. If BEV = 0, then
the processor is in normal mode, and the exception vectors reside in cacheable
space.

TS TLB Shutdown. This bit reflects whether the TLB is functioning. At reset, this bit
can be used to determine whether the current processor is a base or extended ar-
chitecture version. For the RC36100, this bit is frozen at "1".

PE Parity Error. This field should be written with a "1" at boot time. Once initialized,
this field will always be read as "0'.

CM Cache Miss. This bit is set if a cache miss occurred while the cache was isolated.
It is useful in determining the size and operation of the internal cache subsystem.

PZ Parity Zero. This field should always be written with a "0".

SwC Swap Caches. Setting this bit causes the execution core to use the on-chip in-
struction cache as a data cache and vice-versa. Resetting the bit to zero un-swaps
the caches. This is useful for certain operations such as instruction cache flushing.
This feature is not intended for normal operation with the caches swapped.

IsC Isolate Cache. If this bit is set, the data cache is “isolated” from main memory; that
is, store operations modify the data cache but do not cause a main memory write
to occur, and load operations return the data value from the cache whether or not
a cache hit occurred. This bit is also useful in various operations such as flushing,
as described in Chapter 3.

IntMask Interrupt Mask. This 8-bit field can be used to mask the hardware and software
interrupts to the execution engine (that is, not allow them to cause an exception).
IM(1:0) are used to mask the software interrupts, and IM (7:2) mask the 6 external
interrupts. A value of ‘0’ disables a particular interrupt, and a ‘1’ enables it. Note
that the IE bit is a global interrupt enable; that is, if the IE is used to disable inter-
rupts, the value of particular mask bits is irrelevant; if IE enables interrupts, then
a particular interrupt is selectively masked by this field.

KUo Kernel/User old. This is the privilege state two exceptions previously. A ‘0’ indi-
cates kernel mode.

IEo Interrupt Enable old. This is the global interrupt enable state two exceptions pre-
viously. A ‘1’ indicates that interrupts were enabled, subject to the IM mask.

KUp Kernel/User previous. This is the privilege state prior to the current exception A ‘0’
indicates kernel mode.

IEp Interrupt Enable previous. This is the global interrupt enable state prior to the cur-
rent exception. A ‘1’ indicates that interrupts were enabled, subject to the IM mask.

KUc Kernel/User current. This is the current privilege state. A ‘0’ indicates kernel mode.

IEc Interrupt Enable current. This is the current global interrupt enable state. A ‘1’ in-
dicates that interrupts are enabled, subject to the IM mask.

‘0’ Fields indicated as ‘0’ are reserved; they must be written as ‘0’, and will return ‘0’
when read.
� � %

�����

�����	
���� �

����
� �
�)�
 ����

����
�
,�,�,�,� � �� �� �� �����������������������������

This register is useful to software in determining which revision of the processor is executing the
code. The format of this register is illustrated in Figure 5.5. For the RC36100, the value returned is
0x0000_071x. On the RC36100, the most significant 4 bits of the Revision field form an extension to
the Implementation field. The least significant 4 bits of the Revision field are reserved for manufac-
turing. This value is different from other members of the IDT RISController family, so that software
can easily determine the CPU type. This facilitates the development of one binary working with all
family members.

Figure 5.5 RC36100 PrID Register

0 Implementation Revision

16 8 8

0:
 Implementation:

 Revision:

Returns '0' when Read
CPU Implementation number ('07' for IDT embedded)
Revision ('10' for RC36100)
� � ��

�����

��������� 	�

��
������ �	�
����

������� 	
��������������������	
�����	
�����	
�����	
�����
Processors execute code in a highly-directed fashion: the instruction immediately subsequent to the

current instruction is fetched and then executed. If the fetched instruction is a branch instruction, then the
program’s execution is diverted to the specified location. As such, program execution is relatively
straightforward and predictable.

Exceptions are a mechanism used to break into the execution stream, forcing the processor into
handling another task (typically related to the system state or in response to an undesirable execution of
the program stream). Thus, programmers typically view exceptions as asynchronous interruptions of

their program.1

The RISCore3000 family architecture provides for extremely fast, flexible interrupt and exception
handling. The processor makes no assumptions regarding interrupt causes or handling techniques and
allows the system designer to build his own model of the best response-to-exception conditions.
However, the processor does provide enough information and resources to minimize the response-to-
exception time and the amount of software required to preserve processor state information so that the
normal instruction stream may be quickly resumed.

This chapter addresses exception handling issues that occur in RC36100-based systems. The topics
examined are: the RC36100 exception model, the machine state to be saved on an exception, and
nested exceptions. Representative software examples of exception handlers are also provided, as are
techniques and issues appropriate to specific exception classes.

������ �
������ �
������ �
������ ������������������������ ��	����� ��	����� ��	����� ��	��
The exception processing capability of the RC36100 assures an orderly transfer of control from an

executing program to the kernel. Exceptions may be broadly divided into the following two categories:
◆ exceptions that are caused by an instruction or instruction sequence, including an unusual con-

dition arising during its execution.
◆ exceptions caused by external events such as interrupts.

When an RC36100 detects an exception, the normal instruction flow sequence is suspended and the
processor is forced into kernel mode where it can respond to the abnormal or asynchronous event. Table
6.1 on page 2 lists the exceptions recognized by the RISCore3000 family architecture.

1. Note that exceptions are not necessarily unpredictable or asynchronous: the events that
cause the exception may be exactly repeatable by the same software executing on the same
data; however, the programmer does not typically "expect" an exception to occur when and
where it does and thus will view exceptions as asynchronous events.
� � �

�����

����		
�� ��
 ��������� ���
���� ������� ��������� ��
��

Table 6.1 RISCore3000 Family Architecture Exceptions

�������������
�
�
�
���� ����

���� �������������������������
�
�
�
���� ������������������������������������

One classification of exceptions refers to the precision with which the exception cause and
processor context can be determined. That is, some exceptions are precise in their nature, while
others are ‘‘imprecise.’’

In a precise exception, much is known about the system state at the exact instance the excep-
tion is caused. Specifically, the exact processor context and the exact cause of the exception are
known. The processor thus maintains its exact state before the exception was generated, and can
accurately handle the exception, allowing the instruction stream to resume when the situation is
corrected. Additionally, in a precise exception model, the processor can not advance state; that is,
subsequent instructions, which may already be in the processor pipeline, are not allowed to change
the state of the machine.

Many real-time applications benefit from a processor model that guarantees precise exception
context and cause information. The MIPS architecture, including the RC36100, implements a precise
exception model for all exceptional events.

��������� �������� ��
��

Reset Reset Assertion of the Reset signal causes an exception that transfers
control to the special vector at virtual address 0xbfc0_0000.

UTLB Miss† UTLB User TLB Miss. A reference is made (in either kernel or user
mode) to a page in kuseg that has no matching TLB entry. This
can occur only in extended architecture versions of the processor.

TLB Miss† TLBL (Load)
TLBS (Store)

A referenced TLB entry’s Valid bit isn’t set, or there is a reference
to a kseg2 page that has no matching TLB entry. This can occur
only in extended architecture versions of the processor.

TLB Modified† Mod During a store instruction, the Valid bit is set but the dirty bit is not
set in a matching TLB entry. This can occur only in extended
architecture versions of the processor.

Bus Error IBE (Instruction)
DBE (Data)

Assertion of the Bus Error input during a read operation, due to
such external events as bus time-out, backplane memory errors,
invalid physical address, or invalid access types.

Address Error AdEL (Load)
AdES (Store)

Attempt to load, fetch, or store an unaligned word; that is, a word
or halfword at an address not evenly divisible by four or two,
respectively. Also caused by reference to a virtual address with
most significant bit set while in User Mode.

Overflow Ovf Twos complement overflow during add or subtract.

System Call Sys Execution of the SYSCALL Trap Instruction

Breakpoint Bp Execution of the break instruction

Reserved
Instruction

RI Execution of an instruction with an undefined or reserved major
operation code (bits 31:26), or a special instruction whose minor
opcode (bits 5:0) is undefined.

Co-processor
Unusable

CpU Execution of a co-processor instruction when the CU (Co-proces-
sor Usable) bit is not set for the target co-processor.

Interrupt Int Assertion of one of the six hardware interrupt inputs or setting of
one of the two software interrupt bits in the Cause register.

†These exceptions will not occur in an RC36100, or in any base member of the RISCore3000
family.
� � �

�����

����		
�� ��
 ��������� ���
���� ��������� �	��������
��������������������������������� �� �� �� �������������������������������������
The RC36100 exception handling system efficiently handles machine exceptions, including arith-

metic overflows, I/O interrupts, system calls, breakpoints, reset, and co-processor unusable condi-
tions. Any of these events interrupt the normal execution flow; the RC36100 aborts the instruction
causing the exception and also aborts all those following in the exception pipeline which have already
begun, thus not modifying processor context. The CPU then performs a direct jump into a designated
exception handler routine. This insures that the RC36100 is always consistent with the precise
exception model.

��������������������������������� ���	����� ���	����� ���	����� ���	����

��������������������������������
The system co-processor (CP0) registers contain information pertinent to exception processing.

Software can examine these registers during exception processing to determine the cause of the
exception and the state of the processor when it occurred There are four registers used in exception
processing, shown in Chapter 5. These are the Cause register, the EPC register, the Status register,
and the BadVAddr register. A brief description of each follows.

������������ ������������

���� ����������������

������������

The contents of the Cause register describe the last exception. A 5-bit exception code indicates
the cause of the current exception; the remaining fields contain detailed information specific to certain
exceptions. All bits in this register, with the exception of the SW bits, are read-only. The SW bits can
be written to set or reset software interrupts. Figure 6.1 illustrates the cause register.

Figure 6.1 RC36100 Cause Register

The remaining bits of the cause register are defined as follows:

BD The Branch Delay bit is set (1) if the last exception was taken while the processor
was executing in the branch delay slot. If so, then the EPC will be rolled back to
point to the branch instruction, so that it can be re-executed and the branch direc-
tion re-determined.

CE The Co-processor Error field captures the co-processor unit number referenced
when a Co-processor Unusable exception is detected.

IP The Interrupt Pending field indicates which interrupts are pending. Regardless of
which interrupts are masked, the IP field can be used to determine which inter-
rupts are pending.

SW The Software interrupt bits can be thought of as the logical extension of the IP
field. The SW interrupts can be written to force an interrupt to be pending to the
processor and are useful in exception prioritizing. To set a software interrupt, a “1”
is written to the appropriate SW bit, and a “0” will clear the pending interrupt. There
are corresponding interrupt mask bits in the status register for these interrupts.

BD 0 CE 0 IP [5..0] S w 0 ExcCode 0

1 1 2 12 6 2 1 5 2

31 0

BD: Branch De lay
CE: Co-processor Error
IP: Interrup ts P ending
Sw: Software Interrupts*
*R ead AND W rite. The rest are read-on ly .

ExcCode: Exception Code

0 : RESERV ED
 M ust B e W ritten as 0
 R eturns 0 when R ead

29 28 9 678162730 11015
� � �

�����

����		
�� ��
 ��������� ���
���� ��������� ���
���� �������	�
ExcCode The exception code field indicates the reason for the last exception. Its values are
listed in Table 6.2.

Table 6.2 Cause Register Exception Codes

������������ �
� ����
� ����
� ����
� �������������������������������

������������������������ �������������������������������� �������������
�
�
�
������������

The 32-bit EPC register contains the virtual address of the instruction that took the exception,
from which point processing resumes after the exception has been serviced. When the virtual
address of the instruction resides in a branch delay slot, the EPC contains the virtual address of the
instruction immediately preceding the exception (that is, the EPC points to the Branch or Jump
instruction).

������������ �������������������� ����������������

������������

The Bad VAddr register saves the entire bad virtual address for any addressing exception.

������������ �� �� �� ����������

 �������������
�
�
�
������������

The Status register contains all of the major status bits; any exception puts the system in Kernel
mode. All bits in the status register, with the exception of the TS (TLB Shutdown) bit, are readable
and writable; the TS bit is read-only, and frozen to '1' in the RC36100. Figure 6.2 shows the definition
and position of the various bits in the status register.

The status register contains a three level stack (current, previous, and old) of the kernel/user
mode bit (KU) and the interrupt enable (IE) bit. The stack is pushed when each exception is taken,
and popped by the Restore From Exception instruction. These bits may also be directly read or
written. At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and the value of the
TS bit is set to "1". The rest of the bit fields are undefined after reset.

�!�	 �������� "���	������

0 Int External Interrupt

1 MOD† TLB Modification Exception

2 TLBL† TLB miss Exception (Load or instruction fetch)

3 TLBS† TLB miss exception (Store)

4 AdEL Address Error Exception (Load or instruction fetch)

5 AdES Address Error Exception (Store)

6 IBE Bus Error Exception (for Instruction Fetch)

7 DBE Bus Error Exception (for data Load or Store)

8 Sys SYSCALL Exception

9 Bp Breakpoint Exception

10 RI Reserved Instruction Exception

11 CpU Co-Processor Unusable Exception

12 Ovf Arithmetic Overflow Exception

13:31 - Reserved

†These exceptions will not occur the RC36100
� � �

�����

����		
�� ��
 ��������� ���
���� ��������� ���
���� �������	�

Figure 6.2 The Status Register

The various bits of the status register are defined in chapter 5. The bits of most relevance in
exception processing are repeated below.

BEV Bootstrap Exception Vector. The value of this bit determines the locations of the
exception vectors of the processor. If BEV = 1, then the processor is in “Bootstrap”
mode, and the exception vectors reside in uncacheable space. If BEV = 0, then
the processor is in normal mode, and the exception vectors reside in cacheable
space.

IM Interrupt Mask. This 8-bit field can be used to mask the hardware and software
interrupts to the execution engine (that is, not allow them to cause an exception).
IM(1:0) are used to mask the software interrupts, and IM (7:2) mask the 6 external
interrupts. A value of ‘0’ disables a particular interrupt, and a ‘1’ enables it. Note
that the IE bit is a global interrupt enable; that is, if the IE is used to disable inter-
rupts, the value of particular mask bits is irrelevant; if IE enables interrupts, then
a particular interrupt is selectively masked by this field.

KUo Kernel/User old. This is the privilege state two exceptions previously. A ‘0’ indi-
cates kernel mode.

IEo Interrupt Enable old. This is the global interrupt enable state two exceptions pre-
viously. A ‘1’ indicates that interrupts were enabled, subject to the IM mask.

KUp Kernel/User previous. This is the privilege state prior to the current exception A ‘0’
indicates kernel mode.

IEp Interrupt Enable previous. This is the global interrupt enable state prior to the cur-
rent exception. A ‘1’ indicates that interrupts were enabled, subject to the IM mask.

KUc Kernel/User current. This is the current privilege state. A ‘0’ indicates kernel mode.

IEc Interrupt Enable current. This is the current global interrupt enable state. A ‘1’ in-
dicates that interrupts are enabled, subject to the IM mask.

28293031

CU(n):
'0':

RE:
BEV:

TS:
PE:

CM:
PZ:

SwC:
IsC:

Co-processor 'n' Usable
Reserved: must be written as '0'
Reverse Endian enable
Boot-time Exception vector
TLB Shutdown
Parity Error
Cache Miss
Parity Zero
Swap Caches
Isolate Cache

RE

2

1719 18 16

CU3

1 1 1 1

CU2 CU0CU1 0 BEV0

21 20

TS

1 1

PE CM PZ SwC IsC

2224 2326 2527

1 1 1 1 2 11

IntMask
Int(5:0);

SWInt(1:0)

2

0

13 2 0

1 1 1 1

5 4

KUo

1 1

IEo KUp IEp KUc IEc

15 68 7

8

IntMask:
KUo:

IEo:
KUp:

IEp:
KUc:

IEc:

Interrupt Mask field
Kernel/User mode (old)
Interrupt Enable (old)
Kernel/User mode (previous)
Interrupt Enable (previous)
Kernel/User mode (current)
Interrupt Enable (current)
� � #

�����

����		
�� ��
 ��������� ���
���� ��������� $����	 %��������
������������������������������������ ��������� ������ ������ ������ ���������������������������������
The RISCore3000 family architecture separates exceptions into three vector spaces. The value of

each vector depends on the status register’s BEV (Boot Exception Vector) bit, which allows two alter-
nate sets of vectors (and thus two different pieces of code) to be used.

Typically, this is used to allow diagnostic tests to occur before the functionality of the cache is vali-
dated; processor reset forces the value of the BEV bit to a '1'. Table 6.3 and Table 6.4 list the excep-
tion vectors of the two different modes.

Table 6.3 Exception Vectors When BEV = 0

Table 6.4 Exception Vectors When BEV = 1

��������������������������������� ���������� ���������� ���������� �����������������������������
To understand the processor’s exception priority model, it is important to know the structure of the

RC36100’s instruction execution unit. The RC36100 runs instructions through a five-stage pipeline,
shown in Figure 6.3.

Figure 6.3 Pipelining in the RC3051 family

 The pipeline stages are as follows:
◆ IF (Instruction Fetch). This cycle contains two parts: the IVA (Instruction Virtual Address)

phase, which generates the virtual instruction address of the next instruction to be fetched,
and the ITLB phase, which performs the virtual to physical translation of the address.

◆ RD (Read and Decode). This phase obtains the required data from the internal registers and
also decodes the instruction.

◆ ALU (Arithmetic Logic Unit). This phase either performs the desired arithmetic or logical oper-
ation, or generates the address for the upcoming data operation. For data operations, this
phase contains both the data virtual address stage, which generates the desired virtual
address, and the data TLB stage, which performs the virtual to physical translation.

◆ MEM (Memory). This phase performs the data load or store transaction.
◆ WB (Write Back). This stage updates the registers with the result data.

��������� $�	�
�� &

	��� �'(����� &

	���

Reset 0xbfc0_0000 0x1fc0_0000

UTLB Miss 0x8000_0000 0x0000_0000

General 0x8000_0080 0x0000_0080

��������� $�	�
�� &

	��� �'(����� &

	���

Reset 0xbfc0_0000 0x1fc0_0000

UTLB Miss 0xbfc0_0100 0x1fc0_0100

General 0xbfc0_0180 0x1fc0_0180

IVA
I

TLB
ID OP D-FETCH WB

DVA
D

TLB

IF RD ALU MEM WB
� � �

�����

����		
�� ��
 ��������� ���
���� ��������� %�����(
High performance is achieved because five instructions are operating concurrently, each in a
different stage of the pipeline. However, since multiple instructions are operating concurrently, it is
possible to have multiple exceptions generated concurrently. If so, the processor must decide which
exception to process, basing this decision on the stage of the pipeline that detected the exception.
The processor will then flush all preceding pipeline stages to avoid altering processor context, thus
implementing precise exceptions. This determines the relative priority of the exceptions.

For example, an illegal instruction exception can only be detected in the instruction decode stage
of the RC36100; an Instruction Bus Error can only be determined in the I-Fetch pipe stage. Since the
illegal instruction was fetched before the instruction that generated the bus error was fetched, and
since it is conceivable that handling this exception might have avoided the second exception, it is
important that the processor handle the illegal instruction before the bus error. Therefore, the excep-
tion detected in the latest pipeline stage has priority over exceptions detected in earlier pipeline
stages. All instructions that are fetched subsequent to this (all preceding pipeline stages) are flushed
to avoid altering state information, maintaining the precise exception model.

Table 6.5 lists the priority of exceptions from highest first to lowest.

Table 6.5 RC36100 Exception Priority

��������������������������������� �� �� �� ���������������������
In interrupt driven systems, a critical measurement of a processor’s throughput is the interrupt

‘‘latency’’ of the system. Interrupt latency is a measurement of the time between the assertion of an
interrupt and the initiation of software handling. Often included when discussing latency, is the
amount of overhead associated with restoring context once the exception is handled, although this is
typically less critical than the initial latency.

In systems where the processor is responsible for managing a number of time-critical operations
in real time, it is important that the processor minimize interrupt latency. That is, it is more important
that every interrupt be handled at a rate above some given value, rather than occasionally handle an
interrupt at very high speed.

�������� ���������

Reset Any

AdEL Memory (Load instruction)

AdES Memory (Store instruction)

DBE Memory (Load or store)

MOD† ALU (Data TLB)

TLBL† ALU (DTLB Miss)

TLBS† ALU (DTLB Miss)

Ovf ALU

Int ALU

Sys RD (Instruction Decode)

Bp RD (Instruction Decode)

RI RD (Instruction Decode)

CpU RD (Instruction Decode)

TLBL† I-Fetch (ITLB Miss)

AdEL IVA (Instruction Virtual Address)

IBE RD (end of I-Fetch)

†These exceptions will not occur in an RC36100, which does not include a TLB.
� �)

�����

����		
�� ��
 ��������� ���
���� ����		
��� ���
�� �� �'� �������
Factors that affect the interrupt latency of a system include the types of operations it performs (for
example, systems that have long operating sequences during which interrupts can not be accepted
will have long latency), how much information must be stored and restored to preserve and restore
processor context, and the priority scheme of the system.

Table 6.5 illustrates what pipestage recognizes which exceptions. As mentioned above, to avoid
altering state execution, all instructions less advanced are flushed from the pipeline and will be
restarted when the exception handler completes.

Once the exception is recognized, the address of the appropriate exception vector will be the next
instruction to be fetched. In general, the latency to the exception handler is one instruction cycle and
is, at worst, the longest stall cycle in that system.

The RC36100 implements mechanisms that can help improve exception response time. Primary
among these is the cache locking mechanism described in earlier chapters. System software can be
easily arranged such that the exception service routines and/or critical exception data are locked into
the on-chip cache. The result will be both high-speed and fully deterministic.

������������������������
��� ���
�� �� �!�
��� ���
�� �� �!�
��� ���
�� �� �!�
��� ���
�� �� �!�

������������������������
The organization of interrupts in an RC36100-based system is up to the system architect. Specifi-

cally, the RC36100 multiplexes various interrupt pins with PIO pins; depending on the programming
of the PIO unit, the system may have six external interrupts and two BrCond input pins available for
interrupt software. This section describes operation assuming all such inputs are available to system
software. Later chapters describe the on-chip PIO and interrupt control units.

������������������������
�� "��
�� "��
�� "��
�� "����������������� �� �!�
��������� �� �!�
��������� �� �!�
��������� �� �!�
������
The RC36100 family features two types of interrupt inputs: synchronized internally and non-

synchronized or direct.
The ExcSInt(2:0) bus (Synchronized Interrupts) allow the system designer to connect unsynchro-

nized interrupt sources to the processor. The processor includes special logic on these inputs to
avoid meta-stable states associated with switching inputs right at the processor sampling point.
Because of this logic, the synchronized interrupt sources have slightly longer latency from the
ExcSInt(n) pin to the exception vector than the non-synchronized inputs. The synchronized interrupt
operation is illustrated in Figure 6.4.

Figure 6.4 Synchronized Interrupt Operation Wave Forms

The other interrupts, Int(5:3), do not contain this synchronization logic and thus have slightly
better latency to the exception vector. These inputs are useful for interrupting agents that operate
asynchronously with the RC36100. However, the interrupting agent must guarantee that it will always
meet the processor’s interrupt input set-up and hold time requirements. The operation of these inter-
rupts is illustrated in Figure 6.5.

Phi

SysClk

ExcSInt(n)

Exception VectorRun Cycle

tsetup thold
� � *

�����

����		
�� ��
 ��������� ���
���� +���� �'� ,	���
 ���
��

Figure 6.5 Direct Interrupt Operation Wave Forms

Because the interrupt exception is detected during the ALU stage of the current instruction, at
least one run cycle must occur between (or at) the assertion of the external interrupt input and the
fetch of the exception vector. Thus, if the processor is in a stall cycle when an external agent sends
an interrupt, it will execute at least one run cycle before beginning exception processing. In this
instance, there would be no difference in the latency of synchronized and direct interrupt inputs.

All of the interrupts are level-sensitive and active low. They continue to be sampled after an inter-
rupt exception has occurred and are not latched within the processor when an interrupt exception
occurs. Until software acknowledges the interrupt, it is important that the external interrupting agent
maintain the interrupt line.

Note that the RC3081 incorporates a hardware floating point accelerator on-chip. The MIPS archi-
tecture recommends that Int(3) be used to handle the floating point interrupt; thus, the RC3081
defaults to this interrupt assignment. However, the RC3081 Config register (which differs from the
RC36100 Config register) can be used to change the assignment. Also, the on-chip interrupt
controller of the RC36100 will signal its interrupt to the CPU using one of the available CPU inter-
rupts. The interrupt controller uses Int(5) for this operation.

Each of the eight interrupts (6 hardware and 2 software) can be individually masked by clearing
the corresponding bit in the Interrupt Mask field of the Status Register. All eight interrupts can be
masked at once by clearing the IEc bit in the Status Register.

On the synchronized interrupts, care should be taken to allow at least two clock cycles between
the negation of the interrupt input and the re-enabling of the interrupt mask for that bit. In general, it is
recommended that software continue polling the IP field of the Cause register once it has instructed
the peripheral to negate its interrupt, prior to re-enabling its mask, to avoid a spurious interrupt.

The value shown in the interrupt pending bits of the Cause register reflects the current state of the
interrupt pins of the processor. These bits are not latched (except for sampling from the data bus to
guarantee that they are stable when examined), and the masking of specific interrupt inputs does not
mask the bits from being read.

#���� �!�#���� �!�#���� �!�#���� �!� $����	 ���
��$����	 ���
��$����	 ���
��$����	 ���
��
In addition to the interrupt pins themselves, many systems can use the BrCond(3:2) input port

pins in their exception model. These pins can be directly tested by software, and can be used for
polling or fast interrupt decoding. The kernel must enable the use of the corresponding co-processor
unit before testing the state of the BrCond input pin.

The RC36100 provides two synchronized BrCond inputs: SBrCond(3:2). Note that BrCond(0),
corresponding to the on-chip CP0, and BrCond(1), corresponding to Co-Processor 1 (the FPA,
present on the RC3081), are not available on the RC36100 as user inputs. Instructions that use
BrCond(1:0) will always see a '1' on the RC36100. Also note that the SBrCond(3:2) on the RC36100
may or may not be enabled in the PIO unit; if not, then the SBrCond(3:2) input values are undefined.
When programmed to be SBrCond(3:2) inputs, the timing requirements of the SBrCond inputs are
illustrated in Figure 6.6. Since these inputs are synchronized by the RC36100, they do not need to be
driven synchronously to the processor.

Phi

SysClk

EXCInt(n)

Exception VectorRun Cycle
� � -

�����

����		
�� ��
 ��������� ���
���� ����		
�� ���
����
Similar to the interrupt inputs, at least one instruction must be executed (in the ALU stage) of the
instruction pipeline prior to software being able to detect a change in one of these inputs. This is
because the processor actually captures the value of these flags one instruction prior to the branch
on co-processor instruction. Before executing a Branch Condition instruction (i.e. BCzT, BCzF) the
corresponding co-processor usable bit in the CP0 status register must be set; otherwise, a co-
processor unusable exception will be signalled.

Figure 6.6 Synchronized BrCond Inputs

������������������������
�� ���	����
�� ���	����
�� ���	����
�� ���	����
The assertion of an unmasked interrupt input causes the RC36100 to branch to the general

exception vector at virtual address 0x8000_0080, and write the ‘Int’ code in the Cause register. The
IP field of the Cause register shows which of the six hardware interrupts are pending and the SW field
in the Cause register show which of the two software interrupts are pending. Multiple interrupts can
be pending at the same time, with no priority assumed by the processor.

If the interrupt asserted is due to the on-chip interrupt controller, the interrupt controller must be
accessed to determine which of its interrupt sources caused the assertion. This operation is
described in a later chapter.

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status register are saved in the
KUo, IEo, KUp, IEp bit fields in the Status register, respectively, as illustrated in Figure 6.7. The
current kernel status bit KUc and the interrupt bit IEc are cleared. This will mask all of the interrupts
and then place the processor in kernel mode. This sequence will be reversed by the execution of an
rfe (restore from exception) instruction, typically in the branch delay slot of the branch which resumes
normal execution.

Phi

SysC lk

SBrCond(n)

BCzT/F
Instruction

Capture
BrCond

Run Cycle

t28 t29
� � ��

�����

����		
�� ��
 ��������� ���
���� ����		
�� .�	/�����
Figure 6.7 Kernel and Interrupt Status Being Saved on Interrupts

������������������������
�� %�
�� %�
�� %�
�� %�����&�����&�����&�����&�����
In case of a hardware interrupt, the interrupt must be cleared by de-asserting the interrupt line,

which has to be done by alleviating the external conditions that caused the interrupt. Software inter-
rupts have to be cleared by clearing the corresponding bits, SW(1:0), in the Cause register to zero. It
is recommended that software continue polling the IP field of the Cause register once it has instruted
the peripheral to negate its interrupt, prior to re-enabling its mask, to avoid a spurious interrupt.

$���� %�$���� %�$���� %�$���� %�'�'�'�'�((((������������))))��������!��*!��*!��*!��*

�������� ++++�� ���	���� ���	���� ���	���� ���	������� ����� ����� ����� ������������
���
���
���
���
Once an exception is detected the processor suspends the current task, enters kernel mode,

disables interrupts, and begins processing at the exception vector location. The EPC is loaded with
the address the processor will return to once the exception event is handled.

The specific actions of the processor depend on the cause of the exception being handled. The
MIPS architecture classifies exceptions into three distinct classes: RESET, UTLB Miss

†

, and General.
Coming out of reset, the processor initializes the state of the machine. In addition to initializing

system peripherals, page tables, the TLB, and the caches, software clears both STATUS and CAUSE
registers, and initializes the exception vectors.

The code located at the exception vector may be just a branch to the actual exception code;
however, in more time critical systems the instructions located at the exception vector may perform
the actual exception processing. In order to cause the exception vector location to branch to the
appropriate exception handler (presuming that such a jump is appropriate), a short code sequence
such as that illustrated in Figure 6.8 may be used.

It should be noted the contents of register k0 are not preserved. This is not a problem for soft-
ware, since MIPS compiler and assembler conventions reserve k0 (and often k1) for kernel
processes, and do not use it for user programs. For the system developer it is advised that the use of
k0 be reserved for use by the exception handling code exclusively. This will make debugging and
development much easier.

The "IDT RISCore3000 Family Software Reference Manual" provides a great deal of information
on the software requirements of exception management, including interrupt service.

KUo IEo KUp IEp KUc IEc

KUo IEo KUp IEp KUc IEc

00

Exception Recognition

KUo IEo KUp IEp KUc IEc

KUo IEo KUp IEp KUc IEc

RFE Instruction
� � ��

�����

����		
�� ��
 ��������� ���
���� �	���	/��� �������
Figure 6.8 Code Sequence to Initialize Exception Vectors

������������������������&��&��&��&������ ����������������������������
The RC36100 has the following four registers related to exception processing:

◆ The Cause register
◆ The EPC (exception program counter) register
◆ The Status register
◆ The BadVAddr (bad virtual address) register

Typical exception handlers preserve the status, cause, and EPC registers in general registers (or
on the system stack). If the exception cause is due to an address error, software may also preserve
the bad virtual address register for later processing.

Note that not all systems need to preserve this information. Since the RC36100 disables subse-
quent interrupts, it is possible for software to directly process the exception while leaving the
processor context in the CP0 registers. Care must be taken to insure that the execution of the excep-
tion handler does not generate subsequent exceptions.

Preserving the context in general registers (and on the stack) does have the advantage that inter-
rupts can be re-enabled while the original exception is handled, thus allowing a priority interrupt
model to be built.

A typical code sequence to preserve processor context is shown in Figure 6.9. This code
sequence preserves the context into an area of memory pointed to by the k0 kernel register. This
register points to a block of memory capable of storing processor context. Constants identified by
name (such as R_EPC) are used to indicate the offset of a particular register from the start of that
memory area.

It should be noted that this sequence for fetching the co-processor zero registers is required
because there is a one clock delay in the register value actually being loaded into the general regis-
ters after the execution of the mfc0 instruction.

.set noreorder # tells the assembler not to reorder the code

/*

** code sequence copied to UTLB exception vector

*/

la k0,excep_utlb #address of utlb excp. handler

j k0 # jump via reg k0

nop

/*

** code sequence copied to general exception vector

*/

la k0,excep_general #address of general excp. handler

j k0 # jump via reg k0

nop
� � ��

�����

����		
�� ��
 ��������� ���
���� ��������� ����������
Figure 6.9 Preserving Processor Context

���,������,������,������,�������� �� �� �� �������������������������������������
The cause register indicates the reason the exception handler was invoked. Thus, to invoke the

appropriate exception service routine, software merely needs to examine the cause register, and use
its contents to direct a branch to the appropriate handler.

One method of decoding the jump to an appropriate software routine to handle the exception and
cause is shown in Figure 6.10. Register v0 contains the cause register, and register k0 still points to
the register save array.

Figure 6.10 Exception Cause Decoding

The above sequence of instructions extracts the exception code from the cause register and uses
that code to index into the table of pointers to functions (the cause_table). The cause_table data
structure is shown in Figure 6.11.

Each of the entries in this table point to a function for processing the particular type of interrupt
detected. The specifics of the code contained in each function is unique to a given application; all
registers used in these functions must be saved and restored.

la k0,except_regs # fetch address of reg save array

sw AT,R_AT*4(k0) # save register AT

sw v0,R_V0*4(k0) # save register v0

sw v1,R_V1*4(k0) # save register v1

mfc0 v0,C0_EPC # fetch the epc register

mfc0 v1,C0_SR # fetch the status register

sw v0,R_EPC*4(k0) # save the epc

mfc0 v0,C0_CAUSE # fetch the cause register

sw v1,R_SR*4(k0) # save status register

/* The above code is about the minimum required

** The user specific code would follow

*/

.set noreorder

sw a0,R_A0*4(k0) # save register a0

and v1,v0,EXCMASK # isolate exception code

lw a0,cause_table(v1) # get address of interrupt routine.

sw a1,R_A1*4(k0) # use delay slot to save register a1

j a0

sw k1,R_K1*4(sp) # save k1 register

.set reorder # re-enable pipeline scheduling
� � ��

�����

����		
�� ��
 ��������� ���
���� ���
	���� 0	�� ����������
Figure 6.11 Exception Service Branch Table

��
��
��
��
�������������������� ++++�����, �����������, �����������, �����������, ����������
Returning from the exception routine is made through the rfe instruction. When the exception first

occurs the RC36100 automatically saves some of the processor context, the current value of the
interrupt enable bit is saved into the field for the previous interrupt enable bit, and the kernel/user
mode context is preserved.

The IE interrupt enable bit must be asserted (a one) for external interrupts to be recognized. The
KU kernel mode bit must be a zero in kernel mode. When an exception occurs, external interrupts are
disabled and the processor is forced into kernel mode. When the rfe instruction is executed at
completion of exception handling, the state of the mode bits is restored to what it was when the
exception was recognized (presuming the programmer restored the status register to its value when
the exception occurred). This is done by “popping” the old/previous/current KU and IE bits of the
status register.

The code sequence in Figure 6.12 is an example of exiting an interrupt handler. The assumption
is that registers and context were saved as outlined above. To properly exit from exception handling,
this code sequence must either be replicated in each of the cause handling functions or each of them
must branch to this code sequence.

Note that this code sequence must be executed with interrupts disabled. If the exception handler
routine re-enables interrupts, they must be disabled when the CP0 registers are being restored.

int (*cause_table[16])() = {

int_extern, /* External interrupts */

int_tlbmod, /* TLB modification error */

int_tlbmiss, /* load or instruction fetch */

int_tlbmiss, /* write miss */

int_addrerr, /* load or instruction fetch */

int_addrerr, /* write address error */

int_ibe, /* Bus error - Instruction fetch */

int_dbe, /* Bus error - load or store data */

int_syscall, /* SYSCALL exception */

int_breakpoint, /* breakpoint instruction */

int_trap, /* Reserved instruction */

int_cpunuse, /* coprocessor unusable */

int_trap, /* Arithmetic overflow */

int_unexp, /* Reserved */

int_unexp, /* Reserved */

int_unexp /* Reserved */

};
� � ��

�����

����		
�� ��
 ��������� ���
���� .������ 1��'��2
��
Figure 6.12 Returning from Exception

%������%������%������%������))))��!��*
����!��*
����!��*
����!��*
��
There are a number of techniques which take advantage of the RC36100 architecture to minimize

exception latency and maximize throughput in interrupt driven systems. This section discusses a
number of those techniques.

������������������������������������ !�
"!�
"!�
"!�
"������������

Only the six external and two software interrupts are maskable exceptions. The mask for these
interrupts are in the status register.

To enable a given external interrupt, the corresponding bit in the status register must be set. The
IEc bit in the status register must also be set. It follows that by setting and clearing these bits within
the interrupt handler that interrupt priorities can be established. The general mechanism for doing this
is performed within the external interrupt-handler portion of the exception handler.

The interrupt handler preserves the current mask value when the status register is preserved. The
interrupt handler then calculates which (if any) external interrupts have priority, and sets the interrupt
mask bit field of the status register accordingly. Once this is done, the IEc bit is changed to allow
higher priority interrupts. Note that all interrupts must again be disabled when the return from excep-
tion is processed.

####
�
�
�
��������� ������������������������ $$$$����� $�
� $�
� $�
� $�
���� ��������

������������

����

The RC36100 instruction set contains mechanisms to allow external or internal co-processors to
operate as an extension of the main CPU. Some of these features may also be used in an interrupt-
driven system to provide the highest levels of response.

Specifically, the RC36100 allows external input port signals, the SBrCond(3:2) signals. These
signals are used by external agents to report status back to the processor. The instruction set
contains instructions which allow the external bits to be tested, and branches to be executed
depending on the value of the SBrCond input.

An interrupt-driven system can use these SBrCond signals, and the corresponding instructions, to
implement an input port for time-critical interrupts. Rather than mapping an input port in memory
(which requires external logic), the SBrCond signals can be examined by software to control interrupt
handling.

gen_excp_exit:

.set noreorder

by the time we have gotten here

all general registers have been

restored (except of k0 and v0)

reg. AT points to the reg save array

lw k0,C0_SR*4(AT) # fetch status reg. contents

lw v0,R_V0*4(AT) # restore reg. v0

mtc0 k0,C0_SR # restore the status reg. contents

lw k0,R_EPC*4(AT) # Get the return address

lw AT,R_AT*4(AT) # restore AT in load delay

j k0 # return from int. via jump reg.

rfe # the rfe instr. is executed in the

branch delay slot

.set reorder
� � �#

�����

����		
�� ��
 ��������� ���
���� .������ 1��'��2
��
There are actually two techniques to use this advantageously. One method uses these signals to
perform interrupt polling; in this method, the processor continually examines these signals, waiting for
an appropriate value before handling the interrupt. A sample code sequence is shown in Figure 6.13.

The software in this system is very compact, and easily resides in the on-chip cache of the
processor. Thus, the latency to the interrupt service routine in this system is minimized, allowing the
fastest interrupt service capabilities.

A second method utilizes external interrupts combined with the SBrCond signals. In this method,
both the SBrCond signal and one of the external interrupt lines are asserted when an external event
occurs. This configuration allows the CPU to perform normal tasks while waiting for the external
event.

For example, assume that a valve must be closed and then normal processing continued when
SBrCond(2) is asserted TRUE. The valve is controlled by a register that is memory-mapped to
address 0xaffe_0020 and writing a one to this location closes the valve. The software in Figure 6.14
accomplishes this, using SBrCond(2) to aid in cause decoding.

The number of cycles for a deterministic system is five cycles between the time the interrupt
occurred and it was serviced. Interrupts were re-enabled in four additional cycles. Note that none of
the processor context needs to be preserved and restored for this routine.

Figure 6.13 Polling System Using BrCond

.set noreorder # prevents the assembler from

reordering the code below

polling_loop: # branch to yourself until

bc2f polling_loop # BrCond(2) is asserted

nop

Once BrCond(2) is asserted, fall through

and begin processing the external event

fast_response_cp2:

code sequence that would do the

event processing

b polling_loop # return to polling
� � ��

�����

����		
�� ��
 ��������� ���
���� .������ 1��'��2
��
Figure 6.14 Using BrCond for Fast Interrupt Decoding

�������������������� %%%%��������""""������������

The RC36100 allows the cache to be split into multiple sections, each servicing a different section
of the processor address space. Using this technique, the system can "dedicate" one such section to
exception service. Since the portion of the cache which deals with exception service will not be
disturbed by normal system operation, the exception service code can be effectively locked into the
on-chip cache. This has two positive benefits.

First, this insures that the exception service routine will operate directly out of the on-chip cache,
and avoid main memory I-cache miss fetches. This speeds overall execution.

Secondly, this insures that the exception service routine performance will not be dependent on the
tasks run since it was last invoked. Since those tasks will not displace the exception software from
the on-chip cache, the exception software performance will be deterministic.

.set noreorder # prevents the assembler from reordering

the code sequences below

/* This section of code is placed at the general exception
** vector location 0x8000_0080. When an external interrupt is
** asserted execution begins here.

*/

bc2t
li
la
j
nop

close_valve
k0,1
k0,gen_exp_hand
k0

test for emergency condition and
jump to close valve if TRUE
otherwise,
jump to general exc. handler
and process less critical excepts.

/* This is the close valve routine - its sole purpose is to close the
** valve as quickly as possible. The registers’k0’ and’k1’ are reserved
** for kernel use and therefore need not be saved when a client or
** user program is interrupted. It should be noted that the value to
** write to the valve close register was put in reg’k0’ in the
** branch delay slot above - so by the time we get here it is
** ready to output to the close register.

*/

close_valve:

la k1,0xaffe0020 # the address of the close register

sw k0,0(k1) # write the value to the close register

mfc0 k0,C0_EPC # get the return address to cont processing

nop

j k0 # return to normal processing

rfe # restore previous interrupt mask

and kernel/user mode bits of the

status register.

.set reorder
� � �)

�����

����		
�� ��
 ��������� ���
���� ���
���� .����3�� ����������
&&&&����

������������ ������������������������������������

Note that the processor does not automatically stack processor context when an exception
occurs; thus, to allow nested exceptions it is important that software perform this stacking.

Most of the software illustrated above also applies to a nested exception system. However, rather
than using just one register (pointed to by k0) as a save area, a stacking area must be implemented
and managed by software. Also, since interrupts are automatically disabled once an exception is
detected, the interrupt handling routine must mask the interrupt it is currently servicing, and re-enable
other interrupts (once context is preserved) through the IEc bit.

The use of Interrupt Mask bits of the status register to implement an interrupt prioritization scheme
was discussed earlier. An analogous technique can be performed by using an external interrupt
encoder to allow more interrupt sources to be presented to the processor.

Software interrupts can also be used as part of the prioritization of interrupts. If the interrupt
service routine desires to service the interrupting agent, but not completely perform the interrupt
service, it can cause the external agent to negate the interrupt input but leave interrupt service
pending through the use of the SW bits of the Cause register.

����������������

���������������������������� ������������������������������������

There are certain types of exceptions that indicate fundamental problems with the system.
Although there is little the software can do to handle such events, they are worth discussing. Excep-
tions such as these are typically associated with faulty systems, such as in the initial debugging or
development of the system.

Potential problems can arise because the processor does not automatically stack context infor-
mation when an exception is detected. If the processor context has not been preserved when another
exception is recognized, the value of the status, cause, and EPC registers are lost and thus the orig-
inal task can not be resumed.

An example of this occurring is an exception handler performing a memory reference that results
in a bus error (for example, when attempting to preserve context). The bus error forces execution to
the exception vector location, overwriting the status, cause, and context registers. Proper operation
cannot be resumed.

���	������	������	������	������� %����'�� �%����'�� �%����'�� �%����'�� �������������������������������������
This section documents some specific issues and techniques for handling particular RC36100

exceptions.

----								������� ���� ���� ���� ����������� ��� ��� ��� ���������������������������������

������������

����

This exception occurs when an attempt is made to load, fetch, or store a word that is not aligned
on a word boundary. Attempting to load or store a half-word that is not aligned on a half-word
boundary will also cause this exception. The exception also occurs in User mode if a reference is
made to a virtual address whose most significant bit is set (a kernel address). This exception is not
maskable.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. When the exception
occurs, the CPU sets the ADEL or ADES code in the Cause register ExcCode field to indicate
whether the address error occurred during an instruction fetch or a load operation (ADEL) or a store
operation (ADES).

The EPC register points at the instruction that caused the exception, unless the instruction is in a
branch delay slot: in that case, the EPC register points at the branch instruction that preceded the
exception-causing instruction and sets the BD bit of the Cause register.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo, IEo, KUp,
and IEp bits, respectively and clears the KUc and IEc bits.
� � �*

�����

����		
�� ��
 ��������� ���
���� ,	��4����� ���������
When this exception occurs, the BadVAddr register contains the virtual address that was not prop-
erly aligned or that improperly addressed kernel data while in User mode. The contents of the VPN
field of the Context and EntryHi registers are undefined.

 ��������������������������������

A kernel should hand the executing process a segmentation violation signal. Such an error is
usually fatal; although, an alignment error might be handled by simulating the instruction that caused
the error.

$$$$������.����� ���.����� ���.����� ���.����� ���������������������������������

������������

����

This exception occurs when the RC36100 executes the BREAK instruction and is not maskable.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for the exception and sets the BP code
in the CAUSE register ExcCode field.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo, KUp, and
IEp bits, respectively, and clears the KUc and IEc bits.

The EPC register points at the BREAK instruction that caused the exception, unless the instruc-
tion is in a branch delay slot: in that case, the EPC register points at the BRANCH instruction that
preceded the BREAK instruction and sets the BD bit of the Cause register.

 ������������������������

The breakpoint exception is typically handled by a dedicated system routine. Unused bits of the
BREAK instruction (bits 25..6) can be used pass additional information. To examine these bits, load
the contents of the instruction pointed at by the EPC register.

Note: If the instruction resides in the branch delay slot, add four to the contents of the EPC
register to find the instruction.

To resume execution, change the EPC register so that the RC36100 does not execute the BREAK
instruction again. To do this, add four to the EPC register before returning.

Note: If a BREAK instruction is in the branch delay slot, the BRANCH instruction must be inter-
preted in order to resume execution.

$
� �$
� �$
� �$
� �������������� �� �� �� ���������������������������������

������������

����

This exception occurs when the Bus Error input to the CPU is asserted by external logic during a
read operation. For example, events like bus time-outs, backplane bus parity errors, and invalid phys-
ical memory addresses or access types can signal exception. This exception is not maskable.

This exception is used for synchronously occurring events such as cache miss refills. The general
interrupt mechanism must be used to report a bus error that results from asynchronous events such
as a buffered write transaction.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. When exception
occurs, the RC36100 sets the IBE or DBE code in the CAUSE register ExcCode field to indicate
whether the error occurred during an instruction fetch reference (IBE) or during a data load or store
reference (DBE).

The EPC register points at the instruction that caused the exception, unless the instruction is in a
branch delay slot: in that case, the EPC register points at the BRANCH instruction that preceded the
exception-causing instruction and sets the BD bit of the cause register.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.
� � �-

�����

����		
�� ��
 ��������� ���
���� ����	������	 +�
��!�� ���������
 ��������������������������������

The physical address where the fault occurred can be computed from the information in the CP0
registers:

◆ If the Cause register’s IBE code is set (showing an instruction fetch reference), the virtual
address resides in the EPC register.

◆ If the Cause register’s DBE exception code is set (specifying a load or store reference), the
instruction that caused the exception is at the virtual address contained in the EPC register
(if the BD bit of the cause register is set, add four to the contents of the EPC register).
Interpret the instruction to get the virtual address of the load or store reference and then
use the TLBProbe (tlbp) instruction and read EntryLo to compute the physical page num-
ber.

A kernel should hand the executing process a bus error when this exception occurs. Such an
error is usually fatal.

��/���/���/���/��������������������������� #�
��� #�
��� #�
��� #�
�����0�� �0�� �0�� �0�� ���������������������������������

������������

����

This exception occurs due to an attempt to execute a co-processor instruction when the corre-
sponding co-processor unit has not been marked usable (the appropriate CU bit in the status register
has not been set). For CP0 instructions, this exception occurs when the unit has not been marked
usable and the process is executing in User mode: CP0 is always usable from Kernel mode regard-
less of the setting of the CP0 bit in the status register. This exception is not maskable.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. It sets the CPU code
in the CAUSE register ExcCode field. Only one co-processor can fail at a time.

The contents of the cause register’s CE (Co-processor Error) field show which of the four co-
processors (3,2,1, or 0) the RC36100 referenced when the exception occurred.

The EPC register points at the co-processor instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the branch instruction that
preceded the co-processor instruction and sets the BD bit of the Cause register.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.

 ��������������������������������

To identify the co-processor unit that was referenced, examine the contents of the Cause
register’s CE field. If the process is entitled to access, mark the co-processor usable and restore the
corresponding user state to the co-processor.

If the process is entitled to access to the co-processor, but the co-processor is known not to exist
or to have failed, the system could interpret the co-processor instruction. If the BD bit is set in the
Cause register, the BRANCH instruction must be interpreted; then, the co-processor instruction could
be emulated with the EPC register advanced past the co-processor instruction.

If the process is not entitled to access to the co-processor, the process executing at the time
should be handed an illegal instruction/privileged instruction fault signal. Such an error is usually
fatal.

��������������������������������� ��� ��� ��� ������������������������������

������������

����

This exception occurs when one of eight interrupt conditions (software generates two, hardware
generates six) occurs.

Each of the eight external interrupts can be individually masked by clearing the corresponding bit
in the IntMask field of the status register. All eight of the interrupts can be masked at once by clearing
the IEc bit in the status register.
� � ��

�����

����		
�� ��
 ��������� ���
���� 5/�	3��6 ���������
'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. The RC36100 sets the
INT code in the Cause register’s ExcCode field.

The IP field in the Cause register show which of six external interrupts are pending, and the SW
field in the cause register shows which two software interrupts are pending. More than one interrupt
can be pending at a time.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.

 ��������������������������������

If software generates the interrupt, clear the interrupt condition by setting the corresponding
Cause register bit (SW1:0) to zero.

If external hardware generated the interrupt, clear the interrupt condition by alleviating the condi-
tions that assert the interrupt signal.

""""&&&&��'���'���'���'�����(�(�(�(���������������������������������

������������

����

This exception occurs when an ADD ADDI, SUB, or SUBI instruction results in two’s complement
overflow. This exception is not maskable.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. The RC36100 sets the
OV code in the CAUSE register.

The EPC register points at the instruction that caused the exception, unless the instruction is in a
branch delay slot: in that case, the EPC register points at the Branch instruction that preceded the
exception-causing instruction and sets the BD bit of the CAUSE register.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.

 ��������������������������������

A kernel should hand the executing process a floating point exception or integer overflow error
when this exception occurs. Such an error is usually fatal.

����������������&&&&�	 �����	 �����	 �����	 ��������
����� ���������
����� ���������
����� ���������
����� ���������

������������

����

This exception occurs when the RC36100 executes an instruction whose major opcode (bits
31..26) is undefined or a Special instruction whose minor opcode (bits 5..0) is undefined.

This exception provides a way to interpret instructions that might be added to or removed from the
MIPS processor architecture.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception. It sets the RI code of
the Cause register’s ExcCode field.

The EPC register points at the instruction that caused the exception, unless the instruction is in a
branch delay slot: in that case, the EPC register points at the Branch instruction that preceded the
reserved instruction and sets the BD bit of the CAUSE register.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.

 ��������������������������������

If instruction interpretation is not implemented, the kernel should hand the executing process an
illegal instruction/reserved operand fault signal. Such an error is usually fatal.
� � ��

�����

����		
�� ��
 ��������� ���
���� ����� ���������
An operating system can interpret the undefined instruction and pass control to a routine that
implements the instruction in software. If the undefined instruction is in the branch delay slot, the
routine that implements the instruction is responsible for simulating the branch instruction after the
undefined instruction has been “executed”. Simulation of the branch instruction includes determining
if the conditions of the branch were met and transferring control to the branch target address (if
required) or to the instruction following the delay slot if the branch is not taken. If the branch is not
taken, the next instruction’s address is [EPC] + 8. If the branch is taken, the branch target address is
calculated as [EPC] + 4 + (Branch Offset * 4).

Note that the target address is relative to the address of the instruction in the delay slot, not the
address of the branch instruction. For details on how branch target addresses are calculated, refer to
the description of branch instruction.

���� ����� ����� ����� ���������������������������������

������������

����

This exception occurs when the RC36100 RESET signal is asserted and then de-asserted.

'���'���'���'���(��(��(��(������

The RC36100 provides a special exception vector for this exception. The Reset vector resides in
the RC36100’s un-mapped and un-cached address space; Therefore the hardware need not initialize
the Translation Lookaside Buffer (TLB) or the cache to handle this exception. The processor can
fetch and execute instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the RC36100 are undefined when this exception occurs except for
the following:

◆ The SWc, KUc, and IEc bits of the Status register are cleared to zero.
◆ The BEV bit of the Status register is set to one.
◆ The TS bit of the Status register is frozen at one.
◆ The Config register is unlocked and initialized as described in Chapter 5.

 ��������������������������������

The reset exception is serviced by initializing all processor registers, co-processor registers,
caches, and the memory system. Typically, diagnostics would then be executed and the operating
system bootstrapped, including setting of the PortSize, Config, and BusCtrl registers. The reset
exception vector is selected to appear in the uncached, un-mapped memory space of the machine so
that instructions can be fetched and executed while the cache and virtual memory system are still in
an undefined state.

% ���, �% ���, �% ���, �% ���, ������� ��� ��� ��� ���������������������������������

������������

����

This exception occurs when the RC36100 executes a SYSCALL instruction.

'���'���'���'���(��(��(��(������

The RC36100 branches to the General Exception vector for this exception and sets the SYS code
in the CAUSE register’s ExcCode field.

The EPC register points at the SYSCALL instruction that caused the exception, unless the
SYSCALL instruction is in a branch delay slot: in that case, the EPC register points at the branch
instruction that preceded the SYSCALL instruction and the BD bit of the CAUSE register is set.

The RC36100 saves the KUp, IEp, KUc, and IEc bits of the status register in the KUo, IEo, KUp,
and IEp bits, respectively, and clears the KUc and IEc bits.
� � ��

�����

����		
�� ��
 ��������� ���
���� .(���� ���� ���������
 ��������������������������������

The operating system transfers control to the applicable system routine. To resume execution,
alter the EPC register so that the SYSCALL instruction does not execute again. To do this, add four to
the EPC register before returning.

Note: If aSYSCALL instruction is in a branch delay slot, the branch instruction must be inter-
preted in order to resume execution.
� � ��

�����

����		
�� ��
 ��������� ���
���� .(���� ���� ���������

� � ��

�����

�������	�
����
���

���� ��������

������� 	
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController is an integration of system memory controllers and peripherals

around a RISCore3000 family core. Thus, the system interface can be described at many levels:
◆ Operation of the execution core, including caches and write buffers.
◆ Operation of the various memory controllers during external transactions.
◆ Operation during internal peripheral transactions.

This chapter includes an overview on these interfaces, a complete description of the rules for the
internal core, and an operational overview and detailed timing diagrams of the write interface. Details on
each of the internal memory controllers and peripherals are provided in subsequent chapters.

� ������ ������ ������ ��������������� ��� ��� ��� �����������������������������
The RC36100 RISController bus interface uses separate de-multiplexed address and data buses,

along with control signals which select the targeted memory resource and perform the necessary data
path steering. Figure 7.1 is a conceptual representation of the RC36100 bus interface.

Figure 7.1 RC36100 Bus Interface Unit Block Diagram

The address bus of the RC36100 is a 26-bit address bus. Although the address bus is only 26 bits
wide, the address space of the RC36100 is actually 32 bits wide; the internal address decoder provides
"Chip Selects" to target particular memory subsystems; thus, the width of the address bus only limits the
size of any one memory sub-system, not the overall addressable memory.

The data bus is a 32-bit wide bus, with the capability to gather or parcel out data into smaller pieces
when working with 8- or 16-bit data ports. Thus, the RC36100 can mate directly with 8-, 16- and/or 32-
bit memory subsystems; in fact, the widths of the various sub-systems are independently programmable
through the various control registers. In addition, the RC36100 can be used to implement either Big- or
Little-endian memory systems, as selected at reset.

The control signals provided by the RC36100 enable the processor to directly connect with a wide
variety of external memory devices and peripherals. Wait-state generation and address decode is
performed internally by the processor; once the proper external device for a transfer is determined by the
RC36100, the output control signals implement the protocol and timing selected for that memory sub-
space.

4-bit counter

SysAddr(25:0) SysData(31:0) SysALEn
SysRd
SysWr

SysBurstFrame
SysDataRdy
SysWait
SysBusError

Read Addr

Latch

Write Buffer
Addr 4-

Deep FIFO

DMA Addr Controller,
DRAM Controller Addr
Mux

Byte

Blender &

Chopper

I/O Drivers

CPU Cache Core Addr CPU Cache Core Data CPU Cache Core Control
(Endianess, AccType, AddrLo, MemRd,

MemWr)
Other Bus Controllers

(Endianess, AccType,

AddrLo, Rd, Wr, BurstSize)

SysClkIn
SysClk
SysReset

BIU
Signal
Control

BIU
Data
Control

BIU
Address
Control

Read Buffer
Data 4-

Deep FIFO

State Machine

DMA Controller Data Latch

Write Buffer
Data 4-

Deep FIFO

Other Bus Controllers
(RdCEn, Ack, BEn, Timeout)
� � �

�����

����	
 ���
��	����	 ���� ��	���	� ��� �	���������
During accesses to DRAM, the address bus will first carry the row address, then the column
address, in a fashion suitable for direct connection with external page mode DRAM devices. Addi-
tional control signals provide RAS, CAS, and transceiver control. Thus, the RC36100 does not
require external address multiplexors or complicated DRAM control state machines.

These techniques enable the RC36100 to simply implement a wide variety of low cost systems,
minimizing both system cost and development time, while maintaining high system throughput.

��� �������� �������� �������� �����������������������������
This section describes the signals used in the basic bus interface. Detailed information on the

behavior of these signals, and of other signals used in other peripheral or memory control
subsystems, are described in later chapters.

Note: Many RC36100 signals have multiple functions, the exact behavior of a given pin is
typically selected at device reset, and that signals indicated with an overbar (for example,
overbar) are active low.

�
�
�
����������
�
�
�
 ��������� �� �� �� ���������������������������������
�
�
�
���������������������

These signals are used by the bus interface to generate and provide global read and write
signals.

SysAddr(25:0) Output/(Input during external DMA)
System Address Bus: The RC36100 uses a dedicated 26-bit physical address bus always driven

by the RC36100, except during the Address Strobe portion of external DMA cycles.
The address first becomes valid on the same (first) clock cycle that the address latch enable indi-

cator, SysALEn, asserts. Coincidently either SysRd or SysWr will also assert on the first valid cycle.
The address is valid until either SysRd or SysWr de-asserts at the end of a transaction.

During Memory or I/O transactions, SysAddr(25:0) contain the internally latched 26-bit physical
address. The SysAddr(3:0) bits represent the doubleword, word, halfword, and byte addresses that
count with each datum during quad-word-burst and mini-burst reads and writes.

During DRAM transactions, SysAddr(13:2) are driven with the multiplexed DRAM row and column
address. The 3 LSB’s of the SysAddr bits, during the column address period, will represent the
doubleword, word, or halfword addresses that count with each datum during quad-word-burst and
mini-burst reads and writes.

During idle cycles between valid transactions, the behavior of Addr(25:0) is undefined.

SysData(31:0) Input/Output
 System Data Bus: The RC36100 uses a dedicated 32-bit data bus. For reads, data is sampled

on the rising edge of the SysClk reference clock. Although the data bus is 32-bits wide, the RC36100
directly supports the use of narrower memory subsystems. In these cases, the RC36100 bus unit
interface will gather smaller data into the requested transfer size on reads, and break write data up
into a series of smaller pieces on writes, depending on whether the port is 32, 16 or 8-bits wide. The
bus interface will shift and adjust the LSB SysAddr bits accordingly for big or little endian data.
Collectively, when these types of transactions are a result of word size or smaller accesses these are
referred to as "mini-bursts" and quad-word accesses are referred to as "bursts". However, on the
RC36100, in contrast to the RC3051 family, both mini-bursts and bursts assert the system burst
signal, SysBurstFrame.

Note: During internal peripheral register reads, SysData(15:0) is driven with the register
contents by the RC36100. Also note that the SysData Bus may tri-state when the Bus Interface
Unit is not in use.

�������������������� ������������ ��������������������
��
��
��
������������������

SysClkIn Input
System Clock Input: This is a double frequency input clock used to generate the timing of the

processor.
� � �

�����

����	
 ���
��	����	 ���� ��	���	� ��� �	���������
SysClk Output
System Output Clock: This output clock provides the master timing reference for all bus inter-

face signals. Most input signals are sampled on the rising edge of SysClk, and all outputs except for
the external strobes DramCAS(3:0) and SysWrEn(3:0) are generated from the rising edge of SysClk.
Thus, external logic can use the rising edge of the SysClk output reference to generate control
signals back to the RC36100, and to sample RC36100 outputs.

The number of loads on SysClk should be kept below or equal to a maximum of 5 CMOS type
loads due to internal pin skew feedback monitoring on the RC36100. Systems requiring additional
loads should either buffer or invert SysClk.

There is no guaranteed AC timing delay relationship between the SysClkIn input clock and the
SysClk output clock. However, the phase relationship can be guaranteed via the method described
in Chapter 19, “Debug Mode Features.”

Reset Input
Reset: This active low input signal initializes the processor and is required after power up before

correct operation can begin. Optional features of the processor including the Endianess and the Port
Width of the Boot ROM are established during the last cycle of reset using the reset configuration
mode inputs (also known as the reset initialization vector) which are multiplexed with the interrupt
pins. See Chapter 18 for more information on the reset initialization vector.

������������ ������������������������������������ ����������������������������
�
�
�
���������������������

SysALEn Output (Input during external DMA)
System Address Latch Enable: As an output signal, this active low signal indicates when a new

address is first valid. SysALEn de-asserts high one clock after being asserted by the RC36100.
As an input signal, it is used by an external DMA agent to indicate that it has provided a valid

address on the processor data bus. The RC36100 will then use this address to select which memory
subsystem or peripheral is the target of the DMA, and perform the necessary access. As an input, its
timing is similar to the output case; however, its assertion by the external DMA agent may be 1 or
more clocks long. The address is sampled by the CPU on the first rising SysClk edge where
SysALEn is asserted. Any additional SysALEn asserted clocks are ignored as far as the address is
concerned, however, its assertion delays the second phase of the DMA transaction where the
external DMA agent tri-states most of the bus control signals and lets the RC36100 memory control-
lers drive the bus control signals.

SysRd Output (Input during external DMA)
System Read: SysRd is always driven by the RC36100, except during external DMA cycles.
As an output, SysRd is an active low read control signal. During external read transfer cycles, this

signal will be asserted. This signal can be used for external control and diagnostics as needed.

Note: During internal peripheral register reads, the SysData(15:0) bus is driven with the
register contents by the RC36100.

As an input, this signal can be driven by an external DMA engine. However, the RC36100 does
not use this signal during DMA. If SysWr is high when SysALEn is asserted, then a DMA read is
implied.

SysWr Output (Input during external DMA)
System Write: SysWr is always driven by the RC36100, except during external DMA cycles.
As an output, SysWr is an active low control signal to indicate that the current transaction is a

write. This signal can be used for external control and diagnostics as needed.
As an input, this signal is used internally during DMA as a read/write input signal. If SysWr is high

when SysALEn is de-asserted, then a DMA read is implied.

SysBurstFrame Output (Input during external DMA)
System Burst: SysBurstFrame is always driven by the RC36100, except during external DMA

transactions.
� � �

�����

����	
 ���
��	����	 ���� ��	���	� ��� ���	 ����������� ���	�
This active low control signal specifies that at least one more datum will be written or read. This
signal is valid for both reads and writes. SysBurstFrame always asserts on the first clock of a trans-
action. Thereafter it de-asserts high on the first clock of the last datum. Thus, if there is only a single
datum, SysBurstFrame will assert for one clock only. If there are multiple datum, SysBurstFrame
remains asserted until the last datum begins.

However, an external DMA has the ability to continue a burst for an indefinite length. Under this
condition, the RC36100 is unable to determine when the last datum will occur, and it is assumed that
the external DMA agent is able to determine how many datum it needs to read or write.

So, on external DMA transactions, SysBurstFrame is an input signal for the first clock cycle of an
RC36100 DRAM, memory, or I/O controller access. During the bus transaction phase of external
DMA, SysBurstFrame reverts back to an output, but is undefined after the SysALE phase.

SysDataRdy Output
System Data Ready: This active low output signal indicates that the CPU is ready to receive

data on a read or that it is driving data on a write.
If wait-states are inserted by the use of SysWait (as opposed to the internally wait-state gener-

ator), then SysDataRdy is kept asserted for the same number of clock cycles. Thus external diag-
nostic tools such as logic analyzers may want to gate SysDataRdy with SysWait.

During external DMA transactions, SysDataRdy is still driven by the CPU the entire time. Thus
during the second part of the DMA transaction where the RC36100 memory controller is being used
to access data, the CPU drives SysDataRdy whenever it has or expects valid data.

SysWait Input
System Wait: Active low is used to extend the length of the memory cycle by stalling the

Memory, or I/O Controller for as many cycles as SysWait is sampled low. SysWait can be asserted
anytime during single word or smaller read and write transactions. However, the effect of SysWait
occurs 1 clock later due to internal pipelining of the signal. During burst reads, SysWait is valid up
until the internal Acknowledge is generated to release the execution core for refill cycles. Thus
systems that are quad-word bursting and using SysWait must either not use the internal Acknowl-
edge, or guarantee that SysWait is only asserted during the early part of a cycle with the Memory or I/
O Controller Wait option programmed.

The specific behavior of SysWait is dependent on the type of memory accessed. In general, its
effect is to delay the de-assertion of the pertinent data strobe, such as MemRdEnOdd.

 SysBusError Input

System Bus Error: This is an active low input signal that must be asserted at least 1 clock cycle
before the internal acknowledge. Thus, systems using this feature should assert SysBusError when
SysAlen asserts, which implies that SysBusError be generated asynchronously (for instance, by the
equation!(! SysAlen &! DiagNoCs)). This signal causes a DBE exception to be signalled on reads, no
exception is signalled on writes. Neither reads nor writes are terminated by SysBusError. Termination
relies on the internal wait-state generator of the memory controllers and also on DmaLast if an
external DMA burst is occurring. Users may wish the assertion of SysBusError to cause a CPU inter-
rupt to be asserted for general handling.

��� ����� ����� ����� ���������� �� ��������������������
The RC36100 RISController execution core is capable of requesting the following types of trans-

actions:

���������������� ������������������������������������

The processor executes an instruction fetch or a data load operation as the result of either a
cache miss or an uncacheable reference.
� �

�����

����	
 ���
��	����	 ���� ��	���	� ��� ���	 ����������� ���	�
Quad word reads occur when the processor requests a contiguous block of four words from
memory. Quad word reads occur in response to instruction cache misses, and will occur in response
to a data cache miss if the DBlockRefill option in the CP0 Cache Configuration register is enabled.
The RC36100 incorporates an on-chip 4-word deep read buffer which may be used to “queue up” the
read response before passing it through to the high-bandwidth cache and execution core. Read buff-
ering is appropriate in systems which require wait states between adjacent datums of a block read or
in interfacing to memory systems narrower than 32-bits wide.

On the other hand, systems that use high-bandwidth memory techniques—such as page mode,
static column, nibble mode, or memory interleaving—can effectively bypass the read buffer by
providing words of the block at the processor clock rate. Note that the choice of burst vs. read buff-
ering is independent of the initial latency of the memory; that is, burst mode can be used even if
multiple wait states are required to access the first datum of the block.

Single data reads (single word, tri-byte, halfword, or byte) are used for uncacheable references
(such as for I/O or boot code) and will be used in response to a data cache miss if the DBlockRefill
option in the CP0 Cache Configuration register is disabled. A single data read returns one unit of
data per read transaction.

�������������������� ��

The RC36100 utilizes an on-chip write buffer to isolate the execution core from the speed of
external memory during write operations. There is a single primary type of write:

Single data writes (word, tri-byte, halfword, or byte writes corresponding to 32-bit, 16-bit, and 8-bit
interfaces, respectively) are used in response to a store operation, either cached or uncached (the
RC36100 uses a write-through cache).

Although the CPU execution core is capable of producing only single data writes, the DMA
Controller can produce 4 word burst writes.

Quad word writes occur when the DMA Controller is instructed to transfer 4 words at a time. The
DMA Controller will first read 4 words into the read buffer, then latch out the data for 4 consecutive
writes.

Although the data bus is 32-bits wide, the RC36100 directly supports the use of narrower memory
subsystems. In these cases, the RC36100 will gather smaller data into the requested transfer size
on reads, and break write data up into a series of smaller pieces on writes. Collectively, these types
of transactions are referred to as "mini-bursts".

�������������������������������� ��

It is possible for the RC36100 execution core to have multiple activities pending. Specifically,
there may be data in the write buffer, a read request—such as due to a cache miss—or two read
requests (both the I-cache and D-cache misses in a single clock cycle), even as the bus interface is
servicing some external DMA activity.

In establishing the order in which the requests are processed, the RC36100 is sensitive to
possible conflicts and data coherency issues as well as to performance issues. For example, if the
on-chip write buffer contains data which has not yet been written to memory, and the processor
issues a read request to the target address of one of the write buffer entries, then the processor
strategy must insure that the read request is satisfied by the new, current value of the data.

There are two levels of priority: that performed by the CPU engine, and that performed by the bus
interface unit. The internal execution engine can be viewed as making requests to the bus interface
unit. In the case of multiple requests in the same clock cycle, the CPU core will:

Perform the data request first. That is, if both the data cache and instruction cache miss in the
same clock cycle, the processor core will request a read to satisfy the data cache first. Similarly, a
write buffer full stall will be processed before an instruction cache miss.

Perform a read due to an instruction cache miss.
This prioritization is important in maintaining the precise exception model of the MIPS architec-

ture. Since data references are the result of instructions which entered the pipeline earlier, they must
be processed (and any exceptions serviced) before subsequent instructions (and their exceptions)
are serviced.

Once the processor core internally decides which type of request to make to the bus interface
unit, it then presents that request to the bus interface unit.
� � !

�����

����	
 ���
��	����	 ���� ��	���	� "#	������ "�$��	 %��&�
	���'�
In the RC36100 Bus Interface Unit, multiple operations are serviced in the following order:
 1. DRAM refreshes may delay the start of a read or write DRAM data access.
 2. Ongoing transactions are completed without interruption.
 3. DMA requests are serviced according to the DMA priorities established in the RC36100 DMA

Controller (For more information on this operation, see Chapter 11).
 4. Instruction cache misses are processed.
 5. Pending writes are processed.
 6. Data cache misses or uncacheable reads/uncacheable instruction fetches are processed.
This service order has been designed to achieve maximum performance, minimize complexity,

and solve the data coherency problem possible in write buffer systems.
This order assumes that the write buffer does not contain instructions which the processor may

wish to execute. The processor does not write directly into the instruction cache: store instructions
generate data writes which may change only the data cache and main memory. The only way in
which an instruction reference may reside in the write buffer is in the case of self modifying code,
generated with the caches swapped. However, in order to unswap the caches, an uncacheable
instruction which modifies CP0 must be executed; the fetch of this instruction would cause the write
buffer to be flushed to memory. Thus, this ordering enforces strong ordering of operations in hard-
ware, even for self modifying code. Of course, software could perform an uncacheable reference to
flush the write buffer at any time, thus achieving explicit memory synchronization with software.

����������
����
����
����
������� ������ �
�� ������ �
�� ������ �
�� ������ �
�				������ ������� ������� ������� �
This section describes the fundamentals of the processor interface and its interaction with the

execution core. These fundamentals will help to explain the relationship between design trade-offs in
the system interface and the performance achieved in RC36100 systems.

������������������������������������ ���������������� ������������������������

The RC36100 execution core utilizes many of the same operation fundamentals as does the
RISCore32 series processor. Thus, much of the terminology used to describe the activity of the
RC36100 is derived from the terminology used to describe the RISCore32 series. In many instances,
the activity of the execution core is independent of that of the bus interface unit.

������������������������

A cycle is the basic timing reference of the RC36100 execution core. Cycles in which forward
progress is made (the processor pipeline advances) are called Run cycles. Cycles in which no
forward progress occurs are called Stall cycles. Stall cycles are used for resolving exigencies such
as cache misses, write stalls, and other types of events. All cycles can be classified as either run or
stall cycles.

������������ ������������������������

Run cycles are characterized by the transfer of an instruction into the processor execution core,
and the optional transfer of data into or out of the execution core. Thus, each run cycle can be
thought of as having an instruction and data, or ID, pair.

There are two types of run cycles: cache-run cycles and refill-run cycles. Cache-run cycles, typi-
cally referred to as just-run cycles, occur while the execution core is executing out of its on-chip
cache; these are the principal execution mechanism.

Refill-run cycles, referred to as streaming cycles, occur when the execution core is executing
instructions as they are brought into the on-chip cache. For the RC36100, streaming cycles are
defined as cycles in which data is brought out of the on-chip read buffer into the execution core,
rather than defining them as cycles in which data is brought from the memory interface to the read
buffer.

���������� ������� ������� ������� ���������

There are three types of stall cycles:
Wait Stall Cycles. These are commonly referred to simply as stall cycles. During wait stall

cycles, the execution core maintains a state consistent with resolving a stall causing event. No cache
activity will occur during wait stalls.
� � (

�����

����	
 ���
��	����	 ���� ��	���	�
��	���')�*���'	&$
	��
Refill Stall Cycles. These occur only during memory reads, and are used to transfer data from
the on-chip read buffer into the caches.

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that is, one cycle before
entering a run cycle or entering another stall. During the final fixup cycle (the one which occurs
before finally re-entering run operation), the Instruction/Data (ID) pair which should have been
processed during the last run cycle is handled by the processor. The fixup cycle is used to restart the
processor and co-processor pipelines, and in general to fixup conditions which caused the stall.

There are five basic stalls that are caused by the following conditions:
Read Busy Stalls: If the processor core requires read data, either to process a cache miss or an

uncacheable reference, then it will be stalled until the read data is brought back to the execution core.
Write Busy Stalls: If the processor attempts to perform a store operation while the on-chip write

buffer is already full, then the processor will stall until a write transaction is begun on the interface to
free up room in the write buffer for the new address and data.

Multiply/Divide Busy Stalls: If software attempts to read the result registers of the integer
multiply/divide unit (the HI and LO registers) while a multiply or divide operation is underway, the
processor execution core will stall until the results are available.

Micro-TLB1 Fill Stalls: These stalls can occur when an instruction translation misses in the
instruction TLB cache (the micro-TLB, which is a two-entry cache of the main TLB used to translate
instruction references). When such an event occurs, the execution core will stall for one cycle, in
order to refill the micro-TLB from the main TLB. Since this is a single-cycle stall, it is of necessity a
fixup cycle.

Multiple Stalls: Multiple stalls are possible whenever more than one stall initiating event occurs
within a single run cycle. An example of this condition is when a single cycle results in both an
instruction cache miss and a data cache miss. The most important characteristic of any multiple stall
cycle is the validity of the Instruction/Data (ID) pair processed in the final fixup cycle. The RC36100
execution core keeps track of nested stalls to insure that orderly operation is resumed once all of the
stall causing events are processed.

For the general case of multiple stalls, the service order is:
 1. Micro-TLB Miss and Partial Word Store
 2. Data Cache Miss or Write Busy Stall
 3. Instruction Cache Miss
 4. Multiply/Divide Unit Busy

���������������������� !�� !�� !�� !����""""��������� �	������ �	������ �	������ �	�����
To speed performance, the RC36100 CPU core allows the CPU to exit wait stalls and begin refill

and/or streaming, even while the bus interface continues to provide additional data to the CPU.
To do this, the RC36100 incorporates an on-chip 4-entry read buffer. In response to a quad word

read, data begins to be returned to the CPU. As each datum is returned, it is entered into the read
buffer. At some point, the internal core is "Acknowledged" (the "AckN" internal signal) to indicate that
the read buffer contents may begin being transferred to the internal caches and execution core.

Transfer from the read buffer to the core/caches occurs at the pipeline rate. Thus, the ideal time
to provide such an acknowledgment is 3 cycles before the last datum is returned to the RC36100. In
this case, the last datum will be entered into the read buffer, and in the very next clock cycle be
placed into the cache/core. Note that in the case of single word reads, acknowledge is provided with
the last byte of the requested transfer; in the very next clock cycle, the datum is transferred into the
core.

To facilitate this operation, the RC36100 requires that the various memory controllers be
programmed for the optimal placement of "Ack", the internal control signal which is used to begin
refill/streaming. As a rule, Ack should be placed 3 cycles before the last response datum in a quad
word read.

1. Micro-TLB stalls will not occur in the RC36100, which does not include an on-chip TLB.
� � �

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
####��	 ��������� ��������	 ��������� ��������	 ��������� ��������	 ��������� ������ ��������������������������������
The read interface is designed to allow a variety of memory strategies. An overview of how data

is transmitted from memory and I/O devices to the processor is discussed below.

�� ����� �� �� �� � ���������������� ����� ��� ��� ��� ����������

A read transaction occurs when the processor internally performs a run cycle which is not satis-
fied by the internal caches. Immediately after the run cycle, the processor enters a stall cycle and
asserts the internal control signal MemRd. This signals to the internal bus interface unit arbiter that a
read transaction is pending.

Assuming that the read transaction can be immediately processed (that is, there are no ongoing
bus operations and no higher priority operations pending), the processor will initiate a bus read trans-
action on the rising edge of SysClk which occurs during phase two of the processor stall cycle.
Higher priority operations would have the effect of delaying the start of the read by inserting addi-
tional processor stall cycles.

Figure 7.2 illustrates the initiation of a read transaction, based on the internal assertion of the
MemRd control signal. This figure is useful in determining the overall latency of cache misses on
processor operation.

Figure 7.2 CPU Latency to Start of Read

�����
�
�
�
������������ !!!!������������������������������������

A read transaction begins when the processor asserts its SysRd control output, and also drives
the address and other control information onto the SysAddr and memory interface buses. Figure 7.3
illustrates the start of a processor read transaction.

The addressing occurs throughout the read transaction. At the rising edge of SysClk, the
processor will drive the read target address onto the SysAddr bus. At this time, SysALEn will also be
asserted, to allow an external ASIC or peripheral to capture the address. During the initial part of the
read phase, all-memory control read enables will be held high indicating that memory drivers should
not be enabled onto the SysData bus.

PhiClk

SysClk

MemRdN

Run

Stall

Stall(Arbitration)

SysRd

SysALEn

SysAddr
� � ,

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
Figure 7.3 Start of Bus Read Operation

Concurrent with driving addresses on the SysAddr bus, the processor will redundantly indicate the
beginning of the read transaction with SysBurstFrame asserting. A multi-datum transaction and
bursts will be indicated by SysBurstFrame remaining asserted as the current datum is sampled. The
functioning of the SysAddr(3:0) counter during mini-burst and burst reads is also described later.

�� ����� �� �� �� ��������� "�"�"�"��������� ####����������������

Once the SysAddr bus has presented the address for the transfer, the various memory controller
read enables assert and data is ready to be sampled.

�������������������������������� "�"�"�"��������� ���������������� ������������ ####��������������������������������

Regardless of whether the transfer is a burst read or a single datum transfer, the basic mecha-
nism for transferring data presented on the A/D bus into the processor is the same.

Although there are two internal control signals involved in terminating read operations, only the
internal RdCEnN signal is used to cause data to be captured from the bus.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Run/
Stall

Wait?

SysAddr(25:0)

SysDataRdy

SysWait

Addr
� � -

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
The memory system asserts internal RdCEnN to indicate to the processor that it has (or will have)
data on the data bus to be sampled. The earliest that internal RdCEnN can be detected by the
processor is the rising edge of SysClk after it has asserted SysALEn (start of phase 1 of the second
clock cycle of the read).

If internal RdCEnN is detected as asserted by the internal wait-state generator, the processor will
capture (with proper setup and hold time) the contents of the SysData bus on the immediately subse-
quent rising edge of SysClk. This captures the data in the internal read buffer for later processing by
the execution core/cache subsystem.

The RC36100 integrates on-chip a 4-word read buffer, capable of acting as a speed-matching
FIFO between the system interface and the execution core. This bus interface then performs byte or
half-word gathering, and assembles them into 32-bit words for the read buffer. Thus, the bus inter-
face supports 8-, 16-, and 32-bit memory subsystems, even for quad word reads, with no real system
impact. Figure 7.4 illustrates the sampling of data by the RC36100.

Figure 7.4 Data Sampling.

$$$$��������

���������������������������� ������������ ����������������

To terminate an ongoing read operation, the external memory system will use the following three
methods:

◆ It can supply an internal AckN (acknowledge) to the processor, to indicate that it has suffi-
ciently processed the read request and has or will supply the requested data in a timely
fashion. Note that internal AckN may be signalled to the processor “early”, to enable it to
begin processing the read data even while additional data is brought from the SysData
bus. This is applicable only in quad-word read operations.

◆ The external memory system can supply the requested data, using internal RdCEnN to
enable the processor to capture data from the bus. The processor will “count” the number
of times internal RdCEnN is sampled as asserted; once the processor counts that the
memory system has returned the desired amount of data (one byte to four words), it will
implicitly “acknowledge” the read after it samples the last required internal RdCEnN. This
technique may be important in memory systems where the latency can vary--e.g. dual
ported memory.

◆ On External DMA bus transactions, in the burst read mode, the DMADone input is used to
signal the end of the transaction.

SysClk

SysAddr(25:4)

SysAddr(3:0)

Internal RdCEnN

Current Word/Halfword/Byte Address

Internal AckN

AckN/
RdCEnN/

Sample
Data

Data Input

AckN or
RdCEnN?

Next Address

AckN or
RdCEnN?
� � �.

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
Throughout this chapter, method one will be illustrated. The other cases can be extrapolated
easily from these diagrams (for example, the system designer can assume that internal AckN is
asserted simultaneous with the last internal RdCEnN of a single word read transfer and 3 clocks
before the last internal RdCEnN of a quad word burst read transfer).

There are actually two phases of terminating the read: there is the phase where the memory
system indicates to the processor that it has sufficiently processed the read request, and the internal
read buffer can be released to begin refilling the internal caches; and there is the phase in which the
read control signals are negated by the processor bus interface unit.

The difference between these phases is due to block refill: it is possible for the memory system to
“release” the execution core even though additional words of the block are still required; in that case,
the processor will continue to assert the external read control signals until all four words are brought
into the read buffer, while simultaneously refilling/executing based on the data already brought on
board.

To determine the end of the read transaction, one of the following methods may be used:
◆ Systems that only use 32-bit memory sub-region ports as with the RC3051 family only have

single datum reads or burst reads and can either count the number of wait-cycles or use
the de-asserting edge of SysRd to end the transaction.

◆ Systems that use 16 or 8-bit ports must in general support mini-burst (multi-datum) reads.
Memory controllers for such systems can use the de-asserting edge of SysRd to reset the
controller. The memory controller can also look for SysBurstFrame to de-assert. When
SysBurstFrame de-asserts, the controller knows that it is handling the final datum of the
transaction.

Figure 7.5 shows the timing of the control signals when the read cycle is being terminated.

%�%�%�%��������������������� ������������&&&&������������ ####�������������������������������� ��

In general, the processor may begin a new bus activity as soon as the phase immediately after
the termination of the read cycle. Although this operation may logically be either a read, write, or bus
grant, there are no cases where a read operation can be signalled by the internal execution core at
this time.

Since a new operation may begin one-half clock cycle after the data is sampled from the bus, it is
important that the external memory system cease to drive the bus prior to this clock edge. To simplify
design, the processor provides various read enable outputs for each memory controller, which can be
used to control either the Output Enable of the memory device (presuming its tri-state time is fast
enough), or to control the Output Enable of a buffer or transceiver between the memory device data
bus and the processor SysData bus.
� � ��

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
Figure 7.5 Read Cycle Termination.

The RC36100 also adds a feature to the RC3051 family to enable the system designer to
lengthen the amount of time available for bus turn-around. The Bus Turn Around control field of the
various memory controller Control Registers enables the system designer to extend the minimum
guaranteed amount of time available for bus turn-around. This enables the system designer to elimi-
nate some transceiver devices and/or use slower system components, without worrying about bus
conflicts.

####�������������������������������� ����������������������������� !� !� !� !������������''''������������

In general, the processor will execute stall cycles until an internal AckN is detected. It will then
begin the process of refilling the internal caches from the read buffer.

The system designer should consider the difference between the time when the memory interface
has completed the read, and when the processor core has completed the read. The bus interface
may have successfully returned all of the required data, but the processor core may still require addi-
tional clock cycles to bring the data out of the read buffer and into the caches. Figure 7.6 illustrates
the relationship between Ack and the internal activity for a block read.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-RdBusy
(on Data)

Stall (on Inst)

Sample
Data/
New

Transaction

Data Input

Wait?

Fixup (on
Data)

Stall-Rdbusy
(on Inst)

SysAddr(25:0)

SysDataRdy

SysWait

Addr
� � ��

�����

����	
 ���
��	����	 ���� ��	���	� +	�&
��	����	 ��
��$ ��	���	�
Figure 7.6 Internal Processor States on 4-word Burst Read.

This figure illustrates that the processor may perform either a stream, fixup, or refill cycle in cycles
in which data is brought from the read buffer. The difference between these cycles is defined as
follows:

◆ Refill. A refill cycle is a clock cycle in which data is brought out of the read buffer and placed
into the internal processor cache. The processor does not execute on this data.

◆ Fixup. A fixup cycle is a cycle in which the processor transitions into executing the incoming
data. It can be thought of as a “retry” of the cache cycle which resulted in a miss.

◆ Stream. A stream cycle is a cycle in which the processor simultaneously refills the internal
instruction cache and executes the instruction brought out of the read buffer.

When reading the block from the read buffer, the processor will use the following rules:
◆ For uncacheable references, the processor will bring the single word out of the read buffer

using a fixup cycle.
◆ For data cache refill, it will execute either one or four refill cycles, followed by a fixup cycle.
◆ For instruction cache refill, it will execute refill cycles starting at word zero until it encounters

the miss address, and then transition to a fixup cycle. It will then execute stream cycles
until either the entire block is processed, or an event stops execution. If something causes
execution to stop, the processor will process the remainder of the block using simple refill
cycles. For example, Figure 7.7 illustrates the refill/fixup/stream sequence appropriate for
a miss which occurs on the second word of the block (word address 1).

Although this operation is transparent to the external memory system, it is important to under-
stand this operation in order to gauge the impact of design trade-offs on performance.

SysClk

AckN

RdBusy
negated

RdBusyN

XEnN
Instr. Data

PhiClk

Stall Stall

Refill/
Fixup

Refill/
Stream

/

Refill/
Stream

/

Fixup

Refill/
Stream

/

Fixup

Instr. Data Instr. Data Instr. Data

Word 0
Word 3Word 1

Fixup
Word 2
� � ��

�����

����	
 ���
��	����	 ���� ��	���	� �/	 0���	
��	����	
Figure 7.7 Instruction Streaming Internal Operation Example.

�$�$�$�$� %���� ���������� %���� ���������� %���� ���������� %���� ���������
The write protocol of the RC36100 has been designed to complement the read interface of the

processor. Many of the same signals are used for both reads and writes, simplifying the design of the
memory system control logic.

����
�
�
�
����������������������������� �������� ��������������������� �� ��� �� ��� �� ��� �� ��()*()*()*()*++++++++

����������������

����

The design goal of the write interface is to insure that a relatively slow write cycle does not
degrade the performance of the processor. To this end, a four deep write buffer has been incorpo-
rated on-chip. The role of the write buffer is to decouple the speed of the memory interfaces from the
speed of the execution engine.

The write buffer captures store information (data, address, and transaction size) from the
processor at its clock rate, and later presents it to the memory interface at the rate it can perform the
writes. Four such buffer entries are incorporated, thus allowing the processor to continue execution
even when performing a quick succession of writes. Only when the write buffer is already filled will
the processor stall; simulations have shown that significantly less than 1% of processor clock cycles
are lost to write buffer full stalls.

Although it may be counter-intuitive, a significant percentage of the bus traffic will in fact be
processor writes to memory. This can be demonstrated if one assumes the following:

���������� 1�#2

ALU Operations 55%

Branch Operations 15%

Load Operations 20%

Store Operations 10%

���/	 �	����
���	2

Instruction Hit Rate 95%

Data Hit Rate 90%

AckN

RdBusy
negated

RdBusyN

XEnN Instr.

PhiClk

Stall Stall
Refill Fixup Stream Stream

Instr. Instr. Instr.

Word 0 Word 1 Word 2 Word 3
� � �

�����

����	
 ���
��	����	 ���� ��	���	� ���	� �� 0���	 ������������
For these assumptions, in 100 instructions, the bus would see:
- 5 Reads to process instruction cache misses on instruction fetches
- 10% x 20 = 2 reads to process data cache misses on loads
- 10 store operations to the write through cache
- Total: 7 reads and 10 writes

In this example, about 60% of the bus transactions are write operations, even though only 10
instructions were store operations versus 100 instruction fetches and 20 data fetches.

�������� ����� ����� ����� ����� %����%����%����%���� ��
The RC36100 has two basic types of write transactions, depending on the port size selected in

the CP0 Port Size Configuration register for each memory sub-region. When writes are generated
from the CPU core, the 32-bit ports use only the single-word write type. DMA channels are also able
to generate burst writes. The 16-bit ports can use the single halfword write or the mini-burst (double
halfword) write type. And 8-bit ports are able to use the single byte write or the mini-burst (double, tri,
or quad byte) or DMA burst write types.

(,(,(,(,----������������ �������������������� $$$$��

Unlike instruction fetches and data loads, which are usually satisfied by the on-chip caches and
thus are not seen at the bus interface, all 32-bit write activity is seen at the bus interface as single
write transactions from the CPU core. There is no such thing as a “four word block burst write” from
the CPU core; the processor performs a word or sub-word write as a single autonomous bus transac-
tion. However, the on-chip DMA channels are capable of generating multi-word burst writes if so
programmed. The SysBurstFrame output is used to decode burst writes. Successive write transac-
tions can be processed using page mode writes by DRAM Memory Controller. This is particularly
important when “flushing” the write buffer before performing a data read.

Uncached writes—which contain only 1, 2, or 3 bytes of data—assert the appropriate byte
enables, MemWrEn(3:0) or DramCAS(3:0). Thus, there really is only one type of non-burst 32-bit
write transaction. However, in some cases such as with the DRAM Controller, the memory system
may elect to take advantage of the assertion of a page comparator internal write near signal during a
write to perform quicker write operations than would otherwise be performed.

In processing 32-bit writes, there is only one parameter of interest: the latency of the write. This
latency is influenced by the overall system architecture as well as the type of memory system being
addressed: time required to perform address decoding and bus arbitration, memory pre-charge
requirements, and memory control requirements, as well as memory access time.

The RC36100 has been designed to accommodate a wide variety of memory system designs,
including no-wait cycle operations (write completed in two cycles) through simpler, slower systems
incorporating many bus wait cycles.

))*)*)----������������ $$$$��

When the RC36100 uses a 16-bit port, it does its writes in halfword size or smaller increments.
Thus if the data contains 8 or 16 bits (1 or 2 bytes), it will be handled with a single halfword write with
the appropriate byte enables, MemWrEn(1:0) or DramCAS(1:0) asserted. Note that during 16-bit
accesses, MemWrEn and DramCAS bit3 is equal to bit 0 and bit 2 is equal to bit 1.

If the data contains 24 or 32 bits (3 or 4 bytes), it will be handled with a double halfword write mini-
burst with the appropriate byte enables, MemWrEn(1:0) or DramCAS for each halfword asserted. A
mini-burst puts both halfwords out as separate data phases of the same write transaction. The
memory system simply returns an internal AckN for each halfword datum which will automatically
increment SysAddr(3:1) and change the write enables if appropriate.

Similar to a read mini-burst, a write mini-burst can be detected using the SysBurstFrame signal to
determine when the final halfword data is being returned or by using the de-assertion of the SysWr
line. The RC36100 is designed to accommodate a wide variety of different memory bandwidths,
including DRAM systems that need pre-charge wait cycles for the first halfword and then use a fast
page mode access for bursting the second halfword.
� � �!

�����

����	
 ���
��	����	 ���� ��	���	� 0���	
��	����	 ��
��$ ��	���	�
The data lines used in 16-bit ports are always SysData(31:16) for big endian systems and
SysData(15:0) for little endian systems. This is regardless of the Reverse Endianess bit in the CP0
Status register. For big endian systems, MemWrEn(3) and DramCAS(3) correspond to the byte lane
in SysData(31:24) and MemWrEn(2) and DramCAS(2) correspond to SysData(23:16). For little
endian systems, MemWrEn(1) and DramCAS(1) correspond to the byte lane in SysData(15:8) and
MemWrEn(0) and DramCAS(0) correspond to SysData(7:0).

....-���-���-���-��� $$$$��

When the RC36100 uses an 8-bit port, it performs writes in byte size increments. Thus if the data
contains 1 byte, it will be handled with a single byte write. If the data contains 2, 3, or 4 bytes, it will
handled with a double, tri, or quad byte write mini-burst, respectively. A mini-burst puts 2, 3, or 4
bytes out as separate data phases of the same write transaction.

The memory system simply returns an internal AckN for each byte datum which will automatically
increment SysAddr(3:0). Similar to a read mini-burst, a write mini-burst can be detected using the
SysBurstFrame signal to determine when the final byte datum is being returned or by using the de-
assertion of the SysWr line. The RC36100 is designed to accommodate a wide variety of different
memory bandwidths, including DRAM systems that need pre-charge wait cycles for the first byte and
then use a fast page mode access for bursting subsequent bytes.

The data lines used in 8-bit ports are always SysData(31:24) for big endian systems and
SysData(7:0) for little endian systems. This is regardless of the Reverse Endianess bit in the CP0
Status register.

%���� ����%���� ����%���� ����%���� ��������������� ������ ������ ������ ��������� ��� ��� ��� �����������������������������
The protocol for transmitting data from the processor to memory and I/O devices are discussed

below.

�� ������������ ��������������������

A write transaction occurs when the processor has placed data into the write buffer, and the bus
interface is either free, or write has the highest priority. Internally, the processor bus arbiter uses the
NotEmpty indicator from the write buffer to indicate that a write is being requested.

Assuming that the write transaction can be processed (that is, there are no ongoing bus opera-
tions, and no higher priority operations pending), the processor will initiate a bus write transaction on
the next rising edge of SysClk. Higher priority operations would have the effect of delaying the start
of the write. Figure 7.8 on page 17 illustrates the initiation of a write transaction, based on the internal
negation of the internal WbEmptyN control signal. This figure applies when the processor is
performing a write, and the write buffer is otherwise empty. If the write buffer already had data in it,
the buffer would continually request the use of the bus until it was emptied; it would be up to the bus
interface unit arbiter to decide the priority of the request relative to other pending requests. Additional
stores would be captured by other write buffer entries, until the write buffer was filled.

�����
�
�
�
������������ !!!!������������������������������������

A write transaction begins when the processor asserts its SysWr control output, and also drives
the address and other control information onto the SysAddr and memory interface buses. The data is
driven with SysALEn asserting. Figure 7.8 also illustrates the start of this type of processor write
transaction, including the addressing of memory and presenting the store data on the SysData bus.

At the rising edge of SysClk, the processor will drive the write target address onto the SysAddr
bus. At this time, SysALEn and SysBurstFrame will also be asserted, to indicate to external ASICs
and peripherals that a memory transaction is beginning.

$��$��$��$�� "�"�"�"��������� ####����������������

Simultaneous with driving the address out, the data phase begins.
The processor enters the data phase by performing the following sequence of events:

◆ It negates SysALEn.
◆ It internally captures the data in a register in the bus interface unit, and enables this register

onto its output drivers on the SysData bus. At this time, it begins to look for the end of the
write cycle.
� � �(

�����

����	
 ���
��	����	 ���� ��	���	� 0���	
��	����	 ��
��$ ��	���	�
$$$$��������

���������������������������� ������������ ��������������������

There are only two methods for the external memory system to terminate a write operation:
◆ It can supply the appropriate number of internal AckNs (acknowledges) to the processor by

using an internal memory controller wait-state generator to indicate that it has sufficiently
processed the write request, and that the processor may terminate the write.

◆ On External DMA bus transactions, in the burst write mode, the DMADone input pin is used
to signal the end of the transaction.

Figure 7.9 shows the timing of the control signals when the write cycle is being terminated.

Figure 7.8 Write Cycle Termination

To determine the end of the write cycle, one of the following methods may be used:
- Systems that only use 32-bit memory sub-region ports, such as the RC3051 family, only

have single datum writes as generated from the CPU and either count the number of wait-
cycles or use the de-asserting edge of SysWr to end the transaction. However, since the
on-chip DMA Controller can generate burst writes, memory systems in general must be able
to handle bursts.

- Systems that use 16 or 8-bit ports must in general support mini-burst writes. Memory
controllers for such systems can use the de-asserting edge of SysWr to reset the controller.
An external memory controller or logic analyzer can also look for SysBurstFrame to de-
assert. When SysBurstFrame de-asserts, the controller knows that it is handling the final
datum of the transaction.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Data Out/
New

Transaction

Data Output

Wait?

SysAddr(25:0)

SysDataRdy

SysWait

Addr

Run/
Stall

Run/
Stall

Run/
Stall
� � ��

�����

����	
 ���
��	����	 ���� ��	���	� 0���	
��	����	 ��
��$ ��	���	�
Latency Between Processor Operations
In general, the processor may begin a new bus activity in the phase immediately after the termina-

tion of the write cycle. This operation may be either a read, write, or bus grant. A new operation may
begin as soon as one clock cycle after the final internal AckN is sampled from the interface.

Also note that bus turn around after a write transaction does not occur. That is, the processor
continues to drive the SysAddr and SysData buses throughout the write transaction (both address
and data phases), and it will also drive the SysAddr bus during the start of either a subsequent read
or write transaction. Since no change in bus ownership occurs, the Bus Turn Around field of the CP0
Bus Control register does not apply after write transactions.

�������������������� ������������������������ /�/�/�/��������� ������������������������������������

It is possible that the execution core on occasion may be able to fill the on-chip write buffer. If the
processor core attempts to perform a store to the write buffer while the buffer is full, the execution
core will be stalled by the write buffer until a space is available. Once space is made available, the
execution core will use an internal fixup cycle to “retry” the store, allowing the data to be captured by
the write buffer. It will then resume execution.

The write buffer can actually be thought of as “four and one-half” entries: it contains a special data
buffer which captures the data being presented by an ongoing bus write transaction. Thus, when the
bus interface unit begins a write transaction, the write buffer slot containing the data for that write is
freed up in the second phase of the write transaction. If the processor was in a write busy stall, it will
be released to write into the now available slot at this time, regardless of how long it takes the
memory system to retire the ongoing write.

Note that each write buffer entry is one internal 32-bit word wide, but each entry can only hold the
result of one store operation. Thus a 32-bit port can store 4 words while a 16-bit port can store up to
8 halfwords when using store word operands. However, if for example, four store byte operations are
done, each byte takes a full entry.

Figure 7.9 illustrates the write-buffer-full operation.

Figure 7.9 Write-Buffer-Full Operation

PhiClk

SysClk

MemWrN

Start
Write

Writ e
Busy
Stall

Stall
(Arbitration)

SysWr

SysALEn

SysData(31:0) Data

WbFullN

Stall Fixup Run

SysAddr(25:0) Addr
� � �,

�����

������ ��	
������

������� 	
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. One of the on-chip bus controllers is the “Memory Controller” and is
described in this chapter.

This chapter will provide an overview of the Memory Controller interface, a complete description of
the signal pins and their timing, and an explanation on how the interface relates to typical external hard-
ware ROMs and RAMs.

������������

������������
◆ Controls ROM, Flash, EEPROM, SRAM and PCMCIA style memories
◆ Controls up to 8 banks of memory

(Note: chip selects are shared with the I/O Controller)
◆ Interleaved and Non-Interleaved support
◆ Each MemCS can be programmed to:

- Individual chip selects
- Combined interleaved pair-wise chip selects
- Combined PCMCIA/MEM-style pair-wise chip selects

◆ Each Bank has Programmable Base Address
◆ Each Bank Size programmable from 32KB - 64MB
◆ 8, 16, 32-bit, and interleaved 32-bit boot prom support
◆ Wait-State Generator features:

- Programmable time from start to end of each data access for each area
- Programmable time options for reads and writes
- Programmable time options for single word accesses and for burst block accesses
- Internally generates the RdCEnN and AckN timing for all CPU accesses
- A programmed value may be overridden by the SysWait input signal
- Direct control of data path transceivers supports various options:
- Direct Bus Connection
- FCT260 Bidirectional Latched Multiplexor
- FCT245 Bidirectional Transceiver
- FCT543 Bidirectional Registered Transceiver

����������������� ��� ��� ��� ����������������������
The functional block diagram of the Memory Bus Controller is shown in Figure 8.1. Starting at the

bottom, the main Memory Controller Control Signal State Machine is responsible for generating the basic
Memory Control signals used to connect to external PROMs, SRAMs, and other similar types of memory.
These signals include chip selects, read enables/strobes, and write enables/strobes. The Memory
Controller as a whole works in cooperation with the Bus Interface Unit described in Chapter 7.

Thus the Control Signal State Machine sends and receives information from the BIU Controller for
assistance with controlling the port width and controlling partial word reads and writes. The Control
Signal State Machine also uses information stored in the software programmable Memory Controller
Register Bank for example, to control interleaved versus non-interleaved memory cycles.
� � �

�����

����	
 ���
	����	 ����	
 ���
	����	 �������
The Memory Controller Wait-State Generator is located in the center of Figure 8.1. The Wait-State
Generator takes care of sending and receiving information from the BIU Controller in order to control
the sequencing and timing of reading and writing each individual datum. The number of wait-states is
derived from the settings programmed into the Register Bank. Once the correct number of wait-states
has been counted out, then the Wait-State Generator sets the appropriate internal BIU Acknowledge
signals. With the programmable Wait-State Generator, it is possible to eliminate the external state
machines that are traditionally used for this function.

At the top of Figure 8.1 is the Memory Controller Decoder. The decoder constantly monitors the
Bus Interface Unit's address and data bus to see if either:

 1. The access is to the Memory Controller's Register Bank.
 2. The access is in one of the Memory Controller's Chip Select Areas that is responsible for

controlling the bus transaction.
And, at the left of Figure 8.1, is the Memory Controller Register Bank. The Register Bank allows

the software programmer access to the many different options of the Memory Controller.
The chip select address ranges, the number of wait-states, the port-width of the chip select, and

other similar options are programmed into the Register Bank as part of the software initialization
sequence of the boot operating system.

Because the Memory Controller is typically used by the boot PROM, the essential default values
of the boot PROM chip select, MemCS(0) are set by the Reset Initialization Vector as described in
Chapter 18, “Reset and Clocking.”

Figure 8.1 RC36100 Memory Bus Controller Block Diagram

������������������������ ������������������������� ������������ ������������ ������������ �������
These external pins are typically attached directly from the RC36100 RISController to external

ROM and RAM chips and their transceivers.

MemCS
MemRdEnEven
MemRdEnOdd
MemWrEn(3:0)

Control
Signal
State
Machine

BIU Controller

PortWidth, BankAccess

ByteEn

Wait-
State
Generator

Decoder

BIU Controller

 DataRdy,Ack, RdCEn, BTA

BIU Controller Address and Control

Register
Bank

BIU Controller Data

Boot Port Width

Reset
Initialization
Vector

SysWait

IoCS
IoRd /IoDStrobe
IoWr / IoRdHWr

Rd, Wr
� � �

�����

����	
 ���
	����	 ����	
 ���
	����	 �������

����������
��
��
��
�������������������� ������������������������

����������������

����������������

Memory Chip Select: The MemCS signals are active low outputs used to select one of the
programmable memory controller areas. Typically a bank of external memory chips each attach to a
MemCS signal such that the memory bank can be selected and turned on during a memory transac-
tion. When the address from the CPU or DMA Controller matches the memory block corresponding
to a particular MemCS signal, that MemCS will assert at the beginning of the next memory transac-
tion and de-asserts at the end of that transaction.

MemCS signals are used individually for non-interleaved systems or in pairs (i.e., MemCS 0 & 1,
2 & 3, 4 & 5, or 6 & 7) for interleaved systems. When using interleaved memory, the pair of chip
selects are both asserted for a read but only one at a time is asserted for a write.

The boot PROM is assigned to MemCS(0) and if interleaved, MemCS(1). The port width option is
determined using the Reset Initialization Vector on the ExcInt(2:0) pins. Other options are set to
universal settings which the boot software can reprogram.

The MemCS chip selects are selectable and shared between Memory and I/O type-types (see
Chapter 9, “I/O Bus Controller”).

�� ������������������������

Memory Read Enable Even Bank: This active-low output signal is used as a read enable strobe
used in conjunction with the even chip selects, MemCS(6:4:2:0). Typically, MemRdEnEven is
attached to all even bank's memory chips and transceivers (if present). If the banks are interleaved,
this signal is the output enable for the even bank of the selected memory pair. Whether the banks are
interleaved or non-interleaved, all banks that share the same transceiver must use either all even or
all odd chip selects (MemCSs) rather than an odd/even pair unless external gating circuitry is
provided. MemRdEnEven controls when the memory chip and its transceiver (if present) can drive
the data signals back on to the main system data bus, SysData(31:0).

Transceivers (FCT260, FCT245, or FCT543) can be used to isolate memory systems and allow
for the different turnoff times for various memory devices. If transceivers are used, then during Multi-
plexer FCT260-Type interleaved accesses, MemRdEnEven OR's with MemRdnOdd internally such
that MemRdEnEven remains asserted for the majority of the bus transaction for both even and odd
accesses. Typically in the Multiplexer Mode, MemRdEnEven is attached to the common output
enable input pin of the multiplexer while MemRdEnOdd is attached to the path input pin of the multi-
plexer. During FCT245-Type interleaved type accesses, MemRdEnEven OR's with an internally
generated MemWrEnEven.

������������������������������������ ������������������������

Memory Read Enable Odd Bank: This active-low output signal is used as a read enable strobe
used in conjunction with the odd chip selects MemCS(7:5:3:1). Typically, MemRdEnOdd is attached
to all odd bank's memory chips and transceivers (if present). During FCT245-Type interleaved type
accesses, MemRdEnOdd OR's with MemWrEnOdd internally. Please see the signal description for
MemRdEnEven for more information.

������������������������

���������������� ���� ����������������������������
�
�
�
����������������� ������������������������

!�!�!�!�

��������""""####����������������

��������������������

��������!!!!������������

$$$$%�%�%�%�$&$&$&$&��������

System Write Enable: These dedicated byte enable strobes are always driven by the RC36100,
except during the Address Strobe of external DMA cycles. The pins always act as write enables
except during PCMCIA-type accesses or PCI-style accesses.

Output - During 32-bit accesses, these strobes are always de-asserted, except for the appro-
priate byte lane(s) for partial-word writes and mini-bursts. SRAM and Flash EPROM memories can
directly connect their byte write enables to the RC36100 MemWrEn(3:0) signals. During 16-bit
accesses, either MemWrEn(3:2) or MemWrEn(1:0) are used as both pairs will be equivalent. During
8-bit accesses, either MemWrEn(3) or MemWrEn(0) are used as they will be equivalent.
� � �

�����

����	
 ���
	����	 ����	
 ���
	����	 ���	����
Input - During External DMA accesses, the external DMA Controller must assert the appropriate
byte lanes during Phase 1 of a write when SysALEn and SysWr are asserted. The byte enables are
ignored by the BIU Controller during external DMA reads.

MemWrEn(3:0) assert and de-assert on the falling edge of SysClk, whereas most control signals
use the opposite edge of the clock. Thus it is not generally recommended that they be used for any
external state machine inputs. During idle cycles, MemWrEn(3:0) will return to inactive (high).

Memory Byte Enable Bus: Similar to PCI style accesses, the MemWrEn(3:0) bus can be
programmed to assert the appropriate byte lanes on both reads and writes, rather than just on writes.
In this mode as with the other modes, MemByteEn(3:0) are required to return de-asserted high at the
end of every bus transaction.

Memory Address Bus: During a PCMCIA Memory or I/O type access, the MemWrEn(3:0) bus is
instead driven with inverted Physical Address bits. On the RC36100 and R3051-base family memory
map, virtual and physical addresses (29:0) are the same. An application using PCMCIA can for
example use MemAddr(27:26) to externally decode PCMCIA style chip selects into as many as four
(256M/64M = 4) slots. In this mode as in the other modes, the signals all return inactive high at the
end of the bus transaction.

""""����'''' ���������������������((�((�((�((����� ��� ��� ��� ��������������(((())))

Many of the BIU Controller Signals are necessary to complete the memory interface. These
signals are listed here as a reminder. Information specific to the Memory Controller is given here and
general information about the signal is given in Chapter 7, “BIU Controller.”

�#�#�#�#))))!!!!������������

$*$*$*$*������������ ��

System Address Bus: SysAddr is an output bus when used with the Memory Controller. Typical
32-bit memory banks connect the word offset of the Least Significant Bits (LSB) of SysAddr to each
memory chip. Thus the typical 32-bit memory bank skips SysAddr(1:0) and connects starting with
SysAddr(2) on up. Typical 16-bit memory banks connect the halfword offset of the LSBs of SysAddr
to each memory chip starting with SysAddr(1) on up. Typical 8-bit memory banks connect the LSBs
of SysAddr to each memory chip starting with SysAddr(0) on up.

�#�#�#�#)))) � � � ���������

����+�+�+�+��������� ��

System Data Bus: Typical 32-bit memory banks connect the entire 32-bit SysData bus to the
memory chips' data pins or to their transceivers. 16-bit and 8-bit memory banks connect to particular
data pins depending on whether the Endianess of the system is Big Endian or Little Endian. Thus 16-
bit memory banks use SysData(31:16) if they are Big Endian and SysData(15:0) if they are Little
Endian. 8-bit memory banks use SysData(31:24) if they are Big Endian and SysData(7:0) if they are
Little Endian. The User Mode Reverse Endianess Bit in the CP0 Status Register has no effect on the
connections to SysData, however, it strongly recommended that the Reverse Endianess Bit not be
used to “correct” an Endianess connection as it does not function in the kernel mode, nor does it
correct the boot PROM Endianess.

�#�#�#�#))))���������������� ��������������������

System Wait Negated: SysWait can be used by an external source to add wait-states to the
Memory Controller. Since the Memory Controller itself has a Wait-State Generator, SysWait typically
is not needed and can be pulled-up with a resistor. The most likely application of SysWait is for an
asynchronous memory event such as a Dual-Port Memory Busy signal which can be used to attach
to SysWait to delay the beginning of a Memory Transaction in the Wait Mode option of the Memory
Control Register 2. Please see Chapter 7. “BIU Controller” for a general description of SysWait.

������������������������ ������������������������� ������ ������ ������ �����������������������������
The Memory Controller (MemCntrl) provides control for all memory spaces except for the DRAM

space. These memory areas are intended for use by items such as boot ROM, Flash memory cards,
additional EPROM and EEPROM space, SRAMs, and Dual Port RAM. Such memories typically have
address inputs, data I/O, chip select, read output enable, and if writable, a write enable strobe.
� � �

�����

����	
 ���
	����	 ����	
 ���
	����	 ���	����
���������������� ��(��(��(��(�,�,�,�,����))))

The Memory Controller (MemCntrl) contains up to 8 separate memory spaces, each having its
own Memory Controller Chip Select (MemCS) output pin. Each MemCS space occupies from 8K to
256MB of address space of which 64MB is externally addressable (due to the 26 address lines). The
address space that each MemCS decodes is programmable. The MemCntrl will use the programmed
information in the MSB and LSB Base Address Registers along with the size (8K to 256MB) of the
given area as programmed in the MSB and LSB Page Mask Registers. This information is used to
compare with the address asserted by the CPU-BIU or DMA Controller to determine if that particular
MemCS area is being accessed for the current read or write. Each area supports single reads, burst
reads, single writes, and burst writes. The port size of the data path (8, 16, 32-bit, or interleaved) of
each area is also programmable with each area's Control Register.

The MemCS signals can be used in pairs for interleaving. The pairs are MemCS(1:0) for one inter-
leaved area and for the others, MemCS(3:2), MemCS(5:4), and MemCS(7:6). When interleaved,
both chip selects within a pair must be programmed to the same values by the user. Note that the
memory controller does not support seamless jumperless upgrades from single bank to interleaved
systems because of the system dependent address multiplexing involved. This can be done exter-
nally for RAM types, however, for ROM types, the PROM chip programmer would require “switching
of the binary object file” which is rarely worth the trouble.

----������������)))),�,�,�,����������������� ������������������������((((�����������������.��.��.��.�,,,,����

The Memory Controller provides transceiver output enables and write enables that are suitable for
direct bus connection, FCT260 multiplexors, FCT245 transceivers, or for FCT543 bidirectional regis-
ters. The selection of the type of memory is software programmable. 8/16/32-bit wide Boot PROMs
can use either the direct bus connection, FCT244s, or FCT543s. FCT245s can be used if the Boot
PROM initializes the Memory Controller before doing any writes. Interleaved Boot PROMs are
assumed to use the FCT260 type. FCT245 or FCT543 Boot PROM types must initialize the memory
controller, before attempting to switch banks, perform writes, or perform burst reads.

����/��������/��������/��������/�������� 0000��������������������������������

The Wait-State Generator (WSG) controls the speed of the memory accesses to and from the Bus
Interface Unit Controller. This includes the time from the start of a memory transaction until the first
datum is sent or received and the time between consecutive datum on burst transactions. The WSG
also is programmed to generate the internal RdCEnN and AckN signals for CPU read and write
requests.

The internal Acknowledge signal, “AckN” (described in Chapter 7) is the same as the external
signal pin that the R3051 RISController family uses. On single word reads and on both single word
and burst writes, AckN is automatically placed at the end of the transaction by the WSG. However, on
burst reads, the user is required to program the correct value into each corresponding MemCS area's
Control Register “Burst Ack” field, to optimize the CPU pipeline restart after a burst read. The most
optimal value is 3 pipeline clocks previous to when the last datum is sampled. Less optimal values
can be used if, for instance, SysWait is used. For more information, refer to the “Start2BurstAck”
chart at the end of this chapter.

The signal called SysWait can be used to override the Wait-State Generator’s programmed
settings. The actual action performed by the WSG when SysWait is asserted will depend on when it
is asserted, relative to the transaction. SysWait has a pipeline delay, such that it must be asserted
two clocks before the desired effect is noticeable. By asserting it immediately after a datum is
received or transmitted, the next datum can be delayed. However, use for this purpose is generally
not recommended since the WSG has the same functionality.

The SysWait signal is useful for accessing memories such as Dual-Port-type memory, off-card
“Ack”-type memory, and PCI-style memory.

�������������)�)�)�)������������ ������������������������ 1111��������������������������2��2��2��2�(�(�(�(��������####

The Memory Controller contains 8 sets of registers, one set for each chip select. These registers
allow the Memory Controller to be configured for different types and speeds of memory. Thus, almost
any system speed/cost/manufacturing trade-off can be accommodated.
� � �

�����

����	
 ���
	����	 �����
�	 ����	��
����
�������������������������������� ��
The Memory Controller Registers are divided into 8 sets of registers, one set for each chip select

memory area. Table 8.1 and Table 8.2 provide the address map and descriptions of the Memory and
I/O Controller registers. These registers are shared with the I/O Controller as described in Chapter 9.

Table 8.1 List of the Memory and I/O Controller Registers (1 of 2).

 !
�" #$$	��� �����
�	 ����	��
���

0xFFFF_E200
0xFFFF_E204
0xFFFF_E208
0xFFFF_E20C
0xFFFF_E210
0xFFFF_E214
0xFFFF_E218

Memory and I/O LSB Base Address Register for Bank 0
Memory and I/O MSB Base Address Register for Bank 0
Memory and I/O LSB Bank Mask Register for Bank 0
Memory and I/O MSB Bank Mask Register for Bank 0
Memory and I/O Control Register for Bank 0
Memory and I/O LSB Wait-State Generator Register for Bank 0
Memory and I/O MSB Wait-State Generator Register for Bank 0

0xFFFF_E220
0xFFFF_E224
0xFFFF_E228
0xFFFF_E22C
0xFFFF_E230
0xFFFF_E234
0xFFFF_E238

Memory and I/O LSB Base Address Register for Bank 1
Memory and I/O MSB Base Address Register for Bank 1
Memory and I/O LSB Bank Mask Register for Bank 1
Memory and I/O MSB Bank Mask Register for Bank 1
Memory and I/O Control Register for Bank 1
Memory and I/O LSB Wait-State Generator Register for Bank 1
Memory and I/O MSB Wait-State Generator Register for Bank 1

0xFFFF_E240
0xFFFF_E244
0xFFFF_E248
0xFFFF_E24C
0xFFFF_E250
0xFFFF_E254
0xFFFF_E258

Memory and I/O LSB Base Address Register for Bank 2
Memory and I/O MSB Base Address Register for Bank 2
Memory and I/O LSB Bank Mask Register for Bank 2
Memory and I/O MSB Bank Mask Register for Bank 2
Memory and I/O Control Register for Bank 2
Memory and I/O LSB Wait-State Generator Register for Bank 2
Memory and I/O MSB Wait-State Generator Register for Bank 2

0xFFFF_E260
0xFFFF_E264
0xFFFF_E268
0xFFFF_E26C
0xFFFF_E270
0xFFFF_E274
0xFFFF_E278

Memory and I/O LSB Base Address Register for Bank 3
Memory and I/O MSB Base Address Register for Bank 3
Memory and I/O LSB Bank Mask Register for Bank 3
Memory and I/O MSB Bank Mask Register for Bank 3
Memory and I/O Control Register for Bank 3
Memory and I/O LSB Wait-State Generator Register for Bank 3
Memory and I/O MSB Wait-State Generator Register for Bank 3

0xFFFF_E280
0xFFFF_E284
0xFFFF_E288
0xFFFF_E28C
0xFFFF_E290
0xFFFF_E294
0xFFFF_E298

Memory and I/O LSB Base Address Register for Bank 4
Memory and I/O MSB Base Address Register for Bank 4
Memory and I/O LSB Bank Mask Register for Bank 4
Memory and I/O MSB Bank Mask Register for Bank 4
Memory and I/O Control Register for Bank 4
Memory and I/O LSB Wait-State Generator Register for Bank 4
Memory and I/O MSB Wait-State Generator Register for Bank 4

NOTES to table:
1. Big Endian software must offset these addresses by b'10 (0x2), if halfword operations are used.
� � �

�����

����	
 ���
	����	 �����
�	 ����	��
����
Table 8.2 List of the memory and I/O Controller Registers (2 of 2)

����������������####
�"
�"
�"
�" "�"�"�"�))))���� !!!!����������������)))))))) ����������������))))�������������������� "��3"��3"��3"��3 ����44444444����

5555

��������

�"�"�"�""�)�"�)�"�)�"�)�!!!!������������������������

�44�44�44�44��������6666�7�7�7�7
���

����������������#### 8888����" "�)" "�)" "�)" "�)���� !!!!����������������)))))))) �������������)�)�)�)��������� .�� .�� .�� .����� "�"�"�"�����3333 ����44444444����

5555

��������8888����"""""�)"�)"�)"�)�!��!��!��!���������������������

����44�44�44�44�����6�6�6�6�

There are 8 pairs of Base Address MSB & LSB Registers, a pair for each Memory Chip Select
(MemCS). Each pair of memory base address registers is concatenated into an internal 32-bit
register and refers to the most significant 16 address bits and the least significant 16 address bits.

The formats of the MemMSBBaseAddrReg and MemLSBBaseAddrReg are displayed in Figure
8.2 and Figure 8.3. These registers are both readable and writable. The Base Address Registers are
used to determine the starting location of a particular Memory Chip Select.

Figure 8.2 Memory and I/O MSB Base Address Register ('MemMSBBaseAddrReg').

Figure 8.3 Memory and I/O LSB Base Address Register ('MemLSBBaseAddrReg').

 !
�" #$$	��� �����
�	 ����	��
���

0xFFFF_E2A0
0xFFFF_E2A4
0xFFFF_E2A8
0xFFFF_E2AC
0xFFFF_E2B0
0xFFFF_E2B4
0xFFFF_E2B8

Memory and I/O LSB Base Address Register for Bank 5
Memory and I/O MSB Base Address Register for Bank 5
Memory and I/O LSB Bank Mask Register for Bank 5
Memory and I/O MSB Bank Mask Register for Bank 5
Memory and I/O Control Register for Bank 5
Memory and I/O LSB Wait-State Generator Register for Bank 5
Memory and I/O MSB Wait-State Generator Register for Bank 5

0xFFFF_E2C0
0xFFFF_E2C4
0xFFFF_E2C8
0xFFFF_E2CC
0xFFFF_E2D0
0xFFFF_E2D4
0xFFFF_E2D8

Memory and I/O LSB Base Address Register for Bank 6
Memory and I/O MSB Base Address Register for Bank 6
Memory and I/O LSB Bank Mask Register for Bank 6
Memory and I/O MSB Bank Mask Register for Bank 6
Memory and I/O Control Register for Bank 6
Memory and I/O LSB Wait-State Generator Register for Bank 6
Memory and I/O MSB Wait-State Generator Register for Bank 6

0xFFFF_E2E0
0xFFFF_E2E4
0xFFFF_E2E8
0xFFFF_E2EC
0xFFFF_E2F0
0xFFFF_E2F4
0xFFFF_E2F8

Memory and I/O LSB Base Address Register for Bank 7
Memory and I/O MSB Base Address Register for Bank 7
Memory and I/O LSB Bank Mask Register for Bank 7
Memory and I/O MSB Bank Mask Register for Bank 7
Memory and I/O Control Register for Bank 7
Memory and I/O LSB Wait-State Generator Register for Bank 7
Memory and I/O MSB Wait-State Generator Register for Bank 7

NOTES to table:
1. Big Endian software must offset these addresses by b'10 (0x2), if halfword operations are used.

MSB Base Addr

16

15 0

0

15

15 13 12 0
LSB

14

1

Base
Addr
� � %

�����

����	
 ���
	����	 �����
�	 ����	��
����
Because of the possibility of interleaving, there are four groups of two chip selects, as follows:

Bits 31:28 of each group must be identically programmed since the internal hardware uses bits
31:28 from the even register, MemCS(0,2,4,6), for each group. This corresponds to setting each
group of four chip selects into 1 of 16 possible 256MB address spaces.

Bits 27:15 must be programmed to the desired base address. This corresponds to separate
address spaces for each chip select of 32KB to 256MB.

Internally, bits 14:0 are reserved to ‘0’ and must be programmed as ‘0’. This corresponds to
having minimum contiguous chip select banks of 32KB. The default base addresses at reset are
shown in Table 8.3.

In summary:
 1. 1. Bits 31:28 of each group of four MemCS base addresses is set by the first MemCS of the

group.
 2. 2. Bits 27:15 of each MemCS base address is used to distinguish the starting address of each

memory space within a group.
 3. 3. Bits 14:0 are always ignored.

Table 8.3 Memory and I/O Controller Base Addresses.

����������������####
�"
�"
�"
�" "�"�"�"�����3333
�)
�)
�)
�)3333 �������������)�)�)�)��������� .�� .�� .�� .����� "�"�"�"�����3333 ����44444444����

5555

��������

�"�"�"�""��3"��3"��3"��3
�
�
�
�))))3�3�3�3���������

����44444444��������6666�7�7�7�7
���

����������������#### 8888����" "�" "�" "�" "��3�3�3�3
�)3
�)3
�)3
�)3 ����������������))))�������������������� "��3"��3"��3"��3 �44�44�44�44����

5555

��������8888����"""""�"�"�"�����3333
�
�
�
�))))3333������������

����44444444��������6666����

There are 8 pairs of Bank Mask Registers, one pair for each chip select (MemCS). The two Bank
Mask Registers are concatenated into an internal “32-bit” register and refer to the most significant 16
address bits and the least significant 16 address bits.

The formats of the MemMSBBankMaskReg and MemLSBBankMaskReg are displayed in Figure
8.4 and Figure 8.5. These registers are both readable and writable and bits 31:15 are set and bits
14:0 are cleared by default on reset.

Group 0: MemCS(1:0)

Group 1: MemCS(3:2)

Group 2: MemCS(5:4)

Group 3: MemCS(7:6)

�!�� �����
 ��&�'�
 (��'�

MemCS(0) 0x 1FC0_0000

MemCS(1) 0x 1FF0_0000 non-interleaved

(if interleaved, then 0x 1FC00000)

MemCS(2) 0x 2FC0_0000

MemCS(3) 0x 2FF0_0000 non-interleaved

(if interleaved, then 0x 2FC0_0000)

MemCS(4) 0x 3FC0_0000

MemCS(5) 0x 3FF0_0000 non-interleaved

(if interleaved, then 0x 3FC0_0000)

MemCS(6) 0x 4FC0_0000

MemCS(7) 0x 4FF0_0000 non-interleaved

(if interleaved, then 0x 4FC0_0000)
� � �

�����

����	
 ���
	����	 �����
�	 ����	��
����

Figure 8.4 Memory and I/O MSB Bank Mask Register ('MemMSBBankMaskReg').

Figure 8.5 Memory and I/O LSB Bank Mask Address Register ('MemLSBBankMaskReg').

The Bank Mask Registers are used to decide which address bits in the base address are to be
used for comparing whether a chip select (MemCS) is to be activated. The internal grouping of chip
selects is as follows:

Bits 31:28 of each group must be programmed identically since the internal hardware uses bits
31:28 from the even register, MemCS(0,2,4,6) for each group. This corresponds to setting each
group of four chip selects into 1 of 16 possible 256M address spaces.

Internally, bits 27:13 must be programmed to the desired Bank mask. This corresponds to sepa-
rate address spaces for each chip select of 8K to 256M. Bits 12:0 are reserved to ‘0’ and must be
programmed as ‘0’. This corresponds to having minimum contiguous chip select banks of 8K.

In summary:
 1. Bits 31:28 of each group of four MemCS Bank masks is set by the first MemCS of the group.
 2. Bits 27:15 of each MemCS Bank mask are used to distinguish the size of each memory space.
 3. Bits 14:0 are always ignored.
Table 8.4 lists the values and actions for the Memory Mask Field Encoding, Figure 8.6 shows the

Memory and I/O Control Register, and Table 8.5 provides the register’s bit assignments.

Group 0: MemCS(1:0)

Group 1: MemCS(3:2)

Group 2: MemCS(5:4)

Group 3: MemCS(7:6)

(��'� #�
���

‘1’ Bit is used in Address comparison

‘0’ Bit is masked out

Table 8.4 Memory Mask Field Definitions and Values

MSB Bank Mask

16

15 0

0

15

15 13 12 0
LSB

14

1

Base
Addr
� �)

�����

����	
 ���
	����	 �����
�	 ����	��
����

����������������#### ������������ ������������ ������������������������((((����������������))))��������� .�� .�� .�� .����� "�"�"�"��3�3�3�3 ����44444444����

5555

��������������������������������((((������������

����44444444��������6666�7�7�7�7

Figure 8.6 Memory and I/O Control Register Bit Assignments.

Table 8.5 Memory and I/O Control Register Bit Assignments.

����	
 +
�� ,-+
��./ 0���$

The Type field determines the type of timing the Bus Interface will use. Values and actions for this
field are listed in Table 8.6.

Table 8.6 Memory Type Field ('MemType') Encoding.

1111������������ ��������9999���� ��������������������

::::

�������9���9���9���9����6666���� ;;;;��������(�(�(�(�

The PortSize field determines the width of the memory or I/O port. The value is inverted relative to
the reset initialization vector value. Encoding information for this field is listed in Table 8.7

1�
 #��������

11:8 Memory Type (‘MemType’)

7:6 Port Size Width (‘MemSize’)

(��'� #�
���

‘1011’ PCMCIA-Memory-Style

‘1010’ PCMCIA-I/O-Style

‘1001’ M-Type I/O

‘1000’ I-Type I/O

‘0010’ Memory-Type for FCT260 (default for interleaved boot reset option)

‘0001’ Memory-Type for FCT245

‘0000’ Memory-Type for FCT543

All others Reserved, undefined

 1. Use FCT543 mode for FCT260 or FCT543 non-interleaved even banks.
 2. FCT245 banks can be booted in the default FCT543 mode but must be put into the

FCT245 mode before any writes occur.
 3. PCMCIA-Style supports a PCMCIA host mode subset that is likely to be used with

PCMCIA peripherals. PCMCIA-Memory and -IO Styles are intended for dynamic swapping by
the software onto the same pair of chip selects. Typically, the Memory-Style is left on, and the I/
O-Style is swapped in whenever it is needed, then swapped back to Memory-Style.

0

6

15 0

4

MemType

12 7
MemSize 0

 611 8 5

4 2
� � �*

�����

����	
 ���
	����	 �����
�	 ����	��
����
Table 8.7 PortSize ('MemSize') Encoding.

����������������#### 8888����" ��" ��" ��" ����������/���/���/���/����������� ����������������))))����������������� "�� "�� "�� "��3�3�3�3 �44�44�44�44����

5555

��������8888����""""��

����44444444��������6666����

Figure 8.7 Memory LSB Wait-State Register ('MemLSBWaitStateReg').

The Wait-State Generator registers provide fields to control the access timings to/from the CPU
and the memory control and I/O control areas or these control areas for DMA accesses. The param-
eters controlled are:

 1. Time from CS asserted to the first RdCEnN for read burst or time to RdCEnN and AckN for
single word access or time to the first AckN for a burst DMA write.

 2. Time between the RdCEnN's for burst reads or AckN's for burst DMA writes.
 3. Time from the first RdCEnN to the AckN for burst reads or time from first AckN to last AckN

for burst DMA writes.
 4. The functionality of the SysWaitN signal for the corresponding control area.
There is a MemLSBWaitStateReg for each of the control areas or a total of 8 MemLSBWait-

StateReg's.
 The various fields and bit assignments of the Memory LSB Wait-State Register are shown in

Figure 8.7 and Table 8.8.

Table 8.8 Memory LSB Wait-State Register ('MemLSBWaitStateReg') Bit Assignments.

(��'� #�
���

‘11’ 64-bit (32-bit 2-way interleaved) accesses (Valid for Memory

Type only)

‘10’ 16-bit accesses

‘01’ 8-bit accesses

‘00’ 32-bit accesses

1�
 #��������

15:12 RdStart2Datum

11:8 WrStart2Datum

7:4 RdDatum2Datum

3:0 WrDatum2Datum

RdStart2Datum

4

15 0

4

WrStart2Datum

12 7

RdDatum2Datum WrDatum2Datum

 411 8 3

4 4
� � ��

�����

����	
 ���
	����	 �����
�	 ����	��
����
���������������� �������������������� �#,�#,�#,�#,((((���� �������� ������������ ;;;;�����)�)�)�)���� � � � �������������

::::�������������������������$�$�$�$ �� �� �� ����������6666���� ;�;�;�;�����((((��������
������������
�������������������� �������������������� ����####,(,(,(,(���� �������� ������������ ;;;;��������))))���� � � � �������������

::::����������������������������$$$$ �� �� �� ����������6666���� ;;;;��������((((��������

This field sets the number of cycles from the last (if repeated) 'S0 Start' bus cycle to the first
RdCEnN for a burst read or to the RdCEnN and AckN for a single word read or to the first AckN for a
burst DMA write or to the AckN for a single word write. The time can be from 1 cycle (Start2Datum =
b’0000) to 16 cycles (Start2Datum = b’1111). The wait-states (Start2Rd value - 1) are injected onto
the “2nd” clock edge after the bus cycle begins, such that the Second,'S1' state is repeated.
Encoding information for this field is contained in Table 8.9.

Table 8.9 Start to the first Datum (‘RdStart2Datum’ and 'WrStart2Datum') Field Encoding.

���������������� �� �� �� ���������� �������� � � � ����������
�
�
�
::::����� �� �� �� �������������$ �$ �$ �$ �������������5�5�5�5� ;;;;��������(��(��(��(��
���
�������������������� �� �� �� ���������� �������� � � � �������������

::::�������� � � � ����������$�$�$�$ � � � �������������5555���� ;;;;��������((((��������

This field sets the number of cycles between RdCEnN Datum for burst reads or AckN Datum for
burst DMA writes. The time can be from 1 (Datum2Datum = b’0000) to 16 cycles (Datum2Datum =
b’1111) such that the 'S2' state is repeated. Interleaved delay is between pairs of datum. Encoding
information for this field is listed in Table 8.10.

Table 8.10 Datum-to-Datum (RdDatum2Datum, WrDatum2Datum) Field Encoding

����������������####
�" ����/�
�" ����/�
�" ����/�
�" ����/����������������� �������������)�)�)�)�������������������� "�"�"�"�����3333 ����44�44�44�44�

5555

��������

�"������"������"������"���������������������������������

����44444444�����6�6�6�6����

These are read/write registers. The programming information for this field is located in Figure 8.8
Memory MSB Wait-State Register) and Table 8.11 (Memory MSB Wait-State Register Bit Assign-
ments).

Figure 8.8 Memory MSB Wait-State Register (‘MemMSBWaitStateReg).

(��'� #�
���

‘15’ 16 clock cycles to 1st datum (default).

...

‘0’ 1 clock cycle from Start to 1st datum.

Note: At least 1 clock cycle is always implied by 'S1' state.

(��'� #�
���

‘15’ 16 clock cycles to next burst datum (default

‘2’ 3 clock cycles to next burst datum

‘1’ 2 clock cycles to next burst datum

‘0’ 1 clock cycle to next burst datum

0

3

15 0

1

14 7
Start2BurstAck 0

 613 8 5

6 1

RdBTA

1

Start
Repeat BEn Inv

Wait

 4 3
0

1 1 1 1

 2
0 0
� � ��

�����

����	
 ���
	����	 �����
�	 ����	��
����
Table 8.11 Memory MSB Wait-State Register ('MemMSBWaitStateReg') Bit Assignments.

��������������������� �� �� �� ����������������� "�"�"�"�) �#,(� �) �#,(� �) �#,(� �) �#,(� ����������������� ����
:�
:�
:�
:���6666� ;�� ;�� ;�� ;�����((((����

This field controls the number of times the S0 first bus cycle state is repeated until the second 'S1'
state is entered. An application is to allow more time for address setup to the chip select on the
slowest 600ns PCMCIA cards. Field encoding information for this field is located in Table 8.12.

Table 8.12 Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field Encoding.

�������������������� ����.... ���������������� �������� !,!,!,!,3<3<3<3< �������� """"��������))))���� �������)���)���)���)
:�
:�
:�
:�����������������$$$$"��)"��)"��)"��)����!!!!,3,3,3,36666���� ;;;;��(��(��(��(����

This field sets the number of cycles from the first bus cycle to the AckN for a burst read or to the
last AckN for a burst DMA write. The time can be from 0 cycles (Start2BurstAck = b’000000) to 62
cycles (Start2BurstAck = b’111110). This field is only valid for Memory type and not valid for I/O type
accesses. Feld encoding information for this field is listed in Table 8.13. Note that if this field is not
programmed, burst reads will incur a three clock internal pipeline penalty, thus decreasing system
throughput. For assistance in setting this field to its optimal value, refer to the Start2BurstAck chart at
the end of this section.

Table 8.13 First Read to AckN on Burst Reads (‘Start2BurstAck’) Field Encoding.

""""####�������� ������2��2��2��2(�(�(�(�)))) �������� ����������������)
)
)
)
::::"��"��"��"��6666���� ;;;;��������((((����

This field selects whether the MemWrEn(3:0) pins are asserted on reads. MemWrEn(3:0) always
returns high at the end of a bus transaction. Field encoding information for this field is listed in Table
8.14.

1�
 #��������

15 Reserved to ‘0’

14 StartRepeat (default is 1)

13:8 Start2BurstAck (default is 0)

7 Reserved to '0'

6 BEn (default is 0)

5:3 Reserved to '0'

2:0 RdBTA (default is 1)

(��'� #�
���

‘1’ Repeat Start Cycle 1 time (default).

‘0’ Repeat Start Cycle 0 times (typical).

(��'� #�
���

‘63’ No Ack (default).

‘62’...’0’ 62 to 0 cycles until Ack (typical is 0).
� � ��

�����

����	
 ���
	����	 �����
�	 ����	��
����
Table 8.14 Byte Enables on Reads (‘BEn’) Field Encoding.

���������������� �#�#�#�#,,,,((((���� """"����)))) ----������������/!/!/!/!�����������������
�
�
�
::::�����"�"�"�"-!-!-!-!6666���� ;;;;��(��(��(��(����

This field sets the minimum number of idle data bus cycles after a read. This field must be set to
at least '1' because of the possibility of a read followed by a write. On a read followed by a read, the
number of idle cycles is from the pertinent read enable de-asserting to the next pertinent read enable
(Memory, I/O, or DRAM) asserting. Field encoding information is listed in Table 8.15

Table 8.15 Bus Turn-Around (‘BTA’) Field Encoding.

;;;;����������������(�) .�(�) .�(�) .�(�) .����� ��(,��(,��(,��(,����(�(�(�(�����������������

����������������#### ������������������������((((((((����� �� �� �� �����������������$"$"$"$"��������))))����!,!,!,!,3333 ;;;;��(��(��(��(����
=�=�=�=�((((��������i

Non-interleave read:
of read cycles
= Sysale + repeat+(Rdstart2Data +1) +(RdData2Data +1) * (# of Data -1)

Interleave read:
of read cycles
= 1 + repeat + (RdStart2Data +2) + (RdData2Data +2) * # of Data - 1
 2
Start2BurstAck should be programmed no less than # of read clock cycles on sysbus - 5

Non-interleave read:
32-bit port:
Start2burstAck Š [repeat +2 + RdStart2Data +(RdData2Data +1) * 3] - 5

16-bit port:
Start2burstAck Š [repeat +2 + RdStart2Data +(RdData2Data +1) * 7] - 5

8-bit port:
Start2burstAck Š[repeat +2 +RdStart2Data +(RdData2Data +1) * 15] - 5

Interleave read:
always 32-bit port:

(��'� #�
���

‘1’ Allow Byte Enables on reads.

‘0’ Allow Byte Enables on writes only with MemWrEn (default).

(��'� #�
���

‘111’ Minimum of 7 clocks (may increase in future products)

‘110’ 6 clocks

‘101’ 5 clocks

'100' 4 clocks

‘011’ 3 clocks

‘010’ 2 clocks

‘001’ 1 clock (default)

‘000’ Reserved
� � ��

�����

����	
 ���
	����	 �����
�	 ����	��
����
Start2burstAck Š [repeat +3 + RdStart2Data + (RdData2Data +2)] - 5
Non-interleave read:

Interleave read:

 �	
 ��2�
�
�	

�����

���$

�
�	
���
�

���$

��
����
�
�
�	
�1'	�
#�3

32 bit
of data = 4

0 0 0 0

0 1 0 1

0 1 1 4

0 1 2 7

1 2 2 9

1 2 3 12

1 4 5 20

16 bit
of data = 8

0 0 0 4

0 1 0 5

0 1 1 12

0 1 2 19

1 2 2 21

1 2 3 28

1 4 5 44

8 bit
of data =
16

0 0 0 12

0 1 0 13

0 1 1 28

0 1 2 43

1 2 2 45

1 2 3 60

1 16 5 97

 �	
 ��2�
�
�	

�����

���$

�
�	
���
�

���$

��
����
�
�
�	
�1'	�
#�3

64 bit
of data = 4

0 0 0 0

0 0 1 1

0 0 2 2

0 1 0 1

0 1 1 2

1 1 2 4

1 2 0 3

1 2 1 4

1 2 2 5

1 3 3 7
� � ��

�����

����	
 ���
	����	 ����	
 ���
	����	 +�����
������������������������ ������������������������� ������ ������ ������ ������ ������ ������ ������ �����������������������������
This section includes a number of timing diagrams that are applicable to RC36100 RISController

memory transactions. AC parameter values are contained in the “RC36100 RISController Data
Sheet.”

������	��	��	��	 ��
The bus interface timing for read transactions is described in the following section. The internal

bus interface to CPU core timing for reads is described in Chapter 7, “Bus Interface Unit Controller”.

"�"�"�"�))))����,,,, ++++/ �/ �/ �/ ������������� ���������������� >��>��>��>������ ���� ����������������////��������������������))))

Figure 8.9 illustrates a basic Memory-Type Memory Controller read transaction. Each transaction
begins with both SysALEn and SysBurstFrame asserting. At this time, SysRd and the appropriate
MemCS() assert (if they are not already in this state, as the result of a previous transaction) to indi-
cate the read transaction and which memory bank is being used. After the completion of this initial
'Start' cycle stage, the Data Sampling stage is begun. In this second stage, the appropriate Memory
Read Enable signal, either MemRdEnEven or MemRdEnOdd, will assert to allow the external
memory bank to turn on and begin driving data back to the RISController.

Since Figure 8.10 is for a single data read, this Data Sampling Stage is the last Data for this trans-
action and thus SysBurstFrame is de-asserted. To end a Data Sampling Stage, SysDataRdy asserts
on clock cycles where data is expected. After the last Data is sampled, note that the signals, SysRd
and MemCS may not necessarily de-assert as the next bus transaction may already be starting. The
internal signal, AckN, that is associated with R3051-family read cycles is generated automatically for
single word reads (and writes).
� � ��

�����

����	
 ���
	����	 ���$ +	�����
����
Figure 8.9 1-Datum Read with 0 Wait-States.

++++//// � � � ������������� ���������������� >>>>������������ � ����/�� ����/�� ����/�� ����/��������������)�)�)�) �)�)�)�)������������ ������������ ���������������� ��������((((����,,,,����

Figure 8.10 illustrates a basic Memory-Type Memory Controller read transaction, except that the
access is to an Odd Memory Chip Select, MemCS(7,5,3,1) instead of an even one. Because an odd
MemCS is asserted, MemRdEnOdd is asserted during the Data Sampling Stage instead of its even
counterpart.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall
Stall-RdBusy

(on Data)
Stall (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Data Input

Wait?

Fixup (on Data)
Stall-Rdbusy

(on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Addr
� � �%

�����

����	
 ���
	����	 ���$ +	�����
����
Figure 8.10 1-Datum Read with 0 Wait-States Using an Odd Chip Select.

���������������� >��>��>��>������ ����������������/���/���/���/����������� ����))))������������ ����������������� ��� ��� ��� ������������������ ;;;;��������((((����

Figure 8.11 illustrates a basic Memory-Type Memory Controller read where 1 wait-state has been
added by repeating the Start Cycle. This special effect is programmed into the Wait-State Generator
using the Start Repeat Field in the MemLSBWaitStateReg() Register. When the Start Cycle repeats,
the Data Sampling Stage is delayed and the assertion of the Memory Read Enable strobe,
MemRdEnEven or MemRdEnOdd is delayed. This effect is useful for very slow memories or memo-
ries that require significant address setup before the chip is selected. An example is the 600ns
access time mode of the PCMCIA memory protocol. The Start repeat Field affects both reads and
writes.

S ysC lk

SysRd

SysALEn

SysData(31 :0)

SysBurstFrame

Sta ll-Arb Sta ll
Stall-RdBusy

(on Data)
Stall (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

 Data Input

W ait?

Fixup (on Data)
Stall-Rdbusy

(on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(1)

Mem RdEnE ven

Mem RdEnOdd

SysW ait

Addr
� � ��

�����

����	
 ���
	����	 ���$ +	�����
����
Figure 8.11 1-Datum Read with 1 Wait-State using StartRepeat Field.

���������������� >��>��>��>������ ����������������/���/���/���/����������� ����))))������������ ����������������������������$$$$ � � � ������������� ;�;�;�;�����((((����

Figure 8.12 illustrates a basic Memory-Type Memory Controller read where 1 wait-state is added
using the RdStart2Datum Field of the MemMSBWaitStateReg() Register. Any number from 0 to 15
internal wait-states may be added using the RdStart2Datum Field. With this field, the Memory Read
Enable strobe, either MemRdEnEven or MemRdEnOdd is asserted as normal, but then wait-states
are added where SysDataRdy is not asserted until the RdStart2Datum Field has finished counting.
When SysDataRdy is asserted, then the Data from the external Memory Bank is sampled into the
RISController.

SysClk

SysRd

SysALEn

SysData(25:0)

SysBurstFrame

Stall-Arb Stall
Sta ll-RdBusy

(on Data)
Sta ll (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Data Input

In terna lly
Generated W ait
for Start Cycle

Fixup (on Data)
Stall-Rdbusy

(on Inst)

SysAddr(31 :0)

SysDataRdy

Mem CS(0)

MemRdEnEven

MemRdEnOdd

SysW ait

Stall

W ait?

Addr
� � �)

�����

����	
 ���
	����	 ���$ +	�����
����
Figure 8.12 Read with Wait-State using RdStart2Datum Field.

���������������� >��>��>��>������ ����������������/���/���/���/����������� ����))))������������ ����####)����)����)����)����

Figure 8.13 illustrates a basic Memory-Type Memory Controller read where 1 wait-state is added
using the external signal pin, SysWait. SysWait is not expected to be used for conventional memo-
ries, since it is easier to program the Wait-State Generator to produce wait-states. However, SysWait
can be useful for Dual-Port memory and off-card memories where there may be an indeterminate
amount of time before the access can begin. Since SysWait is sampled a clock ahead of when it is
used, its effect is seen two clocks later than when it is asserted. If SysWait is asserted when SysDa-
taRdy is asserted then an additional Data Sampling clock cycle is repeated with SysDataRdy
remaining low. Thus external logic analyzers or other debug equipment may want to gate SysDa-
taRdy with SysWait in order to decode valid Data samples.

SysC lk

SysR d

SysALEn

SysD ata(31 :0)

SysBurstF ram e

S tall-A rb Sta ll
S ta ll-R dBusy

(on Da ta)
S ta ll (on Inst)

S tart
R ead

Sam ple Da ta/
N ew

Transaction

R un/
S ta ll

Data Input

In terna l W a it

F ixup (on D ata)
Sta ll-R dbusy

(on Inst)

SysA ddr(25 :0)

SysD ataR dy

M em C S(0)

M em R dE nE ven

M em R dE nO dd

S ysW ait

Sta ll

W a it?

Addr
� � �*

�����

����	
 ���
	����	 ���$ +	�����
����
Figure 8.13 Read with Wait-State using SysWait.

????////���������������� """"��������))))���� ������������� >�� >�� >�� >��������� � ����/�� ����/�� ����/�� ����/�����������������))))

Figure 8.14 illustrates a 4-word Burst Read when using the Memory-Type Memory Controller. This
example can also be generalized to demonstrate any multi-datum read generated from the CPU core
which includes double, triple, quad, and 16-byte reads using an 8-bit port width, and double, and octi-
halfword reads using a 16-bit port width. Note that the DMA Controller can potentially do any length
from 1 to 16 datum.

As shown in Figure 8.14, SysFrameBurst can be used to determine which is the last datum to be
sampled. After the first datum is sampled, the Wait-State Generator uses the RdDatum2Datum field
in the MemMSBWaitStateReg() Register in order to determine the number of wait-states to generate.
Figure 8.15 gives an example of inserting wait-states between later data elements. By programming
different values into the RdStart2Datum and the RdDatum2Datum Fields, a burst read can be throt-
tled to, for example, give a longer access time to the first datum and shorter access time for any
subsequent datum.

To obtain the maximum optimization of a 4-word burst read (4 32-bit datum, 8 16-bit datum or 16
8-bit datum) the Start2BurstAck Field of the MemMSBWaitStateReg() Register must be programmed.
Programming this field to 3 clock cycles before the last datum is sampled places the internal R3051-
family like signal, AckN, such that the CPU pipeline can be restarted early. Systems that have an
indeterminate number of external SysWait wait-states must program this field to give an internal
AckN. In such cases, like single word reads, AckN is generated automatically on the last datum
sample.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Sta ll-Arb Stall
Stall-R dBusy

(on D ata)
Stall (on Ins t)

Star t
Read

Sam ple D a ta/
New

Transac tion

R un/
Sta ll

W a it

F ixup (on D a ta)
Sta ll-Rdbusy

(on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

S ta ll

W ait?

Data Input

Addr
� � ��

�����

����	
 ���
	����	 ���$ +	�����
����

Data)
 Inst)
Figure 8.14 4-Word Burst Read with 0 Wait-States.

Figure 8.15 4-Word Burst Read with Wait-States using RdDatum2Datum Field.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall Refill(on Data)
Stream (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Data Input

Wait?

Fixup (on Data)
S tream (on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Data Input

Stall Refill (on Data)
Stall (on Inst)

Wait?/
Sample Data/

Internal Burst Ack

Wait?/
Sample Data

Wait?/
Sample data

Refill (on Data)
Fixup (on Inst)

Data Input Data Input

Addr 0 4 8 C

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Data Input

Wait?

Refill (on Data)
Fixup (on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Data Input Data Input D ata Input

Stall

Wait?/
Sample Data

Wait?/
Sample Data

Wait?/
Sample data

Refill (on Data)
Stream (on Inst)

Refill (on Data)
Stream (on Inst)

Fixup (on
Stream (on

Internal Wait Internal Wait/
Internal Burst Ack

Internal Wait

Stall Stall Stall

Addr 0 4 8 C
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
"�)�"�)�"�)�"�)�,,,, +&+&+&+&////2222�������� 1111����

�����!/)�!/)�!/)�!/)����#(#(#(#(����

����������������#### ���������������� >>>>������������ @�@�@�@������ ����/�� ����/�� ����/�� ����/�����������������))))

Figure 8.16 illustrates a basic 16-bit PCMCIA-Style Memory Controller read transaction. Each
transaction begins with both SysALEn and SysBurstFrame asserting. At this time, SysRd asserts (if it
is not in this state, as the result of the previous transaction). Assuming there are no internally
programmed StartRepeat wait-states, on the next clock cycle, SysBurstFrame de-asserts and the
MemCS() pair asserts. Note that on PCMCIA transactions the MemCS() pair is asserted, according
to which bytes are enabled and valid. Thus if the even byte is valid, then the even MemCS() will
assert. If the odd byte is valid, then the odd MemCS() will assert. If both bytes are valid, then both
MemCS()s in the pair assert. Assuming there are no internally programmed RdStart2Datum wait-
states, SysDataRdy asserts to indicate that the data from the memory device is being sampled into
the RISController. On the next clock--the final clock of the transaction--the MemCS() pair de-asserts
and, simultaneously, the next transaction may begin.

Figure 8.16 PCMCIA-Style Memory Read with 0 Wait-States

 ���� ���� ���� ���� ��
The bus interface aspect of write transactions is described in the following section. The internal

bus interface to CPU core aspect of writes is described in Chapter 7, “Bus Interface Unit Controller”.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

MemCs(2)

MemRdEnEven,

MemWrEn(1:0)

SysW ait

Addr

Fixup Run/StallStall Stall

New TransactionWait?

MemCs(3)

Active if Byte 0 is valid

Active if Byte 1 is valid

MemRdEnOdd

MemAddr(27:26)
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
����������������((((���� � � � ������������� ��������������������

Figure 8.17 illustrates a basic Memory-Type Memory Controller write transaction. Each transac-
tion begins with both SysALEn and SysBurstFrame asserting. At this time, SysWr the appropriate
MemCS assert (if they are not already in this state) to indicate the write transaction and the memory
bank being used. After completing this Start cycle stage, the Data Driving stage begins. In this
second stage, MemWrEn(3:0) (which acts as write byte enable strobes) assert. In general, from 1 to
4 of the MemWrEn(3:0) signals will be asserted.

Since Figure 8.17 is for a single datum write, this Data Driving Stage is the last Datum for this
transaction and thus SysBurstFrame is de-asserted. To end a Data Driving Stage, SysDataRdy
asserts on clock cycles where data is expected to be latched with the trailing de-asserting edges of
MemWrEn(3:0). After the last Data is driven, note that signals such as SysWr and MemCS may not
necessarily de-assert, as the next bus transaction may already be starting. The internal signal, AckN,
associated with R3051-family write cycles, is generated automatically for single word writes (and
reads).

Note: This manual does not illustrate a Memory-type write transaction to an Odd Memory
Chip Select. However, the only difference is that during the Data Driving Stage an odd MemCS
is asserted instead of its even counterpart.
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.17 1-Datum Write with 0 Wait-States

++++/ �/ �/ �/ ������������� �������������������� >�>�>�>��������� ���� ����/��������/��������/��������/��������)))) ����)�)�)�)��������� ;;;;����----$$$$????****////----#�#�#�#����� ;;;;��������(�(�(�(�

Figure 8.18 illustrates a basic write using the FCT245-Type Field. Either the even or the odd read
enable, MemRdEnEven or MemRdEnOdd will assert on even or odd writes such that a FCT245
transceiver output enable can be connected.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Data Out/
New

Transaction

Run/
Stall

Data Output

Wait?

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Addr

MemWrEn(3:0) Byte Enables

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.18 1-Datum Write with 0 Wait-States using FCT245-Type Field.

++++/ �/ �/ �/ ������������� �������������������� >�>�>�>������ ����/�� ����/�� ����/�� ����/����������������� ����)�)�)�)��������� �� ;;;;��(��(��(��(����

Figure 8.19 illustrates a basic Memory-Type Memory Controller write where 1 wait-state has been
added by repeating the Start Cycle. This special effect is programmed into the Wait-State Generator
using the Start Repeat Field in the MemLSBWaitStateReg() Register. When the Start Cycle repeats,
the Data Driving Stage is delayed and the assertion of the Memory Write Enable strobes,
MemWrEn(3:0), are delayed. This effect is useful for very slow memories or memories that require
significant address setup before the chip is selected. For example, with the 600ns access time mode
of the PCMCIA memory protocol, the Start repeat Field affects both reads and writes.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Data Out/
New

Transaction

Run/
Stall

Data Output

Wait?

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven
(245-StyleOE)

MemRdEnOdd

SysWait

Addr

MemWrEn(3:0) Byte Enables

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

SysRd
(Dir)
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.19 1-Datum Write with Wait-State using StartRepeat Field.

++++/ �/ �/ �/ ������������� �������������������� >�>�>�>������ ����/�� ����/�� ����/�� ����/����������������� ����)�)�)�)��������� ����������������������������$$$$ � � � ������������� ;;;;��������((((����

Figure 8.20 illustrates a basic Memory-Type Memory Controller write where 1 wait-state is added
using the WrStart2Datum Field of the MemMSBWaitStateReg() Register. Any number from 0 to 15
internal wait-states may be added using the WrStart2Datum Field. With this field, the Memory Write
Enable strobe (either MemWrEnEven or MemWrEnOdd) as well as the write byte enables
(MemWrEn(3:0)) are asserted as normal. However, wait-states are added (where SysDataRdy is not
asserted) until the WrStart2Datum Field has finished counting. When SysDataRdy is asserted, then
the Data from the external Memory Bank is sampled by external memory.

SysClk

SysRd

SysALEn

SysData(25:0)

SysBurstFrame

Stall-Arb Stall
Stall-RdBusy

(on D ata)
Stall (on Inst)

S ta rt
Read

Sam ple Data/
New

Transaction

Run/
Stall

Data Input

In terna lly
Generated W ait
for Start C ycle

F ixup (on Data)
Stall-Rdbusy

(on Inst)

SysAddr(31:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Addr

Stall

Wa it?
� � �%

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.20 1-Datum Write with Wait-State using WrStart2Datum Field.

++++/ �/ �/ �/ ������������� �������������������� >�>�>�>������ ����/�� ����/�� ����/�� ����/����������������� ����)�)�)�)��������� �#)����#)����#)����#)�������

Figure 8.21 illustrates a basic Memory-Type Memory Controller write where 1 wait-state is added
using the external signal pin, SysWait. SysWait is not expected to be used for conventional memo-
ries, since it is easier to program the Wait-State Generator to produce internal wait-states. However,
SysWait can be useful for Dual-Port memory and off-card memories where there may be an indeter-
minate amount of time before the access can begin. Since SysWait is sampled a clock ahead of
when it is used, its effect is seen two clocks later than when it is asserted. If SysWait is asserted
when SysDataRdy is asserted then an additional Data Sampling clock cycle is repeated with SysDa-
taRdy remaining low. Thus external logic analyzers or other debug equipment may want to gate
SysDataRdy with SysWait in order to decode valid Data samples.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Data Out/
New

Transaction

Run/
Stall

Data Output

Internal Wait

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Addr

MemWrEn(3:0)
Byte Enables

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Wait?
� � ��

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.21 1-Datum Write with Wait-State using SysWait.

����(��/(��/(��/(��/ � � � ������������� "��)"��)"��)"��)���� ��������������������

Figure 8.22 illustrates a 2-datum Burst Write when using the Memory-Type Memory Controller.
This example can also be generalized to demonstrate any multi-datum write generated from the CPU
core which includes double, triple, and quad byte writes using an 8-bit port width, and double half-
word writes using a 16-bit port width. Note that although the CPU core will not generate bursts in the
32-bit width, the internal and external DMA Controller channels can do so, and can potentially do any
length.

In Figure 8.21, SysBurstFrame can be used to determine which is the last datum to be sampled.
At the end of each datum, MemWrEn(3:0) de-asserts for 1 clock cycle. They re-assert if more datum
needs to be processed. After the first datum is sampled, then the Wait-State Generator uses the
WrDatum2Datum Field in the MemMSBWaitStateReg() Register to determine the number of wait-
states to generate.

Most conventional SRAMs need to use WrDatum2Datum wait-states to de-assert
MemWrEn(3:0) at the end of each word written. The zero wait-state case is useful for certain types of
FIFOs.

SysC lk

SysW r

SysALEn

SysData(31:0)

SysBurstFram e

Start
W rite

Data Out/
New

Transaction

Run/
S tall

Data Output

 W ait

SysAddr(25:0)

SysDataRdy

M em C S(0)

M em RdEnEven

M em RdEnO dd

M em W rEn(3:0

SysW ait

Addr

Run/
S ta ll

Run/
S tall

Run/
S tall

Run/
S ta ll

Run/
S ta ll

W ait?

Byte Enables
� � �)

�����

����	
 ���
	����	 4	�
� +	�����
����
Figure 8.22 Multi-Datum Burst Write.

����(��/(��/(��/(��/ � � � ������������� "��)"��)"��)"��)���� �������������������� ����)�)�)�)��������� ����������������////�������������������� >>>>������������ �������� � � � ����������$�$�$�$ � � � �������������

Figure 8.23 gives an example of inserting wait-states between later data elements. By program-
ming different values into the WrStart2Datum and the WrDatum2Datum Fields, a burst write can be
throttled to for instance give a longer access time to the first datum and shorter access time for any
subsequent datum.

Like single word writes, AckN is generated automatically on the last datum sample.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
W rite

Data Out/
New

Transaction

Run/
Stall

Datum N

W ait?

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysW ait

Addr N

MemW rEn(3:0) Byte E nab les N+4

Run/
S tall

Run/
Stall

Run /
Stall

Run/
Stall

Run/
Stall

W ait?/
Data Out

Addr N+4

Datum N+4

Byte Enables N
� � �*

�����

����	
 ���
	����	 4	�
� +	�����
����

Figure 8.23 Multi-Datum Burst Write using Wait-State with WrDatum2Datum.

"�"�"�"�))))����,,,, 1111����
��
��
��
��!!!!////----####��������

����������������#### �������������������� >�>�>�>��������� ���� ����������������/���/���/���/�����������))))

Figure 8.24 illustrates a basic PCMCIA-Type Memory Controller write transaction. Each transac-
tion begins with both SysALEn and SysBurstFrame asserting. At this time, SysWr asserts if hasn't
done so already (from the previous transaction), and it is guaranteed that MemCS() will be in its de-
asserted state. Assuming that there are no internally programmed StartRepeat wait-states, on the
next clock cycle, SysBurstFrame de-asserts.

On the third cycle MemCS() asserts. On PCMCIA transactions the MemCS() pair is asserted
according to which bytes are enabled and valid. If the even byte is valid, the even MemCS() will
assert, while if the odd byte is valid, then the odd MemCS() will assert. If both bytes are valid, then
both MemCS() signals in the pair will assert.

Assuming there are no internally programmed RdStart2Datum wait-states, SysDataRdy asserts to
indicate that the data from the RISController is ready to be latched into the memory device. On the
4th clock cycle, MemCS() de-asserts, providing a means for the write data from the RISController to
be latched into the memory device. On the next clock, the next transaction may begin.

During a PCMCIA-Type transaction, there is 1 clock of address setup time before MemCS()
asserts. All signals are setup before MemCS(), which is being used as the write strobe, de-asserts.

SysClk

SysWr

SysALEn

SysD ata(31:0)

SysBurstFram e

S tart
W rite

Data Out/
New

Transaction

Run/
Stall

Datum N

W ait?

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

M emRdEnOdd

SysW ait

Addr N

Mem WrEn(3:0)

Run /
Stall

Run/
Stall

Run/
S tall

Run/
S tall

Run/
S tall

In terna l W ait/
Data O ut

A ddr N +4

D atum N+4

Byte Enables N

Run/
Stall

W ait?

Byte Enables N+4
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����

Figure 8.24 PCMCIA-Style Memory Write with 0 Wait-States

�������������������������������������	!�	!�	!�	!���������������� ��
The RC36100 RISController's Memory Controller has the capability to interleave memory transac-

tions such that 64-bits of memory are accessed at a time and then funneled into or out of the CPU in
two 32-bit chunks. Thus on a burst read, the CPU begins a pair of 32-bit accesses at the same time.
The first word is read in as normal, while the second word is externally latched. Then while the
second word is read, the third and forth words begin their accesses. When large memory arrays are
used, interleaved systems speed up the overall transaction time of burst reads and do not add cost to
the system, since transceivers are typically needed to isolate the multiple memory banks anyway.
The RC36100 supports a variety of different data transceiver options, as shown here.

��������������������((((�������������������� ���������������� ����)�)�)�)��������� ;;;;����----$$$$&&&&����////----#�#�#�#����� ;;;;��������(�(�(�(�

Figure 8.25 illustrates an interleaved 4-word burst read using the FCT260-Type. The odd Read
Enable, MemRdEnOdd is used as the Path Select and the Odd Latch Enable. MemRdEnEven
changes its functionality in that it asserts for both the even and odd Data Sampling periods. As with
the non-interleaved types, various throttled wait-state options are available via the internal Wait-State
Generator including optimal Burst Ack placement. It is implied that the odd words are always returned
1 clock after the even words.

 Figure 8.26 shows a single datum access to an “even” bank of an interleaved memory system
using 'FCT260 transceivers. Note that the timing of this access is identical with the timing of the first
word of a 4-word access.

 Figure 8.27 shows the analogous access to the “odd” bank of an interleaved memory system,
using 'FCT260 transceivers. In this figure, the timing is identical with the timing of the access of the
second word of a 4-word access; however, the first word is not actually returned to the CPU.

SysClk

SysWr

SysALEn

SysData (31:0)

SysBurstFrame

Sta rt
W rite

Run/
S tall

Data Out

SysAddr(25 :0)

SysDataRdy

MemCS(2)

SysW ait

Addr

Run/S tall

New TransactionW ait?

Run/S tallRun/StallRun/S tallRun/S tallRun/S tall

Sam ple Data

MemCS(3)

 Active if Byte 0 is act ive

 Active if Byte 1 is active

MemRdEnEven,
Mem RdEnOdd

MemW rEn(1:0)
M emAddr(27:26)
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
 Due to a limitation on the number of transceiver control signals, there is a performance difference
between even and odd single word accesses. However, note that this should not affect system
performance in the following areas:

- single word accesses will occur for uncached loads, and uncached instructions. These are
typically not time critical programs or data.

- for cached data, these accesses will only occur if the data block refill option is selected to
“one word” rather than “four words.” However, this selection is unlikely for an interleaved
memory, which dramatically mitigates the time required for 4-word accesses, and thus is
expected to use 4-word accesses on data cache misses. For more information, refer to the
DBlockRefill (‘DBR’) option in the Coprocessor0 Cache Configuration documentation in
Chapter 5.

- cached instruction misses are always satisfied using 4-word read accesses.

Figure 8.25 Interleaved Read using FCT260-Type Field.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall Refill(on Data)
Stream (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Data In 0

Wait?

Fixup (on Data)
Stream (on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(1)

MemRdEnEven

MemRdEnOdd

SysWait

Data In 4 Data In 8 Data In C

Stall Refill (on Data)
Stall (on Inst)

Wait?/
Sample Data/
Internal Burst

Ack

Wait?/
Sample Data

Wait?/
Sample data

Refill (on Data)
Fixup (on Inst)

MemCS(0)

Addr 0 8
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
Figure 8.26 Interleaved “Even” Read of FCT260-Type Memory

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Run/
Stall

Wait?

SysAddr(25:0)

SysDataRdy

MemRdEnEven

MemRdEnOdd

Addr

Stall Fixup

Sample Data

MemCS(0)

MemCS(1)

SysWait

Data In
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����

Figure 8.27 Interleaved “Odd” Read of FCT260-Type Memory

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall
Stall-RdBusy

(on Data)
Stall (on Inst)

Start
Read

Sample Data/
New

Transaction

Run/
Stall

Da ta Input

Wait?

Fixup (on Data)
Stall-Rdbusy

(on Inst)

SysAddr(25:0)

SysDataRdy

MemCS(0)

MemRdEnEven

MemRdEnOdd

SysWait

Addr
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����

Figure 8.28 Interleaved Read using FCT245-Type Field.

��������������������((((�������������������� ���������������� ����)�)�)�)��������� ;;;;����----****????����////----#�#�#�#����� ;;;;��������(�(�(�(�

Figure 8.29 illustrates an interleaved 4-word burst read using the FCT543-Type. The read and
write output enables match the functionality of memory chip read and write output enables.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

S ta ll-A rb S ta ll R efill(on Data)
S tream (on Inst)

S ta rt
Read

R un/
S ta ll

Data In 0

W ait?

F ixup (on Data)
Stream (on Inst)

SysAddr(25:0)

SysDataRdy

M emCS(1)

MemRdEnOdd

SysW ait

Addr 0

Data In 4 Data In 8

8

Stall Re fill (on Data)
Sta ll (on Inst)

W ait?/
S ample Data

W ait?/
Sample Data /
Internal Burst

Ack

W ait?

R efill (on D ata)
Fixup (on Inst)

Sta ll

S ample Data/
New

Transaction

W ait? /
S am ple data

Mem CS(0)

Mem RdEnEven

Data In C
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
Figure 8.29 Interleaved Read using FCT543-Type Field.

The following Figure 8.30 shows a single datum access to an “even” bank of an interleaved
memory system using 'FCT543 transceivers. Note that the timing of this access is identical with the
timing of the first word of a 4-word access.

Figure 8.31 shows the analogous access to the “odd” bank of an interleaved memory system,
using 'FCT543 transceivers. In this figure, the timing is identical with the timing of the access of the
second word of a 4-word access; however, the first word is not actually returned to the CPU.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFram e

Sta ll-Arb Sta ll Refill(on Data)
S tream (on Inst)

S tart
Read

Sam ple Data/
New

Transaction

Run/
S ta ll

Data In 0

W ait?

F ixup (on Data)
S tream (on Ins t)

SysAddr(25:0)

SysDataRdy

M em CS(1)

M em RdEnEven

M em RdEnOdd

SysW ait

Addr 0

Data In 4 Data In 8 Data In C

Addr 8

Stall Refil l (on Data)
Stall (on Inst)

W ait? /
Sam ple Data/
In terna l Burst

Ack

W ait?/
Sam ple Data

W ait? /
Sam ple data

Refill (on Data)
F ixup (on Ins t)

M em CS(0)
� � �%

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
Figure 8.30 “Even” Read of FCT543-Type Memory

Due to a limitation on the number of transceiver control signals, there is a performance difference
between even and odd single word accesses. Note, however, that this should not affect system
performance of the following operations:

- single word accesses will occur for uncached loads, and uncached instructions. These are
typically not time critical programs or data.

- cached data accesses will only occur if the data block refill option is selected to “one word”
rather than “four words.” However, this selection is unlikely for an interleaved memory, which
dramatically mitigates the time required for 4-word accesses, and thus is expected to use 4-
word accesses on data cache misses. For more information, refer to the DBlockRefill
(‘DBR’) option in the Coprocessor0 Cache Configuration documentation in Chapter 5.

- cached instruction misses are always satisfied using 4-word read accesses.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Run/
Stall

Data In

Wait?

SysAddr(25:0)

SysDataRdy

MemRdEnEven

MemRdEnOdd

SysWait

Addr

Stall Fixup

Sample Data

MemCS(0)

MemCS(1)
� � ��

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
Figure 8.31 “Odd” Read of FCT543-Type Memory

��������������������((((�������������������� ��������������������))))

Figure 8.32 and Figure 8.33 illustrate interleaved writes for the 260-Type, the 543-Type, and the
245-Type, respectively. Because the byte enables, MemWrEn(3:0), are not duplicated for even and
odd cases, burst writes do not occur any quicker than they do for non-interleaved cases. Any subse-
quent words are delayed by the MemWrEn(3:0) de-asserting for 1 clock (or 2 clocks if the Start
Repeat Field is set). The 245-Type is different from the others in that MemRdEnEven or MemRdE-
nOdd is asserted for the 245's Output Enable pin.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Run/
Stall

Wait?

SysAddr(25:0)

SysDataRdy

MemCS(1)

MemRdEnEven

MemRdEnOdd

SysWait

Addr

Data In

Stall Stall Fixup

MemCS(0)

Wait? Sam ple Data
� � �)

�����

����	
 ���
	����	 5�
�	�����$�+
�� +	�����
����
Figure 8.32 Interleaved Write using FCT260-Type and FCT543-Type Fields.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Data Out/
New

Transaction

Run/
Stall

Datum N

Wait?

SysAddr(25:0)

SysDataRdy

MemCS(1)

MemRdEnEven

MemRdEnOdd

SysWait

Addr N

MemWrEn(3:0)

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Wait?/
Data Out

Addr N+4

Datum N+4

Byte Enables N

Run/
Stall

Wait?

Byte Enables N+4

MemCS(0)
� � �*

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.33 Interleaved Write using FCT245-Type Field.

������ "������ "������ "������ "####������������������������
���8�
 ��#�9��� ��	��
�
 ������
�$ �	 '���� ��� +	��������	�

Figure 8.34 shows a typical 32-bit SRAM memory system. The example is also applicable to
Flash Memory systems and with the elimination of the write-related signals, to ROM systems. In
small systems, the SRAM/ROM can be attached directly to the SysAddr and SysData buses. In
larger systems, FCT543 transceivers can be added between the memory bank and the SysData bus.
Also in large systems, the SysAddr bus can also be buffered using FCT244 buffers. Note that all even
MemCS()s that use transceivers must be placed behind the same set of transceivers unless external
decoding is done for each MemRdEnEven OR MemCS().

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Data Out/
New

Transaction

Run/
Stall

Wait?

SysAddr(25:0)

SysDataRdy

MemCS(1)

MemRdEnEven

MemRdEnOdd

SysWait

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Run/
Stall

Wait?/
Data Out

Run/
Stall

Wait?

MemCS(0)

Addr N+4

Datum N+4

Addr N

Datum N

MemWrEn(3:0) Byte Enables N Byte Enables N+4
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.34 32-bit SRAM System.

Figure 8.35 shows a typical 32-bit SRAM memory system using an odd MemCS() line. Note that
all odd MemCS()s that use transceivers must be behind the same set of transceivers unless external
decoding is done for each MemRdEnOdd OR MemCS().

Figure 8.35 32-bit SRAM System using an Odd Chip Select.

�$�$�$�$////2222�������� ��������!!!!

 �)�)�)�)������������ $$$$????**** ----���������)�)�)�),,,,��������������������))))

Figure 8.36 shows a typical 32-bit SRAM memory system using FCT245 transceivers. This
example is also applicable to Flash Memory systems and with the elimination of the write-related
signals and the substitution of FCT244 buffers to ROM systems. The functionality of MemRdEnEven
or MemRdEnOdd is modified so that the read enables will also assert on writes. The use of a 245-
Type chip select requires that all the odd or all the even memory chip selects also be of the same
245-Type type.

SRAM
Bank

MemRdEnEven

SysData(31:0)MemCS(0)

MemWrEn(3:0)

SysAddr(18:2)

OE

CS

ADDR

WS

SRAM

Bank

MemRdEnOdd

SysData(31:0)MemCS(1)

MemWrEn(3:0)

SysAddr(18:2)
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.36 32-bit SRAM System using FCT245-Type.

5�
�	�����$ ��#�9��� '���� ��� +	��������	�

In Figure 8.37 an interleaved system using the Interleaved-FCT245-Type is shown. FCT245s are
16-bit (or 8-bit) bidirectional transceivers. Four (or eight) are required per bank. Because FCT245s do
not latch the data of the odd words, the generation of the next double word address (0x8) for words
three and four is delayed. MemRdEnEven and MemRdEnOdd change their functionality in that if their
bank is selected, as they assert on both reads and writes such that they can be connected to their
bank's 245 Output Enable pin.

Note: The RC36100 cannot have a stand-alone 32-bit odd bank, because it must be inter-
leaved with an even bank partner. For the FCT245, interleaved ROMs must be booted with 32-
bit port size and load the initial first few instructions from every even word, up until the boot code
initializes the memory controller registers.

SRAM
Bank

SysData(31:0)MemCS(0)

MemWrEn(3:0)

SysAddr(18:2)

Dir

FCT
245

SysRd

B A

OEnN

MemRdEnEven
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.37 Interleaved FCT245-Type System.

5�
�	�����$ ��#�9��� '���� ��* �'�
����7�	�

In Figure 8.38 an interleaved system using the Interleaved-FCT260-Type is shown. FC260s are
12-bit bidirectional multiplexors. Thus three FCT260s are required per bank pair. MemRdEnOdd is
used for both the Path Selection and the Odd Bank Latch Enable. MemRdEnEven changes its func-
tionality in that it asserts for both the even and odd Data Sampling periods. The LSB address lines
change on a doubleword boundary from 0x0 to 0x8 at the same time word 2 is being read.

Note that during an even (odd) bank read access, the chip select (for example, CS0 or CS2) is
used to keep the two banks from contending on the data bus. In this example, SysWr is used to
control the data path outputs on writes.

SRAM

SRAM

SRAM

SRAM

Bank 2

Bank 0

Bank 3

Bank 1

A B

A B

MemRdEnEven

SysRd

SysRd

MemCS(2)

MemCS(0)

FCT
245

FCT
245

MemWrEn(3:0)

SysRd

MemCS(3)

MemCS(1)

SysRd

MemRdEnOdd

SysData(31:0)

Dir

Dir

OEnN

OEnN
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.38 Interleaved FCT260-Type System.

5�
�	�����$ ��#�9��� '���� 0�+��� +	��������	�

Figure 8.39 shows an interleaved system using the Interleaved-FCT543-Type. FCT543s are 16-
bit bidirectional registers. Thus, four FCT543s are required per bank pair. MemRdEnOdd is used for
both the Path Selection and the Odd Bank Latch Enable. MemRdEnEven changes its functionality in
that it asserts for both the even and odd Data Sampling periods. The LSB address lines change on a
doubleword boundary from 0x0 to 0x8 at the same time that word 2 is being read.

In systems that contain memories with fast output disable times, only two FCT543s may be
required by letting MemRdEnEven and MemRdEnOdd control the outputs of the two memory banks
behind a common transceiver. Such an approach usually implies that the two memory banks be of
the same type and that the type specify output disable times less than output enable times.

Note: The RC36100 cannot have a stand-alone 32-bit odd bank, because it must be inter-
leaved with an even bank partner. For the FCT543, interleaved ROMs must be booted with 32-
bit port size and load the initial first few instructions from every even word, up until the boot code
initializes the memory controller registers.

SRAM

Bank 2SRAM
Bank 0

SRAM
Bank 3SRAM

Bank 1

SEL

MemRdEnOdd

MemRdEnEven

OEA

MemRdEnOdd

SysWr

OEnN(2B:1B)

SysWr

SysData(31:0)

2B

1B

A

MemCS(0)

MemCS(2)

MemCS(1)

MemCS(3)

FCT
260

MemWrEn(3:0)

MemWrEn(3:0)

MemRdEnEven

vcc

MemRdEnEven

OE1B

LE1B

vcc
LEA1B

vcc
LEA2B

OE2B

LE2B

SysAddr(19:3)

SysAddr(19:3)
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.39 Interleaved FCT543-Type System

+&+&+&+&////2222�������� ��������!!!!

������������

Figure 8.40 and Figure 8.41 show a typical 16-bit SRAM memory system. These examples are
also applicable to Flash Memory systems and, with the elimination of the write-related signals, to
ROM systems. Since a 16-bit system is a smaller system, the SRAM/ROM can be attached directly to
the SysAddr and SysData buses. In larger systems, FCT543 transceivers can be added between the
memory bank and the SysData bus. Also in large systems, the SysAddr bus can be buffered using
FCT244 buffers.

Note: With 16-bit systems it is imperative that the correct data line connections are made.
Big Endian systems must attach SysData(31:16) and Little Endian systems must attach
SysData(15:0).

 Hooking up the correct data lines insures that byte gathering can occur on word accesses and is
required for boot-proms to execute instructions. SRAM systems that require later expansion to 32-
bits must externally multiplex a MSB address line with SysAddr(1).

SRAM
B ank 2

SRAM
Bank 0

SRA M
Bank 3

SRAM
Bank 1

S ysW r

M emRdEnOdd

M emRdEnEven

S ysW r

SysData(31 :0)

1B

Mem CS(0)

M emCS(2)

M emCS(1)

MemCS(3)

FCT
543

M emRdEnE ven

A B

FCT
543

A B

Mem W rE n(3 :0)

Mem W rEn(3 :0)

MemRdEnEven

0

MemRdEnOdd

OEA BOE BA

OEABOEBA

0

SysAddr(19 :3)

SysAddr(19:3)
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.40 16-bit Big Endian SRAM System.

Figure 8.41 16-bit Little Endian SRAM System.

				/2�/2�/2�/2����� ��!��!��!��!

������������

Figure 8.42 and Figure 8.43 show two typical 8-bit SRAM memory systems. These examples are
also applicable to Flash Memory systems and, with the elimination of the write-related signals, to
ROM systems. Since an 8-bit system is a smaller system, the SRAM/ROM can be attached directly to
the SysAddr and SysData buses. In larger systems, FCT543 transceivers can be added between the
memory bank and the SysData bus. Also in large systems, the SysAddr bus can be buffered using
FCT244 buffers.

Note: With 8-bit systems it is imperative that the correct data line connections are made. Big
Endian systems must attach SysData(31:24) and Little Endian systems must attach
SysData(7:0).

Hooking up the correct data lines insures that byte gathering can occur on word accesses, and it
is required for boot-proms to execute instructions. SRAM systems that require later expansion to 32-
bits must externally multiplex a MSB address line with SysAddr(0).

SRAM
Bank

MemRdEnEven

SysData(31:16)MemCS(0)

MemWrEn(3:2)

SysAddr(17:1)

SRAM
Bank

MemRdEnEven

SysData(15:0)MemCS(0)

MemWrEn(1:0)

SysAddr(17:1)
� � �%

�����

����	
 ���
	����	 �
�
�� 67������
Figure 8.42 8-bit Big Endian SRAM System.

Figure 8.43 8-bit Little Endian SRAM System.

 ��������(/(/(/(/1111���������/-#�/-#�/-#�/-#��������

Dual-Port memory systems usually have a BusyN pin that indicates both ports of a memory loca-
tion are being accessed simultaneously. The port that is accessed second receives the BusyN signal,
indicating it must wait until the port that was accessed first is finished. Such Dual-Port systems can
use the SysWait signal.

This allows a full Dual-Port memory access cycle when BusyN de-asserts. Using this type, if the
Dual-Port memory glitches BusyN, (for instance, if the addresses match before MemCS is asserted,
but don't afterwards) then the Dual-Port access will not be optimal in the sense that additional wait-
states will be injected; however, operation will be correct. If increased optimization is required, the
system designer can add external circuitry to gate BusyN with the beginning of MemCS so that it is
ignored until BusyN is valid.

1�1�1�1�

��������!!!!/��/��/��/��####((((���� !��!��!��!��(�,�(�,�(�,�(�,�����������������

Multiple cards can be externally decoded using SysWrEn(1:0) programmed as inverted
MemAddr(27:26). Table 8.16 lists the PCMCIA and RC36100 functional equivalents.

SRAM
Bank

MemRdEnEven

SysData(31:24)MemCS(0)

MemWrEn(3)

SysAddr(16:0)

SRAM
Bank

MemRdEnEven

SysData(7:0)MemCS(0)

MemWrEn(0)

SysAddr(16:0)
� � ��

�����

����	
 ���
	����	 �
�
�� 67������
Table 8.16 PCMCIA and RC36100 Functional Equivalents.

 ���5# �����** 0'��
���

A SysAddr(25:0).

REG Discrete PIO output pin.

~CE(2:1) MemIoCS() pair program defaulted to PCMCIA-Memory Style and then to PCMCIA-
IO-Style when necessary.

~IORD IoRd.

~IOWR IoWr.

~OE ~(~MemIoCS() & ~ SysRd & ~ SysDataRdy)

~WE MemWrEnEven.

D SysData(15:0).

~WAIT SysWait

~INPACK Ignored.

~IOIS16 Ignored.

RESET System dependent or PIO output pin.

~IREQ ExcInt() pin.

CD(2:1) Two PIO input pins.

BVD(2:1) Two PIO input pins or ignore.

WP System dependent.
� � �)

�����

����	
 ���
	����	 �
�
�� 67������
� � �*

�����

��� ����	�

�	

������� 	
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. One of the on-chip bus controllers is the “I/O Controller.”
This chapter includes an overview on the I/O Controller interface, a complete description of the signal

pins and their timing, and a discussion on how the interface relates to typical external hardware I/O
devices and peripherals.

Because the I/O Bus Controller shares the Memory Controller (see Chapter 8) Registers and Chip
Selects, the register description is not repeated here, except for the I/O specific “types” as described in
the Type Field of each chip select's Control Register.

������������

������������
◆ The I/O controls support industry standard peripherals:
◆ I-Type I/O support
◆ M-Type I/O support
◆ PCMCIA-Style I/O support
◆ Controls up to 8 banks of I/O

Note: Chip selects are shared with the Memory Controller.
◆ Each IOCS can be programmed as:

- Individual chip selects
- Combined PCMCIA-I/O-style pair-wise chip selects

◆ Each Bank has Programmable Base Address
◆ Each Bank Size programmable from 32KB - 64MB
◆ 8, 16, and 32-bit support
◆ Wait-State Generator features:

- Programmable time from start to end of each data access for eacharea
- Programmable time options for reads and writes
- Programmable time options for single word accesses
- Internally generates the RdCEnN and AckN timing for all CPU accesses
- A programmed value may be overridden by the SysWait input signal

◆ Direct control of data path transceivers supports various options:
- Direct Bus Connection
- FCT245 Bidirectional Transceiver
- FCT543 Bidirectional Registered Transceiver

����������������� ��� ��� ��� ����������������������
Figure 9.1 is a functional block diagram of the Memory and I/O Controller. The main Memory and I/O

Controller Control Signal State Machine is responsible for generating the basic I/O Control signals used
to connect to external peripherals. These signals include chip selects, read enables/strobes, and write
enables/strobes.

The I/O Controller works in cooperation with the Bus Interface Unit as described in Chapter 7. Thus
the Control Signal State Machine sends and receives information from the BIU Controller for assistance
with controlling the port width and controlling partial word reads and writes. The Control Signal State
Machine also uses information stored in the software programmable I/O Controller Register Bank for
example, to control I-Type versus M-Type accesses.
� � �

�����

��� �	
��	

�� ��� ��� �	
��	

�� �
������� ���
�
�
The Wait-State Generator takes care of sending and receiving information from the BIU Controller
in order to control the sequencing and timing of reading and writing each individual datum. The
number of wait-states is derived from the settings programmed into the Register Bank. Once the
correct number of wait-states has been counted out, then the Wait-State Generator sets the appro-
priate internal BIU 'Acknowledge' signals. With the programmable Wait-State Generator it is possible
to eliminate the external state machines that are traditionally used for this function.

The I/O Controller Decoder constantly monitors the Bus Interface Unit's address and data bus to
see if either:

◆ The access is to the I/O Controller's Register Bank.
◆ The access is in one of the I/O Controller's Chip Select Areas that is responsible for control-

ling the bus transaction.
The Register Bank allows the software programmer access to the many different options of the I/

O Controller. The chip select address ranges, the number of wait-states, the port-width of the chip
select, and other similar options are programmed into the Register Bank as part of the software
initialization sequence of the boot operating system.

Figure 9.1 RC36100 I/O Bus Controller Block Diagram

��� �
� ���� �
� ���� �
� ���� �
� ���������������������� ��������� ������������ ��������� ������������ ��������� ������������ ��������� �������
These external interface pins are typically attached directly from the RC36100 RISController to

external peripheral chips and their transceivers. Their descriptions are as follows:

������������

�������������������� ������������������������

��������������
��
��
��
����������������

I/O Chip Select: The IoCS signals are active low outputs used to select one of the programmable
I/O controller areas. Typically each external peripheral is attached to a MemCS signal such that the
peripheral can be selected and turned on during an I/O transaction. When the address from the CPU
or DMA Controller matches the I/O memory block corresponding to a particular IoCS signal, that
IoCS asserts at the beginning of the next bus transaction and de-asserts at the end of that transac-
tion.

IoCS signals are used individually for non-PCMCIA systems or in pairs (for example IoCS 0 & 1, 2
& 3, 4 & 5, or 6 & 7) for PCMCIA systems.

The boot PROM memory is assigned to Mem/IoCS(0) and if interleaved, Mem/IoCS(1).
The IoCS chip selects are selectable and shared between Memory and I/O-types (see Chapter 8).

MemCS
MemRdEnEven
MemRdEnOdd
MemWrEn(3:0)

Control
S ignal
S tate
Machine

BIU Controller

PortWidth

ByteEn

Wait-
S tate
Generator

Decoder

BIU Controller

Ack, RdCEn, BTA

BIU Con troller Address and Control

Register
Bank

BIU Con troller Data

BootPortWidth

Reset
Initialization
Vector BusReq, BusGnt

SysWait

IoCS
IoRd/IoDStrobe
IoWr / IoRdHWr
� � �

�����

��� �	
��	

�� ��� �	
��	

�� ���
�
�

���������������� ������������������������

��������������������������������

This output is multiplexed depending on the I/O-Type selected in the Control Register of each I/O
Space. This output signal asserts only during an I/O Controller bus transaction.

Input/Output Read: This active low output signal is used as a read enable strobe in conjunction
with the write enable strobe, IoWr. IoRd controls when the peripheral chip can drive the data signals
back on to the main system data bus, SysData(). The timing of IoRd is such that SysAddr is stable
before and after IoRd asserts.

Input/Output Data Strobe: This active low output signal is used as a data strobe for both reads
and writes. IoDStrobe works in conjunction with the IoRdWr write status line. IoDStrobe controls
when the data bus is valid. The de-asserting edge of IoDStrobe can be used to strobe the data into
the peripheral on writes and indicates that the data has just been clocked into the CPU on reads. The
timing of IoDStrobe is such that SysAddr is stable before and after IoDStrobe asserts. In some cases,
IoCS() can be used instead of IoDStrobe.

���������������� ������������������������

������������������������

This output is multiplexed depending on the I/O-Type selected in the Control Register of each I/O
Space. This output only asserts during an I/O Controller bus transaction.

Input/Output Write: This active low output signal is used as an I/O write strobe in conjunction
with the I/O read enable strobe, IoRd. IoWr controls when data is valid on the system data bus,
SysData. When IoWr de-asserts, the peripheral can strobe the data into the chip. The timing of IoWr
is such that SysAddr is stable before and after IoWr asserts.

Input/Output Read High and Write: This output is active high during I/O reads and active low
during I/O writes. IoRdHWr is used as a read versus write status line. IoRdHWr works in conjunction
with the IoDstrobe. The timing of IoDStrobe is such that both IoRdHWr and SysAddr is stable before
and after IoDStrobe asserts. Note that since this signal asserts on the same clock edge as IoCS(), if
setup is required to IoCs() as well, then SysWr (which asserts a clock earlier) can be substituted for
IoRdHWr.

����������������������������

����	�	�	�	������������� ���� ����������������������������

 ������������ ������������! ! ! ! """" ����������������

��������������������####

$$$$������������ ����

������������%%%%&&&&��������####

$$$$������������

Memory Address Bus: During a PCMCIA Memory or I/O type access, the MemWrEn(3:0) bus is
instead driven with Physical Address bits. On the RC36100 and RC3051-base family memory map,
virtual and physical addresses (29:0) are the same. An application using PCMCIA can, for example,
use MemAddr(27:26) to externally decode PCMCIA style chip selects into as many as four (256M/
64M = 4) slots. In this mode (as in the other modes), the signals all return inactive high at the end of
the bus transaction.

��� ������� ������� ������� ������������������������� �������� �������� �������� �������
Many of the BIU Controller Signals are necessary to complete the I/O interface. These signals are

listed here as a reminder. Information specific to the I/O Controller is given here and general informa-
tion about the signal is given in Chapter 7, “System BIU Controller.”

�&�&�&�&''''���������������� ����������������������������

 ������������

System Address Bus: SysAddr is an output bus when used with the I/O Controller. The MIPS
architecture does not provide distinct memory and I/O spaces; thus MIPS I/O is considered to be
“memory mapped I/O.” A 32-bit peripheral connects to the word offset of the Least Significant Bits
(LSB) of SysAddr. Thus such a 32-bit peripheral skips SysAddr(1:0) and connects starting with
SysAddr(2) on up. A 16-bit peripheral may connect to the halfword offset of the LSBs of SysAddr
starting with SysAddr(1) on up. An 8-bit peripheral may connect the LSBs of SysAddr starting with
SysAddr(0) on up. 16-bit and 8-bit peripherals traditionally use the word offset on MIPS systems so
that they can be addressed from either Big or Little endian data paths.
� � �

�����

��� �	
��	

�� �������� 	� ��� ��� �	
��	

��
�&�&�&�&''''���������������� ����������������������������

 �� �� �� ������

System Data Bus: A 32-bit peripheral connects the entire 32-bit SysData bus to its data pins or to
its transceivers. A system implementation choice must be made on 16-bit and 8-bit peripherals.

In case 1, traditionally, MIPS systems have connected 16-bit and 8-bit peripherals with a word
offset address. In such a case, a 16-bit device can be attached to SysData(31:16) or SysData(15:0)
and accessed with either endianess by using a half-word offset of 0x2 for the opposite endianess. In
such a case, an 8-bit device can be attached to SysData(31:24) or SysData(7:0) and accessed with
either endianess by using a byte offset of 0x3 for the opposite endianess.

In case 2, 16-bit devices can use the halfword offset address, SysAddr(x:1) and 8-bit devices can
use the byte address, SysAddr(x:0).

Note: In this case, 16-bit and 8-bit peripherals connect to particular data pins depending on
whether the Endianess of the system is Big Endian or Little Endian.

Thus 16-bit peripherals use SysData(31:16) if they are Big Endian and SysData(15:0) if they are
Little Endian. 8-bit peripherals use SysData(31:24) if they are Big Endian and SysData(7:0) if they
are Little Endian. The User Mode Reverse Endianess Bit in the CP0 Status Register has no effect on
the connections to SysData, however, it is strongly recommended that the Reverse Endianess Bit not
be used to “correct” an endianess connection as it does not function in the kernel mode.

�&�&�&�&''''��������!!!!����

 ������������

System Wait Negated: SysWait can be used by an external source to add wait-states to the I/O
Controller. Since the I/O Controller itself has a Wait-State Generator, SysWait typically is not needed
and can be pulled-up with a resistor. The most likely application of SysWait is for an asynchronous
memory event such as a Dual-Port Memory Busy signal which can be used to attach to SysWait to
delay the beginning of a I/O Transaction in the Wait Mode option of the Memory I/O Control Register
2. Please see Chapter 7 for a general description of SysWait.

�������������������� �� ������ �� ������ �� ������ �� ������ ��� ������� ������� ������� ����������������������������
The I/O Controller provides control for all I/O spaces. These I/O spaces are memory mapped and

are intended for use by items such as LAN controllers, SCSI controllers, I/O signal conditioners, A/D,
and D/A chips. Such peripheral chips typically have address inputs, data I/O, chip select, read output
enable, and if writable, a write enable strobe.

��������!!!!���� ��(��(��(��(�)�)�)�)����''''

The I/O Controller contains a maximum of eight separate memory spaces, each having its own
I/O Controller Chip Select (IOCS) output pin. Each IOCS space occupies from 32KB to 256MB of
address space of which 64MB is externally addressable (due to the 26 address lines), and the
address space that each IOCS decodes is programmable. The I/O Controller will use the
programmed information in the MSB and LSB Base Address Registers along with the size (32KB to
256MB) of the given area as programmed in the MSB and LSB Bank Mask Registers.

This information is used to compare the address asserted by the CPU-BIU or DMA Controller to
determine if that particular IOCS area is being accessed for the current read or write. Each area
supports single datum reads and writes. Burst reads and writes are not supported in the IOCS area.
The port size of the data path (8, 16, or 32-bit) of each area is also programmable with each area's
Control Register.

The IOCS signal can be used in pairs for PCMCIA. The pairs are IOCS(3:2) for one interleaved
area and for the others, MemCS(5:4) and MemCS(7:6). When in the PCMCIA mode, both chip
selects within a pair must be programmed to the same values.

�!�!�!�!"""" �(� �(� �(� �(�� � � � ���������(
�(
�(
�(
 � � � ���������*�*�*�*�)�)�)�)�

The I/O Controller provides read enables and write enables that are suitable for direct chip
connection. I-Type read and write enables can in general also be attached to FCT543 type trans-
ceivers. M-Type write line and data strobes can in general also be attached to FCT245 type trans-
ceivers.
� � �

�����

��� �	
��	

�� �������� �����!��	
�
��!�+������!�+������!�+������!�+�������� ,,,,� ���� ���� ���� ���������������

The Wait-State Generator (WSG) controls the speed of the I/O accesses to and from the Bus
Interface Unit Controller. This includes the time from the start of an I/O transaction until the first
datum is sent or received. The WSG also is programmed to generate the internal RdCEnN and AckN
signals for CPU read and write requests.

The internal Acknowledge signal, “AckN” (as described in Chapter 7) is the same as the external
signal pin that the RC3051 RISController family uses. On single word reads and on both single word
and burst writes, AckN is automatically placed at the end of the transaction by the WSG. Since burst
I/O reads and writes are not supported, the Control Register 'Burst Ack' field is not needed.

Since burst reads and writes to I/O are not supported, the software is required to access I/O
spaces with single datum loads which are in general non-cached and the same data size as the port
width.

The signal called SysWait can be used to override the programmed settings of the Wait-State
Generator. When SysWait is asserted, actions performed by the WSG will depend on when it is
asserted relative to the transaction. SysWait has a pipeline delay, such that it must be asserted two
clocks before the desired effect is noticeable. By asserting it immediately after a datum is received or
transmitted, the next datum can be delayed. However, using SysWait for this purpose is generally not
recommended because the WSG has the same functionality. SysWait is useful for accessing off-card
“Ack”-type peripherals.

��������""""!'!'!'!'������������ ������������!�!�!�!� ----��������""""������������������������!(!(!(!(!!!!����&&&&

The Memory and I/O Controller contains 8 sets of registers, one set for each chip select. These
registers allow the I/O Controller to be configured for different types and speeds of peripherals. Thus
a wide variety of system speed/cost/manufacturing trade-offs can be accommodated.

�������������������������������� ��������� ���������� ���������� ���������� �����
The Memory and I/O Controller Registers are divided into 8 sets of registers, one set for each chip

select memory area. Physical addresses and register descriptions are shown in Table 9.1.
� � "

�����

��� �	
��	

�� �������� �����!��	
�
$�%�& '((���� �������� �����!��	

0xFFFF_E200
0xFFFF_E204
0xFFFF_E208
0xFFFF_E20C
0xFFFF_E210
0xFFFF_E214
0xFFFF_E218

Memory and I/O LSB Base Address Register for Bank 0
Memory and I/O MSB Base Address Register for Bank 0
Memory and I/O LSB Bank Mask Register for Bank 0
Memory and I/O MSB Bank Mask Register for Bank 0
Memory and I/O Control Register for Bank 0
Memory and I/O LSB Wait-State Generator Register for Bank 0
Memory and I/O MSB Wait-State Generator Register for Bank 0

0xFFFF_E220
0xFFFF_E224
0xFFFF_E228
0xFFFF_E22C
0xFFFF_E230
0xFFFF_E234
0xFFFF_E238

Memory and I/O LSB Base Address Register for Bank 1
Memory and I/O MSB Base Address Register for Bank 1
Memory and I/O MSB LSB Bank Mask Register for Bank 1
Memory and I/O MSB MSB Bank Mask Register for Bank 1
Memory and I/O MSB Control Register for Bank 1
Memory and I/O MSB LSB Wait-State Generator Register for Bank 1
Memory and I/O MSB MSB Wait-State Generator Register for Bank 1

0xFFFF_E240
0xFFFF_E244
0xFFFF_E248
0xFFFF_E24C
0xFFFF_E250
0xFFFF_E254
0xFFFF_E258

Memory and I/O MSB LSB Base Address Register for Bank 2
Memory and I/O MSB MSB Base Address Register for Bank 2
Memory and I/O MSB LSB Bank Mask Register for Bank 2
Memory and I/O MSB MSB Bank Mask Register for Bank 2
Memory and I/O MSB Control Register for Bank 2
Memory and I/O MSB LSB Wait-State Generator Register for Bank 2
Memory and I/O MSB MSB Wait-State Generator Register for Bank 2

0xFFFF_E260
0xFFFF_E264
0xFFFF_E268
0xFFFF_E26C
0xFFFF_E270
0xFFFF_E274
0xFFFF_E278

Memory and I/O MSB LSB Base Address Register for Bank 3
Memory and I/O MSB MSB Base Address Register for Bank 3
Memory and I/O MSB LSB Bank Mask Register for Bank 3
Memory and I/O MSB MSB Bank Mask Register for Bank 3
Memory and I/O MSB Control Register for Bank 3
Memory and I/O MSB LSB Wait-State Generator Register for Bank 3
Memory and I/O MSB MSB Wait-State Generator Register for Bank 3

0xFFFF_E280
0xFFFF_E284
0xFFFF_E288
0xFFFF_E28C
0xFFFF_E290
0xFFFF_E294
0xFFFF_E298

Memory and I/O MSB LSB Base Address Register for Bank 4
Memory and I/O MSB MSB Base Address Register for Bank 4
Memory and I/O MSB LSB Bank Mask Register for Bank 4
Memory and I/O MSB MSB Bank Mask Register for Bank 4
Memory and I/O MSB Control Register for Bank 4
Memory and I/O MSB LSB Wait-State Generator Register for Bank 4
Memory and I/O MSB MSB Wait-State Generator Register for Bank 4

0xFFFF_E2A0
0xFFFF_E2A4
0xFFFF_E2A8
0xFFFF_E2AC
0xFFFF_E2B0
0xFFFF_E2B4
0xFFFF_E2B8

Memory and I/O MSB LSB Base Address Register for Bank 5
Memory and I/O MSB MSB Base Address Register for Bank 5
Memory and I/O MSB LSB Bank Mask Register for Bank 5
Memory and I/O MSB MSB Bank Mask Register for Bank 5
Memory and I/O MSB Control Register for Bank 5
Memory and I/O MSB LSB Wait-State Generator Register for Bank 5
Memory and I/O MSB MSB Wait-State Generator Register for Bank 5

0xFFFF_E2C0
0xFFFF_E2C4
0xFFFF_E2C8
0xFFFF_E2CC
0xFFFF_E2D0
0xFFFF_E2D4
0xFFFF_E2D8

Memory and I/O MSB LSB Base Address Register for Bank 6
Memory and I/O MSB MSB Base Address Register for Bank 6
Memory and I/O MSB LSB Bank Mask Register for Bank 6
Memory and I/O MSB MSB Bank Mask Register for Bank 6
Memory and I/O MSB Control Register for Bank 6
Memory and I/O MSB LSB Wait-State Generator Register for Bank 6
Memory and I/O MSB MSB Wait-State Generator Register for Bank 6

0xFFFF_E2E0
0xFFFF_E2E4
0xFFFF_E2E8
0xFFFF_E2EC
0xFFFF_E2F0
0xFFFF_E2F4
0xFFFF_E2F8

Memory and I/O MSB LSB Base Address Register for Bank 7
Memory and I/O MSB MSB Base Address Register for Bank 7
Memory and I/O MSB LSB Bank Mask Register for Bank 7
Memory and I/O MSB MSB Bank Mask Register for Bank 7
Memory and I/O MSB Control Register for Bank 7
Memory and I/O MSB LSB Wait-State Generator Register for Bank 7
Memory and I/O MSB MSB Wait-State Generator Register for Bank 7

Note: Big Endian software must offset these addresses by b'10 (0x2), if halfword operations are used.

Table 9.1 Memory and I/O Controller Register Addresses and Descriptions
� � #

�����

��� �	
��	

�� �������� �����!��	
�
��������������������&&&& ���� � � � �

�������� �������� ��� ��� ��� ���((((��������"!"!"!"!''''����������������........����

////������������

����� � � � ��������((((��������""""

����..��..��..��..��0000����

Figure 9.2 Memory and I/O Control Register (‘MemIoCntrlReg(7..0)’)

As shown in Figure 9.2, each MemCntrlReg contains a Type Field that has options specific to I/O
types of signals.

��������������������&&&& 1111&&&&��������

2222���������1&�1&�1&�1&��������0000���� 3333!!!!����(�(�(�(�

The Type field determines the type of timing the Bus Interface will use. Table 9.2 lists the possible
Type field values and their actions.

----������������'!4'!4'!4'!4���� ����!!!!���������
�
�
�
2222�������������!�!�!�!4444�0�0�0�0���� 3333!�(!�(!�(!�(����

The PortSize field, shown in Table 9.3, determines the width of the memory or I/O port. The value
is inverted relative to the reset initialization vector value.

*�
�� '���	

‘1011’ PCMCIA-Memory-Style

‘1010’ PCMCIA-I/O-Style

‘1001’ M-Type I/O

‘1000’ I-Type I/O

'0010' Memory-Type for FCT260

‘0001’ Memory-Type for FCT245 (non-interleaved)

‘0000’ Memory-Type (for FCT543)

All other values Reserved

Note:
PCMCIA-Style supports a PCMCIA host mode subset that is likely to be used with PCMCIA peripherals. PCMCIA-
Memory and -IO Styles are intended for dynamic swapping by the software onto the same pair of chip selects. Typi-
cally, the Memory-Style is left on, and the I/O-Style is swapped in whenever it is needed, then swapped back to
Memory-Style.

Table 9.2 Memory Type (MemType) Field Values and Descriptions

*�
�� '���	

‘11’ 64-bit (32-bit 2-way interleaved) accesses (Valid for Memory Type only)

‘10’ 16-bit accesses

‘01’ 8-bit accesses

‘00’ 32-bit accesses

Table 9.3 Portsize Width Field Values and Definitions

0

6

15 0

4

MemType

12 7
MemSize 0

 611 8 5

4 2
� �)

�����

��� �	
��	

�� ��� �	
��	

�� +�,�
� �����,�

+
+
+
+1111&�&�&�&��
�
�
�
�������� 1111&&&&������������

The I-Type (Intel Type) puts the bus interface into a mode such that the I/O signals IoCS(), IoRd,
and IoWr support I-type devices. Such devices have an address decoded chip select, IoCS(), and
separate read (IoRd) and write (IoWr) data strobes. Older I-Type devices may also have an active
high Reset input; an artifact that may require an external inverter.

�+�+�+�+1111&�&�&�&�����

�������� 1111&&&&������������

The M-Type (Motorola Type) puts the bus interface into a mode such that the I/O signals IoRd and
IoWr are used as IoDStrobe and IoRdHWr, respectively. The device is assumed to have an address
decoded chip select, IoCS() while using the IoRdHWr line as a status line indicating a read or write,
and using IoDStrobe as a data strobe.

-�-�-�-������
�
�
�
����+
�+
�+
�+
����� ��������&&&&((((��������

The PCMCIA-Style puts the bus interface into a mode such that the I/O signals IoCS(odd,even),
IoRd, and IoWr support 16-bit slave PCMCIA devices. The odd and even chip select pair is used to
indicate whether one or both of the byte lanes are valid. IoRd and IoWr are used as separate read
and write data strobes.

��� ������� ������� ������� ������������������������� !����� ��� !����� ��� !����� ��� !����� ��������������������������
This section illustrates a number of timing diagrams applicable to RC36100 I/O transactions. The

values for the AC parameters are contained in the separate document, “RC36100 RISController Data
Sheet.”

�������� �������������������� ����!!!!4444����

All I/O accesses must be single datum accesses. For example, a 32-bit port must not use a
cached burst access; a 16-bit port must use an uncached store or load halfword or byte operation
(such as one of these: sh, lhu, sb, lbu). An 8-bit port must only use uncached byte operations (such
as one of these: sb, lbu).

������	��	��	��	 !!!!��
The bus interface timing for read transactions is described in the following section. The internal

bus interface to CPU core for read loads is described in Chapter 7.

%�%�%�%�''''!!!!))))
+1&
+1&
+1&
+1&��������

�������� ���������������� 5555!!!!�������� � ��!�+�� ��!�+�� ��!�+�� ��!�+��������������'�'�'�'

Figure 9.3 illustrates a basic I-Type I/O Controller read transaction. Each transaction begins with
both SysALEn and SysBurstFrame asserting. At this time, SysRd asserts (if it is not already in this
state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoRd, and IoWr will be
in their de-asserted states. And assuming there are no internally programmed StartRepeat wait-
states, on the next clock cycle, SysBurstFrame de-asserts and IoCS() asserts.

On the third cycle, IoRd asserts. Then assuming there are no internally programmed
RdStart2Datum wait-states, SysDataRdy asserts to indicate that the data from the I/O device is being
sampled into the RISController. On the 4th clock cycle, IoRd de-asserts, indicating that the read data
from the I/O device has just been latched into the RISController. On the next clock--the final clock of
the transaction--IoCS() de-asserts, and the next transaction may begin.

During an I-Type transaction, there is 1 clock of address setup time before IoCS() asserts. All
signals are setup before the read strobe, IoRd, asserts. After data has been sampled by the CPU,
IoRd de-asserts, with all other signals having hold time. On the next clock, IoCS() de-asserts.
� � -

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.3 I-Type I/O Read with 0 Wait-States

%�%�%�%�''''!!!!)))) �+1&�+1&�+1&�+1&��������

�������� ���������������� 5555!�!�!�!����� � ��!�+�� ��!�+�� ��!�+�� ��!�+��������������'�'�'�'

Figure 9.4 illustrates a basic M-Type I/O Controller read transaction. Each transaction begins with
both SysALEn and SysBurstFrame asserting. At this time, SysRd asserts (if it is not already in this
state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoDStrobe (also
known as IoRd), and IoRdHWr (also known as IoWr) will be in their de-asserted states. Then
assuming there are no internally programmed StartRepeat wait-states, on the next clock cycle,
SysBurstFrame de-asserts; and IoCS() asserts. If this is a write transaction, IoRdHWr (IoWr) will
assert.

On the third cycle, IoDStrobe (IoRd) asserts. And assuming there are no internally programmed
RdStart2Datum wait-states, SysDataRdy asserts, to indicate that the data from the I/O device is
being sampled into the RISController. On the 4th clock cycle, IoDStrobe (IoRd) de-asserts, indicating
that the read data from the I/O device has just been latched into the RISController. On the next clock-
-the final clock of the transaction--IoCS() de-asserts and, at the same time, the next transaction may
begin.

During an M-Type transaction, there is 1 clock of address setup time before IoCS() asserts. All
signals are setup before the data strobe, IoDStrobe, asserts. After data has been sampled by the
CPU, IoDStrobe de-asserts, with all other signals having hold time. On the next clock, IoCS() de-
asserts.

Note that because IoRdHWr asserts on the same clock edge as IoCS(), systems that require
setup time from IoRdHWr to IoCs() can substitute SysWr for IoRdHWr. Many systems can also
substitute IoCS() for IoDStrobe which, if the peripheral timing allows, may require fewer wait-states.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

SysWait

Fixup Run/StallStall Stall

New TransactionWait?

Addr
� � �

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.4 I/M-Type I/O Read, 0 Wait-States

%�%�%�%�''''!!!!)))) 6�6�6�6�+�!+�!+�!+�!���� -��-��-��-������
�+
�+
�+
�+''''����&&&&((((����

�������� ���������������� 5!5!5!5!�������� ���� ��������!!!!����+���+���+���+�����������''''

Figure 9.5 illustrates a basic 16-bit PCMCIA-Style I/O Controller read transaction. Each transac-
tion begins with both SysALEn and SysBurstFrame asserting. At this time, SysRd asserts (if it is not
already in this state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoRd,
and IoWr will be in their de-asserted states. Then assuming that there are no internally programmed
StartRepeat wait-states, on the next clock cycle, SysBurstFrame de-asserts and the IoCS() pair
asserts. Note that on PCMCIA transactions, the IoCS() pair is asserted according to which bytes are
enabled and valid. Thus if the even byte is valid, then the even IoCS() will assert. If the odd byte is
valid, then the odd IoCS() will assert. If both bytes are valid, then both IoCS() signals in the pair
assert.

On the third cycle IoRd asserts. And assuming there are no internally programmed
RdStart2Datum wait-states, SysDataRdy asserts to indicate that the data from the I/O device is being
sampled into the RISController. On the 4th clock cycle, IoRd de-asserts, indicating that the read data
from the I/O device has just been latched into the RISController. On the next clock--the final clock of
the transaction--the IoCS() pair de-asserts and, at the same time, the next transaction may begin.

During an I-Type transaction, there is 1 clock of address setup time before the IoCS() pair asserts.
All signals are setup before the read strobe, IoRd, asserts. After data has been sampled by the CPU,
IoRd de-asserts, with all other signals having hold time. On the next clock the IoCS() pair de-asserts.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

 Data Input

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd /
IoDStrobe

IoWr /
IoRdHWr

SysWait

Fixup Run/StallStall Stall

New TransactionWait?

Addr
� � �.

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.5 PCMCIA-Style I/O Read with 0 Wait-States

%�%�%�%�''''!!!!))))
+1&
+1&
+1&
+1&��������

�������� ��������!�!�!�!����� 5!5!5!5!�������� ���� ��������!!!!����+���+���+���+�����������''''

Figure 9.6 illustrates a basic I-Type I/O Controller write transaction. Each transaction begins with
both SysALEn and SysBurstFrame asserting. At this time, SysWr asserts (if it is not already in this
state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoRd, and IoWr will be
in their de-asserted states. Assuming that there are no internally programmed StartRepeat wait-
states, on the next clock cycle, SysBurstFrame de-asserts and IoCS() asserts.

On the third cycle, IoWr asserts. And assuming there are no internally programmed
RdStart2Datum wait-states, SysDataRdy asserts to indicate that the data from the RISController is
ready to be latched into the I/O device. On the 4th clock cycle, IoWr de-asserts, providing a means
for the write data from the RISController to be latched into the I/O device. On the next clock--which is
the final clock of the transaction--IoCS() de-asserts and, at the same time, the next transaction may
begin.

During an I-Type transaction, there is 1 clock of address setup time before IoCS() asserts. All
signals are setup before the write strobe, IoWr, asserts. After data has been sampled by the CPU,
IoWr de-asserts, with all other signals having hold time. On the next clock, IoCS() de-asserts.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

SysWait

New TransactionWait?

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

Addr

Fixup Run/StallStall Stall

IoCS(3)

Active if Byte 0 is valid

Active if Byte 1 is valid

MemWrEn(1:0) MemAddr(27:26)
� � ��

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.6 I-Type I/O Write with 0 Wait-States

%�%�%�%�''''!!!!)))) �+1&�+1&�+1&�+1&��������

�������� ��������!�!�!�!����� 5!5!5!5!�������� ���� ��!�+������!�+������!�+������!�+��������''''

Figure 9.7 illustrates a basic M-Type I/O Controller write transaction. Each transaction begins with
both SysALEn and SysBurstFrame asserting. At this time, SysWr asserts (if it is not already in this
state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoDStrobe (also
known as IoRd), and IoRdHWr (also known as IoWr) will be in their de-asserted states. Assuming
that there are no internally programmed StartRepeat wait-states, on the next clock cycle, SysBurst-
Frame de-asserts; and IoCS() asserts. IoRdHWr (IoWr) also asserts here to indicate the I/O write
transaction.

On the third cycle IoDStrobe (IoRd) asserts. And assuming that there are no internally
programmed RdStart2Datum wait-states, SysDataRdy asserts to indicate that the data from the I/O
device is being sampled into the RISController. On the 4th clock cycle, IoDStrobe (IoRd) de-asserts
indicating that the read data from the I/O device has just been latched into the RISController. On the
next clock--the final clock of the transaction--IoCS() and IoRdHWr de-assert and, at the same time,
the next transaction may begin.

During an M-Type transaction, there is 1 clock of address setup time before IoCS() asserts. All
signals are setup before the data strobe, IoDStrobe, asserts. After data has been sampled by the
CPU, IoDStrobe de-asserts with all other signals having hold time. On the next clock, IoCS() de-
asserts.

Note that because IoRdHWr asserts on the same clock edge as IoCS(), systems that require
setup time from IoRdHWr to IoCs() can substitute SysWr for IoRdHWr. Many systems can also
substitute IoCS() for IoDStrobe, which if the peripheral timing allows, may require fewer wait-states.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

SysWait

Run/Stall

New TransactionWait?

Run/StallRun/StallRun/StallRun/StallRun/Stall

Sample Data

Addr

Data Out
� � ��

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.7 M-Type I/O Write with 0 Wait-States

����� �#�/�� $�0��'���%
� ��� 1���� ���� . 1����������

Figure 9.8 illustrates a basic 16-bit PCMCIA-Style I/O Controller write transaction. Each transac-
tion begins with both SysALEn and SysBurstFrame asserting. At this time, SysWr asserts (if it is not
already in this state, as the result of a previous transaction). Now it is guaranteed that IoCS(), IoRd,
and IoWr will be in their de-asserted states. And assuming there are no internally programmed Star-
tRepeat wait-states, on the next clock cycle, SysBurstFrame de-asserts, and the IoCS() pair asserts.
Note that on PCMCIA transactions the IoCS() pair is asserted according to which bytes are enabled
and valid. Thus if the even byte is valid, then the even IoCS() will assert. If the odd byte is valid, then
the odd IoCS() will assert. If both bytes are valid, then both IoCS() signals in the pair assert.

On the third cycle IoWr asserts. Assuming there are no internally programmed RdStart2Datum
wait-states, SysDataRdy asserts to indicate that the data from the RISController is ready to be
latched into the I/O device. On the fourth clock cycle, IoWr de-asserts, providing a means for the write
data from the RISController to be latched into the I/O device. On the next clock cycle--the final clock
of the transaction--the IoCS() pair de-asserts and, at the same time, the next transaction may begin.

Before the IoCS() pair asserts, during an I-Type transaction, there is 1 clock of address set-up
time. All signals are set-up before the write strobe signal, IoWr, asserts. After data has been sampled
by the CPU, IoWr de-asserts, with all other signals having hold time. On the next clock, the IoCS()
pair de-asserts.

Note: The RC36100 inverts the value of Virtual Address(26:27) to generate the values of
MemWrEn(1:0) during an I-Type transfer.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Sample Data

Run/
Stall

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd /
IoDStrobe

IoWr /
IoRdHWr

SysWait

Run/Stall

New TransactionWait?

Run/StallRun/StallRun/StallRun/StallRun/Stall

Data Out

Addr
� � ��

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.8 PCMCIA-Style I/O Write with 0 Wait-States

���������������� 5!�5!�5!�5!����� ��������!!!!����+���+���+���+����������� ����''''! ! ! ! """" ����������������� ��� ��� ��� ������������������ 3333!!!!����((((����

The left half of Figure 9.9 illustrates a basic I/O Controller read where 1 wait-state has been added
by repeating the Start Cycle. Although Figure 9.9 shows an I-Type transaction, the same general
timing concept applies to M-Type, and PCMCIA-style accesses as well. This special effect is
programmed into the Wait-State Generator using the Start Repeat Field in the MemIoLSBWait-
StateReg() Register. When the Start Cycle repeats, the IoCS() assertion is delayed. This effect is
useful for very slow peripherals or peripherals that require significant address setup before the chip is
selected. An example is the 600ns access time mode of the PCMCIA I/O protocol. The Start repeat
Field affects both reads and writes.

���������������� 5!�5!�5!�5!����� ��������!!!!����+���+���+���+����������� ����''''! ! ! ! """" �� 3!3!3!3!����((((����

The right half of Figure 9.9 illustrates a basic I/O Controller read where 1 wait-state is added using
the RdStart2Datum Field of the MemIoMSBWaitStateReg() Register. Any number from 0 to 15
internal wait-states may be added using the RdStart2Datum Field. With this field, IoCS() and the
read, write, or data strobe is asserted as normal, but then wait-states are added such that SysDa-
taRdy is not asserted until the RdStart2Datum Field has finished counting. When SysDataRdy is
asserted, then the Data from the external Memory Bank is sampled into the RISController.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Run/
Stall

Data Out

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

SysWait

Addr

Run/Stall

New TransactionWait?

Run/StallRun/StallRun/StallRun/StallRun/Stall

Sample Data

IoCS(3)

Active if Byte 0 is active

Active if Byte 1 is active

MemWrEn(1:0) MemAddr(27:26)
� � ��

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.9 I/O Read with Internal Wait-States

���������������� 5!�5!�5!�5!����� ��������!!!!����+���+���+���+����������� ����''''! ! ! ! """" ����&&&&'��!�'��!�'��!�'��!�

Figure 9.10 illustrates a basic I/O Controller read where 1 wait-state is added using the external
signal pin, SysWait. SysWait is not expected to be used for conventional I/O systems, since it is
easier to program the Wait-State Generator to produce internal wait-states. However, SysWait can be
useful for off-card I/O where there may be an indeterminate amount of time before the access can
begin. Since SysWait is sampled a clock ahead of when it is used, its effect is seen two clocks later
than when it is asserted. If SysWait is asserted when SysDataRdy is asserted, then an additional
Data Sampling clock cycle is repeated with SysDataRdy remaining low. Thus external logic analyzers
or other debug equipment may want to gate SysDataRdy with SysWait in order to decode valid Data
samples.

SysC lk

SysRd

SysALEn

SysData(31:0)

SysBurstFram e

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

SysW ait

FixupStall Stall

New Transaction

Run/Stall

Start Cycle
Repeat Wait

Wait?RdStart2Datum
Wait

Stall Stall

Addr
� � �"

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.10 I/O Read with external SysWait Wait-State

6666+��+��+��+�������������� ��������!�!�!�!����� 5!5!5!5!����� ��!�+�� ��!�+�� ��!�+�� ��!�+����������������� ����'!'!'!'! " " " " �� 3333!�(!�(!�(!�(����

The right half of Figure 9.11 illustrates a basic I/O Controller write where 1 wait-state has been
added by repeating the Start Cycle. This special effect is programmed into the Wait-State Generator
using the Start Repeat Field in the MemIoLSBWaitStateReg() Register. When the Start Cycle
repeats, the assertion of IoCS() is delayed. This effect is useful for very slow peripherals or periph-
erals that require significant address setup before the chip is selected. An example is the 600ns
access time mode of the PCMCIA I/O protocol. The Start repeat Field affects both reads and writes.

6666+��+��+��+�������������� ��������!�!�!�!����� 5!5!5!5!����� ��!�+�� ��!�+�� ��!�+�� ��!�+����������������� ����'!'!'!'! " " " " �� 3333!!!!����((((����

The left half of Figure 9.11 illustrates a basic I/O Controller write where 1 wait-state is added using
the WrStart2Datum Field of the MemIoMSBWaitStateReg() Register. Any number from 0 to 15
internal wait-states may be added using the WrStart2Datum Field. With this field, the I/O Write
Enable strobe, either IoWr or IoDStrobe is asserted as normal, but then wait-states are added where
SysDataRdy is not asserted until the WrStart2Datum Field has finished counting. When SysDataRdy
is asserted, then the Data from the external Memory Bank is sampled by external memory.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFram e

Stall-A rb Stall

Start
Read

Sample Data

Run/
S tall

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoW r

SysWait

FixupStall Stall

New TransactionWait W ait?

Run/Sta llS tall

Addr

 Data Input
� � �#

�����

��� �	
��	

�� ���(+��
�����	
�
Figure 9.11 I/O Write with Internal Wait-States

6666+��+��+��+�������������� ��������!�!�!�!����� 5!5!5!5!����� ��!�+�� ��!�+�� ��!�+�� ��!�+����������������� ����'!'!'!'! " " " " �&'��!�&'��!�&'��!�&'��!����

Figure 9.12 illustrates a basic I/O Controller write where 1 wait-state is added using the external
signal pin, SysWait. SysWait is not Wait-State Generator to produce internal wait-states. However,
SysWait can be useful for off-card peripherals where there may be an indeterminate amount of time
before the access can begin. Since SysWait is sampled a clock ahead of when it is used, its effect is
seen two clocks later than when it is asserted. If SysWait is asserted when SysDataRdy is asserted
then an additional Data Sampling clock cycle is repeated with SysDataRdy remaining low. Thus
external logic analyzers or other debug equipment may want to gate SysDataRdy with SysWait in
order to decode valid Data samples.

SysC lk

SysW r

SysALEn

SysData(31:0)

SysBurstFram e

Run/Stall Run/Stall

Start
Write

Sample Data

Run/
Stall

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoW r

SysWait

Run/StallRun/Stall Run/Stall

New Transaction

Run/Stall

Start Cycle
Repeat Wait

Wait?WrStart2Datum
Wait

Run/Stall Run/Stall

Addr

Data Out
� � �)

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.12 I/O Write with external SysWait Wait-State

�"���� #�"���� #�"���� #�"���� #$$$$�� ����� ����� ����� ���

$�$�$�$�++++����!!!!����

�������� ��7!��7!��7!��7!)�)�)�)� �!�!�!�!��)��)��)��)����((((& �& �& �& �� � � � ����)�)�)�)��������� �������� %%%%����''''

Figure 9.13 shows a typical 32-bit I/O device using the I-Type. And Figure 9.14 shows a typical
32-bit I/O device using the M-Type. In small systems, the I/O device can be attached directly to the
SysAddr and SysData buses. If the current load is relatively large or the device turn-off time after a
read is relatively long, the I/O device should be isolated with a transceiver.

Figure 9.13 I-Type I/O System with Direct Bus Connection

SysClk

SysW r

SysALEn

SysData(31:0)

SysBurstFram e

Run/Stall

Start
W rite

Sample Data

Run/
Sta ll

SysAddr(25:0)

SysDataRdy

IoCS(2)

IoRd

IoWr

SysW ait

New TransactionW ait W ait?

Run/S tallRun/S tallRun/S tallRun/StallRun/S tallRun/S tall

Addr

Data Out

I/O
Device

IoRd

SysData(31:0)IoCS(2)

IoWr

SysAddr(n:2)
� � �-

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.14 M-Type I/O System with Direct Bus Connection

����� ��� ��� ��� ��'�'�'�'����� ������������((((!!!!)��)��)��)��!�!�!�!�

For generating a Reset, certain I/O device types require both Read and Write to be asserted. An
M-state type can be used to do so, by dynamically switching from I-style to M-style and back again;
however, this requires that no other devices be of M-style. If such devices must be used with M-style
devices, then the Read and Write Reset device must externally gate its chip select with either the
read or write line.

Other types of I/O devices require an active high reset legacy. This can either be accomplished
with an external inverter of ResetN or with a spare PIO line.

$�$�$�$�++++����!!!!����

�������� ��7!��7!��7!��7!)�)�)�)� ����''''! ! ! ! """" �8�8�8�89999 1111�������� ')')')')�!7��!7��!7��!7�����''''

Figure 9.15 shows a typical I-Type I/O device using FCT245 transceivers. Figure 9.16 shows a
typical M-Type I/O device using FCT245 transceivers.

Figure 9.15 I-Type I/O System using FCT245 Transceivers

I/O
Device

IoDStrobe

SysData(31:0)IoCS(2)

IoRdHWr

SysAddr(n:2)

I/O
Device

IoRd

SysData(31:0)IoCS(2)

IoW r

S ysAddr(n:2) FCT
245

SysRd

B A

O E

IoCS(2)

T /R
� � ��

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.16 M-Type I/O System using FCT245 Transceivers

$�$�$�$�++++����!!!!����

�������� ��7!��7!��7!��7!)�)�)�)� ����''''! ! ! ! """" 98989898$$$$ 1111�������� ')')')')�!7��!7��!7��!7�����''''

Figure 9.17 shows a typical I-Type I/O device using FCT543 transceivers. This example system
takes advantage of the dual output enable and chip select gating of the FCT543 where both the
output enable and the chip select need to be asserted for the transceiver to drive its outputs. Figure
9.18 shows a typical M-Type I/O device using FCT543 transceivers.

Figure 9.17 I-Type I/O System using FCT543 Transceivers

I/O
Device

IoDS trobe

SysData(31:0)IoCS (2)

IoRdHW r

SysA ddr(n:2) FCT
245

SysRd

B A

OE

IoCS (2)

T/R

I/O
Device

IoRd

SysData(31:0)IoCS(2)

IoWr

SysAddr(n:2) FCT
543

IoWr

A B

OEAB

IoRd

OE-ÿ

CEABCEBA
IoCS(2)
� � �.

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.18 M-Type I/O System using FCT543 Transceivers

::::'!'!'!'! " " " " ���������������� ������������ � �� �� �� � �����7!�7!�7!�7!)�)�)�)� ������������!!!! ���� ��������))))���� ������ �� �� �� '''')�)�)�)�!!!!7777��������

Multiple I/O devices can be put behind the same set of transceivers. The most obvious method is
to add an external decoder to divide the chip select up into individual chips selects for each device
using the MSB SysAddr line as the select. A second method is to use a spare RC36100 IoCS() pin
and assign it the same address spaces as the devices behind the transceiver. Thus the common
IoCS() combines all of the address spaces of the devices behind the transceiver, such that the trans-
ceiver is turned on for any of those devices.

6�6�6�6�++++����!!!!����

�������� ��7!��7!��7!��7!)�)�)�)�''''

Figure 9.19 and Figure 9.20 show typical 16-bit I/O devices. There are two choices for hooking up
16-bit I/O devices.

For the first option, refer back to the 32-bit case in Figure 9.15 on page 19 and Figure 9.16 on
page 20. The 16-bit device is word-aligned (using SysAddr bits n:2) even though it is a 16-bit device.
This is the traditional MIPS connection and allows the device to be accessed from either endianess.
For example, if the device is connected to SysData(15:0), then little endian software accesses the
registers like 0x00, 0x04, 0x08, 0x0C,... and big endian software accesses the registers with a 0x02
offset like 0x02, 0x06, 0x0A, 0x0E,... For example, if the device is connected to SysData(31:16), then
little endian software accesses the registers with a 0x02 offset with addresses like 0x02, 0x06, 0x0A,
0x0E,... and big endian software accesses the registers with addresses like 0x00, 0x04, 0x08,
0x0C,...

In the second option, the 16-bit device is halfword-aligned (using SysAddr bits n:1). With 16-bit
systems it is imperative that the correct data line connections are made. Big Endian systems must
attach SysData(31:16) and Little Endian systems must attach SysData(15:0). For example with half-
word aligned connections, the software accesses the registers with addresses like 0x00, 0x02, 0x04,
0x06.

I/O
Device

IoDStrobe

SysData(31:0)IoCS(2)

IoRdHWr

SysAddr(n:2) FCT
543

SysWr

A B

OEAB

SysRd

OEBA

CEABCEBA
IoCS(2)
� � ��

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.19 16-bit I/O System with Big Endian Connection

Figure 9.20 16-bit I/O System with Little Endian Connection

;;;;+�!+�!+�!+�!����
�
�
�
����� ��7!��7!��7!��7!)�)�)�)�''''

Figure 9.21 and Figure 9.22 show two typical 8-bit I/O device systems. There are two choices for
hooking up 8-bit I/O devices.

In choice 1, refer back to the 32-bit case in Figure 9.15 on page 19 and Figure 9.16 on page 20.
The 8-bit device is word-aligned (using SysAddr bits n:2) even though it is a 8-bit device. This is the
traditional MIPS connection and allows the device to be accessed from either endianess. For
example, if the device is connected to SysData(7:0), then little endian software accesses the regis-
ters like 0x00, 0x04, 0x08, 0x0C,... and big endian software accesses the registers with a 0x03 offset
like 0x03, 0x07, 0x0B, 0x0F,... For example, if the device is connected to SysData(31:24), then little
endian software accesses the registers with a 0x03 offset with addresses like 0x03, 0x07, 0x0B,
0x0F,... and big endian software accesses the registers with addresses like 0x00, 0x04, 0x08,
0x0C,...

In choice 2, the 8-bit device is byte-aligned (using SysAddr bits n:0). With 8-bit systems it is imper-
ative that the correct data line connections are made. Big Endian systems must attach
SysData(31:24) and Little Endian systems must attach SysData(7:0). For example with half-word
aligned connections, the software accesses the registers with addresses like 0x00, 0x01, 0x02, 0x03.

Since an 8-bit system is probably a smaller system, the SRAM/ROM can be attached directly to
the SysAddr and SysData buses. In larger systems, FCT245 transceivers can be added between the
memory bank and the SysData bus. Also in large systems, the SysAddr bus can also be buffered
using FCT244 buffers.

I/O
Device

IoRd

SysData(31:16)IoCS(2)

IoWr

SysAddr(n:1)

I/O
Device

IoRd

SysData(15:0)IoCS(2)

IoWr

SysAddr(n:1)
� � ��

�����

��� �	
��	

�� �%���, 23�,!
��
Figure 9.21 8-bit I/O System with Big Endian Connection

Figure 9.22 8-bit I/O System with Little Endian Connection

I/O
Device

IoRd

SysData(31:24)IoCS(2)

IoWr

SysAddr(n:0)

I/O
Device

IoRd

SysData(7:0)IoCS(2)

IoWr

SysAddr(n:0)
� � ��

�����

��� �	
��	

�� �%���, 23�,!
��

� � ��

�����

���� ���	
����

������� 	

��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. One of the four on-chip bus controllers in the RC36100 is the DRAM
Controller.

This chapter provides an overview of the DRAM Controller interface, complete pin and signal timing
descriptions as well as an explanation on how the DRAM Controller interface relates to typical external
hardware DRAM systems.

������������

������������
◆ Controls up to 4 banks of Page-Mode DRAMs
◆ Each bank pair programmable to Interleaved or non-Interleaved mode
◆ Each bank programmable to use 1M, 4M, or 16M DRAM chips
◆ Each bank programmable to 32-bit or 16-bit Mode
◆ Provides jumper-less 16-bit to 32-bit or Interleaved upgrade
◆ Built-in CAS-before-RAS Refresh Timer
◆ Wait-State Generator features:

- Programmable time from start to finish of each data access for each area
- Programmable time options for Reads and Writes
- Programmable time options for Single and Burst Accesses
- Internally generates the RdCEnN and AckN timing for all CPU accesses

◆ Direct Control of Data Path Transceivers include:
- Direct Bus Connection
- FCT260 Bidirectional Bus Exchanger Multiplexer
- FCT245 Bidirectional Transceiver
- FCT543 Bidirectional Registered Transceiver

����������������� ��� ��� ��� ����������������������
The functional block diagram of the DRAM Controller is shown in Figure 10.1. Located at the bottom

of Figure 10.1, the DRAM Control Signal State Machine is responsible for generating the basic control
signals used to connect external DRAM chips and their transceivers. These signals include row and
column address strobes, read enables, and write enables. The DRAM Controller as a whole works in
cooperation with the Bus Interface Unit described in Chapter 7. Thus, the Control Signal State Machine
sends and receives information from the BIU Controller for assistance with controlling the port width and
controlling partial word reads and writes.

The Control Signal State Machine also uses information stored in the software programmable DRAM
Controller Register Bank, for example, to control FCT260-Type versus FCT245-Type (transceiver inter-
face) accesses. In addition to the Control Signal State Machine, there is a Refresh Timer and State
Machine. The refresh circuitry implements CAS-before-RAS refresh timing as required by conventional
page-mode DRAMs.

The DRAM Controller Wait-State Generator is shown in the center of Figure 10.1. The Wait-State
Generator takes care of sending and receiving information from the BIU Controller in order to control the
sequencing and timing of reading and writing each individual data. The number of wait-states is derived
from the settings programmed into the Register Bank. Once the correct number of wait-states has been
counted out, the Wait-State Generator sets the appropriate internal BIU Acknowledge signals. The
programmable Wait-State Generator eliminates the need for external state machines that are tradition-
ally used for this function.
�� � �

�����

���� 	
��

���
 ���� ��� 	
��

���
 ����
���� �������
The DRAM Controller Decoder is shown at the top of Figure 10.1. The decoder constantly moni-
tors the Bus Interface Unit's address and data bus to see if (1) the access is to the DRAM Controller’s
Register Bank, or, (2) the access is in one of the DRAM Controller’s Chip Select areas that are
responsible for controlling the bus transaction.

The DRAM Address Multiplexer is also shown at the top of Figure 10.1. The DRAM multiplexer
switches the address lines between the MSB row address and LSB column address as required by
conventional page mode DRAM chips. The multiplexer also includes address options to allow seam-
less upgrades from 16-bit to 32-bit or to interleaved 32-bit systems. The row address is also stored
and compared using the Page Comparator circuitry. The Page Comparator allows the page mode
DRAMs to enter into their faster page access mode whenever consecutive locations are accessed in
the same block of memory.

The DRAM Controller Register Bank is shown at the left in Figure 10.1. The Register Bank allows
the software programmer access to the many different options of the DRAM Controller. The chip
select address ranges, the number of wait-states, the port-width of the chip select, and other similar
options are programmed into the Register Bank as part of the software initialization sequence of the
boot operating system.

Figure 10.1 RC36100 DRAM Bus Controller Block Diagram

���� ����� ����� ����� �

� ����� ����� ����� ������������� ��������� ����������� ��������� ����������� ��������� ����������� ��������� ����������
The following external pins are typically attached directly from the RC36100 RISController to

external DRAM devices and their transceivers:

��������

��������������������				���������������� ������������������������

The System Address provides the byte multiplexed address for DRAMs. This allows maximum of
16M words of unique locations to be accessed, thus providing a maximum of 64MBytes of memory
for each bank. These signals share 12 of the lower 26 system address pins, SysAddr(13:2). When-
ever a bus transaction is decoded to be a DRAM access, the behavior of these pins change and they
act as DRAM-style multiplexed Row- and Column- address lines. Address assignments within the
address multiplexer are such that a 16-bit system can be upgraded to a 32-bit system without
external jumpers. In addition address assignments within the address multiplexer are such that single
bank non-interleaved systems can be upgraded to pair-wise interleaved systems without external
jumpers.

DramRAS(3:0)
DramCAS(3:0)

Control Signal
State Machine,
Refresh Timer and
State Machine

BIU ControllerPortWidth

ByteEn

Wait-
State
Generator

Decoder,
Addr Mux,
Page Comparator

BIU Controller

BIU Controller Address and Control

Register
Bank

BIU Controller Data

 DataRdy Ack,RdCEn,BTA

DramRdEnEven
DramRdEnOdd
DramWrEnEven
DramWrEnOdd

Rd, Wr

,Bank Access

DramAddr BIU Controller
�� � �

�����

���� 	
��

���
 ���� ��� 	
��

���
 ����
���� �������
�������������������������������������
�
�
�
���� ������������������������

DRAM Row Address Strobes are active low outputs used to strobe the row address into the
DRAM. Each DramRAS() signal drives one bank of DRAM.

�������������������������������������
�
�
�
���� ������������������������

DRAM Column Address Strobes are active low outputs used to strobe the column address into
the DRAM. If the system uses a 16-bit wide bus instead of a 32-bit wide bus, then DramCAS(3:2) are
used for a big endian system, while DramCAS(1:0) are used for a little endian system.

�� ������������������������

DRAM Write Enable for Even Bank is an active low output signal used to write the selected DRAM
bank 0 or 2. “Early write” cycles are used, so the byte selection is done by activating the leading edge
of appropriate DramCAS() signals. Note that the DRAM specific write enables must be used instead
of SysWr or MemWrEn(3:0) because refreshes may occur simultaneously with Memory Controller
writes which could potentially cause 4M-16Mbit DRAMs to enter a test mode.

�� ������������������������

DRAM Write Enable for Odd Bank is an active low output signal used to write the selected DRAM
bank 1 or 3. “Early write” cycles are used, so the byte selection is done by activating the leading edge
of appropriate DramCAS() signals.

Note that the DRAM specific write enables must be used instead of SysWr or MemWrEn(3:0)
because refreshes may occur simultaneously with Memory Controller writes, which could cause 4M-
16Mbit DRAMs to enter a test mode.

�� ������������������������

DRAM Read Enable for Even Bank is an active low output signal that is used to control the
enabling of DRAM bank 0 or 2. Typically, DramRdEnEven is attached to the DRAM bank data trans-
ceiver output enable of banks 0 and 2, while DramCAS() controls the output enabling between the
DRAM chips on the corresponding byte lane of bank 0 and 2.

In FCT260 type systems, DramRdEnEven is used as the overall DramRdEn path enable.
In FCT245 type systems, DramRdEnEven asserts on both reads and writes as a DramEnEven

even bank transceiver enable.

�� ������������������������

DRAM Read Enable for Odd Bank is an active low output signal used to control the enabling of
DRAM bank 1 or 3. Typically DramRdEnOdd is attached to the DRAM bank data transceiver output
enable of banks 1 and 3, while DramCAS() controls the output enabling between the two banks on
each of the corresponding byte lanes. In FCT260-type systems, DramRdEnOdd is used as the
overall DramRdPathSel path select. In FCT245-type systems, DramRdEnOdd asserts on both reads
and writes as a DramEnOdd odd bank transceiver enable.

�������� ����!!!!������������!""!""!""!""����� �#� �#� �#� �#$��$��$��$��""""

The BIU Controller Signals are used to complete the DRAM interface. These signals are also
listed here for reference. Information specific to the DRAM Controller is given here and general infor-
mation about the signal is given in Chapter 7, “System BIU Controller.”

��������

���������������� ������������������������%%%%��������������������

System Data Bus: A 32-bit peripheral connects the entire 32-bit SysData bus to its data pins or to
its transceivers. 16-bit systems use the halfword offset address, A(x:1). (Note that the corresponding
SysAddr() line is not SysAddr(x:1), since the DRAM address mux starts with SysAddr(2)). 8-bit
systems can use the byte address, A(x:0). In this case, 16-bit DRAMs connect to particular data pins
depending on whether the Endianness of the system is Big Endian or Little Endian. Thus 16-bit
DRAMs use SysData(31:16) if they are Big Endian and SysData(15:0) if they are Little Endian. The
User Mode Reverse Endianess Bit in the CP0 Status Register has no effect on the connections to
SysData, however, it strongly recommended that the Reverse Endianess Bit not be used to “correct”
an endianess connection as it does not function in the kernel mode address space.
�� � �

�����

���� 	
��

���
 ���
����
� ��� ���� 	
��

���

��������

����&&&&�������� ��������������������%�%�%�%���������������������

SysALEn on a DRAM Controller initiated access indicates the beginning of the transaction.
However, because of various precharge, RAS-left asserted, and refresh conditions, the actual DRAM
access may or may not begin immediately.

��������

��������####���� ��������������������

System Wait: The SysWait signal can be used in a debug mode, during DRAM Controller
accesses. It requires that the BurstAck field in the DRAM MSB Control Register be turned off. When-
ever DramCAS() is asserted, if SysWait is asserted before the next falling edge of SysClk, wait-states
will occur. SysWait must then be held with hold time relative to SysClk rising.

�������������������� �� ������ �� ������ �� ������ �� ������ ���� �������� �������� �������� ����������������������������
The RC36100 RISController's DRAM Bus Controller supports a maximum of four individual banks

of standard RAS/CAS controlled page-mode DRAM chips. Each bank can have a minimum of
2x256KBytes (16-bit) and a maximum of 4x16MBytes (32-bit) of memory. Each bank can individually
be programmed for 32-bits or 16-bits. Each pair of banks can be programmed to be non-interleaved
or pair-wise interleaved. Thus the system as a whole can support up to four banks of DRAM and
anywhere from 512KBytes up to 256MBytes.

The RC36100 DRAM Controller, in addition to the RAS and CAS control lines, provides trans-
ceiver enable pins, and an address multiplexer (mux). The DRAM Controller also provides software
configured options for wait-states as well as for CAS-before-RAS refresh timing.

��������������
��
��
��

 �������������#�#�#�#�$�$�$�$

All four banks must be contained within a single 256MByte address space. Then, by programming
the Base and Page Mask Registers of each bank, they can be individually mapped anywhere within
the selected DRAM-designated 256MByte address space. This allows systems with mixed sized
banks to have a contiguous memory space.

Although mixed sized banks can be contained within a pair of DRAM banks, banks with different
port widths (32- or 64-bit) must be contained in different pairs of banks (16-bit banks may not be
mixed with other port width sized banks). Cacheability or non-cacheability of the references to these
memory banks depends as to which virtual segment they are mapped to, as per the RC36100's
memory map and CP0 Cache Control Register. This choice designates which references will be
serviced as burst or non-burst references.

��������''''((((####���� ������������))))''''((((#�#�#�#� �!�!�!�!��������

���!���!���!���!��������

Each bank of DRAM memory can be programmed individually as either an interleaved, 32-bit, or a
16-bit bank. A two bit'PortWidth' field is provided in the DRAM configuration register, one for each
bank, which will select between the port width configuration options.

In 32-bit mode, the DRAM interface behaves similar to the 32-bit interface of the RC3051 family in
that address bits (1:0) are ignored as per word-aligned addressing. Thus address lines A(1) & A(0)
are mapped out of the address multiplexing generation. Single word reads/writes are treated as one
32-bit datum. Partial word reads or writes are treated as single partial word read or write cycles by
activating appropriate CAS signals, depending on the endianess of the processor. For block reads,
the controller does four DRAM reads, back-to-back, to bring four words into the processor, using the
page mode feature of DRAM.

The 16-bit mode is treated slightly different from the 32-bit mode. Most importantly, address line
A(1) is included in the address multiplexer in order to support halfword-alignment. In case of 16-bit
read/write instructions and data, the controller treats them as halfword mini-burst/burst read or write
cycles, activating appropriate CAS signals based on the endianness of the device, DramCAS(3:2) for
big endian and DramCAS(1:0) for little endian.

The mini-burst is continued until all halfword datum are either read or written. Data will be driven
on SysData(31:16) lines if it is a big-endian system or on SysData(15:0) if it is little-endian system. In
cases of byte read or write instructions, the controller will activate appropriate CAS signals depending
on the endianess of the processor.
�� �

�����

���� 	
��

���
 ���
����
� ��� ���� 	
��

���

With 16-bit mode block read accesses, the controller will perform 8 back to back reads in burst
mode. This will be treated as a single burst transaction, bringing 16 bits of data every datum. The
number of wait-states added between each datum can be programmed to differ from the number of
wait-states added to the first datum, such that page mode DRAMs have optimal timing.

When the processor wants to read or write 32-bit data from a 16-bit memory, two 16-bit datum
transfers occur back-to-back within the same address transaction, which is called a mini-burst write.
The number of wait-states added between burst datum can be programmed to differ from the number
of wait-states added to the first datum, such that page-mode DRAMs have optimal timing. Note,
though, that 16-bit mode banks may not be mixed with other 32-bit or interleaved banks.

The interleaved mode is treated slightly different from the 32-bit mode. Most importantly, address
line A(2) is ignored, along with A(1:0), per doubleword-aligned addressing. In essence, two words are
simultaneously read from two separate banks; however, the second word must wait 1 extra clock
before it can be latched into the CPU. Depending on the access time of the DRAM, this saves 1-2
clocks per every pair of words read. In addition, if every other word is latched, the CPU can pipeline
the address for the second pair of words, a clock early, for additional savings.

****������������

 !!!!++++ ������������!!!!��������

������������!!!!����������������

The following three types of memory cycles are supported by the controller:
◆ Page Mode support. The page mode feature of the DRAM Controller is always enabled. In

the case of a mini-burst or burst refill, the page mode is used to obtain data by use of an
octi (16-bit) or quad (32-bit) word read. In the cases specified in a later section, “Page
Comparator Algorithm,” RAS will be left active, expecting a subsequent page mode access
to the same block of memory. The controller has an on-chip page register and comparator
which uses the programmed DRAM density to determine whether or not a given access
can take advantage of page mode; as well as whether or not to leave RAS asserted at the
end of the transaction.

◆ Non-Interleaved support. At any given time in the non-interleaved mode, only one bank will
have an active RAS. In the case of an access to a different bank, first the RAS of the active
bank will be deactivated and then the RAS of the accessed bank will be activated. In case
of a page miss within the same bank, RAS will deactivate for a precharge period, a new
page address will be strobed in by driving the new row address, and then re-activating
RAS.

◆ Interleaved support. A programmable option field is provided in the configuration register
which will enable or disable two-way interleaving. Various interleaving sub-options allow
various types of transceivers to be used by changing the functionality of the controller's
output enables.

,,,,�!$�!$�!$�!$�����������(���(���(���("�"�"�"� -�#�-�#�-�#�-�#�

���������������� $��$��$��$���������������#�#�#�#!�!�!�!�

A programmable wait state feature is supported by:
◆ RAS Precharge, Row Addr Setup, and Row Addr Hold settings
◆ CAS Addr Setup/Precharge setting
◆ CAS Pulse Width and CAS Addr Hold settings

,�,�,�,�$$$$���� ����!!!!������������������������!�!�!�!� ����"$"$"$"$!�!�!�!�#�#�#�#���������

An internal page comparator compares the page address of consecutive DRAM bus cycles. After
completing the current DRAM bus access, RAS is held asserted after:

◆ Writes
◆ Single Word Reads

When asserted, RAS is de-asserted if:
◆ refresh occurs
◆ non-page write occurs
◆ non-page read occurs
�� � !

�����

���� 	
��

���
 ���
����
� ��� ���� 	
��

���

The page comparator is not affected by non-DRAM accesses. It is assumed that uncached reads
and writes are unlikely to be done to DRAM, thus the distinction between instruction and data is not
statistically important to throughput. Also, the maximum assertion time for RAS is assumed to be
covered by the occurrence of refreshes.

 ��"#��"#��"#��"#$$$$������������ ��$���$���$���$� ����..�..�..�..�

����

Since long bursts are always aligned to the burst length, bursts across non-page boundaries are
not possible from the CPU or internal DMA channels. Therefore, unaligned page accesses will not
occur. There is one possible exception: if external DMA with long burst access does a non-aligned
burst, then a page boundary crossing is possible. Most DMA agents capable of long bursts (for
example, 16 words) also pre-align or are capable of pre-aligning the burst on a boundary (for
example, align to a 16 word boundary).

��������++++��
��
��
��
� *#� *#� *#� *#����####����$$$$

The CAS-before-RAS refresh mode is supported. The refresh rate is programmable in order to
take into account the speed of the processor.

��������#�#�"#/��##�#�"#/��##�#�"#/��##�#�"#/��#!�!�!�!�

The system boot software is responsible for initializing the DRAMs after reset. The DRAM
Controller is guaranteed to hold all DRAM control signals de-asserted until a proper DRAM cycle is
initiated by the user. Usually initialization involves the software OS to program a wait of 200us after
power up (reset), initializing all of theDRAM control registers, and then doing 8 refresh cycles.
Because the refresh period is programmable, the boot code can temporarily set the refresh period to
a very small value, to complete the 8 refresh cycles quickly.

,,,,�!$�!$�!$�!$�����������(���(���(���("� +���"� +���"� +���"� +���������������

The DRAM Controller has the following programmable features:
◆ Page Size
◆ RAS assertion selection
◆ RAS precharge time
◆ RAS Addr Setup and Addr Hold time
◆ CAS precharge/Addr Setup time
◆ CAS Addr Hold Time on Writes (WrBTA)
◆ CAS Pulse Width
◆ Internal Burst Ack generation

�#�#�#�#$$$$��" ���" ���" ���" �!�!�!�!���������!" �!" �!" �!" �����������������+�+�+�+�.�.�.�.�

The DRAM Controller provides read enables and write enables that are suitable for direct chip
connection. The read and write enables can in general also be attached to FCT260, FCT245, and
FCT543 type transceivers.

��#� ������#� ������#� ������#� �������� 0000������������������������!�!�!�!�

The Wait-State Generator controls the speed of the DRAM accesses to and from the Bus Inter-
face Unit Controller. This includes the time from the start of a DRAM transaction until the first datum
is sent or received. The Wait-State Generator also is programmed to generate the internal RdCEnN
and AckN signals for CPU read and write requests.

The internal Acknowledge signal, “AckN” (as described in Chapter 7), is the same as the external
signal pin that the RC3051 RISController family uses. On single word reads and on both single word
and burst writes, AckN is automatically placed at the end of the transaction by the Wait-State Gener-
ator. Burst DRAM read operations return AckN earlier than the end of the transaction (because of the
read buffer); thus, a Control Register 'Burst Ack' field is provided.
�� � "

�����

���� 	
��

���
 �������
 ����
�#��
��
��������$$$$#
#
#
#
������������ ������������#!#!#!#!���� 1111####����""""���� ,,,,�!�!�!�!$$$$��������������(��(��(��(#"#"#"#"####��������

The DRAM Controller contains 4 sets of registers, one set for each chip select, DramRAS(3:0).
There is also a global set of registers for the address multiplexer options and refresh timing options.
These registers allow the DRAM Controller to be configured for different speeds and types of DRAM
chips; therefore, almost any system speed/cost/manufacturing trade-off can be accommodated.

�������������������������������� ��������� ���������� ���������� ���������� �����
Table 10.1 provides the address map for the DRAM Controller registers. Note that Big Endian

software must offset these addresses by b’10 (0x2), if halfword operations are used. For correct oper-
ation, note that all registers must be programmed before use.

Table 10.1 DRAM Controller Registers.

���������2 ���2 ���2 ���2 ��+��+��+��+��

���� ����!�!�!�!��������� ��������$$$$#
#
#
#
������������
����3333������������������������++++��������

��������!!!!��������������������$$$$4444����

Figure 10.2 DRAM Refresh Count Register (‘DramRefreshCountReg’)

%�&�' �((
��� �������

0xFFFF_E100
0xFFFF_E104

DRAM Refresh Count Register
DRAM Refresh Compare Register

0xFFFF_E110
0xFFFF_E114

DRAM RAS Multiplexer Select Register for Pair 1:0
DRAM RAS Multiplexer Select Register for Pair 3:2

0xFFFF_E120
0xFFFF_E124

DRAM CAS Multiplexer Select Register Pair1:0
DRAM CAS Multiplexer Select Register Pair 3:2

0xFFFF_E180
0xFFFF_E184
0xFFFF_E188
0xFFFF_E18C

DRAM MSB Base Address Register for Bank 0
DRAM MSB Bank Mask Register for Bank 0
DRAM LSB Control Register for Bank 0
DRAM MSB Control Register for Bank 0

DRAM MSB Base Address Register for Bank 1
DRAM MSB Bank Mask Register for Bank 1
DRAM LSB Control Register for Bank 1
DRAM MSB Control Register for Bank 1

0xFFFF_E190
0xFFFF_E194
0xFFFF_E198
0xFFFF_E19C

0xFFFF_E1A0
0xFFFF_E1A4
0xFFFF_E1A8
0xFFFF_E1A

DRAM MSB Base Address Register for Bank 2
DRAM MSB Bank Mask Register for Bank 2
DRAM LSB Control Register for Bank 2
DRAM LSB Control Register for Bank 2

0xFFFF_E1B0
0xFFFF_E1B4
0xFFFF_E1B8
0xFFFF_E1BC

DRAM MSB Base Address Register for Bank 3
DRAM MSB Bank Mask Register for Bank 3
DRAM LSB Control Register for Bank 3
DRAM MSB Control Register for Bank 3

0

10

15 0

6

10 9

RefreshCount
�� � $

�����

���� 	
��

���
 �������
 ����
�#��
��
Table 10.2 DRAM Refresh Count Register (DramRefreshCountReg’)
 Bit Assignments.

The lower 10 bits form a 10-bit binary up-counter. The Count register, shown in Figure 10.2, ticks
upward on each system clock. When Count equals Compare, the DRAM Controller will initiate a
refresh sequence and the Count register will be reset back to 0. The upper 6 bits are reserved to be
“0”. The default value of the DRAM Refresh Count Register, shown in Table 10.2, is 0x0000 at reset.
The register is both readable and writable.

������$$�����$$�����$$�����$$���� ��� ��� ��� ��+��+��+��+��

����

In order to reduce the amount of peak instantaneous current and intra-bus transaction average
current used by refreshing DRAMs, refresh is done by refreshing (RAS’ing) Banks 0 & 2 together,
then afterwards refreshing (RAS’ing) Banks 1 & 3 together.

��������++++��
��
��
��
���� ��������((((#�#�#�#����������#�#�#�#!�!�!�!�

Refreshes on the RC36100 must obtain the DRAM Controller before doing a refresh. DRAM
systems in general must not use MemWrEn or SysWr, because some other peripheral driving them
low during a refresh would accidently put some types of DRAM chips in their internal test mode. If the
CPU or DMA channel tries to access DRAM at the same time as a Refresh, they will wait for the
Refresh to finish.

,�,�,�,�����####.... 2222!!!!�������� ��������++++��
��
��
��
���� ������������"#.�"#.�"#.�"#.�����####!!!!����

Ordinarily it is only possible to have a 4-word burst DMA after which the refresh controller can
regain the bus and do a pending refresh. However, external DMA can burst up to a system defined
length. In such a situation, multiple (depending on the application) refresh ticks may be missed. If this
is of concern to the system designer, they can either (1) divide the external DMA burst into smaller
units, or, (2) initiate N refreshes before and N refreshes after the burst, where N is the potential
number of refreshes missed.

����������������....�������� 1111��5���5���5���5���������....���� 2222!!!!�������� ������������"#.�"#.�"#.�"#.�����####!!!!����

When using DRAMs in the reduced frequency mode, the primary objective is assumed to be to
save power. To obtain this, suggestion 1 is to use self-refreshing DRAMs, and suggestion 2 is to use
low power extended refresh DRAMs.

Since the indirect objective is to minimize the RAS low time, a CAS-before-RAS Refresh should
complete as soon as possible. Therefore, one way of accomplishing this is to reprogram the Refresh
count/compare registers to suitable values so that once every refresh period (64ms) the CPU is inter-
nally interrupted. The interrupt will exit the halt and RF modes. A short interrupt handler loop can then
strobe through all 512 row addresses and return the CPU into halt and RF modes.

��* +�����
�

9:0 RefreshCount
�� �)

�����

���� 	
��

���
 �������
 ����
�#��
��
���������2 ���2 ���2 ���2 ��+��+��+��+��

���� ����!�!�!�!����������������� ��������$$$$#
#
#
#
������������

(‘DramRefreshCompReg’)

Figure 10.3 DRAM Refresh Compare Register.

This register forms a 10-bit Compare Register, shown in Figure 10.3. Bit 15 is a Disable Field, and
bits 14:10 are reserved and should be written to with the same value as that of bit 15.

Note: Bit 15 disables the DRAM Refresh Function from occurring as specified; however, it
does not disable the actual count register. As such, in the case of software diagnostics, the user
should expect the refresh count register to continue incrementing. The following are two
intended applications:

◆ To not have external RAS/CAS toggle for self-refreshing DRAMs.
◆ If the DRAM Controller is not needed, then the refresh counter can be used as a general pur-

pose counter.
When Compare equals Count, the DRAM Controller will reset the count back to 0. If the Refresh

Disable Field is set to 'enable', then a refresh sequence is initiated. The default value of the DRAM
Refresh Count Register is 0x0000 at reset. As an example: for 25 MHz CPU with 8ms/512 refresh
period, Compare should be programmed to Floor(8m/(512+1) / (1/25M))-1 = 0x0185. The register is
both readable and writable. Table 10.3 lists the bits assignments for the DRAM Refresh Compare
register.

Note: Technical worst case accounts for maximum burst length, where it is sufficient to add
1 to the DRAM page size.

The Refresh Compare Register is provided in a binary count manner (as opposed to a frequency
select manner) to allow easier access for diagnostic and test purposes. The default value at reset is
0xFFFF (refer to Table 10.4).Common refresh settings are given in Table 10.5.

Table 10.3 DRAM Refresh Compare Register (‘DramRefreshCompareReg’)
Bit Assignments.

Table 10.4 Refresh Disable (‘RefreshDis’) Field Encodings.

��� +�����
�

15 Refresh Disable

14:10 Reserved (write the same value as bit 15)

9:0 Refresh Count

-���� ����
�

‘1’ Disable Refresh Counter (0xFFFF default)

‘0’ Enable Refresh Counter

Rsvd

10

15 0

5

10 9

RefreshCompareDis

14

1

�� � ,

�����

���� 	
��

���
 �������
 ����
�#��
��
Table 10.5 Common Refresh Settings for 8ms/512 or 16ms/1024 DRAMs.

���������2�2�2�2 ������������ 2222����""""����####����"�6"�6"�6"�6����� �� �� �� �����"�"�"�"�.�.�.�.� ��������$$$$####

������������ ++++!!!!���� ,�,�,�,�####��������				����

7777 ����������������
����3333������������������
��
��
��
2222����6666��������""""��������$$$$8888				9999

7 �97 �97 �97 �9��������

Figure 10.4 DRAM RAS Mux Select Register (‘DramRasMuxSelReg’).

The DRAM RAS Address Multiplexer Select Register, shown in Figure 10.4, programs which
address bits go out to a DRAM Pair system during the row address period. The different selections
allow software to upgrade the size of the DRAM chips and the memory port width without the use of
external hardware jumpers. The register is both readable and writable with no default value at reset.
This register must be programmed before the DRAM Controller is first used.

Table 10.6 DRAM RAS Mux Select Register Bit Assignments.

Note: Bits 15, 14, 8:5, 1, and 0 are reserved for future use.

���������2�2�2�2 ������������ 2222����""""����####����"�6"�6"�6"�6����� �� �� �� �����"�"�"�"�.�.�.�.� ��������$$$$####

������������ ++++!!!!���� ,�,�,�,�####���� ����	�	�	�	�

7777 ����������������
����3333������������������
��
��
��
2222����6666��������""""��������$$$$8888				9999

7 �97 �97 �97 �9��������

Figure 10.5 DRAM CAS Mux Select Register

���
��� 	
.#�
� 	%/ +
�0����&

0x00F8 16

0x0136 20

0x0184 25

0x0201 33

0xFFFF default: disabled

��� +�����
� 1��� 2
�

13 SysAddr RAS 13 A26 A24

12 SysAddr RAS 12 A23 A10

11 SysAddr RAS 11 A22 A20

10 SysAddr RAS 10 A19 A10

09 SysAddr RAS 09 A18 A9

04 SysAddr RAS 04 A25 A13

03 SysAddr RAS 03 A22 A12

02 SysAddr RAS 02 A21 A11

0

1

15 0

2

12

12 7 611 8 5

5 6

14 13 10 9 4 3 2 1
11 10 09 0 0213 0

2

�� � ��

�����

���� 	
��

���
 �������
 ����
�#��
��
The DRAM Pair CAS Multiplexer Select register, shown in Figure 10.5, programs which address
bits go out to the DRAM system during the column address period. The different selections allow soft-
ware to upgrade the size of the DRAM chips and the memory port width without the use of external
hardware jumpers.

The register is both readable and writable with no default value at reset. This register must be
programmed before the DRAM Controller is first used. The DRAM CAS Mux Select Register Bit
Assignments are listed in Table 10.7. Refer to Table 10.8 for an example of DRAM RAS and CAS
Mux select register settings.

Note that for debugging purposes, it is helpful to program the unused most significant CAS select
bits to ‘1’. For example, in a 256KB DRAM system, programming these bits to ‘1’ will prevent CAS 13
from aliasing each time A1 flips on.

Table 10.7 DRAM CAS Mux Select Register (‘DramCasMuxSelReg’) Bit Assignments.

Note: Bits 15, 14, 8:3, 1, and 0 are reserved for future use.

��� +�����
� 1��� 2
�

13 SysAddr CAS 13 A13 A1

12 SysAddr CAS 12 A24 A12

11 SysAddr CAS 11 A11 A1

10 SysAddr CAS 10 A10 A1

09 SysAddr CAS 09 A9 A0

02 SysAddr CAS 02 A20 A2
�� � ��

�����

���� 	
��

���
 �������
 ����
�#��
��
�������

��	

��

���

���

���
�

��	

��

���

���

��

��	

��

���

���

��

��	

��

���

���

���
�

��	

��

���

���

��

��	

��

���

���

��

SysAddr(13)

SysAddr(12) A23 A12 A10 A12

SysAddr(11) A20 A11 A20 A11 A20 A1 A20 A11

SysAddr(10) A19 A10 A19 A10 A19 A10 A10 A1 A19 A10 A19 A1

SysAddr(9) A18 A9 A18 A9 A18 A9 A18 A9 A18 A9 A18 A9

SysAddr(8) A17 A8 A17 A8 A17 A8 A17 A8 A17 A8 A17 A8

SysAddr(7) A16 A7 A16 A7 A16 A7 A16 A7 A16 A7 A16 A7

SysAddr(6) A15 A6 A15 A6 A15 A6 A15 A6 A15 A6 A15 A6

SysAddr(5) A14 A5 A14 A5 A14 A5 A14 A5 A14 A5 A14 A5

SysAddr(4) A13 A4 A13 A4 A13 A4 A13 A4 A13 A4 A13 A4

SysAddr(3) A12 A3 A12 A3 A22 A3 A12 A3 A12 A3 A22 A3

SysAddr(2) A11 A2 A21 A2 A21 A2 A11 A2 A11 A2 A21 A2

SysAddr(1)

SysAddr(0)

Total 3e00 3e00 3604 3e00 3600 2600 3a00 3a00 3600 3600 2600 2a00

�&��((

�
�

" �3��

	
�

�!"4

�
�

" �3��

	
�

��

�
�

" �3��

	
�

 �

SysAddr(13)

SysAddr(12) A23 A24

SysAddr(11) A22 A11 A22 A11

SysAddr(10) A19 A10 A19 A10 A19 A10

SysAddr(9) A18 A9 A18 A9 A18 A9

SysAddr(8) A17 A8 A17 A8 A17 A8

SysAddr(7) A16 A7 A16 A7 A16 A7

SysAddr(6) A15 A6 A15 A6 A15 A6

SysAddr(5) A14 A5 A14 A5 A14 A5

SysAddr(4) A13 A4 A13 A4 A13 A4

SysAddr(3) A12 A3 A12 A3 A12 A3

SysAddr(2) A11 A20 A21 A20 A21 A20

SysAddr(1)

SysAddr(0)

Total 3e00 3e04 3e04 3e04 3e04 3e04
�� � ��

�����

���� 	
��

���
 �������
 ����
�#��
��
Table 10.8 Example ‘DramRasMuxSelReg’ and ‘DramCasMuxSelReg’ Settings.

DRAM MSB Base Address Register for Bank 0..3
(‘DramMSBBaseAddrReg(0..3)’)

Figure 10.6 DRAM MSB Base Address Register (“DramMSBBaseAddrReg’)

This field contains Bits 31-18 of the starting base physical address of the DRAM Bank. The
programmer must write the same value for bits 31-28 to all DRAM MSB Base Address Registers. In
addition, the programmer must write “0” for bits 17-16 of all DRAM MSB Base Address Registers,
which restricts the smallest multiple DRAM bank size to 256K. The default value on reset is 0x77ff.
Thus, the upper 3 DRAM Bank MSB Base Address registers must be programmed before any DRAM
accesses can be initiated. The register is both readable and writable. Figure 10.6 illustrates the
DRAM MSB Base Address Register.

Internally to the RC36100, bits 31-28 of Bank 0 MSB Base Address are used for the starting
address of all banks. Also internally, bits 17-16 are reserved and hardwired to 0.

An example for 4 banks (2 pairs) of 1MByte interleaved DRAM starting at physical address 0 is in
Table 10.9.

�&��((

�
�

�"�

3��

	
�

�"�

�
�

���

3��

	
�

�"�

�
�

" �

3��

	
�

�"�

SysAddr(13) A24 A1 A24 A13 A26 A13

SysAddr(12) A23 A12 A23 A12 A23 A24

SysAddr(11) A20 A11 A20 A11 A22 A11

SysAddr(10) A19 A10 A19 A10 A19 A10

SysAddr(9) A18 A9 A18 A9 A18 A9

SysAddr(8) A17 A8 A17 A8 A17 A8

SysAddr(7) A16 A7 A16 A7 A16 A7

SysAddr(6) A15 A6 A15 A6 A15 A6

SysAddr(5) A14 A5 A14 A5 A14 A5

SysAddr(4) A13 A4 A25 A4 A25 A4

SysAddr(3) A22 A3 A22 A3 A12 A3

SysAddr(2) A21 A2 A21 A2 A21 A20

SysAddr(1)

SysAddr(0)

Total 160c 0e00 161c 2e00 3e14 3e04

0

2

15 0

14

 1

MSB Dram Base Address

2

�� � ��

�����

���� 	
��

���
 �������
 ����
�#��
��
Table 10.9 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment.

An example for 1M DRAM + 2 banks of 4MByte interleaved DRAM at physical address 0 is in
Table 10.10. Note that Bank1 must be assigned to an unused memory space.

Table 10.10 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment.

���������2�2�2�2 2222�� ���� ���� ���� ���:�:�:�: 2�
2�
2�
2�
:::: ��������$$$$#
#
#
#
������������ ++++!!!!���� ���:���:���:���:

;;;;;;;;����
����3333����������������2�2�2�2�����������������:2�
::2�
::2�
::2�
:��������$$$$����

;;;;;;;;��������4444����

Figure 10.7 DRAM MSB Bank Mask (‘DramMSBBankMask(3:0)’) Registers.

There are 4 bank mask registers, one for each DRAM bank. The bank mask address register,
shown in Figure 10.7, represents the most significant 16 address bits (bits 31:16). Bit settings for this
register are listed in Table 10.11.

The bank mask registers are used to decide which address bits in the base address are to be
used for comparing whether a DRAM bank select is to be activated. This DRAM Bank Mask is inde-
pendent of the DRAM RAS Page Size Mask.

Internally, bits 31-16 must be programmed to the desired bank mask. This corresponds to sepa-
rate address spaces for each chip select of 64K to 256M. Internally, bits 15:0 are ignored for bank
mask comparisons.

To summarize, Bits 31:16 of each DRAM bank page mask are used to distinguish the size of each
memory space. The format of the DramMSBBankMask is displayed in the above figure. The register
is both readable and writable and is set to 0xFFFF by default on reset. This register should be
programmed before the DRAM Controller is first used.

Table 10.11 DRAM MSB Bank Mask Bit Settings.

���5 %�&�' �((
���

Bank0 0x0000_0000

Bank1 0x0000_0000

Bank2 0x0020_0000

Bank3 0x0020_0000

���5 %�&�' �((
���

Bank0 0x0000_0000

Bank1 0x0F00_0000

Bank2 0x0010_0000

Bank3 0x0010_0000

-���� ����
�

'1' Bit is used in comparison

'0' Bit is masked out of comparison

15 0

16

MSB Dram Bank Mask
�� � �

�����

���� 	
��

���
 �������
 ����
�#��
��
���������2�2�2�2 &&&&�������� �!�!�!�!������!��!��!��!"""" ��������$$$$####

������������ ++++!!!!� ��� ��� ��� ���:�:�:�:
;;
;;
;;
;;����
����3333�������&���&���&���&������������!�!�!�!���������!"�!"�!"�!"��$�$�$�$����

;;;;;;;;�����4�4�4�4����

The DRAM LSB Control Register, shown in Figure 10.8, is used to control various DRAM
controller options. This register is both readable and writable. The default value at reset is 0xFC03.

Figure 10.8 DRAM LSB Bank Control Register (‘DramLSBControlReg’)

This register should be programmed before the DRAM Controller is first used. Bit assignments for
this register are listed in Table 10.12.

Note: While in the interleave mode, both banks must be programmed to have exactly the
same value.

Table 10.12 DRAM LSB Control Register (‘DramLSBControlReg’) Bit Assignments.

������������,�,�,�,�$$$$����2�2�2�2�

:::: ����3333������������,�,�,�,�$$$$����2�
:2�
:2�
:2�
:4�4�4�4� 1111####����"� �"� �"� �"� �((((####����

 				<�<�<�<�====����

The RAS Page Compare Mask is used to determine how many of the upper physical address bits
will be compared to determine if subsequent DRAM accesses are on the same RAS page of memory
and thus do not need to initiate a RAS precharge.

Note that the RAS Bank Mask is independent and does not have the same function as the DRAM
Bank Mask. To determine the bank mask, Physical Address Bits 31:16 are always compared, and
Physical Address Bits 15:8 are compared if their corresponding RAS Bank Mask bit is clear. Page
Mask bits are listed in Table 10.13 and DRAM LSB Page Mask bit settings are listed in Table 10.14.

��� ����
�#��
�

15:14 Reserved to 1

13:9 RASPageMask

8 Reserved to 0

7:5 DramType

4:3 Size

2:0 Reserved to 011

Reserved
023

Size

457
DRAM
Type0LSB RAS

Page Mask
1

89131415

52 1 3 2 3

‘011’
�� � �!

�����

���� 	
��

���
 �������
 ����
�#��
��

Table 10.13 PageMask (‘PMask’) Bits.

Table 10.14 DRAM LSB Page Mask Bit Settings.

���������2 *��2 *��2 *��2 *��������� �3�3�3�3�������������*��*��*��*���������4�4�4�4� 1111####����"� �"� �"� �"� �((((####����

 >>>>�<�<�<�<����

The DRAM Type selections are used to chose between different types of DRAM configurations.
DRAM Type settings are listed in Table 10.15.

Table 10.15 DRAM Type (‘DramType’) Settings.

����*&#� %

���6� ����
�����(7�8
%������5 �

2��7�8

16MxN 64-bit yes 11 (0x 3c << 10)

16MxN 32-bit non- 13(2) (0x 30 << 10)

16MxN 16-bit non- 12 (0x 38 << 10)

4MxN 64-bit yes 11 (0x 3c << 10)

4MxN 32-bit non- 12 (0x 38 << 10)

4MxN 16-bit non- 9 (0x 3f << 10)

1MxN 64-bit yes 11 (0x 3c << 10)

1MxN 32-bit non- 11 (0x 3c << 10)

1MxN 16-bit non- 10 (0x 3e << 10)

256KxN 64-bit yes 10 (0x 3e << 10)

256KxN 32-bit non- 10 (0x 3e <<10)

256KxN 16-bit non- 9 (0x 3f << 10)

NOTES:
1. Interleaved systems compare 1 less bit than theoretically possible, due to Column
Address selection limitations.
2. Most configurations compare less bits than theoretically possible, as a trade-off for the
jumper-less expansion.
3. 16Mx32 systems compare less bits than theoretically possible, due to Column Address
selection limitations.
4. For very small memory systems, don’t set any of the Page Type (‘PType’) control bits.
In this case, the page comparator is ignored.

-���� ����
�

'1' Bit is used in comparison

'0' Bit is masked out of comparison

-���� ����
�

‘7:3’ Reserved

‘2’ FCT260

‘1’ FCT245

‘0’ FCT543 (default)
�� � �"

�����

���� 	
��

���
 �������
 ����
�#��
��
1111�*�*�*�*<?�<?�<?�<?�''''*�*�*�*��������� ����&�&�&�&��.�.�.�.������������ @!�@!�@!�@!�'2'2'2'2����"�#"�#"�#"�#����""""����6666�������� *�*�*�*�������������

FCT543 Latched Mode assumes that the transceiver hardware between DRAM and the RC36100
consists of latched or registered transceivers such as the FCT543.

Setting this type with an interleaved port width causes the DRAM controller to use the interleave
bus protocol. Interleaved systems use a different bus protocol which in essence accesses two banks
at the same time, but only output enables 1 bank at a time, and thus can be burst read very quickly.

Non-interleaved systems use a bus protocol which in essence accesses the two banks in sepa-
rate distinct address spaces. Latching words 1 and 3 on burst reads allows words 1 and 3 to be
returned exactly 1 clock after words 0 and 2, respectively. This in turn allows the LS double word
address to be bumped up (from 0x00 to 0x08) one clock earlier.

1111�*�*�*�*�?<�?<�?<�?< *�*�*�*��������� ����@@@@!!!!����'"��.'"��.'"��.'"��.������������ ****������������

.�.�.�.�####������������ ****����������������

Non-Latched Mode assumes that the transceiver hardware between DRAM and the RC36100
consists of non-latched or non-registered transceivers such as the FCT245. In addition, in order to
support the direction select and the single output enables of FCT245s, the even read output enable,
DramRdOEnEven, logically OR’s DramRdEnEven with DramWrEnEven. Likewise, the odd read
output enable, DramRdOEnOdd, logically OR’s DramRdEnOdd with DramWrEnOdd. DramWrEn-
Even and DramWrEnOdd are unchanged as they are needed to indicate writes. If the FCT245 Type
is used, all four banks must be of FCT245 Type.

1111�*�*�*�*�)
�)
�)
�)
''''*�*�*�*��������� ����&�&�&�&��.�.�.�.������������ 2�2�2�2�""""����####����""""�6�6�6�6����� *�� *�� *�� *�������������

FCT260 Latched Multiplexer Type assumes that the transceiver hardware between DRAM and
the RC36100 consists of latched or registered multiplexers such as the FCT260. In order to support
the path select and single output enables of multiplexers, the even read output enable,
DramRdOEnEven, logically OR’s DramRdOEnEven with DramRdOEnOdd and stays low for most of
the bus transaction instead of toggling just for even banks, so that it can be used for the FCT260
output enable. DramRdOEnOdd is unchanged, so that it can be used for a path select.

Setting this type with an interleaved port width causes the DRAM controller to use the interleave
bus protocol. Interleaved systems use a different bus protocol which in essence accesses two banks
at the same time, but only enables 1 bank at a time, and thus can be burst read very quickly. Non-
interleaved systems use a bus protocol which in essence accesses the two banks in separate distinct
address spaces. Latching words 1 and 3 on burst reads allows words 1 and 3 to be returned exactly
1 clock after words 0 and 2, respectively. This in turn allows the LS double word address to be
bumped up (from 0x00 to 0x08) one clock earlier.

Note: At present, the FCT260 hardware approach represents one of the better price/perfor-
mance ratios for interleaved systems, since only 3 chips instead of 4 chips are required.

,,,,!!!!�������� �#�#�#�#////���� ����3333�#�#�#�#////�4�4�4�4���� 1111####����""""���� ����((((#�#�#�#�

 ????������������

The Port size of a bank determines its memory width. Table 10.16 lists the DRAM Port Width
Encoding field. Note that in interleaved mode, both banks of the pair must have their MSB and LSB
Bank Controller Registers programmed identically.

Table 10.16 DRAM Port Width (‘Size’) Encoding Field.

-���� %

� ��6�

‘10’ 16-bit

‘00’ 32-bit (default)

'11' 64-bit (2x32-bit interleaved)

'01' Reserved
�� � �$

�����

���� 	
��

���
 �������
 ����
�#��
��
���������2�2�2�2 2222�� ��� ��� ��� �!�!�!�!���������!"!"!"!" ��������$$$$#
#
#
#
������������ ++++!�!�!�!� ������������::::

;;;;;;;;����
����3333����������������2�2�2�2���������!!!!������!��!��!��!""""��������$$$$8888

;;;;;;;;��������

Figure 10.9 DRAM MSB Bank Control Register (‘DramMSBControlReg’).

The DRAM MSB Control Register, shown in Figure 10.9, is used to control various DRAM
controller options. This register is both readable and writable and the default value is 0x051f. Bit
assignments for this register are listed in Table 10.17.

Note: While in interleaved mode, both banks must be programmed to have exactly the same
value.

Table 10.17 DRAM MSB Control Register Bit Assignments.

������������ ,,,,��������....������������$$$$���� ,,,,��������####!�!�!�!� ����3333������������,,,,4�4�4�4� 1111####����""""���� ����((((#�#�#�#� 	<	<	<	<����				?�?�?�?�

Before initiating a DRAM access to a new page, RAS must be held de-asserted in order to
precharge the DRAM chip row decoders and sense amps. The RASP setting defines the length of
this precharge period. The default value at reset is ‘0’ which encodes to 1 clock. RAS Precharge Field
Encodings are listed in Table 10.18.

Table 10.18 RAS Precharge (‘RASP’) Field Encodings.

������������ ��������������������

 AAAA!!!!""""���� *#�*#�*#�*#����� ����3333����������������������������A!A!A!A!""""����4�4�4�4� 1111####����"� �"� �"� �"� �((((#�#�#�#� 	�	�	�	�����

DRAM Address Hold Time is required in the following three places:
◆ after RAS asserts
◆ after CAS asserts
◆ after CAS re-asserts

��� ����
�#��
�

15:14 RASP

13 RASAddrHold

12 AddrSetup

11:10 CASW

9:8 DramRdBTA

7 ‘0’

6 DramWrBTA

5 ‘0’

4:0 DramBurstAck

-���� ����
�

‘3’ reserved

‘2’ reserved

‘1’ 2 clocks

‘0’ 1 clock (default)

RASP

15 0 7 6 8 5

2 3

 4 3 2 1
RAS
Addr
Hold

5

CASWAddr
Setup

DramRdBTA 0 DramBurstAck

2112

14 13 12 11 10 9
0

Dram
WrBTA
�� � �)

�����

���� 	
��

���
 �������
 ����
�#��
��
The RASAddrHold field handles the Address Hold Time from RAS asserting operation. Address
Hold Time from CAS asserting and re-asserting on reads is handled by the CASW field. Address
Hold Time from CAS asserting and re-asserting (on writes) is handled by the DRAMWrBTA field.

RASAddrHold (see Table 10.19 for field encodings) defines the length of the DRAM row address
hold time. Normally, 0.5 clocks is enough hold time since most DRAMs require that the row address
be held for about 10ns after RAS asserts. However, in very fast systems where the clock period is
short, or in very noisy, heavily delayed systems, additional address hold time may be needed. Thus
RASAddrHold can be extended from 0.5 to 1.5 clocks if necessary.

Table 10.19 RAS Address Hold Time (‘RASAddrHold’) Field Encoding.

��������������
��
��
��

 �
 �
 �
 ����������������� *#�*#�*#�*#����� ����!!!! ������������ ������������ ����!!!! ������������ ����3333������������������������������4��4��4��4� 1#� 1#� 1#� 1#����""""���� ����((((####���� 				��������

DRAM Address Setup Time is required in the following three places:
◆ Row Address Setup Time to RAS asserting
◆ Column Address Setup Time to CAS asserting (also Early Write Signal Setup Time to CAS

asserting)
◆ Column Address Setup Time to CAS re-asserting on mini-bursts or bursts (also Early Write

Signal Setup Time to CAS re-asserting on mini-bursts or bursts)
AddrSetup (field encodings are listed in Table 10.20) defines the length of the DRAM address set-

up time. Because most DRAMs require that the row or column address be set-up 0ns before RAS or
CAS asserts, a minimum of 0.5 clocks is, normally, sufficient setup time.

However, in very fast systems where the clock period is short, or in very noisy, heavily delayed
systems, additional address (and also early write) set-up time may be needed. Therefore, AddrSetup
can be extended from 0.5 to 2.5 clocks if necessary. Thus, for a new page-DRAM access, AddrSetup
may add 1 extra address set-up clock cycle before RAS asserts, before CAS asserts, or before every
CAS re-assertion.

Note: In the particular case of extra set-up time to RAS, choosing the longer set-up time
causes ‘AddrSetup’ to be one cycle longer than the precharge time.

Table 10.20 Address Setup Time to RAS or to CAS (‘AddrSetup’) Field Encoding.

������������ ����....�#�� ,�#�� ,�#�� ,�#�� ,����"
"
"
"
���� ����####������������ ����3333�������������4�4�4�4���� 1111####����""""���� ����((((#�#�#�#� 					�	�	�	�	
	
	
	
����

The 2-bit encoding lengthens the CAS active pulse width from a minimum of 1.5 clocks to a
minimum of 2.5 clocks. The default value is ‘1’ at reset which decodes to 1.5 clocks (see Table 10.21
for field encodings). This field can also be thought of as the CASAddrHold field on read accesses;
however, on DRAM writes, DRAMWrBTA must be used to extend the address hold and early write
signal hold time.

-���� ����
�

‘1’ 1.5 clocks

‘0’ 0.5 clocks (default)

-���� ����
�

‘1’ 2.5 clocks (This value reflects an address set-up time of 1.5 clocks plus the
RAS precharge time of 1 clock)

‘0’ 0.5 clocks (default)
�� � �,

�����

���� 	
��

���
 �������
 ����
�#��
��

Table 10.21 CAS Width (‘CASW’) Field Encoding.

���������2 ����2 ����2 ����2 ������� ��."���."���."���."� ��������

 ****������������'�'�'�'�����!!!!������������ �3�3�3�3����������������������������****����4444���� 1111####����"�"�"�"� ����(#(#(#(#���� B�B�B�B�====����

The Bus Turn-Around field determines the minimum number of clocks between the end of a read
and the beginning of the next non-DRAM bus transaction. Sometimes a slow interface is needed
because of the amount of time it takes the DRAM or its transceivers to tri-state off of their respective
busses. Thus, a slow bus turnaround option is incorporated into the DRAM Controller. A two-bit value
stored in a control register will stall the bus interface unit between the end of a read cycle and from
starting the subsequent transfer by up to two system clock cycles. The default at reset is the value ‘1’,
which decodes to 1 clock of BTA. Field encodings are listed in Table 10.22.

Table 10.22 DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field Encoding.

���������2�2�2�2 �����#�#�#�#�������� ��������....""""���� ��������

 ****������������ �����!��!��!��!��������� ����3333����������������������������****����4444���� 1111#�"#�"#�"#�"���� ����((((#�#�#�#�))))����

The DRAM Write Cycle Bus Turn Around Field determines whether other transactions can begin
either one clock cycle before the final CAS de-assertion or after the final CAS de-assertion.

DramWrBTA defines the minimum number of clocks between the end of a write and the beginning
of the next non-DRAM bus transaction. The DRAM Controller uses the early write protocol and thus
can typically give up the data and address buses one clock before the end of the write (1 clock before
CAS de-asserts for the last time).

However, this leaves the column address and the early write signal 0.5 clocks of Hold Time
(assuming CASW == 1). Thus very fast systems or very noisy systems may want to extend the
Address Hold Time after CAS writes to 1.5 clocks. This can be done indirectly by changing the Dram-
WrBTA field. (Address Hold Time on DRAM reads is always at least 1.5 clocks). The default at reset
is the value ‘0’ which decodes to 0 clocks of Write Cycle BTA. Field encodings are listed in Table
10.23.

Table 10.23 DRAM Write Cycle Bus Turn-Around (‘DramWrBTA’) Field Encoding.

-���� ����
�

‘3’ reserved

‘2’ 2.5 clocks

‘1’ 1.5 clocks (default)

‘0’ reserved

-���� ����
�

‘3’ 3 clocks

‘2’ 2 clocks

‘1’ 1 clock (default)

‘0’ 0 clocks

-���� ����
�

‘1’ 1 clock

‘0’ 0 clocks (default)
�� � ��

�����

���� 	
��

���
 *�.��� ����
�.�
������������

���� ����....::::����!!!!-"�-"�-"�-"��$��$��$��$� ,"�,"�,"�,"�.��.��.��.�������������� �3�3�3�3����������������������������

�����.�.�.�.:4:4:4:4���� 1111####����""""���� ����((((#�#�#�#� ????�
�
�
�
����

On 4-word burst reads, the acknowledge back to the CPU core needs to be placed so that the
CPU pipeline can restart optimally. Acknowledge should be placed 3 clock cycles before the last
datum arrives. Wait states, via SysWait, delay the next de-assertion of CAS; however, BurstAck may
have already been asserted. Thus, on burst memory cycles where SysWait may potentially be
asserted, BurstAck must be programmed to ‘31’ (for field encodings, see Table 10.24) such that it
asserts with the last Datum.

As a reference point, it is from the clock cycle that CAS first asserts and the DramBurstAck
internal counter begins counting. The DRAM controller uses the page hit case with no extra CAS
Precharge
(Addr setup = 0.5) as its minimum value and in the case of page misses and/or in the case of extra
CAS Precharge (Addr setup = 1.5) settings, automatically delays the DramBurstAck internal counter.

Note: In the Debug mode of the RC36100, if the DebugFCMN pin is asserted, BAck is
always automatically asserted with the last Datum.

Table 10.24 DRAM Burst Read Acknowledge (‘DramBurstAck’) Encoding.

Table 10.25 Typical DRAM Burst Read Acknowledge Settings

!����� ��!����� ��!����� ��!����� ��������������������������
The timing diagrams for the RC36100 DRAM Controller are divided into the following five

sections:
◆ basic reads
◆ basic writes
◆ interleaved reads
◆ interleaved writes
◆ refreshes

In the Basic Reads and Basic Writes sections, ordinary 8/16/32-bit DRAM accesses are
discussed. Concepts including single versus multiple datum accesses, and many of the option fields,
including RASP, RASAddrHold, AddrSetup, and CASW are shown.

The Interleaved Reads and Interleaved Writes sections discuss the timing for connecting two
banks of 32-bit DRAM such that for burst read accesses, both even and odd words are accessed
simultaneously and thus improve the performance of the DRAM system.

-���� ����
�

‘31’ Acknowledge with last Datum (Default).

‘30’...‘0’ Acknowledge from 30 to 0 clocks (referenced to CAS first asserting).

�#��
� 	
�����
���
�

16-Bit 32-Bit 64-Bit 543 64-Bit 260 64-Bit 245

Default 11 3 0 0 1

Addrhold = 0.5
or 1.5

11 3 0 0 1

Addr setup = 1.5
CASW = 1.5

18 6 1 1 2

Addrsetup = 0.5
CASW = 2.5

19 7 2 2 3

Addrsetup = 1.5
CASW = 2.5

26 10 3 3 4
�� � ��

�����

���� 	
��

���
 *�.��� ����
�.�
In the Refresh timing section, the RC36100 is shown to implement a staggered refresh cycle
using the CAS-before-RAS protocol of standard DRAMs.

�������������������������������� ���������2�2�2�2 �����#�#�#�#���� ����������������������������

The RC36100 DRAM Controller uses standard page mode DRAM chips. These DRAM chips
multiplex their address pins, support page-mode, and use CAS-before-RAS refresh. Thus on the first
part of a DRAM access, upper half of the address is strobed in with a Row Address Strobe (RAS) and
on the last part of the access, the lower half of the address is strobed in with a Column Address
Strobe (CAS).

Because page mode DRAMs have an internal array such that an entire row (page) of memory
data cells are selected, once that row (page) is turned on, subsequent accesses using CAS can be
done much quicker than the first access of any given row.

Thus on burst accesses, the RC36100 DRAM Controller keeps RAS asserted and toggles CAS to
get multiple datum. However, if a new row (page) is accessed, then the DRAM row array must be re-
precharged, typically for two clock cycles. Similarly, CAS is toggled in order to precharge the CAS
array before accessing a new memory data location.

On writes, DRAM chips have two modes: early writes and regular writes. Because of the timing
advantage of early writes, the RC36100 DRAM Controller uses early writes where data is strobed
into the DRAM chip with the assertion of CAS instead of with the assertion of the write strobe.

Finally, DRAM devices require that their contents be periodically refreshed. One method is simply
to make sure each DRAM row is accessed periodically; however, DRAM chips also have a special
CAS-before-RAS refresh protocol: if CAS is asserted before RAS, the chip internally executes a
refresh access and bumps up an internal row address counter. The RC36100 DRAM Controller uses
the CAS-before-RAS refresh protocol.

��������

####.... @�@�@�@�---- ,�,�,�,�$$$$���� ���������2 ����2 ����2 ����2 �������

In Figure 10.10 on page 23, a basic new page DRAM read transaction is shown. The transaction
is initiated like other transactions with the assertion of SysALE and SysBurstFrame. Along with the
assertion of SysALE, the SysAddr() bus drives the row address (the upper half of the addresses that
the DRAM chips are expecting).

Unlike the Memory Controller, the DRAM Controller has many signals that assert and/or de-assert
using the falling edge of SysClk in order to fully optimize the timing for DRAM systems. Thus, 1/2
clock cycle after SysALE asserts, one of the four DramRAS(3:0) strobes will assert depending on
which of the four banks is selected. This gives the DRAM chips minimal address setup time to the
RAS strobe.

One-half clock cycle after DramRAS asserts, the SysAddr() bus switches, giving 1/2 clock of
address hold time, and begins driving the column address (the lower half of the addresses that the
DRAM chips are expecting). One-half cycle after SysAddr() changes to the column address, from one
to four of the DramCAS(3:0) strobes will assert depending on if a particular byte is required on the
read.

Note that the RC36100 may assert all four CAS lines even though it only requires some of the
bytes (in such a case, the unneeded bytes are ignored by the RC36100 internally). The default CAS
assertion gives the column address setup time to the CAS strobe. In a typical read, DramCAS()
remains active for 1.5 clocks. On the final clock of the assertion of DramCAS(), SysDataRdy is
asserted and the data from the DRAM is latched into the CPU on the final SysClk rising edge.

During the time that DramRAS() is active, one of the read enable strobes will also be asserted.
These read enable strobes, either DramRdEnEven (see Figure 10.10) or DramRdEnOdd (asserted
analogously to the ‘Even' signal) can be used to select even (DramRAS(2) or DramRAS(0)) or odd
(DramRAS(3) or DramRAS(1)) memory banks, respectively when multiple banks or transceivers are
used. The use of DramRdEn(Even/Odd) varies slightly depending on the type of transceivers and
interleaving factor and will be explained in later sections of this chapter. This includes "Interleaved
Reads," “Interleaved Writes,” and “System Examples.”
�� � ��

�����

���� 	
��

���
 *�.��� ����
�.�
Figure 10.10 Basic DRAM Read

Note: DRAM styles FCT245 and FCT260 have slightly different DRAMRdEnEven behavior
than the case shown in Figure 1.10.

������������ ����

����������������� �� �� �� ����� ������������ !!!!++++ ****������������
+
+
+
+��������

The RC36100 DRAM Controller leaves the DRAMRAS() asserted after single reads. Leaving RAS
asserted allows a subsequent DRAM transaction to go directly into the CAS stage if the next transac-
tion is to the same row (page) as the previous transaction. Thus by using the Control LSB Register
Page Type ('PType') field, the DRAM Controller can keep RAS asserted after burst reads, single word
reads, and/or writes. The DRAM Controller accomplishes this by using its internal Page Comparator
as described in the Page Comparator Algorithm section earlier in this chapter. Figure 1.11 illustrates
this operation.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnEven

SysWait

Stall

Wait?

Row Addr

Fixup (on Data)/
Stall-Rdbusy

(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Col Addr
�� � ��

�����

���� 	
��

���
 *�.��� ����
�.�

Figure 10.11 RAS asserted at End of Transfer

������������ ����

����������������� �� �� �� ����� �������������������� !!!!++++ ****������������
+
+
+
+��������

If the RC36100 DRAM Controller leaves DramRAS() asserted at the end of a previous DRAM
transaction and the current DRAM transaction is on the same row (page), then DramRAS() does not
go through a precharge/address strobe stage and is skipped. In this case as shown in Figure 10.12,
the CAS address strobe and data access stages happen immediately at the start of the transaction.
Note that intervening non-DRAM accesses do not affect the page comparator.

������������ ����

�������������������� *��!�$*��!�$*��!�$*��!�$����!��!��!��!�� ****������������

++++��������

If the RC36100 DRAM Controller leaves DramRAS() asserted at the end of a previous transaction
and the current transaction is on the same row (page), then DramRAS() does not go through a
precharge/address strobe stage and is skipped. In this case, as shown in Figure 1.12, the CAS
address strobe and data access stages happen immediately at the start of the transaction.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFram e

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

Dram CAS(3:0)

Dram RdEnEven

SysWait

Stall

Wait?

Fixup (on Data)/
Stall-Rdbusy

(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Row Addr Col Addr
�� � �

�����

���� 	
��

���
 *�.��� ����
�.�

Figure 10.12 RAS asserted at Start of Transfer

������������ ,,,,��������....������������$$$$���� 1111####����"�"�"�"�

The RC36100 DRAM Controller generates an access that either has RAS asserted on a row
(page) or has RAS de-asserted. On a subsequent access to a different row (page), the DRAM
Controller then verifies that RAS either is de-asserted or has been de-asserted for at least an amount
of clocks equal to the Control Register 0 RAS Precharge ('RASP') Field.

 Figure 1.13 shows a RASP of 2 clocks where RAS was left asserted on the previous DRAM
transaction. To precharge the DRAM chips, DramRAS() must first de-assert for 2 clocks. Then
DRAMRAS() asserts after the 2 clocks, and the transaction continues.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnEven

SysW ait

Fixup (on Data)/
Stall-Rdbusy

(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

W ait?

Col Addr
�� � �!

�����

���� 	
��

���
 *�.��� ����
�.�

Figure 10.13 RAS Precharge at start of Transfer

������������ ��������������������

 AAAA!!!!""""���� 1111####����""""����

The RASAddrHold setting can provide extra row address hold time by extending the number of
clocks that the DRAM Address Multiplexer delays before switching between row and column
addresses. Figure 10.14 shows a DRAM read where RASAddrHold has been set for 1.5 clocks
instead of the default of 0.5 clocks in fast or noisy systems, as shown in Figure 1.14.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnEven

SysWait

Stall

Wait?

StallStall
Fixup (on Data)/

Stall-Rdbusy
(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Col AddrRow Addr
�� � �"

�����

���� 	
��

���
 *�.��� ����
�.�

Figure 10.14 Extended Row Address Hold

��������������
��
��
��

 �
 �
 �
 ����������������� 1111####����""""����

Whenever the RC36100 DRAM Controller generates an access where RAS is de-asserted and a
new RAS is generated (new page case) or a new CAS is generated, the DRAM Controller is respon-
sible for making sure that RAS or CAS is de-asserted for at least the DRAM Control Register Addr
Setup Field amount of clocks after the row or column address is valid.

Figure 10.15 shows a case with AddrSetup of 1.5 clocks between multiple datum on a read.
Although this field primarily controls the address setup time of CAS relative to the column address
being valid, this field also allows control over the precharge time before DramCAS() asserts. To
match the column address setup time characteristic, the RC36100 DRAM Controller also applies this
field to the DramRAS() signal relative to the row address on cases where DramRAS() was left de-
asserted from a previous transaction.

Although not pictured, the AddrSetup field also applies to CAS in the case where RAS is left
asserted and then a subsequent same page access occurs. The RASPrecharge field takes care of
the case where RAS is asserted and then a subsequent different page access occurs.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnEven

SysWait

Stall Stall

RASAddrHold Wait
Wait?

Fixup (on Data)/
Stall-Rdbusy

(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Row Addr Col Addr
�� � �$

�����

���� 	
��

���
 *�.��� ����
�.�

ata/
ction

Fixup (on Data)/

Stall-R dbusy
(on Inst)

Figure 10.15 Extended Address Set-up

������������ ����#�#�#�#��������� 1111####����""""����

The RC36100 DRAM Controller can support slower DRAM speeds by increasing the CAS pulse
width. This option is programmable using the DRAM Control Register CAS Width ('CASW') field.
Figure 10.16 shows the case where CASW has been set to 2.5 clocks instead of the default 1.5
clocks.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

S ta ll-A rb S ta ll

S ta rt
R ead Sam ple Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnEven

SysWait

S ta ll Sta ll Sta ll

W a it?

Data Input

W ait? S am ple D
New T ransa

S ta ll
S ta ll-R dB usy

(on Data)/
Sta ll (on Inst)

Sta llS ta ll

Co l A ddrC ol AddrR ow A ddr
�� � �)

�����

���� 	
��

���
 *�.��� ����
�.�
Figure 10.16 Extended CAS Width

2222����"�#"�#"�#"�#����""""���� ���������������� ����������������

The RC36100 DRAM Controller groups mini-bursts (word and tri-byte accesses on a 16-bit wide
port) and non-interleaved bursts (4-word cache refill) the same way. Mini-bursts and burst reads
require multiple data. As shown in Figure 10.17, second and subsequent data are first preceded with
DramCAS() de-asserting for 1/2 clock (default) and the DRAM mux'ed SysAddr() counting up
towards the next column address. (On 16-bit ports A1 is the LSB; on 32-bit ports A2 is the LSB). In
each case, the final data is denoted by SysBurstFrame de-asserting. Although not shown, AddrSetup
and CASW fields apply to each CAS Data.

Note: In the 16-bit mode, DRAMRdEnEven de-asserts between every word of a 4-word cached-
burst refill for one clock cycle.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data/
New Transaction

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3 :0)

Dram RdEnEven

SysW ait

Stall Stall

Wait?

Fixup (on Data)/
Stall-Rdbusy

(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Col AddrRow Addr
�� � �,

�����

���� 	
��

���
 ����� ���� 9
���

Figure 10.17 Multiple Data read

����� ������ ������ ������ ������� "������ "������ "������ "����
Figure 10.18 shows a basic DRAM write transaction on a precharged (e.g., after reset or a

refresh) new page (row). The transaction is initiated like other transactions with the assertion of
SysALE and SysBurstFrame. Along with the assertion of SysALE, the SysAddr() bus drives the row
address (the upper half of the addresses that the DRAM chips are expecting).

Unlike the Memory Controller, the DRAM Controller has many signals that asserted and/or de-
assert using the falling edge of SysClk in order to fully optimize the timing for DRAM systems. Thus 1/
2 clock cycle after SysALE asserts, one of the four DramRAS(3:0) strobes will assert (depending on
which one of the four banks is selected). This gives the DRAMs address setup time to the RAS
strobe. 1/2 clock cycle after DramRAS asserts, the SysAddr() bus switches and begins driving the
column address (the lower half of the addresses that the DRAM chips are expecting).

In addition, the SysData() bus begins driving the appropriate data. One-half cycle after SysAddr()
changes, from one to four of the DramCAS(3:0) strobes will assert, depending on if a particular byte
is required on the write. The default CAS assertion gives the column address setup time and data
setup time to the CAS strobe. The DRAM Controller uses the early write mode of page mode DRAMs
where the data is latched by the DRAM chips on the asserting edge of CAS instead of the de-
asserting edge. Thus SysDataRdy also asserts a clock early, to indicate to external resources, such
as a logic analyzer, that data is valid.

The early write mode allows address pipelining if another non-DRAM access is waiting to use the
system bus. Because of the early write mode and address pipelining, the data for the write may
disappear on the final clock of the write, if the Write Bus Turn Around is programmed to be '0',
because another non-DRAM transaction may have already started. To prevent address pipelining on
systems that require additional data hold time (either very high frequency systems or very noisy
systems), the Write Bus Turn Around can be programmed to be '1'.

SysC lk

SysRd

SysALEn

SysData(31:0)

SysBurstFram e

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

Dram RAS(0)

Dram CAS(3:0)

Dram RdEnEven

SysW ait

Stall Stall

Wait?

Data Input

Wait? Sample Data/
New Transaction

Stall
Fixup (on Data)/

Stall-Rdbusy
(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Row Addr Col Addr Col Addr
�� � ��

�����

���� 	
��

���
 ����� ���� 9
���
During the time that DramCAS() is active, one of the write enable strobes will also be asserted.
These write enable strobes, either DramWrEnEven or DramWrEnOdd can be used to select even
(DramRAS(2) or DramRAS(0)) or odd (DramRAS(3) or DramRAS(1)) memory banks, respectively
when multiple banks or transceivers are used. The use of DramWrEn(Even:Odd) and Dram-
WrEn(Even:Odd) varies slightly depending on the type of transceivers and interleaving factor and will
be further explained in a later section of this chapter, “System Examples.”

Figure 10.18 Basic DRAM Write

Note: DRAMRdEnEven or Odd (not shown) have slightly different behaviors depending on
the DRAM style (FCT245, 260, or 543).

������������ ����

����������������� �� �� �� ����� �������������������� !!!!+ �+ �+ �+ �����#�#�#�#�����

If the RC36100 DRAM Controller leaves DramRAS() asserted at the end of a previous transaction
and the current transaction is on the same row (page), then DramRAS() does not go through a
precharge/address strobe stage and is skipped. In this case, as shown in Figure 10.19, the CAS
address strobe and data access stages happen immediately at the start of the transaction.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramWrEnEven

SysWait

Run/StallRun/StallRun/StallRun/Stall

Sample Data/
New Transaction

Data Out

Row Addr Col Addr
�� � ��

�����

���� 	
��

���
 ����� ���� 9
���
������������ ����

����������������� �� �� �� ����� ������������ !!!!++++ �����#��#��#��#�����

The RC36100 DRAM Controller leaves the DRAMRAS() asserted after write transactions.
Leaving RAS asserted allows a subsequent DRAM transaction to go directly into the CAS stage if the
next transaction is to the same row (page) as the previous transaction. Thus by using the Control 0
MSB Register Page Type ('PType') field, the DRAM Controller can keep RAS asserted after burst
reads, single word reads, and/or writes. The DRAM Controller accomplishes this by using its internal
Page Comparator as described in the Page Comparator Algorithm section earlier in this chapter.

������������ ����

�������������������� *��!�$*��!�$*��!�$*��!�$����!��!��!��!�� ��������####��������

If the RC36100 DRAM Controller leaves DramRAS() asserted at the end of a previous transaction
and the current transaction is on the same row (page), then DramRAS() does not go through a
precharge/address strobe stage and is skipped. In this case, as shown in Figure 1.19, the CAS
address strobe and data access stages happen immediately at the start of the transaction.

Figure 10.19 RAS Asserted Throughout DRAM Write

����������������� �� �� �� ���������2222 ����#�##�##�##�#�$�$�$�$ ����!�!�!�!������!�!�!�!"
"
"
"

Most of the DRAM Control Fields work identically for reads and writes, this includes:
◆ RAS Precharge Field

SysClk

SysW r

SysALEn

SysData(31:0)

SysBurstFram e

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

Dram CAS(3:0)

Dram WrEnEven

SysWait

Run/StallRun/StallRun/StallRun/Stall

Sample Data/
New Transaction

Data Out

Col Addr
�� � ��

�����

���� 	
��

���
 ����� ���� 9
���
◆ RAS Address Hold Field
◆ Address Setup Field
◆ RAS Address Hold Field
◆ CASW Field

For more details, see the DRAM Read Timing section.

�����#��#��#��#����� �����
�
�
�
 ****������������'�'�'�'��!����!����!����!���

Normally, a subsequent non-DRAM transaction can potentially begin 1 clock before the DRAM
has actually completed the write. For example, this DRAM Write Pipelining can occur when a DRAM
write is followed by an instruction read from PROM. In some cases where either the system clock
frequency is very high or the column address is very noisy, the column address needs additional hold
time. By using the Write Bus Turn-Around Field in a DRAM bank's MSB Control Register, the column
address is held for an extra clock by delaying any non-DRAM transactions for 1 clock, as shown in
Figure 10.20.

Figure 10.20 Write Bus Turn-around

SysClk

SysW r

SysALEn

)

SysBurstFrame

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

Dram CAS(3 :0)

Dram WrEnEven

SysWait

Run/StallRun/StallRun/StallRun/StallRun/Stall

Sample Data/
New Transaction

Write BTA

Row Addr Col Addr

D ata Out
SysData (31:0)
�� � ��

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�
****----!!!! �������������������� �����#�#�#�#�������� ****���
�.����
�.����
�.����
�.�#!#!#!#!����

In cases with a 16-bit bus port width that access more than a halfword (tri-byte, word, or DMA
Burst Write) or in cases with a non-interleaved 32-bit bus port width that is a DMA Burst Write, the
RC36100 DRAM Controller does a two datum or multi-datum write transaction, as shown in Figure
10.21. The second or subsequent data have finished using the DRAM page mode, such that new
SysData() is put on the data bus and DramCAS() is re-asserted. The control lines, DramRdEn(Odd/
Even) and DramWrEn(Odd/Even) for the FCT245-Type transceivers operate slightly differently than
for FCT260- or FCT543-Type transceivers as will be explained later this chapter in the sections on
“Interleaved Reads,” “Interleaved Writes,” and “System Examples”.

Figure 10.21 Two Datum Write

�������������������������������������	�	�	�	 ������	 !������	 !������	 !������	 !�������� ��������������������������������

��������������������""""�������������������� 1111����****����????<<<< ����������������

If the DRAM LSB Control Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT245' setting, then the DRAM Controller assumes the timing shown in Figure
10.22 for reads. Because data is not latched by the transceiver, the 2nd, 4th, 6th,... datum must be
read with a constant address and CAS assertion. Thus the interleaved FCT245 case saves 1 clock
per odd datum over the non-interleaved case. In the Interleaved FCT245 case, the read enables
DramRdEn(Odd,Even) are used as transceiver enables on both reads and writes. The Dram-
WrEn(Odd,Even) signals can be used for the direction.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFram e

Run/Stall

Start
Write

Sample Data

Run/
Sta ll

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramWrEnEven

SysWait

Run/Sta ll Run/Stall Run/Stall Run/Stall Run/Sta ll

Data Out

Run/Stall

Sample Data/
New Transaction

Data Out

Row Addr Col Addr Col Addr
�� � �

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.22 Interleaved ‘FCT245 type read

��������������������""""�������������������� 1111����****����))))

 ����������������

If the DRAM LSB Control Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT260' setting, then the DRAM Controller assumes the timing shown in Figure
10.23 for reads. It is assumed odd datum are latched by the multiplexer, such that the next address
and CAS lines (for the even datum) can be pipelined to change 1 clock early. Thus, the interleaved
FCT260 case saves at least 3 clocks for each 4-word burst read. In the Interleaved FCT260 case, the
even read enable DramRdEnEven is used to latch the odd datum while the odd read enable Dram-
RdEnOdd is used as the overall read enable for the multiplexer.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnOdd

SysWait

Col Addr 0

Stall Stall

Row Addr

Stall

Wait?

Col Addr 8

Data Input

Sample Data/
New Transaction

Stall
F ixup (on Data)/

S ta ll-Rdbusy
(on Inst)

Data Input Data Input

DramRdEnEven

DramRAS(1)

Sample Data

S ta ll-RdBusy
(on D ata)/

S ta ll (on Ins t)
Stall

Wait? Sample Data
�� � �!

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.23 Interleaved FCT260 Read

Figure 10.24 shows a single datum access to an interleaved memory system using FCT260-type
multiplexers in the data path. Note that the timing of this access is identical to the timing of the first
word access of a quad word read.

SysC lk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

D ata Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

Dram RdEnOdd

SysW ait

Stall Stall Stall

Wait?

Data Input

Wait?/
Sample Data

Sample Data/
New Transaction

Stall
Fixup (on Data)/

Stall-Rdbusy
(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Data Input Data Input

DramRdEnEven

DramRAS(1)

Sample Data

Col Addr 0Row Addr Col Addr 8
�� � �"

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.24 Single word access to even bank of FTC260-type system

Figure 10.25 shows the analogous access to the “odd” bank of an interleaved FCT260-type
memory system. In this figure, the timing is identical with the timing of the access of the second word
of a 4-word access; however, the first word is not actually returned to the CPU.

Therefore, there is a performance difference between even and odd single-word accesses, due to
a limitation on the number of transceiver control pins available. However, for the following reasons,
this should not adversely affect system performance:

◆ Single word accesses occur for uncached instruction or data fetches. These are typically not
used in performance critical parts of the system software.

◆ Cached instruction misses are always satisfied using 4-word refills, and utilize instruction
streaming to resume execution once the critical missing instruction is returned from mem-
ory.

◆ Single word accesses may be used for cached data refills, if the data block refill parameter is
set accordingly. However, the use of an interleaved memory in the first place indicates that
the burst performance of the memory system is very high, leading to an extremely high
probability that 4-word D-cache refill is used. For more information, refer to the DBlockRe-
fill (‘DBR’) explanation located in the Coprocessor 0 Configuration section in Chapter 5.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnOdd

SysW ait

Stall Stall

Wait?

Stall
Stall-RdBusy

(on Data)/
Stall (on Inst)

DramRdEnEven

DramRAS(1)

Row Addr Col Addr
�� � �$

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.25 Single word access to odd bank of FCT260-type system

��������������������""""�������������������� 1111����****<<<<????���� ����������������

If the DRAM LSB Control Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT543' setting, then the DRAM Controller assumes the timing shown in Figure
10.26 for reads. It is assumed odd datum are latched by the registered transceiver, such that the next
address and CAS lines (for the even datum) can be pipelined to change 1 clock early. Thus the inter-
leaved FCT543 case saves at least 3 clocks for each 4-word burst read. In the Interleaved FCT543
case, the two read enables and two write enables match up with the FCT543 part directly.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Sta ll

Sta rt
Read

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnOdd

SysW ait

Stall Stall Stall

Wait? Sample Data

Sta ll
Stall-RdBusy

(on Data)/
Stall (on Inst)

DramRdEnEven

DramRAS(1)

Wait?

Col AddrRow Addr

Data Input
�� � �)

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�
Figure 10.26 Interleaved FCT543 Read

Figure 10.27 shows a single datum access to an interleaved memory system using FCT543-type
multiplexers in the data path. Note that the timing of this access is identical with the timing of the first
word access of a quad word read.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnOdd

SysWait

Stall Stall

Row Addr

Stall

W ait?

Col Addr 8

Data Input

W ait?/
Sample Data

Sample Data/
New Transaction

Stall
Fixup (on Data)/

Stall-Rdbusy
(on Inst)

Stall-RdBusy
(on Data)/

Stall (on Inst)

Data Input Data Input

DramRdEnEven

DramRAS(1)

Sample Data

Col Addr 0
�� � �,

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.27 Single word access to even bank of FCT543-type system

Figure 10.28 shows the analogous access to the “odd” bank of an interleaved FCT543-type
memory system. In this figure, the timing is identical with the timing of the access of the second word
of a 4-word access; however, the first word is not actually returned to the CPU.

Thus, there is a performance difference between even and odd single word accesses, due to a
limitation on the number of transceiver control pins available. However, for the following reasons, this
should not adversely affect system performance:

◆ Single word accesses occur for uncached instruction or data fetches. These are typically not
used in performance critical parts of the system software.

◆ Cached instruction misses are always satisfied using 4-word refills, and utilize instruction
streaming to resume execution once the critical missing instruction is returned from mem-
ory.

◆ Single word accesses may be used for cached data refills, if the data block refill parameter is
set accordingly. However, the use of an interleaved memory in the first place indicates that
the burst performance of the memory system is very high, leading to an extremely high
probability that 4-word D-cache refill is used. For more information, refer to the DBlockRefil
(‘DBR’) option in the Coprocessor 0 Cache Configuration section of Chapter 5.

SysClk

SysRd

SysALEn

SysData(31:0)

SysBurstFrame

Stall-Arb Stall

Start
Read

Sample Data

Run/
Stall

Data Input

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramRdEnOdd

SysWait

Stall Stall

Wait?

Stall
Stall-RdBusy

(on Data)/
Stall (on Inst)

DramRdEnEven

DramRAS(1)

Row Addr Col Addr
�� � �

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

Figure 10.28 Single word access to odd bank of FCT543-type system

��������������������""""�������������������� ��������#�#�#�#�����

Interleaved writes on the RC36100 occur one word at a time on the respective bank. The
RC36100 CPU core is only capable of issuing one write at a time. However, the DMA engines are
capable of issuing burst writes. At present, such burst writes are not highly optimized on the
RC36100 and issue sequentially one after another with separate RAS (as well as CAS) strobes,
switching between banks. This choice is due to the leading edge of CAS needing to be delayed for
early writes on fully optimized bursts, which would cause needless complications for more typical
systems.

�#�#�#�#�$�$�$�$""""���� ����!��!��!��!�� ��������������������""""�������������������� 1�1�1�1�****����????<<<< �����#��#��#��#�����

If the DRAM Control MSB Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT245' setting, then the DRAM Controller assumes the timing similar to that shown
in the first half of Figure 10.29 on page 42 on writes.

In the Interleaved FCT245 case, the read enables DramRdEn(Odd/Even) are used as transceiver
enables on both reads and writes. The DramWrEn(Odd/Even) signals can be used for the direction.
The Single Word case is similar to the multi-word case, except that the second assertion of CAS does
not occur.

��������������������""""�������������������� 1111����****����????<<<< �����#�#�#�#��������

If the DRAM Control MSB Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT245' setting, then the DRAM Controller assumes the timing shown in Figure 1.29
on writes.

On interleaved writes, the RC36100 DRAM Controller does the writes with 'early writes' and thus if
a burst write occurs, separate CAS strobes occur for each datum.
�� � �

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�
In the Interleaved FCT245 case, the read enables DramRdEn(Odd/Even) are used as transceiver
enables on both reads and writes. The DramWrEn(Odd/Even) signals can be used for the direction.

Figure 10.29 Interleaved FCT245-type Writes

�#�#�#�#�$�$�$�$""""���� ����!��!��!��!�� ��������������������""""�������������������� 1�1�1�1�****����))))

 �����#��#��#��#�����

If the DRAM Control MSB Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT260' setting, then the DRAM Controller assumes the timing shown in on writes.

On interleaved writes, the RC36100 DRAM Controller does the writes with 'early writes' and thus if
a burst write occurs, separate CAS strobes occur for each datum.

In the Interleaved FCT260 case, the even read enable DramRdEnEven is used to latch the odd
datum while the odd read enable DramRdEnOdd is used as the overall read enable for the multi-
plexer.

The Single Word case is similar to the multi-word case, except that the second assertion of CAS
does not occur.

��������������������""""�������������������� 1111����****����))))

 �����#�#�#�#��������

If the DRAM Control MSB Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT260' setting, then the DRAM Controller assumes the timing shown in Figure
10.30 on writes.

On interleaved writes, the RC36100 DRAM Controller does the writes with 'early writes' and thus if
a burst write occurs, separate CAS strobes occur for each datum.

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Run/Stall

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramWrEnEven

SysWait

Sample Data Sample Data/
New Transaction

Run/Sta ll Run/Stall Run/S tall Run/Sta ll Run/S tall Run/Stall

DramRAS(1)

DramWrEnOdd

Dram RdEnEven

DramRdEnOdd

Row Addr Col Addr Col Addr

Data Out Data Out
�� � �

�����

���� 	
��

���
 ����
�����(���(*�.��� ����
�.�

ll
In the Interleaved FCT260 case, the even read enable DramRdEnEven is used to latch the odd
datum while the odd read enable DramRdEnOdd is used as the overall read enable for the multi-
plexer.

��������������������""""�������������������� 1111����****<<<<????���� �����#�#�#�#��������

If the DRAM Control MSB Register Type Field of a pair of chip select channels is programmed to
the 'Interleaved FCT543' setting, then the DRAM Controller assumes the timing shown in Figure
10.30 on writes.

On interleaved writes, the RC36100 DRAM Controller does the writes with'early writes' and thus if
a burst write occurs, separate CAS strobes occur for each datum.

In the Interleaved FCT543 case, the two read enables and two write enables match up with the
FCT543 part directly.

Figure 10.30 Interleaved FCT260, FCT543-type Writes

SysClk

SysWr

SysALEn

SysData(31:0)

SysBurstFrame

Run/Stall

Start
Write

Run/
Stall

SysAddr(25:0)

SysDataRdy

DramRAS(0)

DramCAS(3:0)

DramWrEnEven

SysWait

Col AddrRow Addr Col Addr

Sample Data/
New Transaction

Run/Stall Run/Stall Run/Stall Run/Stall Run/Stall

Data Out Data Out

Run/Sta

DramRAS(1)

DramWrEnOdd

Sample Data
�� � �

�����

���� 	
��

���
 �&���. :;�.#���
��������++++��
��
��
��
����

The refresh cycle of DRAM chips is supported by the DRAM Controller by using the CAS-before-
RAS refresh protocol. All four DramCAS() lines are asserted for CASW time followed after 1 clock by
asserting the even DramRAS() lines for CASW+0.5 time followed (staggered) by the odd DramRAS()
lines asserting for CASW+0.5 clocks time. All four DramCAS() lines, as shown in Figure 10.31, de-
assert 1.5 clocks after the odd DramRAS() lines assert. Staggering the RAS lines allows the peak
power consumption of turning DRAM chips on to be minimized. The DRAM Controller guarantees
that the write enables, DramWrEn(Odd/Even) are de-asserted during refreshes to avoid entry into an
internal test mode of higher density (4-16Mbit) DRAM chips.

Refresh cycles can occur in parallel with non-DRAM accesses. If a CPU or DMA transfer requiring
DRAM occurs concurrently or after a refresh, the refresh has priority and will complete first.

Because refreshes can happen in parallel with non-DRAM accesses, the RC36100 Debug Inter-
face provides a DiagNoCS() signal to decode precisely when a load or store occurs when no chip
select (or RAS line) is asserted for a load/store transaction.

Figure 10.31 DRAM Staggered Refresh

�#���� $�#���� $�#���� $�#���� $%%%%�� ����� ����� ����� ���
The following DRAM systems concentrate on distinguishing the data path connections between

the three different DRAM types:
◆ FCT245 Transceiver Type
◆ FCT260 Latched Multiplexer (Bus Exchanger) Type
◆ FCT543 Registered Transceiver Type

The address path of a particular system will depend on the total number of loads the address bus
needs to drive. Typically there are 8 DRAM chips per bank, each of them with an address connection.
Assuming that a ROM bank is also connected, that is already 12 loads. Assuming that the DRAM and
the EPROM are CMOS type input loads (micro-amps), typically the drive current from the RC36100
is rarely an issue.

However, as the number of loads gets larger, the output propagation delay will also have a capac-
itive delay factor as well as a noise factor from the trace length. If more than about 8 loads are
connected to the SysAddr bus, then allowances in the programmable timing settings of the DRAM
Controller should be made for ringing and settling time as well as capacitive load delay derating. If
optimal timing is still desired, then address buffers such as the FCT244, FCT344, or FCT827 can be
used.

Start
Refresh

New DRAM
Transaction

Run/
Stall Run/Stall Run/Stall Run/Stall Run/Stall Run/Stall Run/StallRun/Stall Run/Stall
�� �

�����

���� 	
��

���
 �&���. :;�.#���
���������2 ��2 ��2 ��2 �����

������������ ����
#
#
#
#�$�$�$�$ 1111����****����????<<<< ****���������
�
�
�
....����####������������

DRAM Systems using FCT245 transceivers can be expanded from 1 bank to 4 banks. The first
bank, even bank DramRAS(0), uses one set of transceivers and shares the transceiver set with the
other optional even bank DramRAS(2). If present, the second bank, odd bank DramRAS(1), uses a
separate set of transceivers and shares the transceiver set with the other optional odd bank
DramRAS(3). The use of a second set of transceivers allows even and odd banks to be used in the
interleaved mode.

In an FCT245 type system, DramRdEn(Odd,Even) are used as the common output enable. Thus
DramRdEn(Odd,Even) for the FCT245 type, assert for both reads and writes and could be called,
“DramEn(Odd,Even).” Because the FCT245 does not contain a latch, address pipelining optimiza-
tion cannot occur. The use of SysRd or perhaps SysWr (depending on whether the data path from the
CPU is A to B or perhaps B to A) avoids leading edge bus contention from direction to output enable
skew. Note that the use of SysRd or SysWr on DRAM accesses may in the future, limit the use of the
future use of DMA fly by accesses. (The RC36100 does not presently support DMA fly by accesses.
The other DRAM types described below do not use SysRd or SysWr).

Note that the RC36100 DRAM Controller depends on CAS without RAS having no effect (always
true of standard DRAMs, since some chips do not have dedicated output enable pins) in order to
share transceivers between DRAM chip banks.

With present day pricing, the FCT245 type system is the least expensive interleaved option,
however, it is not as fast on burst reads as the other two types.

Figure 10.32 Interleaved FCT245 Interface

&&&&!- �!- �!- �!- �!
!
!
!
� �� �� �� ������2 ��2 ��2 ��2 �����

������������ ����
#
#
#
#�$�$�$�$ 1111����****����????<<<< ****������������

.�.�.�.�####������������

In very low cost systems that do not need the extra throughput of interleaving, a single set of
transceivers can be used for all 4 banks. However, this requires that the banks not be put into their
software programmed interleaved mode and that the read enables, DramRdEn(Odd,Even) be exter-
nally OR'ed.

DRAM
Bank 2DRAM

Bank 0

DRAM
Bank 3DRAM

Bank 1

SysRd

DramRdEnOdd

T/R

DramRdEnEven

SysData(31:0)

1B

DramRAS(0)

DramRAS(2)

DramRAS(1)

DramRAS(3)

FCT
245

SysRd

B A

FCT
245

B A

DramWrEnEven

DramWrEnOdd

OE

OET/R
�� � !

�����

���� 	
��

���
 �&���. :;�.#���
CCCC������������ &&&&!-!-!-!- ����!!!!

���� ������������2222 ��������

������������ ----####��!��!��!��!�������� ****������������

.�.�.�.�####������
��
��
��

In simpler systems, it is also possible to remove the transceivers completely, such that the DRAM
bank is attached directly to the SysData bus. The Bus Turn Around setting can be adjusted to prevent
bus contention between DRAM chips and the CPU on a DRAM read followed by a CPU write. For
more information, refer to “Dram Read Cycle Bus Turn-Around (‘DramRdBTA’) Field Encoding” (Table
10.22 on page 20).

���������2 ��2 ��2 ��2 �����

������������ ����
#
#
#
#�$�$�$�$ 1111����****����))))

 2222����"�#"�#"�#"�#����"�6"�6"�6"�6��
��
��
��

DRAM Systems using a set of FCT260 latched multiplexers can be expanded from 1 bank to 4
banks. The even banks share one data path while the odd banks share the other data path.

In an FCT260 system, DramRdEnEven is used as the common read data path enable to the CPU.
DramRdEnEven for the FCT260 type, asserts for both even and odd reads and could be called,
"DramRdEn." DramRdEnOdd is used to latch the odd read data temporarily so that address pipe-
lining can occur. DramRdEnOdd is also used for the FCT260 path select. The DRAM write enables,
DramWrEn(Odd/Even) are hooked up in a straightforward manner, to the odd and even write data
path enables of the FCT260, respectively.

The FCT260 system (see Figure 10.33 for system diagram) is one of the least expensive inter-
leaved options, since just 3 chips are required instead of 4 chips. In addition, burst reads are fully
optimized with address pipelining, and thus save an additional clock on each burst read relative to a
FCT245 system. Thus for many multi-bank systems, the FCT260 system is the best cost/perfor-
mance alternative.

Figure 10.33 Interleaved FCT260 Interface

DRAM
Bank 3DRAM

Bank 1

DRAM
Bank 2DRAM

Bank 0

SEL

DramRdEnOdd

DramRdEnEven

OEA

DramWrEnOdd

OE1B

DramWrEnEven

SysData(31:0)

2B

1B

A

DramRAS(0)
DramRAS(2)

DramRAS(1)

DramRAS(3)

FCT
260

DramWrEnEven

DramWrEnOdd

OE2B

LE2B

LE1B
LEA1B
LEA2B
�� � "

�����

���� 	
��

���
 �&���. :;�.#���
���������2 ��2 ��2 ��2 �����

������������ ����
#
#
#
#�$�$�$�$ 1111����****<<<<????���� ��������$$$$#
#
#
#
�������������������� ****���������
�
�
�
....����####������������

DRAM Systems using a set of FCT543 registered transceivers can be expanded from 1 bank to 4
banks. The even banks share one set of transceivers while the odd banks share another set of trans-
ceivers.

The FCT543 system may be more expensive than other options and has the same performance
as the FCT260 option. Because the connections are more straightforward, and therefore easier to
understand, the FCT543 option is mentioned here as an example system.

In the FCT543 system (see Figure 10.34 for system diagram), the read enables, DramRdEn(Odd/
Even), are hooked up to the odd and even transceiver banks' read data path enables respectively.
Likewise, the write enables, DramWrEn(Odd/Even), are hooked up to the odd and even transceiver
banks' write data path enables respectively.

Figure 10.34 Interleaved FCT543 Interface

DRAM
Bank 2DRAM

Bank 0

DRAM
Bank 3DRAM

Bank 1

DramWrEnOdd

DramRdEnOdd

DramRdEnEven

OEnN(1:0)

DramWrEnEven

SysData(31:0)

1B

DramRAS(0)

DramRAS(2)

DramRAS(1)

DramRAS(3)

FCT
543

DramRdEnEven

A B

FCT
543

A B

OEnN(1:0)

DramWrEnEven

DramWrEnOdd
�� � $

�����

���� 	
��

���
 �&���. :;�.#���

�� �)

�����

��������	
������

����� �
���
����

������� 		
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. One of the on-chip memory controllers is the Direct Memory Access
(DMA) Controller.

This chapter includes a functional overview, complete pin descriptions, signal information, timing
diagrams, register drawings and an explanation on how the DMA Controller interface relates to typical
internal and external hardware DMA systems.

������������

������������
◆ 4 internal channels

- Slave-mode device support for using RC36100 controlled memory
- Physical memory to physical memory transfers
- Link chaining protocol, for consecutive transfers

◆ 2 external channels
- Master mode device support, for using RC36100 controlled memory
- Physical memory to physical memory transfers

◆ Fixed priority arbitration
◆ Coordinates BIU port width, Endianess, Byte Enable, and Read Buffer logic
◆ Single word read/write mode
◆ 4-word burst read/write mode

Figure 11.1 DMA Controller Address and Data Flow Diagram.

Inst & Data
Caches

Addr

Data

DM A Load A ligner/Read Buffer

DM A Store A ligner

B IU
Periphera ls M em ory

Addr

Data

DM A Addr
Generator

DM A

CPU
Read/W rite

Buffers

Transce iver

SysAddr

SysData

On-Chip Off-Chip

 R ISCore32
�� � �

�����

�����	
����
 ������ ��
�� ���	������ ����� ������� ��������
�������������������� ���������������������� ��� ��� ��� �����������������������������
The functional block diagram for the address and data paths of the DMA Controller is shown in

Figure 11.1. The DMA Controller—as one of the bus controllers—coordinates and shares the Bus
Interface Unit (BIU) resources with the CPU; however, when the DMA Controller channels can make
use of the BIU, an arbitration unit (not shown) coordinates resource sharing.

When an internal DMA Controller channel is granted the BIU, it first uses the DMA Addr Gener-
ator to put a source address out to the BIU. The BIU then generates a read to the System Interface.
The various BIU control signals, including Endianess and AccTyp (Byte Enables and Burst Length),
are also coordinated by the DMA Controller.

The System Interface executes the read from the source (for instance, to DRAM or to one of the
on-chip peripherals). If the source read data is a different port width than 32-bits, then the BIU takes
care of the byte gathering and the Read Buffer takes care of burst gathering. The source data is
FIFO'ed into the Read Buffer, similar to a CPU read.

At this point, the DMA Controller takes the read data from the Read Buffer and generates the
target address. The read data is then sent to the BIU in 32-bit quantities—with the proper Endianess
and AccTyp (Byte Enables and Burst Length) and target address—until the Read Buffer is emptied.
On each BIU write, the System Interface is invoked and the write is completed out to the target (for
instance, to one of the on-chip peripherals or to the off-chip DRAM).

Thus, on each DMA transaction, the DMA Controller first generates a read from the source
address into its own 4-word FIFO and then generates a write to the target address, using data from
the 4-word FIFO.

�����

�����

�����

����������� ��� ��� ��� �����������������������������
The Direct Memory Access (DMA) controller has two basic functions:

◆ An internal DMA function is capable of internally generating addresses and controlling a
read/write pair for each data transfer.

◆ An external DMA function loads an address from an external DMA controller and then gener-
ates a fly-by read or fly-by write for each data transfer.

�������������������������
�
�
�
����� �� �� �� �����������������������������

In the RC36100, there are four independent DMA Channels. Each of the DMA channels is func-
tionally identical—with the exception of their priority encoding—and initialized with a set of chaining
registers to determine:

◆ the DMA source start base address
◆ the DMA target start base address
◆ the data transfer number
◆ the protocol style selection

Thus, the programmable link chaining registers act as a set of instructions that the DMA channel
must execute and complete. After completing the link chaining register instructions, the DMA channel
may be instructed to stop and interrupt the CPU core, or it may be instructed to load a new set of link
chaining register instructions.

At the beginning of a DMA transaction, the channel will first arbitrate for the system bus. With
multiple DMA requests pending, after a DMA access, the bus is granted to the CPU instead of to the
next highest requester. Thus, there are two priority tiers: (1) high/ ExtDMA and IntDMA and (2) low/
CPU.

Within these two tiers, the priority algorithm is either fixed or rotating. However, outside these
tiers, after each arbitration, the bus is given to the highest requesting tier. Once within a tier, that tier
may choose to keep the bus within the tier (for example, IntDMA keep bus mode). Specific to the
ExtDMA/IntDMA, once a channel is done, the tier arbitration token is given to the other tiers, At the
next arbitration point, to grant a specific DMA channel, if the ExtDMA/IntDMA receives the bus, the
ExtDMA/IntDMA will use either the fixed or rotating priority scheme. Figure 11.2 illustrates the
rotating priority scheme, and the fixed priority encodings are listed in Table 11.1.
�� � �

�����

�����	
����
 ������ ��
�� ���	������ ����	����� ��������
Figure 11.2 Rotating Priority Scheme

Once arbitration is granted, the DMA channel generates a read cycle with the source base
address. The control register determines whether or not it is a burst. Typically, the source address will
be through an internal memory controller on the RC36100 (for example, the DRAM Controller). Thus
the internal memory controller will take the address and generate data, acknowledges, etc., back to
the DMA controller channel. The DMA controller uses the DMA 4-word deep buffer FIFO to absorb
the potential burst read data.

After the read is completed, the DMA channel initiates a write to the target address, by emptying
out the read buffer FIFO. As with the read, the write is typically through an internal memory controller
on the RC36100 (for example, the I/O Controller). The internal memory controller will take the
address and data from the FIFO and generate a write transaction.

At the end of the transaction, the DMA channel's count register is decremented by 1. If the count
register has not reached 0, the source and target addresses are incremented to their next value
(which could be by +0, +1, +2, +4, or +16 depending on whether incrementing is enabled and
whether a mini-burst or burst occurred).

If the count register has reached 0, then the DMA channel is finished with its current link chaining
register assignment. If the control register so instructs, the channel may set an interrupt and/or stop,
and/or it may reload a new link/set of chaining registers. If a new link/set is loaded, then the DMA
channel will repeat the basic DMA channel transaction by copying the new link instructions into the
current instructions and executing them.

�������������������
���
���
���
����� ��� ��� ��� ������������������������������

Figure 11.3 shows the internal DMA algorithm.

�� �! "�����	
 ����	

Highest EDMA0

• EDMA1

• IDMA0

• IDMA1

• IDMA2

Lowest IDMA3

Table 11.1 Fixed Priority Encoding

CPU

IDMA3
�� � �

�����

�����	
����
 ������ ��
�� ���	������ # 	����� �
� �$������
Figure 11.3 Internal DMA Algorithm.

����������������������� ������ ������ ������ ��� ��������������������������������
External DMA channels are conceptually simpler than their internal counterparts. Much of the

control logic is implemented by a user supplied external off-chip DMA controller agent; so essentially,
all the RC36100 is required to do is get off the system bus and react to reads and writes to internal
memory controllers.

while (stop_field == false) /* note that if at anytime stop_field == true then break */
{
if (count_field != 0)
/* Start up */
if (wait_for_interrupt_field == true)

{while (DMAInterruptN == false)
{ /* wait for DMAInterruptN */; } }

assert BusReqN = active_low;
while (BusGntN == non_active_low)

{/* wait for BusGntN */;}

/* Do the source read */
BusInterfaceUnit(source_addr_field, BurstN,

BEnN(3:0), BigEndianFlag, RdN);
while (Bus_Interface_Unit(FIFO_Data_WrN)) {

FIFO_Data[] = Data;
}
/* Do the target write */
BusInterfaceUnit(target_addr_field, Burst,
BEnN(3:0), BigEndianFlag, WrN);
while (Bus_Interface_Unit(FIFO_Data_RdN))
{Data = *FIFO_Data++;}

/* Finish up */
if (keep_bus_field == false)
assert BusReqN = non_active_low;
count_field = count_field - 1;
if (source_inc_field == true)
{source_addr_field = source_addr_field + burst_length_field;}
if (target_inc_field == true)
{target_addr_field = target_addr_field + burst_length_field;}
if (wait_for_interrupt_field == false)

{break}
} /* if count != 0 */
else { /* count == 0 */
assert ExcInt(DMA_Done_Int()); /* pulse DMADoneN for 1 clock */
if (break_field == true) {
assert Stop_Field == true;
break;
}
else { /* break == false */
case link_field {
0: {DMA_Registers = LinkA_Registers;
break /* from case */; }
1: {DMA_Registers = LinkB_Registers;
 break /* from case */; }
2: {DMA_Registers = LinkC_Registers;

 break /* from case */; }
3: {DMA_Registers = LinkD_Registers;

 break /* from case */; }
}
}
} /* end count == 0 */
�� � %

�����

�����	
����
 ������ ��
�� ���	������ "�� ������&	����
Thus, the RC36100 first gives the bus to the external DMA Agent which issues either a read or
write command to the RC36100. The external DMA agent then gets off the address and control bus.
The RC36100 then executes the command on one of the memory controllers and does fly-by data
accesses where the external DMA agent either reads or writes the data at the same time the memory
controller writes or reads the data.

To allow an external DMA agent to take control of the bus, the external DMA Controller uses the
customary bus request/grant, DMABusReq() and DMABusGnt(), handshake signals. When the DMA
agent takes control of the bus, it drives address and control information onto the SysData pins of the
RC36100. SysWr is asserted if the transaction is to be a write, de-asserted if the transaction is to be
a read. Single word writes must set the byte enables via MemWrEn(3:0).

All write enable signals become byte enable inputs, when performing external DMAs. Also, during
ExtDMA commands, the user must assert all four byte enables for word access, the DRAM or
Memory controller will not perform data packing, and the lower order address lines (A1:A0) will be
ignored.

Note that internal peripherals must use single word reads, not burst reads. SysALEn may remain
asserted for more than one clock; however, the address is latched in on the first rising clock edge
where SysALEn is asserted. This allows SysALEn to follow the PCI FRAME# convention and to
delay an access. In PCI mode, MemWrEn(3:0) are sampled on the clock after SysALEn is first
asserted. The SysData bus is used to get the external DMA 32-bit physical address.

If the physical address corresponds to an on-chip controller and the transfer is a read, the
RC36100 generates a read from the proper device and drives the necessary data lines with the data.
If the transaction is a burst read or burst write, to indicate the end of the transaction, the accesses
must be full word reads or writes and use a properly programmed DMADone input. DMADone must
be asserted on the falling edge of SysClk, to end ExtDMA burst accesses.

Because the RC36100 must reuse the SysAddr and Sys Control lines, during the second half of a
DMA access, the DMA agent must tri-state its address (and data transceivers) after driving SysAddr,
SysALEn, SysBurstFrame, SysWr, and MemWrEn(3:0) into the RC36100. The tri-stating must occur
by the second clock after de-asserting SysALEn. Before taking the bus back, the CPU drives all
control lines de-asserted; therefore, the DMA agent doesn’t necessarily have to do so. With the
exception of write SysData(), the RC36100 will take over the bus to do a memory cycle. When the
RC36100 has completed its internal memory cycle, it will assert SysDataRdy and de-assert SysAddr
and all System Control lines.

Burst transfers may be from 1 to 64 words and must be aligned with a 64-word block. Burst
transfer mode also requires the use of the DMADone pin. DMABusReq() must be kept asserted at
least one clock after DMABusGnt() asserts. DMABusReq() must be deasserted before the last
SysDataRdy occurs, unless another external DMA transaction is to occur.

��� �������� �������� �������� ��������� ����� ����� ����� �����

�
�
�
����������������� ��������������������� �� �� �� ��������������������� �
��
��
��
������ �� �� �� ���������������������������������� ��� ��� ��� ����������������������

������������������������������������	�	�	�	���������

����������������

DMA Bus Request: Active low. Input signal to the RC36100 that the external DMA controller would
like to gain mastership of the system bus. DmaBusReq can be software programmed to be active
high by using the ReqH field in the External DMA Control Register.

�������������������� � � � ���������	�	�	�	��������� !�!�!�!�����������������

DMA Bus Grant: Active low. Output signal to the external DMA controller that it is now master of
the system bus.

��������

������������

����������������

DMA Done: Active low. Signals the RC36100 that the current DMA transaction is the last transac-
tion by the current DMA agent.
�� � '

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����
For internal DMA, if DMADone is asserted, the present link will abort. For external DMA,
DMADone will indicate that the next data is the last data on a burst read or write. During a burst
transfer, DMADone is required.

Note: For a read cycle, DMADone should be activated at the beginning clock of the last word
(datum). For a write cycle, DMADone should be asserted before the beginning clock of the last
word (datum).

������������������������ ������������������������� ��� ��� ��� ���������������������� ���������"�"�"�" """"��������������������

�������� �� ��������������������������������

����������������####$$$$���� !!!!��������������������%�%�%�%�

���������������� "�"�"�"����������������� $&$&$&$&���������������������
��
��
��
���������

��������������������������������''''���������������� !�!�!�!�����������������%%%%�
�
�
�
���������������� "�"�"�"����������������� $$$$&&&&������������������������

������������

����������������"""" !�!�!�!�����������������%%%%�
�
�
�
���������������� """"����������������� $� $� $� $&�&�&�&���������������������

������������

���������(�(�(�(���� !�!�!�!�����������������%%%%�
�
�
�
���������������� """"����������������� $� $� $� $&�&�&�&���������������������

������������

������������((((����$$$$��������))))������������ !!!!��������������������%�
%�
%�
%�
���������������� "�"�"�"����������������� $&$&$&$&������������������������

������������

During the initial part of an external DMA access, these signals are used to give the RC36100 a
read, write, burst read, or burst write command. During this period, they are inputs.

����������������""""����

SysRd can be driven optionally by the external DMA agent; however, it is ignored by the
RC36100, which uses an unasserted SysWr to indicate a read command.

������������((((����$$$$����������������

External DMA, in addition to the regular cases, can support the '1111' case which is equivalent to
the '0000' all asserted case and the '1001' case which is a case the RISCore32 series core does not
generate.

������������
�
�
�
�������������""""���� !!!!��������������������

SysDataRdy asserts low whenever the CPU expects data to be read or written. It is always a CPU
output. The datum is read or written by the CPU bus controller simultaneous with being written/read
by the DMA agent.

!!!!���������������������������� ��������� ���������� ���������� ���������� �����
The RC36100 DMA Controller has two sets of registers: one internal (four channels) and one

external (two channels).

�������������������������
�
�
�
����� �� �� �� ���������������������������������� �� �� �� �����������������������������

��

Table 11.2 is an address map of the Internal DMA Controller registers. Big Endian software must
offset these addresses by b’10 (0x2), if halfword accesses are used. All Internal DMA Registers are
uninitialized, except for the on/off control bit15 in the LSB Control registers of channels 0-3.
�� �)

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����

"$
�����

�!!����
������&	���

0xFFFF_E300
0xFFFF_E304
0xFFFF_E308
0xFFFF_E30C
0xFFFF_E310
0xFFFF_E314
0xFFFF_E318
0xFFFF_E31C

DMA LSB Source Address Register for Channel 0
DMA MSB Source Address Register for Channel 0
DMA LSB Target Address Register for Channel 0
DMA MSB Target Address Register for Channel 0
DMA LSB Count Register for Channel 0
DMA MSB Count Register for Channel 0
DMA LSB Control Register for Channel 0
DMA MSB Control Register for Channel 0

0xFFFF_E320
0xFFFF_E324
0xFFFF_E328
0xFFFF_E32C
0xFFFF_E330
0xFFFF_E334
0xFFFF_E338
0xFFFF_E33C

DMA LSB Source Address Register for Channel 1
DMA MSB Source Address Register for Channel 1
DMA LSB Target Address Register for Channel 1
DMA MSB Target Address Register for Channel 1
DMA LSB Count Register for Channel 1
DMA MSB Count Register for Channel 1
DMA LSB Control Register for Channel 1
DMA MSB Control Register for Channel 1

0xFFFF_E340
0xFFFF_E344
0xFFFF_E348
0xFFFF_E34C
0xFFFF_E350
0xFFFF_E354
0xFFFF_E358
0xFFFF_E35C

DMA LSB Source Address Register for Channel 2
DMA MSB Source Address Register for Channel 2
DMA LSB Target Address Register for Channel 2
DMA MSB Target Address Register for Channel 2
DMA LSB Count Register for Channel 2
DMA MSB Count Register for Channel 2
DMA LSB Control Register for Channel 2
DMA MSB Control Register for Channel 2

0xFFFF_E360
0xFFFF_E364
0xFFFF_E368
0xFFFF_E36C
0xFFFF_E370
0xFFFF_E374
0xFFFF_E378
0xFFFF_E37C

DMA LSB Source Address Register for Channel 3
DMA MSB Source Address Register for Channel 3
DMA LSB Target Address Register for Channel 3
DMA MSB Target Address Register for Channel 3
DMA LSB Count Register for Channel 3
DMA MSB Count Register for Channel 3
DMA LSB Control Register for Channel 3
DMA MSB Control Register for Channel 3

0xFFFF_E380
0xFFFF_E384
0xFFFF_E388
0xFFFF_E38C
0xFFFF_E390
0xFFFF_E394
0xFFFF_E398
0xFFFF_E39C

DMA LSB Source Address Register for Link A
DMA MSB Source Address Register for Link A
DMA LSB Target Address Register for Link A
DMA MSB Target Address Register for Link A
DMA LSB Count Register for Link A
DMA MSB Count Register for Link A
DMA LSB Control Register for Link A
DMA MSB Control Register for Link A

0xFFFF_E3A0
0xFFFF_E3A4
0xFFFF_E3A8
0xFFFF_E3AC
0xFFFF_E3B0
0xFFFF_E3B4
0xFFFF_E3B8
0xFFFF_E3BC

DMA LSB Source Address Register for Link B
DMA MSB Source Address Register for Link B
DMA LSB Target Address Register for Link B
DMA MSB Target Address Register for Link B
DMA LSB Count Register for Link B
DMA MSB Count Register for Link B
DMA LSB Control Register for Link B
DMA MSB Control Register for Link B

Table 11.2 Internal Channel DMA Controller Register Address Map
�� � *

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����

�������� ####�� ��� ��� ��� ��������������������� �""���""���""���""���� ��� ��� ��� �������������������������� *� *� *� *����� �� �� �� ������������������������� ����++++++++))))
����,,,,

��������#�#�#�#���������������������������""��""��""��""������������������������++)++)++)++)����-�-�-�-�

�������� ####�� ��� ��� ��� ��������������������� �""���""���""���""���� ��� ��� ��� �������������������������� *� *� *� *�������� ####��������.... �++
�++
�++
�++

����,,,,

��������#�#�#�#���������������������������""��""��""��""������������������������++++++++

����----����

Figure 11.4 Internal DMA LSB Source Address Register (‘DmaLSBSourceAddrReg’).

����� ��� ��� ��� ������ ������������������������ ����""���""���""���""������� �������������������������������� ****�������� ���������������������������� ����++++++++))))
����,,,,

��""�""�""�""���������������������++++++++))))����----����

����� ��� ��� ��� ������ ������������������������ ����""���""���""���""������� �������������������������������� ****�������� ####�����.�.�.�. ����++
++
++
++

����,,,,

��""�""�""�""���������������++
���++
���++
���++
�----����

Figure 11.5 Internal DMA MSB Source Address Register (‘DmaMSBSourceAddrReg’).

The Source Address Register, shown in Figure 11.5, must be programmed with the initial address
of the peripheral or memory that data is to be read from. The channel Source Address Register will
be incremented by the Source Burst Size amount after each DMA transaction. Normally the Source
Address Register is only written; however, it may also be read for diagnostic reasons.

0xFFFF_E3C0
0xFFFF_E3C4
0xFFFF_E3C8
0xFFFF_E3CC
0xFFFF_E3D0
0xFFFF_E3D4
0xFFFF_E3D8
0xFFFF_E3DC

DMA LSB Source Address Register for Link C
DMA MSB Source Address Register for Link C
DMA LSB Target Address Register for Link C
DMA MSB Target Address Register for Link C
DMA LSB Count Register for Link C
DMA MSB Count Register for Link C
DMA LSB Control Register for Link C
DMA MSB Control Register for Link C

0xFFFF_E3E0
0xFFFF_E3E4
0xFFFF_E3E8
0xFFFF_E3EC
0xFFFF_E3F0
0xFFFF_E3F4
0xFFFF_E3F8
0xFFFF_E3FC

DMA LSB Source Address Register for Link D
DMA MSB Source Address Register for Link D
DMA LSB Target Address Register for Link D
DMA MSB Target Address Register for Link D
DMA LSB Count Register for Link D
DMA MSB Count Register for Link D
DMA LSB Control Register for Link D
DMA MSB Control Register for Link D

"$
�����

�!!����
������&	���

Table 11.2 Internal Channel DMA Controller Register Address Map

LSB Addr (15:0)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9

MSB Addr (31:16)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9
�� � +

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����

�������� ####�� /���� /���� /���� /�������������� ����"""""��"��"��"���������� ����������������������������� *� *� *� *�������� ������������������������� �++� �++� �++� �++))))
����,,,,

��������#�#�#�#�����/��/��/��/������������������"""""�"�"�"���������������������++++++++))))����----����

�������� ####�� /���� /���� /���� /�������������� ����"""""��"��"��"���������� ����������������������������� *� *� *� *�������� #�#�#�#��.�.�.�. �++
�++
�++
�++

����,,,,

��������#�#�#�#�����/��/��/��/������������������"""""�"�"�"���������������++
��++
��++
��++
����-�-�-�-�

Figure 11.6 Internal DMA LSB Target Address Register (‘DmaLSBTargetAddrReg’).

����� ��� ��� ��� ������ /�/�/�/����������������� ����""""""""���������������� �������������������������������� ****����� �� �� �� ������������������������� ����++)++)++)++)
����,,,,

�����������/����/����/����/���������������������""""""""������������������������++++++++))))����----����

����� ��� ��� ��� ������ /�/�/�/����������������� ����""""""""���������������� �������������������������������� ****�������� ####��������.... ����++++++++

����,,,,

�����������/����/����/����/���������������������""""""""������������������������++++++++

����----����

Figure 11.7 Internal DMA MSB Target Address Register (‘DmaMSBTargetAddrReg’).

The Target Address Register (shown in Figure 11.6 and Figure 11.7) must be programmed with
the initial address of the peripheral or memory that data is to be written to. The channel Target
Address Register will be incremented by the Target Burst Size amount after each DMA transaction.
Normally the Target Address Register is only written, however, it may also be read for diagnostic
reasons.

�������� ####�� ��� ��� ��� ����������������� ����������������������������� *� *� *� *�������� ���������������������������� ����++++++++))))

����,,,,

��������#�#�#�#���++++++++))))����-�

�������� ####�� ��� ��� ��� ����������������� ����������������������������� *� *� *� *�������� ####�����.�.�.�. ����++
++
++
++

����,,,,

��������#�#�#�#���++++++++

����-�

Figure 11.8 DMA LSB Count Register (‘DmaLSBCountReg’).

LSB Count(15:0)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9

MSB Count (31:16)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9

LSB Count (15:0)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9
�� � ,

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����

����� ��� ��� ��� ������ �������������������� �������������������������������� ****����� �� �� �� ������������������������� ����++++++++))))
����,,,,

��++��++��++��++))))����----����

����� ��� ��� ��� ������ �������������������� �������������������������������� ****�������� ####��������.... �++�++�++�++

����,,,,

��++
���++
���++
���++
�----����

Figure 11.9 Internal DMA MSB Count Register (‘DmaMSBCountReg’).

Note: The count is the number of read/write transactions to be done. A burst or mini-burst
read/write only counts once. The channel count register is decremented by 1 after each DMA
transaction. If the count is 0, then the DMA Channel will immediately proceed to the next link.
The LSB and MSB registers are writable. They are also readable for diagnostic purposes.

The InternalDMA LSB Control register is shown in Figure 11.10, with bit assignments listed in
Table 11.3.

�������� ####�� ��� ��� ��� ������������������� ��� ��� ��� �������������������������� *�� *�� *�� *����� ������������������������� �++� �++� �++� �++))))
����,,,,

��������#�#�#�#���++)++)++)++)����-�-�-�-�

�������� ####�� ��� ��� ��� ������������������� ��� ��� ��� �������������������������� *�� *�� *�� *����� #�#�#�#��.�.�.�. �++
�++
�++
�++

����,,,,

��������#�#�#�#���++++++++

����----����

Figure 11.10 Internal DMA LSB Control Register (‘DmaLSBControlReg’).

��	 ���������	

15 Arbitration Type

14 Keep Bus

13 Allow DMADone

Table 11.3 Internal DMA LSB Control Register (‘DmaLSBControlReg’) Bit Assignments.

MSB Count(31:16)

15 0 7 6 8 5

15

 4 3 2 114 13 12 11 10 9

Arb

15 0 7 6 8 5 4 3 2 1
0WInt Burst SBE

211

14 13 12 11 10 9
Bus Done 0 TBE SEnd TEnd TIncSInc

1 1 11 2 2 11 1 1
�� � �-

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����
�����0�0�0�0�������������������������������� ////��������� �� �� �� �,,,,��������0-0-0-0-���� ''''������������"""" ���������������� 				1111��������

The Arbitration Type is only applicable to Channel 0; however, all channels must be programmed
to the same value. Table 11.4 lists the programming values for implementing the two arbitration types
available in the RC36100.

2222������������ ��������� �� �� �� �,,,,������������----���� ''''������������"""" ���������������� 				3��3��3��3��

����4����4����4����4

��������
�
�
�
��������� ����,,,,

������������-�-�-�-� ''''������������"""" ������������ ����))))��������

Note: DMADone behaves as a “stop-link” indicator; if DMADone gets asserted during a
channel’s DMA BusGnt asserted period, then it will abort the DMA channel and its link after this
current transaction completes. Field values and descriptions are listed in Table 11.6.

(���(���(���(��� ****��������
�
�
�
����������������������������� ����,,,,(
(
(
(
��������-�-�-�-� ''''���������" ��" ��" ��" ������������� 	5	5	5	5��������

The DMA Controller cannot autonomously acknowledge the source of the interrupt. Thus, it is
expected that interrupts either pulse low for 1 clock or self reset when the pertinent data port is read
or written.

12 Wait for Interrupt

11:10 ‘0’

9 Burst Type

8 ‘0’

7:6 Source Byte Enable Type, Access Type(1:0)

5:4 Target Byte Enable Type, Access Type(1:0)

3 Source Endianess

2 Target Endianess

1 Increment Source

0 Increment Target

.���� ��	���

‘1’ Fixed Priority Arbitration (default)

‘0’ Rotating Priority Arbitration

Table 11.4 Arbitration Type (‘Arb’) Field Encoding

.���� ��	���

‘1’ Keep Bus until done with current link.

‘0’ Release Bus at the end of each read/write.

Table 11.5 Keep Bus (‘Bus’) Field Encoding

.���� ��	���

‘1’ “Stop-link”

‘0’ Normal.

Table 11.6 Allow DMADone (‘Done’) Field Encoding.

��	 ���������	

Table 11.3 Internal DMA LSB Control Register (‘DmaLSBControlReg’) Bit Assignments.
�� � ��

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����
When programmed in the wait mode, the DMA Controller does not sample for the interrupt until
the clock after the internal bus grant is released. This gives the external I/O device being read or
written to adequate time to reset its internal interrupt generator. Refer to Table 11.7 for the program-
ming values of bit 12.

�������������������� /�/�/�/��������� �,�,�,�,��������������������----���� ''''������������"""" ���������������� 6��6��6��6��

If the DMA transaction is to be a burst, the Burst Type Field must be set, and the Burst Size Field
in the DMA MSB Control register must also be programmed. Programming values for bit 9 are listed
in Table 11.8.

������������������������ ������������� $� $� $� $��0��0��0��0�������� ////������������ ����,,,,��$��$��$��$----� '�� '�� '�� '���������"""" ����������������7�7�7�7�8888��������

The selected type is combined with Addr(1:0) and Endianness to form the byte-enables. Refer to
Table 11.9 for Source Byte Enable field values and descriptions.

/�/�/�/����������������� ���������������� $$$$��0��0��0��0�������� /�/�/�/��������� �,�,�,�,////�$�$�$�$----� '�� '�� '�� '���������"""" ���������������� 1111����3333��������

The selected type is combined with Addr(1:0) and Endianness (see Table 11.11 for Source BigEn-
dianness type field values and descriptions or Table 11.12 for Target Endianness values and descrip-
tions) to form the byte-enables. Refer to Table 11.10 for Target Byte field values and descriptions.

.���� ��	���

‘1’ Wait after each transfer until the next interrupt

‘0’ Continuous Style.

Table 11.7 Wait for Interrupt (‘Int’) Field Encoding

.���� ��	���

‘1’ Transaction is a burst of more than 1 word.

‘0’ Transaction is of 1 word or less.

Table 11.8 Burst Type (‘Burst’) Field Encoding.

.���� /����	�! 0
&�

‘11’ Word.

‘10’ Reserved.

‘01’ Halfword.

‘00’ Byte.

Table 11.9 Source Byte Enable Type (‘SBE’) Field Encoding.

.���� /����	�! 0
&�

‘11’ Word.

‘10’ Reserved.

‘01’ Halfword.

‘00’ Byte.

Table 11.10 Target Byte Enable Type (‘TBE’) Field Encoding
�� � ��

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����
��������������������� $� $� $� $�"�"�"�"���������������������������� ////������������ ����,,,,�$��$��$��$�""""������������----� '�� '�� '�� '���������"""" ����������������))))��������

/�/�/�/�������������� $� $� $� $�"�"�"�"���������������������������� /�/�/�/��������� �,�,�,�,////$�$�$�$�""""���-���-���-���-���� '�'�'�'���������"""" ���������������� 5555��������

����������������������������� �� �� �� ��������������������� �""���""���""���""���������� �,��,��,��,�

�����-�-�-�-���� ''''������������"""" ���������������� 	��	��	��	��

�������������������������������� /�/�/�/����������������� �""���""���""���""���������� ����,/
,/
,/
,/
��-��-��-��-� '�� '�� '�� '���������"""" ���������������� ������������

Programming information for the Increment Source and Increment Target fields is listed in Table
11.13 and Table 11.14.

����� ��� ��� ��� ������ ���������������������������� �������������������������������� ****�������� ���������������������������� ����++++++++))))
����,,,,

��++++++++))))����----����

����� ��� ��� ��� ������ ���������������������������� �������������������������������� ****�������� ####��������.... ����++++++++

����,,,,

��++
���++
���++
���++
�----����

Figure 11.11 Internal DMA MSB Control Register (‘DmaMSBControlReg’).

The Internal DMA MSB Control register fields are shown in Figure 11.11, with bit assignments
listed in Table 11.15. Field values and descriptions are listed in Table 11.16, Table 11.17, Table 11.18,
and Table 11.19 and Table 11.20.

.���� #�!�������

‘1’ Big Endian.

‘0’ Little Endian.

Table 11.11 Source Big Endianess Type (‘SEndian’) Field Encoding

.���� #�!�������

‘1’ Big Endian.

‘0’ Little Endian.

Table 11.12 Target Big Endianess Type (‘TEndian’) Field Encoding

.���� ��	���

‘1’ Increment source address

‘0’ Constant source address

Table 11.13 Increment Source Address (‘HInc’) Field Encoding

.���� ��	���

‘1’ Increment target address

‘0’ Constant target address

Table 11.14 Increment Target Address (‘TInc’) Field Encoding

Stop

15 0 7 6 8 5 4 3 2 1

41

14 13 12 11 10 9
Break RsvdLink

1 2 4 4

Link 0 Burst Size
�� � ��

�����

�����	
����
 ������ ��
�� ���	������ (����	�� ������&	����
���������������� ����,,,,����������������----���� ''''������������"""" ���������������� 	1	1	1	1��������

����������������.... �,�,�,�,����������������....----���� ''''������������"""" ���������������� 				3333��������

��������������������9�9�9�9�"#"#"#"#��������.... ''''������������"""" ����,,,,��������9999"#"#"#"#��������....----� �� �� �� �������������))))����	�	�	�	���������

####��������.... ����,#,#,#,#�����.-�.-�.-�.-� '�� '�� '�� '���������"""" ����������������6�6�6�6�::::��������

��	 1 ����! 2���

15 Stop

14 Break

13:10 Reserved Link

9:8 Link

7:4 Reserved

3:0 Burst Size

Table 11.15 Internal DMA MSB Control Register (‘DmaMSBControlReg’) Bit Assignments

.���� ��	���

‘1’ Stop Immediately and abort any DMA link in progress (default). Any DMA
bus transaction may complete.

‘0’ Enable DMA.

Table 11.16 Stop (‘Stop’) Field Encodin

.���� ��	���

‘1’ Break at the end of this DMA chain (default). All Reserved Link and all Link
Bits must also be set to 1.

‘0’ Execute next link at the end of this DMA chain.

Table 11.17 Break (‘Break’) Field Encoding

.���� ��	���

‘1111’ Must be written with the same value as the Break field. Undefined during
reads.

‘0000’ Must be written with the same value as the Break field. Undefined during
reads.

Table 11.18 Reserved Link (‘RsvdLink’) Field Encoding

.���� ��	���

‘3’ Load LinkD at the end of this DMA chain and execute (default).

‘2’ Load LinkC at the end of this DMA chain and execute.

‘1’ Load LinkB at the end of this DMA chain and execute.

‘0’ Load LinkA at the end of this DMA chain and execute.

Table 11.19 Link (‘Link’) Field Encoding
�� � �%

�����

�����	
����
 ������ ��
�� ���	������ # 	����� �
� ���	������ (����	���
�������������������� ��������;;;;���� ����,,,,�������������������;���;���;���;����-�-�-�-� ''''���������" ��" ��" ��" �������������))))������������

This field is only used if the Burst type ‘Burst’ Field is set.

����������������������� ������ ������ ������ ��� �� !!!!��������������������������������
Table 11.21 is an address map of the External DMA Controller registers. Note that Big Endian

software must offset these addresses by b’10 (0x2), if a halfword access is used. The External DMA
Control register 0...1 fields are shown in Figure 11.12, bit assignments are listed in Table 11.22. Field
values and descriptions are given in Table 11.23, Table 11.24, and Table 11.25.

Timing Diagrams for External DMA Single Datum Read using the Memory Controller (Figure
11.13 on page 17), External DMA Single Datum Write using Memory Controller (Figure 11.14 on
page 18), External DMA Two-Datum Burst Read using the Memory Controller (Figure 11.15 on
page 18), and External DMA Two-Datum Burst Write using the Memory Controller (Figure 11.16 on
page 19) are also included in this section.

$$$$&&&&���������������
���
���
���
����� �� �� �� ������������������������� �������������������������������� ����++++++++				
����,,,,$$$$&&&&�
�
�
�
��++++++++				�-�-�-�-����

Figure 11.12 External DMA Control Register (‘ExtDmaControlReg’)

.���� ��	���

‘12’ Reserved

‘8’ Reserved

‘4’ Reserved

‘0’ 4 word burst

Table 11.20 Burst Size (‘BurstSize’) Field Encoding

"$
�3 �!!� ������&	���

0xFFFF_E400 ExtDMA Control Register 0

0xFFFF_E410 ExtDMA Control Register 1

Table 11.21 External DMA Controller Register Address Assignments

SC

15 0 7 6 8 5 4 3 2 1
0 Sample

Late

11

14 13 12 11 10 9
ReqH 0 0

1 1 11 8

1 90

11
�� � �'

�����

�����	
����
 ������ ��
�� ���	������ # 	����� �
� ���	������ (����	���
���������������� ������������������������� �� �� �� �,,,,$�$�$�$�----���� ''''������������"""" ���������������� 				1111��������

������������ ���������������������������� <<<<���������������������������� ====��������� �� �� �� �,,,,������=��=��=��=-�-�-�-� ''''���������" ��" ��" ��" ������������� 	3	3	3	3��������

 .

������������������������ ������������(�(�(�(�$�$�$�$� �����"�"�"�" ��������������������������������''''���������������� 				 ����������������.... #�#�#�#�������������
����,,,,������������������������#�#�#�#���������----���� ''''���������"�"�"�" ���������������� 								��������

This field selects whether to sample MemWrEn(3:0) and SysBurstFrame on writes with SysALEn
or one clock later as would be done for PCI accesses.

$$$$&&&&���������������
���
���
���
�������� ////��

External DMA transactions have two major phases:
◆ The external agent command phase

- External DMA agent obtains the bus and drives a read or write command into the RC36100.
◆ RC36100 execution phase

- The RC36100 takes the received command and actually executes it on the Sysbus.

��	 ���������	

15 Stop Channel

14 DMABusReq() active High

13 Reserved

12 Reserved

11 Sample MemWrEn(3:0) and SysBurst-
Frame one clock later

10 Reserved to ‘1’

9:0 Reserved to ‘0’

Table 11.22 External DMA Control Register (‘ExtDmaControlReg’) Bit Assignments

.���� ��	���

‘1’ Stop/Disable External DMA Channel (default for Channel 1)

‘0’ Enable External DMA Channel (default for Channel 0).

Table 11.23 Enable Channel (‘EC’) Field Encoding

.���� ��	���

‘1’ Active High Protocol; DMABusReq is active high for this channel (SCSI con-
troller convention).

‘0’ Active Low Protocol; DMABusReq is active low for this channel (default).

Table 11.24 Bus Request Protocol High (‘ReqH’) Field Encoding

.���� ��	���

‘1’ Sample MemWrEn and SysBurstFrame one clock after SysALEn first
asserts.

‘0’ Sample MemWrEn and SysBurstFrame with SysALEn.

Table 11.25 Sample MemWrEn and SysBurstFrame 1 clock later (‘SampleLate’) Field Encoding
�� � �)

�����

�����	
����
 ������ ��
�� ���	������ # 	����� �
� ���	������ (����	���
On bursts, External DMA uses the DMADone input to terminate the burst. Bursts may have a
block aligned length maximum of 64 words. DMADone must be asserted such that it is sampled by
the RC36100 up to the clock that the last datum begins.

In general, where a zero wait-state is the border case, for a word access type during a read oper-
ation, DMADone should be asserted one clock after the 2nd to the last SysDataRdy is asserted

Note: For a half word access type DMADone should be asserted one clock after the third to
the last SysDataRdy is asserted. For a byte access type, one clock after the fifth to the last
SysDataRdy is asserted.

$$$$&&&&���������������
���
���
���
�������� !!!!����������������������������� /�� /�� /�� /�����������������
��
��
��
����������������������

Figure 11.13 External DMA Single Data Read using the Memory Controller
(Data Transfer from Memory to Device)

SysAddr(25:0)

SysData(31:0)

ExtDMA
Starts

Driving Bus

CPU
Starts

Driving Bus

ExtDMA
Stops

Driving Bus

CPU
Stops

Driving Bus

Read
Command

(input)

ExtDMA
Ends

Datum

Address

Read
Starts

Address
�� � �*

�����

�����	
����
 ������ ��
�� ���	������ # 	����� �
� ���	������ (����	���
Figure 11.14 External DMA Single Data Write using the Memory Controller (Data Transfer from Device to
Memory

Figure 11.15 External DMA Two-Data Burst Read using the Memory Controller (Data Transfer from
Memory to Device)

SysClk

DmaGnt

DmaReq

SysAddr(25:0)

SysALEn

SysDataRdy

MemWrEn(3:0)

SysData(31:0)

SysRd

ExtDMA
Starts

Driving Bus

CPU
Starts

Driving Bus

SysBurstFrame

MemCS(2)

SysWr

ExtDMA
Stops

Driving Bus

CPU
Stops

Driving Bus

Write
Command

DmaDone
(input)

ExtDMA
Ends

Byte Enables Byte Enables

Datum

Address

Address

Write
Starts

SysC lk

DmaGnt

DmaReq

SysAddr(25:0)

SysALEn

SysDataRdy

M em W rEn(3:0)

SysData(31:0)

SysRd

ExtDM A
Starts

Driving Bus

CPU
Starts

Driving Bus

SysBurstFram e

M em CS(2)

SysW r

ExtDMA
Stops

Driving Bus

CPU
Stops

Driv ing Bus

Read-Burst
Com mand

Dm aDone
(input)

ExtDMA
Ends

Datum 0x0 Datum 0x4

Address 0x0 Address 0x4

2nd Read Starts
(2 clocks in this

example)

1st Read S tarts
(3 clocks in this

exam ple)

Address

*

*Note that DMADone is sampled on the falling edge of Sysclk.
�� � �+

�����

�����	
����
 ������ ��
�� ���	������ /
�	�� # ��&���

Figure 11.16 External DMA Two-Data Burst Write using the Memory Controller (Data Transfer from Device
to Memory)

"#���� �"#���� �"#���� �"#���� ������� ����� ����� ����� ���

������������������������>�>�>�>�����>�>�>�>��������������������� ����������������������������

One common system operation may be a memory-to-memory transfer. For example, the system
may transfer from one block of DRAM starting at virtual address 0x80030000 to another block of
DRAM starting at virtual address 0x80038000. The block is 1520 bytes long. Only one DMA Channel
is needed.

One of the DMA Channels can be programmed so that the source address register is 0x00030000
(the equivalent physical address for virtual address 0x80030000) and target address register
0x00038000. The count register is 1520 / 16 = 95 since the maximum DMA burst transaction is 16
bytes (the size of the DMA read buffer). In the LSB Control Register, the DMA Channel is set up to
Burst, Increment Source address, and Increment Target address. The MSB Control Register is set up
to Break after all bytes have been transferred, to have a Burst length for 16 bytes, and to Enable the
DMA Channel to begin. The CPU can then continue with another process the read while the memory-
to-memory transfer takes place.

////�������������*�*�*�*������������ 0000��������4444������������
%
%
%
%!!!! ��������" �" �" �" ���������������������

Transfer operations between I/O and memory might be desirable when copying data between the
UART channels and memory. For example, the serial port may be used in full-duplex mode, and, as
such, the serial port would then be simultaneously receiving and transmitting data. In this scenario,
two DMA Channels are used: one for receiving and one for transmitting.

Using the Interrupt Controller (for details, see the section titled “Select Interrupt ‘SelInt()’ Field” in
Chapter 13), certain interrupts can be steered to certain DMA Channels. For instance, the Serial
Receive Interrupt can be steered to DMA Channel 1 and the Transmit Interrupt can be steered to
DMA Channel 0.

SysClk

DmaGnt

Dm aReq

SysAddr(25:0)

SysALEn

SysDataRdy

MemW rEn(3:0)

SysData(31:0)

SysRd

ExtDMA
Starts

Driving Bus

CPU
Starts

Driving Bus

SysBurs tFram e

Mem CS(2)

SysWr

ExtDM A
Stops

Driv ing Bus

CPU
Stops

Driv ing Bus

W rite-Burst
Com m and

Dm aDone
(input)

ExtDM A
Ends

Byte Enables

Datum 0x0

Address 0x0

Address

1st Write
S tarts

(3 c locks in this
example)

S tarts

Address 0x4

Datum 0x4

Byte Enables

2nd W rite

(2 c locks in this
exam ple)

Byte Enables

*

*Note that DMADone is sampled on the falling edge of Sysclk.
�� � �,

�����

�����	
����
 ������ ��
�� ���	������ /
�	�� # ��&���
In the receiving case, the DMA Channel is programmed to transfer data from the serial port to a
DRAM buffer block. When the buffer becomes full, the CPU can act on a DMA Channel 1 Done Inter-
rupt and/or set up another DRAM buffer block via the link registers. The DMA Channel is
programmed to not Increase the Source Address for the serial port and to Increase the Target
Address after each byte transfer. The DMA Channel is set to transfer 1 byte per count (for the burst
length) and to Wait for Interrupt between bytes. After each byte is transferred, the DMA Channel will
wait for another receive interrupt before transferring another byte from the serial port to DRAM.

In the transmit case, the DMA Channel is programmed to transfer the message length number of
bytes from DRAM which Increases the Source Address after each byte to the Serial Port which does
not Increase the Target Address after each byte. The DMA Channel is set to transfer 1 byte per count
(as the burst length) and to Wait for Interrupt between bytes. (Alternatively, since the serial port's
transmit FIFO is two bytes, DMA could transfer two bytes at a time). After each byte is transferred,
the DMA Channel will wait for another transmit FIFO empty interrupt before transferring another byte
from DRAM to the serial port.

By using the two DMA Channels, the CPU is freed from either having to constantly poll for serial
port status or from constantly handling interrupts and interrupt service routines.

�
�
�
��� ���������4�4�4�4������������ ����<<<<???? �����"�"�"�"

�������������������
���
���
���
����� �� �� �� �����������������������������

If the external system needs to distinguish between a bus transaction generated by the CPU core
versus one of the internal DMA channels, there are a couple of options:

◆ The system software can code an internal MSB address for the internal DMA channel, and
have that address bit be ignored by the address map. The assertion of this address would
then signal a DMA transfer.

◆ Use the DiagInternalDma pin.

�������������������������
�
�
�
����� �� �� �� ������������������� ��� ��� ��� �����������������������������

If a continual chain between a DMA channel and a Link register descriptor is to be used, as soon
as the DMA channel is enabled, a new set of instructions can be loaded into the Link register
descriptor. However, because a DMA Done interrupt only occurs when the channel is completely
stopped, the interrupt service routine should, in its critical section, restart the DMA channel, and in its
non-critical section, it should reload the next link.

Note that because DMA is no longer occurring—up until the critical section—the serviced periph-
eral must either be stopped or contain a sufficiently sized FIFO, as is the case with the Serial Ports.
�� � �-

�����

�������� ��	
��

�	
� ���
�

�
��
�� ��
��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. The on-chip peripherals include Parallel Input/Output (PIO) Pins (see
Figure 12.1 for block diagram) as described in this chapter.

This chapter provides an overview of the PIO programming interface, a complete description of the
signal pins, and discusses how PIOs relate to typical internal and external systems.

������������

������������
◆ 42 general purpose PIO parallel input/output pins

- PIO pins multiplexed with controller functions

����������������� ��� ��� ��� ����������������������

Figure 12.1 PIO Block Diagram.

��������������������������������
The Parallel Input/Output (PIO) pins are programmable multi-purpose pins that act as inputs or

outputs. Each PIO pin is also multiplexed with other controller’s inputs or outputs. This flexible arrange-
ment allows system designers to customize the RC36100's resources according to their needs.
However, applications that do not need the alternate function can use those pins for general purpose
inputs or outputs. Inputs are not synchronized beyond the requirements of the destination, unless other-
wise noted. Outputs are non-synchronized (typically they are synchronized by the originating peripheral)
and are multiplexed.

������������ ��
Most of the PIO pins are multiplexed with other pin functions. Whether or not the internal peripherals

are input or output, only the PIO pins can each be programmed as either inputs or outputs.

������������������������ ������������				
��	

��	

��	

��	
����	
	
	
	

Parallel Input/Output: These bi-directional signals can be used as generic input/output pins. They
are set individually through control registers in the PIO interface and can be read by software reads to
the appropriate registers. Table 12.1 shows the relationship between the PIO pins and the other
RC36100 function pins that are multiplexed onto the same device pin.

I/O Pad
PIO Data Register

From Special Effect

From CPU Data Bus

DM ux Q

To CPU Data Bus

To Special Effect

M ux

EffectPinSel

Direction (Enable)

CPU Write

CPU Read
�� � �

�����

������	�
��
���
��
� ��
�� �	����	� �	���������

Table 12.1 Alternate RC36100 functions mapped to PIO pins

�������������������������������� ��

Note: Big Endian software must offset these addresses by b’10 (0x2), if a halfword access
is used.

Table 12.2 provides an address map and descriptions of the PIO Registers. Figure 12.2 shows the
PIO Data Registers. Additional programming information is located in Table 12.3.

�
� �
��	� ���	����	 �
������
�	����	�

�
��	�

 ��

��������

PIO(32)
PIO(31)
PIO(30)
PIO(29)
PIO(28)
PIO(27)
PIO(26)
PIO(25)
PIO(24)
PIO(23)
PIO(22)
PIO(21)
PIO(20)
PIO(19)
PIO(18)
PIO(17)
PIO(16)
PIO(15)

SerialCTS(0)
SerialDCD(0)
SerialRxData(1)
SerialPClkIn(1)
SerialCTS(1)
SerialDCD(1)
No alternate function
No alternate function
No alternate function
CentStrobe
CentAutoFeed
CentInit
CentSelectIn
DMABusReq(1)
ExcInt(4)
ExcInt(3)
BrCond(3)
BrCond(2)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
14
13
12

SerialRxData(0)
SerialPClkIn(0)
SerialSClk(0) (Note 1)
SerialSync(0) (Note 1)
SerialSClk(1) (Note 1)
SerialSync(1) (Note 1)
TimerTc/Gate(2)
TimerTc/Gate(1)
TimerTc/Gate(0)

2
2
2
2
2
2
2
2
2

11
10
9
8
7
6
5
4
3

PIO(41)
PIO(40)
PIO(39)
PIO(38)
PIO(37)
PIO(36)
PIO(35)
PIO(34)
PIO(33)

PIO(14)
PIO(13)
PIO(12)
PIO(11)
PIO(10)
PIO(9)
PIO(8)
PIO(7)
PIO(6)
PIO(5)
PIO(4)
PIO(3)
PIO(2)
PIO(1)
PIO(0)

SerialTxData(0)
SerialRTS(0)
SerialDTR(0)
SerialTxData(1)
SerialRTS(1)
SerialDTR(1)
No alternate function
CentAck
CentBusy
CentPError
CentSelect
CentFault
CentHostOEn
CentHostStrobe
DMABusGnt(1)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1 This PIO pin must be programmed to be an output before the internal peripheral may be
programmed to be an output or else internal signal contention may occur.

2 The Register-Number and Bit-Position fields describe which of the PIO Data, Direction, and Effect-
Select register/bit combinations control that PIO signal.
�� � �

�����

������	�
��
���
��
� ��
�� �	����	� �	���������
Table 12.2 PIO Register Address Assignments.

��� ����� ����� ����� ��
�
�
�
� ��������������������

�������� ����������������
�������������������������
�
�
�
��

Figure 12.2 PIO Data Register (‘PioDataReg’).

��� ����� ����� ����� ��
�
�
�
� �������������������������
�
�
�
������������ ���������������� !!!!

Table 12.3 PIO Data (‘PIOData’) Field Encoding.

��� ����� ����� ����� ����"��"��"��"
�
�
�
��������� ��������������������

�������� ����������������
��

Figure 12.3 PIO Direction Register (‘PioDirReg’).

The PIO Direction Control Registers (see Figure 12.3) contain 16 bits each:
◆ The MSB is a lock bit (see Table 12.4).
◆ The bits in PIO Direction Register control whether the PIOs are inputs or outputs (see Table

12.5).

�"#�$ �%%�	�� �	���������

0xFFFF_EA00 PIO Data Register 0

0xFFFF_EA04 PIO Direction Control Register 0

0xFFFF_EA08 PIO Effect Select Control Register 0

0xFFFF_EA10 PIO Data Register 1

0xFFFF_EA14 PIO Direction Control Register 1

0xFFFF_EA18 PIO Effect Select Control Register 1

0xFFFF_EA20 PIO Data Register 2

0xFFFF_EA24 PIO Direction Control Register 2

0xFFFF_EA28 PIO Effect Select Control Register 2

&��
	 ������

‘1’ PIO pin is high (default).

‘0’ PIO pin is low.

15 0 7 6 8 5 4 3 2 1
0

1

14 13 12 11 10 9

Data

15

15 0 7 6 8 5 4 3 2 1
Lock

1

14 13 12 11 10 9

Direction

15
�� � !

�����

������	�
��
���
��
� ��
�� �	����	� �	���������
#�#�#�#�"$ �"$ �"$ �"$ ��#��#��#��#�"$"$"$"$�������� ���������������� !!!!

Table 12.4 Lock (‘Lock’) Field Encoding.

����������"��"��"��"
�
�
�
��������� ���������������������������� ���������������� !!!!

Table 12.5 Direction (‘Dir’) Field Encoding.

��� %��� %��� %��� %&&&&&�&�&�&�"
"
"
"
 ''''���������"�"�"�"

 ��������������������
�
�
�
����� ����������������
��������������������%&%&%&%&&&&&�"�"�"�"
'
'
'
'��

Figure 12.4 PIO Effect Select Register (‘PioEffectSelReg’).

The PIO Effect Select Registers (see Figure 12.4) contain 16 bits each and are defined as follows:
◆ The MSB is a lock bit (see Table 12.6).
◆ The bits in the PIO Effect Select Control Register 1 control whether the PIOs function as a

special effect pin (for example, Serial Port) or as a general purpose PIO pin (see Table
12.7).

#�#�#�#�"$ �"$ �"$ �"$ ��#��#��#��#�"$"$"$"$�������� ���������������� !!!!

Table 12.6 Lock (‘Lock’) Field Encoding.

&��
	 ������

‘1’ Locks the Register from being altered by future writes.

‘0’ No action (default).

&��
	 ������

‘1’ PIO pin is an output.

‘0’ PIO pin is an input (default).

Note: To avoid internal device damage, this field must be programmed carefully. When
used in the input direction, any internal output or I/O driver—for example, a serial port—must
first be programmed to be tri-state or an input (default). Only then can the PIO ‘Dir’ field be
safely changed from output to input.

&��
	 ������

‘1’ Lock the Register from future writes.

‘0’ No action (default).

15 0 7 6 8 5 4 3 2 1
Lock

1

14 13 12 11 10 9

Effect Select

15
�� � '

�����

������	�
��
���
��
� ��
�� �	����	� �	���������
%%%%&&&&&&&&����""""

 ''''���������"�"�"�"
 �
 �
 �
 �����%%%%&&&&&&&&����""""

''''���������������� ������������� !� !� !� !

Table 12.7 Effect Select (‘EffectSel’) Field Encoding.

&��
	 ������

‘1’ PIO pin is a special effect pin (default).

‘0’ PIO pin is a general purpose pin.
�� � (

�����

������	�
��
���
��
� ��
�� �	����	� �	���������

�� �)

�����

����������
����
���

��������� ����������

������� 	

��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. Many of the on-chip peripherals use and produce interrupts. Thus, the
RC36100 includes an Expansion Interrupt Controller, which is described in this chapter.

The Expansion Interrupt Controller, see Figure 13.1, works in conjunction with the CP0 Status and
Cause Registers. The Expansion Interrupt Controller steers the 20+ peripheral interrupts into the last of
the six CP0 interrupt lines, Interrupt #5.

A second function of the Expansion Interrupt Controller is to provide interrupt steering and selection
to each channel of the DMA controller. By providing access to the interrupts, Datacom peripherals can
use the DMA channels to transfer data autonomously.

An overview of the Expansion Interrupt programming interface and a complete description of the
signal pins follow. Also included in this chapter is an explanation on how expansion interrupts relate to
typical internal and external systems.

������������

������������
◆ Allows masking and status checking of all peripherally generated interrupts.
◆ Allows each DMA Controller Channel to receive an interrupt.

����������������� ��� ��� ��� ��������������������������

Figure 13.1 Expansion Interrupt Controller (to CPU Interrupt).

Pending Expansion
Interrupt Register

D
Expansion Interrupt

Mask Register

NAND Gates

Wired-AND-Gate
(OR Gate)

16 16

Int5 (to CPU)

From Peripheral
Interrupts (Active Low)

From CPU Data
Bus

D

Q Q
�� � �

�����

����	
����
�	������ �������	� ���������� ��������
Figure 13.2 Expansion Interrupt Controller: Steering Interrupts to DMA Requests.

��������������������������������
The Peripheral Expansion Interrupt Controller provides a means of steering the various 20+

peripheral generated interrupts (Figure 13.2). These peripheral interrupts are combined into a single
CPU interrupt, Int(5). Each of the peripheral interrupts are stored (active high) in the Pending Expan-
sion Interrupt Register on every system clock. If the corresponding mask bit in the Expansion Inter-
rupt Mask Register is also set (active high), then the overall interrupt line Int(5) is set. At that point it is
up to the CPU and ISR software to enable and handle Int(5).

The Peripheral Expansion Interrupt Controller also provides a means of steering a number of the
peripheral interrupts to the DMA Channels. Each channel can select from a list of 4 peripheral inter-
rupts. Table 13.1 provides an address map and description of the Expansion Interrupt Controller
Register.

��� �������� �������� �������� ���������������������������������

��������
�
�
�
������������������ ��� ��� ��� ����������������������

��������

��

��������

������������������������

���� ��������������������

Processor Exception Synchronized Interrupt: These signals are functionally the same as the
Int(4:0) signals of the RISCore32 series. The synchronized interrupt inputs are internally synchro-
nized by the RC36100, and therefore may be generated by an asynchronous interrupt agent; the
direct interrupts must be externally synchronized by the interrupt agent.

��������

��������������������������������

������������ ��������������������

Exception Synchronized Branch Condition Input: These input ports to the processor can use the
Branch on Co-Processor Condition instructions to test their polarity. The branch condition inputs are
synchronized by the RC36100; therefore, they may be driven by an asynchronous source.

Table 13.1 Expansion Interrupt Controller Register Address Assignments

�
��� ������� ������	����

0xFFFF_EB00 Pend 0

0xFFFF_EB04 Mask 0

0xFFFF_EB10 Pend 1

0xFFFF_EB14 Mask 1

0xFFFF_EB80 DMA Select

From Peripheral
Interrupts

 To DMA Controller
Channel Interrupt

Inputs (3:0)

De-Mux De-MuxDe-Mux De-Mux
Select (3:0)

(From Expansion
Interrupt Controller
Select Interrupt
Register)
�� � �

�����

����	
����
�	������ �������	� ���������� ��� ������	�����
������������������������������������ ��������������������������������� �� �� �� �����! "! "! "! "���������������������������� ����##	##	##	##	
����$$$$������������������������ �� �� �� ��!!!!""""������������##	##	##	##	����%��%��%��%��

and

������������������������������������ ������������������������������������ &&&&������������������������ """"���������������������������� �##�##�##�##				
����$$$$������������������������&&&&������������""""������������##	##	##	##	����%��%��%��%��

Figure 13.3 Expansion Interrupt Mask Register (‘ExpIntMaskReg’).

Figure 13.4 Expansion Interrupt Pending Register (‘ExpIntPendReg’).

A write to the Interrupt Pending Register (Figure 13.4) resets the register bit de-asserted low if the
write data bit is a 1, or leaves the register bit with its present value if the write data bit is a 0. The
pending interrupt register samples on every clock and holds an interrupt assertion until it is acknowl-
edged by a write to the pending interrupt register. Note that the Expansion Interrupt Pending Register
is different than the CPU CP0 Pending Interrupt Field in that the Expansion Interrupt Pending
Register has the added feature holding a pulsed (edge-driven) interrupt until acknowledged. The
Expansion Interrupt Mask Register is shown in Figure 13.3.

Additional programming instructions for the Expansion Interrupt Mask and Expansion Interrupts
Pending registers are located in Table 13.2, Table 13.3, Table 13.4, and Table 13.5.

""""����������������'�'�'�'����� ((((�) ��) ��) ��) �$�$�$�$�%�%�%�%� ****��������������������

Must be written to ‘0’ for future compatibility. Value when read is undefined.

 �� �� �� ��!!!! ������������� �� �� �� �$$$$ � � � �����!!!!%%%%���� ****��������������������

Table 13.2 Expansion Interrupt Mask Register 1 and Expansion Interrupt Pending Register 1 Bit Assign-
ments.

 �� ������	����

‘4’ SerialInt

‘3’ SerialRx_Req(1)

‘2’ SerialRx_Req(0)

‘1’ SerialTx_Req(1)

‘0’ SerialTx_Req(0)

Note: Default values for the Pending and Mask Registers are all ‘0’.

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
Interrupt Mask Bits

16

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
Pending Interrupt Bits

16
�� � �

�����

����	
����
�	������ �������	� ���������� ��� ������	�����
&&&&������������������������ ���������������� �$�$�$�$&&&&������������%%%%���� ****��������������������

Table 13.3 Expansion Interrupt Mask Register 0 and Expansion Interrupt Pending Register 0 Bit Assign-
ments.

Table 13.4 Pending Interrupt Field Encoding.

Table 13.5 Interrupt Mask Field Encoding.

������������������������������������ ������������������������������������ ++++ , � , � , � , �������������

���� """"���������������������������� �$��$��$��$���������������������++++ ,,,,���"���"���"���"��������%%%%����

Figure 13.5 Expansion Interrupt DMA Select Register (‘ExpIntDMASelReg’).

 �� ������	����

15 Reserved

14 CentReadInt

13 CentWriteInt

12 CentResetInt

11:8 Reserved

7 TimerTC(2)

6 TimerTC(1)

5 TimerTC(0)

4 Reserved

3 DMADoneInterrupt3

2 DMADoneInterrupt2

1 DMADoneInterrupt1

0 DMADoneInterrupt0

Note: Default values for the Mask and Pending Registers are all ‘0’.

"���� ������	����

‘1’ Interrupt pending.

‘0’ Interrupt not pending.

"���� ������	����

‘1’ Interrupt enabled/allowed.

‘0’ Interrupt disabled/disallowed.

2 2 2 2 2 2
‘0’ ‘0’‘0’‘0’ Sel Int 2 Sel Int 0Sel Int 3 Sel Int 1

1 07 69 811 1013 1215 14

2 2

3 25 4

‘0’
�� � !

�����

����	
����
�	������ �������	� ���������� ��� ������	�����
����������������
�
�
�
� ������������������������������������ $�$�$�$�����������������������������%%%% ****��������������������

Figure 13.5 gives the fields for the Expansion Interrupt DMA Select Register. The Select Interrupt
field does a 1-in-4 select on the inputs to particular Interrupt Pending Register fields. The resulting
input is passed to the Internal DMA Controllers. The input to the Interrupt Pending Register is used
so that the DMA Controller can bypass and does not need to acknowledge the Interrupt Pending
Register by resetting it (such as ignoring it).

It is implied that the peripheral device receiving or transmitting the data will automatically de-
assert its interrupt line either by using a (one clock minimum) pulse/edge or by de-asserting, when it
receives a data strobe. Additional programming instructions for this register are located in Table 13.6
and Table 13.7.

Note: Some interrupts are intentionally duplicated in multiple channels so that the system
programmer can choose the relative priority of the interrupts.

Table 13.6 DMA Channel versus Interrupt De-Multiplexer.

Table 13.7 Select Interrupt (‘SelInt()’) Field Encoding.

$�� ��%�&�' ��%�&�' ��%�&�' ��%�&('

3 CentWriteInt CentReadInt SerialTxReq(0) Reserved

2 SerialRx_Req(1) SerialTx_Req(1) SerialRx_Req(0) SerialTx_Req(0)

1 TimerTc(2) CentWriteInt TimerTC(1) TimerTC(0)

0 ExcInt(3) ExcInt(2) ExcInt(1) ExcInt(0)

"���� ������

‘15’-’4' Reserved.

‘3’ Select Interrupt 3.

‘2’ Select Interrupt 2.

‘1’ Select Interrupt 1.

‘0’ Select Interrupt 0.
�� � #

�����

����	
����
�	������ �������	� ���������� ��� ������	�����

�� �)

�����

������

������� 	

��������������������	
�����	
�����	
�����	
�����
The IDT79RC36100 RISController integrates bus controllers and peripherals around the

RISCore3000 family CPU core. The on-chip peripherals include three Timers.
This chapter will provide an overview of the Timer programming interface, a complete description of

the signal pins, and a discussion on how the timers relate to typical internal and external systems. A
block diagram of the RC36100’s Timers is located in Figure 14.1.

������������

������������
◆ 3 16-bit Timer Channels, with global 16-bit prescaler
◆ 3 TC/Gate pins
◆ Each Timer has

- 16-bit count register with selectable 16-bit frequency divider/prescaler of pipeline clock input
- 16-bit compare register
- TC control bit allowing auto reset vs. compare register write ack for interrupts
- Gate option control bit (gate option allows PWM counting or time stamping)

◆ Default Timer use is for a Real Time Clock/Timer.
◆ Timers have bus time-out control bit

- Reset on bus start, gate on bus cycles
◆ Timer0 has 16-bit PWM low time compare register

- Square Wave Generator

����������������� ��� ��� ��� ����������������������

Figure 14.1 Block Diagram of the RC36100 Timers.

RS
Latc h

SysClk 16-bit
Counter

(Prescaler)

16-bit Counter 0

16-bit Counter 1

16-bit Counter 2

16-bit Comparator 0

16-bit Comparator 1

16-bit Comparator 2

16-bit PWM Comparator 0

Gate(0)

Gate(1)

Gate(2)

TC(1)

TC(0)

TC(2)

S

R

EnableN

EnableN

EnableN

CLK

CLK

CLK

==

=

=

=

Mux

Mux

Mux

De-
Mux

16-bit PWM Counter 0Mux
�� � �

�����

����	
 ���	���

��������������������������������
The RC36100 contains 3 timers. Each timer consists of a 16-bit count register as well as a 16-bit

compare register. The count register resets to 0 and counts upward until it equals the compare
register. When the count register equals the compare register, the TC output is asserted and the
count register is reset back to 0.

To expand the amount of time the timers can handle, each timer uses a common 16-bit prescaler
counter and can be programmed to select a power-of-2 divisor of the prescaler as its fundamental
base frequency for clock ticks. The prescaler counter itself is based off of the System Clock, SysClk.

Using the default mode, each timer can be used as a real-time counter. Special effects include:
◆ Counter
◆ Real-time interrupt-based timer
◆ Bus time-out timer
◆ Gated clock external event counter

In addition to the above effects, timer channel 0 also has a PWM (Pulse Width Modulation, i.e.,
controllable duty cycle) compare register that controls the number of counter ticks that the timer
output, TC, remains asserted low, allowing for use as a PWM generator.

Timer0 has a programmable PWM feature that determines the number of low prescaled clocks
per timer period. For Timer 0, the Count Compare Register determines the overall number of pres-
caled clocks for the total rollover period as Compare +1 prescaled clocks. For the condition where
CountCompare is greater than PWMCompare, Timer0’s count algorithm is as listed in Table 14.1.

 The border case for Timer 0—where CountCompare is less than or equal to PWMCompare—
does not produce useful behavior. Therefore, to produce an all high or all low Timer period, the Timer
TCn output must be overridden by placing its corresponding PIO pin into its general purpose data
mode and programming its data to either a “1” or “0”.

Timer1 and Timer2 do not have a programmable PWM feature, so their PWM value should be
considered as fixed at “1”. The count algorithm for these timers is listed in Table 14.2.

Thus, for Timers 1 and 2, the output TCn will be high for Compare-1 prescaled clocks and low for
2 prescaled clocks. The total rollover period is Compare+1 prescaled clocks.

Note: The Timer functions are based off of the prescaler clock; in particular, the Timer Inter-
rupt Acknowledge mechanism where the Compare Register is written and should generally be
used instead of using the regular timer mode.
If the prescaled clock is 2**10, in the regular mode, TCn could be low for 1 or 2 prescaled clocks,
which could be about 1024 clocks before it occurs, after which the Interrupt Pending Register
must be cleared. Thus, most real-time applications will want to either keep the prescaled clock
at a very low value, such as 2**0 or 2**1, to get a better response resolution or use the Timer
Interrupt Acknowledge mechanism.

��� ����� �	�
����� �����

high + low CountCompare + 1

low PWMCompare +1

Note: CountCompare must be greater than PWMCom-
pare.

Table 14.1 Timer0 Count Algorithm

��� ����� �	�
����� �����

high + low Compare + 1

low 2

Table 14.2 Timer1 and Timer2 Count Algorithm
�� � �

�����

����	
 ��� ��
�	������

��� �������� �������� �������� ���������������������������������

��������

�������� ������������������������������������� ��� ��� ��� ����������������������

The Timer TC output signal and the Gate input signal are driven and sampled on the falling edge
of SysClk. Under this condition, the user must expect or meet setup and hold times relative to the
falling edge of the clock. Furthermore, the TC output signal is relatively slow, especially with a non
divide-by-1 prescale clock divisor, transitioning very late in the clock cycle.

�������������������������������� ��

��������

��

Gate: Active low input mode where the corresponding Timer() can increment its count whenever
Gate() is asserted low. The Timer() stops counting whenever Gate() is high. Typically, the Timer()
prescaler is set to the divide-by-1 mode so that each Gated clock corresponds to a Timer tick. Appli-
cations include Time Stamping, Pulse Width Measurement, and Timer expansion.

Terminal Count: Active low output mode is where the corresponding Timer() asserts TC low
whenever its Count Register equals its Compare Register. There is a one clock delay from Count
equalling Compare until TC is seen on the external pin, due to internal synchronization. Normally TC
asserts low then immediately de-asserts back high after 2 timer clock cycles. Thus, the rising edge of
TC will be seen 1 clock after the counter value programmed.

If the 'AckOnWrCompare' bit option in the Timer Control Register is asserted, then TC de-asserts
back to high only when the Timer Compare Register is written. In this mode, the Timer can be used to
generate an interrupt, and then the interrupt handler can acknowledge the interrupt.

Timer 0 has a Pulse Width Modulation (PWM) Compare Register that can be programmed to de-
assert TC back high after a user-programmed number of clock cycles. Applications include using the
Timer to strobe external events, generating Real-time interrupts, Timer Expansion, and PWM control.

Note: Timers 1 and 2 have the low count hard coded to 1 instead of 0. Timer 0 features a
programmable PWM Compare Register that programs the number of prescaled clocks
TC is held asserted.
For timers 1 and 2, the assertion of TC is held for two prescaled clocks, and the user
should program the counter to 1 less than specified. If TC is synchronized for gating into
an external counter/function, then TC must take the 2.0 prescaled clocks into account.

�������������������������������� ��
Table 14.3 provides a Timer Register Physical Address Map. Note that Big Endian software must

offset these addresses by b’10 (0x2), if halfword accesses are used.

Table 14.3 Timer Register Physical Address Map

���	�

 ��
�	������

0xFFFF_E900 Timer Prescaler Count Register

0xFFFF_E904
0xFFFF_E910
0xFFFF_E914
0xFFFF_E918
0xFFFF_E91C

Timer PWM Count Register 0
Timer Count Register 0
Timer Compare Register 0
Timer PWM Compare Register 0
Timer Control Register 0

0xFFFF_E920
0xFFFF_E924
0xFFFF_E92C

Timer Count Register 1
Timer Compare Register 1
Timer Control Register 1

0xFFFF_E930
0xFFFF_E934
0xFFFF_E93C

Timer Count Register 2
Timer Compare Register 2
Timer Control Register 2
�� � �

�����

����	
 �� �
��	 ��
�	������

��������

�������� ������������������������������������ ���� � � � ��������� !!!!����������������������������
����""""��
��
��
��
�� � � � ���������!!!!��������####����

Figure 14.2 Timer Prescaler Count Register (‘TimerPrescalerCountReg’).

The prescaler counter starts at reset, and continuously counts in an upward direction, and wraps
around on overflow. The reset default value is 0x0000. The prescaler counter uses the System Clock,
SysClk, as its fundamental base clock frequency. The Timer Prescaler Count Register is illustrated in
Figure 14.2. This is a write-only register.

��������

�������� ���� � � � ��������� !!!!���������������������������� �$$�$$�$$�$$�������� ��
��
��
��
�������� ����%%%%&&&& ���� ������������ !!!!����������������������������

����""""��
��
��
��
������������ � � � ���������!!!!��������####����$$$$$$$$�������� ��������
�
�
�
���������%%%%&&&&���� ��������� !� !� !� !��������#�#�#�#�����

Figure 14.3 Timer Count Register (‘TimerCountReg’).

The Count Register does not count if the PIOIsInputGate is enabled via the Timer Control
Register and the input gate signal, Gate, is high. The Count Register is 16-bit Readable and Writable,
if LockCountAndCompare control bit is not active. The Count Register ignores the Gate input, if the
Gate input control bit is not turned on.

The PWM Count Register is similar to the other count register, except that its function is to deter-
mine the number of clock cycles TC is to be held asserted (low).

��������

�������� ����

���������������� !!!!���������������������������� ����$$$$$$$$����
����""""��
��
��
��
������������

����������������!!!!��������''''����$$$$$$$$��������

Figure 14.4 Timer Compare Register (‘TimerCompareReg’).

The Compare Register, illustrated in Figure 14.4, is a 16-bit register containing the value that will
reset the counter when the Count Register is equal to it. The default value at reset for the Compare
Register is 0xFFFF. This register is 16-bit readable and writable, if the 'LockCountAndCompare'
control bit is not active. If written and 'WriteCompareAck' Timer Control Register bit is active, then it
brings TC back to inactive high.

15 0 7 6 8 5 4 3 2 1

16

14 13 12 11 10 9

Count

15 0 7 6 8 5 4 3 2 1

16

14 13 12 11 10 9

Count

15 0 7 6 8 5 4 3 2 1

16

14 13 12 11 10 9
Compare
�� � �

�����

����	
 �� �
��	 ��
�	������

��������

�������� �������������������� %%%%����(�(�(�(����� &&&& (�(�(�(����������������� � � � � !!!!���������������������������� ����
����""""��
��
��
��
���������%�%�%�%&&&&!!!!������������####����

Figure 14.5 Timer Pulse Width Modulation Register (‘TimerPWMReg’).

The Timer Pulse Width Modulation Register, illustrated in Figure 14.5, has a 16-bit value which
brings PWM TC output back high ‘N’ prescaled clocks after TC goes low. Thus, this register is analo-
gous to the Timer Compare Register, but instead controls the length of TC assertion. The reset
default value is 0x0000.

By programming various values for the compare and the PWM compare registers, the duty cycle
of the TC output can be varied. For instance, by using a compare value equal to a PWM-1 value, the
duty cycle will be 50/50. For the TC output to remain low, the TC PIO pin must be programmed as a
general purpose output with a value of 1. Additional programming information for this register is
located in Table 14.4.

Table 14.4 Timer Pulse Width Modulation Register (‘TimerPWMReg’) Bit Fields.

��������

�������� ���� � � � ������ � � � ���� !!!!���������������������������� �$$�$$�$$�$$����
����""""��
��
��
��
������������ � � � ������ � � � ����!!!!��������''''����$$$$$$$$��������

Figure 14.6 Timer Control Register (‘TimerControlReg’).

Figure 14.6 illustrates the field names and bit assignment breakdown of the Timer Control
Register. Additional programming information is located in Table 14.5, Table 14.6, Table 14.7, Table
14.8, Table 14.9, Table 14.10, Table 14.11, and Table 14.12.

����� ������

0 high after 1 clock

1 high after 2 clocks

etc. etc.

15 0 7 6 8 5 4 3 2 1

16

14 13 12 11 10 9
PWM Compare

Lock
All

15 0 7 6 8 5 4 3 2 1
RsvdRsvd

111

14 13 12 11 10 9
Lock
CC

WrCm
p

Ack

1 1 1 5 4

Gate
Bus

T im e
Out

1

Timer
D isable PreScaleSelect0
�� � !

�����

����	
 �� �
��	 ��
�	������

Table 14.5 Timer Control Register (‘TimerControlReg’) Bit Assignments.

)))) �* ��* ��* ��* �") ") ") ") �*�*�*�*####���� ++++������������((((����,,,,�������� 				----��������

Table 14.6 Lock (‘Lock’) Field Encoding.

)))) �*�*�*�* ���� ��������� �� �� �� ��(�(�(�(����

���������������� �"�"�"�")))) ����****��������#�#�#�#� ++++���������(��(��(��(�,,,,�������� 	
	
	
	
��������

Table 14.7 Lock Count and Compare (‘LockCC’) Field Encoding.

%%%%���������������� ����
��
��
��
��������������**** ����"""".�.�.�.�****####���� +�+�+�+���������((((����,��,��,��,��	/	/	/	/��������

The Ack field is intended for timer driven interrupts. When the interrupt occurs, the service routine
writes to the Timer Compare Register, which brings TC back high. The corresponding Pending Inter-
rupt Register bit can then be cleared. Note that in the ‘Ack’ mode, the timer continues to count when
TC is asserted low.

Table 14.8 Write Compare Ack (‘Ack’) Field Encoding.

������������ �� ��� ��� ��� ����������������� ���������������� ����""""����������������#�#�#�#� ++++������������((((����,,,,�������� 								��������

The PIO is Input Gate field must be programmed identically to the actual PIO pin.

#�� ��
�	������

15 Lock.

14 LockCountAndCompare.

13 AutoAck vs WriteCompareAck.

12 Reserved, Must be written as ‘1’. Note: Default is ‘0’

11 PIO is Input Gate.

10 BusTimeout.

9 TimerDisable.

8:4 Reserved. Must be written as '0'. Because an undefined value will occur for these bits,
reads should mask them.

3:0 Prescale 1 of 16 Select.

����� ������

‘1’ Control locked from future writes.

‘0’ No action (default).

����� ������

‘1’ Count and Compare Registers locked from future writes.

‘0’ No action (default).

����� ������

‘1’ WriteCompareAck requires a write to the compare register to set TC back
high.

‘0’ TC back high 1 clock after TC asserts low. (default)
�� � "

�����

����	
 �� �
��	 ��
�	������

Table 14.9 PIO is Input Gate (‘Gate’) Field Encoding.

,,,,����������
��
��
��
� � � � �������� ����"""",,,,��������####���� ++++������������((((����,,,,�������� 				������������

Table 14.10 BusTimeout (‘BTO’) Field Encoding.

��������

�������� 0���1�0���1�0���1�0���1����� ����""""��
��
��
��
��������0000��������####���� ++++������������((((�,��,��,��,����� 2222��������

This field enables the timer to count. Note: Also write a ‘1’ to reserved bit 12, to enable the timer.

Table 14.11 Timer Enable (‘TimerEn’) Field Encoding

��������������������������������� �� �� �� ��������������������� �"���"���"���"����������####���� ++++������������((((�,��,��,��,����� /�/�/�/�������������

Note that changing the Prescaler Select can take up to 2*16 clocks to take effect, due to internal
synchronization. To force the new prescaler select to be updated, write a Ox ffff to the Prescaler
Count Register, which will cause it to rollover/update.

Table 14.12 Prescaler Select (‘PSel’) Field Encoding.

����� ������

‘1’ If PIO pin is programmed elsewhere as an input, then TC is driven in from
that PIO input.

‘0’ TC output mode.

����� ������

‘1’ Enable Bus Time-out feature. Reset counter to 0 on the beginning of each
external bus cycle.

‘0’ Disable use Bus Time-out feature. (default)

����� ������

'1' Stop

'0' Timer Enabled (default)

����� �	�
����	 �������#% &	�'����%

‘F’ div 2**15 (divide by 32768)

... ...

‘2’ div 2**2 (divide by 4)

‘1’ div 2**1 (divide by 2)

‘0’ div 2**0 (divide by 1) (default)
�� � $

�����

����	
 �� �
��	 ��
�	������

�� � (

�����

������ �	�
�

������� 	

��������������������	
�����	
�����	
�����	
�����
The IDT RC36100 RISController integrates bus controllers and peripherals around the RISCore3000

series family CPU core. One such peripheral is the Serial Communications Controller, (SCC) described
in this chapter.

The SCC is largely compatible with the Advanced Micro Devices (AMD) Am85C30 © or ™ Serial
Communications Controller. While this chapter describes the SCC’s programming interface for users
with serial communications programming experience, readers needing introductory or more detailed
information should consult the AMD publication Am8530H/Am85C30 Serial Communications Controller
Technical Manual.

Differences between the RC36100 SCC and the AMD product are described (usually in italics) at
various places in the text. Figure 15.1 is a block diagram of the SCC.

������������

������������
◆ Two full duplex channels, independent except for shared interrupt structure. Each channel has

its own Baud rate generator, Crystal Oscillator, DPLL for clock recovery.
◆ Byte Synchronous and SDLC/HDLC data rate of up to 1/8th of the IDT36100 clock. (ie 6.25 Mhz

with a 50 Mhz CPU clock). Note, the PCLK clock referred to in the AMD literature is ½ of the
RC36100 CPU clock.

◆ Asynchronous mode support for: 8 bits per character; 1, 1½, and 2 stop bits; Odd or Even Parity;
x1 (with external clock), x16, x32, or x64 clock modes; Break generate/ detect; parity error,
overrun error, and framing error detect.

◆ Byte Synchronous mode support for: Arbitrary 8, 16, 6, or 12 bit sync patterns; Software trans-
parent CRC generate/detect; Choice of two CRC methods.

◆ SDLC/HDLC mode support for: Software transparent zero bit insert/delete; Software controlled
rejection of frames without matching Address field; Software transparent CRC generate/
detect; SDLC Loop Mode.

◆ Buffered data registers: Quadruple for receiver; Double for transmitter.
◆ Special operating modes: NRZ, NRZI, FM0, FM1 encoding and decoding; Manchester decoding.

Local Loopback; Auto Echo modes.
◆ Features to ease SDLC/HDLC programming effort: 10 X 19 bit Frame Status FIFO for high

speed SDLC/HDLC reception without CPU intervention. Each FIFO entry includes received
frame size and status; Automatic SDLC/HDLC Tx Underrun/EOM flag reset; Automatic SDLC/
HDLC CRC generator preset.

��������������������������������
The SCC contains two full duplex channels. The channels are completely independent, except for the

interrupts generated by them (which are prioritized so that they can be combined into a single SCC inter-
rupt).

Each channel can operate in a Bit Synchronous (SDLC, HDLC), or Byte Synchronous (Monosync,
Bisync), or Asynchronous mode. In each mode there are options (as listed under Features above).

Character I/O from the SCC may be polled, interrupt driven, or use DMA. With DMA, DMA links can
be used for uninterrupted reception into non-contiguous memory buffers, avoiding the need for software
intervention to handle the buffer switching.

In SDLC, a hardware FIFO records the receive status and frame size for a maximum of ten frames,
each of up to 16KB. While the use of DMA frees software from per-character processing, the FIFO frees
software from per-frame processing for up to ten consecutive frames.
�� � �

�����

����	
 ���
� ��������
In each of the three modes, the SCC provides a choice of external clocking (using either of two
clock signal inputs), or internal clocking (using a baud rate generator), a choice of encoding methods
(NRZ, NRZI, or FM), and (for NRZI and FM encoding) the option of using a digital phase locked loop
(DPLL) for clock recovery.

For byte synchronous (eg monosync, bisync) modes, the SCC has two ways of synchronizing to
the input stream. In internal synchronization, the SCC scans the input stream for a synchronizing
pattern (a process known as hunting). In external synchronizing, a synchronizing signal is supplied
externally. SDLC mode always uses internal synchronization and the pattern is the SDLC “flag”,
0x7E.

A token passing variation of the SDLC protocol, called SDLC loop mode, is also supported. This
variation runs on multiple stations connected in a unidirectional loop. One of the stations serves as a
controller and passes a token (which is a specific bit pattern called an EOP) around the ring. Each of
the other stations transmits on receiving the token, following which it forwards the token to the next
station.

The SCC provides for two modem control outputs and three modem control inputs. In “auto
enables” operation, two of the inputs act to enable the transmitter and receiver. This implements
modem side flow control without software monitoring of modem status.

To aid in diagnostic applications, the SCC supports internal loopback (in which the transmitter is
internally connected to the receiver) and autoecho (in which incoming characters are echoed on the
transmitter).

Figure 15.1 Block Diagram of Serial Communication Controller

Figure 15.2 illustrates programmer access to the components of the RC36100 Serial Communica-
tions Controller.

 Register Bank

 Register Bank

 Three deep Rx buffer

 Three deep Rx buffer

 Two deep Tx buffer

 Two deep Tx buffer

Encode,
Decode,
Zero-Stuff

Encode,
Decode,
Zero-Stuff

DPLL

DPLL

Clocking

Clocking

Baud Rate
Generator

Baud Rate
Generator

Interrupt Control, both channels

Data Register

Data Register

 Ext Sync or XTAL

 Ext Sync or XTAL

MODEM CONTROL
MODEM STATUS

MODEM CONTROL
MODEM STATUS

Frame Status FIFO

Frame Status FIFO

Channel-A

Channel-B
�� � �

�����

����	
 ���
� �����
���

Figure 15.2 Programmer access to the Serial Communications Controller

������������������������������������
The SCC has sixteen software accessible read registers and sixteen software accessible write

registers. These are termed RR0 through RR15 and WR0 through WR15. In some cases, the same
register acts as a read and a write register so that what is written can be read back.

Two of the read registers (RR6 and RR7) read from the top entry in the SDLC received Frame
Status FIFO.

WR0 and RR0 can be accessed directly by writing to and reading from location:
0xFFFF_E800 for Channel 0 (also known as Channel A).
0xFFFF_E804 for Channel 1 (also known as Channel B).
The other 15 registers are accessed using a two step process:
 1. Write the register number (such as 11 for RR1 or WR11) to WR0.
 2. Read or write RR0 or WR0. This will actually access register 11.
The first write to WR0 sets an internal POINTER to access one of the other registers in place of

RR0/WR0. The next access (which is to the OTHER register) resets this pointer so that another
access will require another two step process.

The Data Registers (for transmitting and receiving data bytes) can be accessed in two ways:
Either through an access to WR8 (transmit) or RR8 (receive), or by a direct read or write from loca-
tion:

Note that the registers are byte sized, but the addresses are word addresses. These addresses
should be used for 32 bit reads or writes, with the actual register values in the lowest byte.

������������������������
���
���
���
���
The SCC has five interrupt outputs which are available as bits in one of the “interrupt pending”

registers of the RC36100 Peripheral Expansion Interrupt Controller. This register is at location:

��	���
 ���	
���

A 0xFFFF_E80C

B 0xFFFF_E804

������� �������
���

0xFFFF_EB10 Interrupt outputs

WRITE REG 0
 and
READ REG 0

WR1 and RR1WR1 and RR1WR1 and RR1WR1 and RR1

WR2 and RR2

WR15 and RR15

Etc Etc

Etc Etc

WR8 and RR8
(Data registers)

SCC interrupts

SCC DMA requests

SCC hardware reset
�� � �

�����

����	
 ���
� ���
Bit assignments are shown in Figure 15.1.

Table 15.1 Bit Assignment for the interrupt outputs

������������
For DMA operation, the SCC has one “ready to transmit” and one “ready to receive” DMA enable

for each channel. These enables are tied to specific DMA channels as shown below. In addition, each
DMA channel has three alternative sources of enables, making it necessary to set a DMA “steering
register” to select the SCC enables. This is done as follows:

Table 15.2 Steering Register

����������������������� ������ ������ ������ �������������� �� ��� �������� �� ��� �������� �� ��� �������� �� ��� ���������
Externally visible Serial Communications Controller signals are:

◆ SerialTxData(1:0) are the transmitter outputs for the two channels. In AMD literature, and
elsewhere in this note, this signal is named TxD.

◆ SerialRxData(1:0) are the receiver inputs for the two channels. In AMD literature, and else-
where in this note, this signal is named RxD.

◆ SerialPrimaryClkIn(1:0) are potential clock source inputs for the two channels. In AMD litera-
ture, and elsewhere in this note, this signal is named RTxC.

◆ SerialSecondaryClk(1:0) are present in the two channels and can be programmed as an
input or as an output. As an output it can make available any of three internal clocks. As an
input it is a potential clock source. In AMD literature and elsewhere in this note, this signal
is named TRxC.

◆ SerialSync(1:0) are present in the two channels function as inputs or as outputs depending
on the operating mode. In Asynchronous mode, it serves as a general purpose input. In
Synchronous mode with External Synchronization, it serves as an input and must be
driven low two clocks after the Synchronizing pattern is detected. In SDLC mode, and in
Synchronous Mode with Internal Synchronization, it functions as an output, going low
when a synchronizing pattern is detected.

!�
 ������"��

0 Set while the Channel A “Transmitter Empty” interrupt is active.

1 Set while the Channel B “Transmitter Empty” interrupt is active.

2 Set while the Channel A “Receiver Ready” interrupt is active.

3 Set while the Channel B “Receiver Ready” interrupt is active.

4 Set while the master SCC interrupt is active.

������� �������
���

0xFFFF_EB80 Steering Register

!�
� ��

��� �������
���

1:0 2 DMA-0 is tied to Channel-A, Transmit Ready

5:4 2 DMA-1 is tied to Channel-A, Receive Ready

9:8 2 DMA-2 is tied to Channel-B, Transmit Ready

13:12 2 DMA-3 is tied to Channel-B, Receive Ready
�� �

�����

����	
 ���
� ��� ����	
����
◆ SerialCTS(1:0) are the Clear To Send modem status inputs for the two channels.
◆ Serial RTS(1:0) are the Request To Send modem control outputs for the two channels.
◆ SerialDCD(1:0) are the Data Carrier Detect modem status inputs for the two channels.
◆ SerialDTR(1:0) are the Data Terminal Ready modem control outputs for the two channels.

��� ������ ������ ������ �������������������������������
Polled, Interrupt, and DMA operation are the three basic methods of data input and output from

the Serial Communications Controller.

��������

�������� ������������������������������������

In POLLED operation, software repeatedly checks status bits in Read Register 0 (RR0) to deter-
mine when to perform I/O.

Bit 0 is the “Rx Character Available” bit. It is high when a character has been received but not read
from the data register. When it is detected high, the received character should be read from the Data
Register. An “Overrun Error” results if the data is not read quickly enough, and if the arrival of more
data causes the receive data FIFO to overflow.

Bit 2 is the “Tx Buffer Empty” bit. It is high to indicate that the SCC is ready to accommodate the
next outgoing character, which should be written into the Data Register. For the actual transmission,
this character is then loaded into another register, called the Transmitter Shift Register. As soon as
this load occurs, the Data Register can receive another byte, and this bit goes high again. The load
into the shift register occurs after the current shift register contents get transmitted. At that time, if the
Data Register is still empty, a “Transmit Underrun” occurs. This has no effect in Asynchronous Mode.
But in synchronous modes, gaps in outgoing data cannot be allowed so the SCC starts to transmit
something else (depending on how it is programmed), either a synchronizing pattern or the CRC of
the outgoing frame.

Occurrences of receive events are indicated by certain bits in RR1 being high: Bit 4 (Parity Error),
Bit 5 (Overrun Error), Bit 6 (CRC or Framing Error), and Bit 7 (SDLC End of Frame).

������������������������������������ ������������������������������������

INTERRUPT operations make use of the SCC’s interrupt structure. Each SCC channel generates
three categories of interrupts, Transmit interrupts, Receive interrupts, and External/Status interrupts.
A TRANSMIT interrupt occurs when a character is loaded from the outgoing Data Register to the
Transmitter Shift Register (as described above), causing RR0 bit 2 to go high. In response, software
can write the next character to the Data Register. If there are no more outgoing characters, software
must instead issue a “Reset TxINT Pending” by writing 0x28 to WR0. This removes the interrupt until
the next time a character moves from the Data to the Shift register.

In interrupt based transmission, as long as there is data to be sent, one byte is written to the Data
Register for each interrupt. When there is no more data, the interrupt is reset. When data becomes
available again, the first byte is directly written into the Data Register. It is immediately loaded into the
Shift Register, causing the next interrupt.

There are two types of RECEIVE interrupts which may occur. An “Rx Character” interrupt occurs
each time a character is received into the Data Register. A “Special Rx Condition” interrupt occurs
when any of the following conditions arise: a “Receiver Overrun” error; a “Framing Error” in Asynchro-
nous mode; a “Parity Error” (while parity is enabled); an SDLC “EOF” (an End of Frame is detected
due to receipt of a flag).

Note: In synchronous modes, a “CRC error” does not, by itself constitute a Special Rx condi-
tion. The reason is that a non-zero CRC bit is considered an error only at one point in time - after
a frame’s last CRC byte has been received. At this time it must be zero. At all other times, it is
expected to be 1. In SDLC, the CRC bit is checked when the EOF - which IS a Special condition
- is received].

When an Rx interrupt occurs, the SCC does not explicitly indicate whether it is due to a Character,
a Special Condition, or both. The interrupt handler must first read RR1 to pick up the special status, if
any. It must also read RR0 (before or after reading RR1), and if RR0:Bit 0 is set, it must read the
received byte from the Data Register. Note that reading the Data Register discards the contents of
RR1, which must therefore be read first.
�� � �

�����

����	
 ���
� ��� ����	
����
The Character interrupt is automatically reset by the Data Register read. But if examination of the
RR1 value shows a special condition, then it must be reset by issuing the “Error Reset” command by
writing 0x30 to WR0.

An EXTERNAL/STATUS interrupt occurs (when enabled) due to transitions of certain signals.
Each signal may be individually enabled to cause an E/S interrupt. The signals (described next) are
all available as individual bits in RR0. They are Sync/Hunt (bit 4), Break/Abort (bit 7), Zero Count (bit
1), Tx Underrrun/EOM (bit 6), Clear To Send (bit 5), and Data Carrier Detect (bit 3).

A feature of E/S interrupts is that—for the signals for which interrupts are enabled—latches are
present between the signal sources and their values in RR0 bits. These latches close on any transi-
tion of any of these signals, and are re-opened when the E/S interrupt gets serviced. For these
signals, the RR0 bits reflect the latched values. For the other signals, RR0 has the real-time values.
[A detailed description, including the effects of multiple transitions while the latches are closed, is in
the AMD 85C30 manual].

An E/S interrupt is serviced by reading RR0 (to open the latches) and issuing the command
“Reset External/Status interrupts” by writing 0x10 to WR0.

Of the E/S sources:
Sync/Hunt, Data Carrier Detect, and Clear To Send have been described above, in the section on

“External Connections to the SCC”. Either transition on these generate an interrupt if enabled. In
internal synchronous modes, Sync/Hunt goes high on power on, or when an “Enter Hunt” command
is issued (by writing a 1 to bit 4 of WR3). This command forces the SCC receiver to resynchronize on
the input data stream. Once synchronization is achieved, Sync/Hunt goes low.

The Zero-Count signal is high while the baud-rate generator (a counter used to generate SCC
transmit and receive clocks) passes through its zero value. Only its low to high transition generates
an interrupt if enabled.

The Break/Abort signal is high if a Break (a continuous zero value received in Asynchronous
mode) or an Abort (a string of seven or more contiguous 1s received in SDLC mode) is detected.
Either transition generates an interrupt if enabled.

The Transmit Underrun/EOM (“EOM” stands for End of Message) is used to control CRC trans-
mission in Synchronous and SDLC modes. It works as follows:

Primarily, it goes high when the transmitter “underruns”, that is, it has no more data to transmit
because none has been written into the Data Register by software. This happens when, at the end of
a frame, software responds to the Transmit Empty condition by resetting the transmitter (by issuing a
“Reset TxINT Pending” command). (Note, despite this command’s name, it is issued to reset the
transmitter even in non-interrupt operation). Thereafter, once the last character has been sent, the
SCC raises the Underrun / EOM signal. But before it does, that, it checks whether the signal is
already high. If it is, it takes no further action.

But it is low (how this happens is described next), then the SCC starts to send the frame’s CRC
bytes (and also raises the Underrun / EOM signal). Once the CRC bytes have been sent, another
Transmit Empty condition occurs and the software responds by once again resetting the transmitter
interrupt.

(The AMD manual mentions that instead of resetting the transmitter the first word of the next
frame can be written at this point; however, on the RC36100 this is not recommended. There should
be a delay before starting the next frame to allow at least one flag or synchronizing pattern to be sent
between frames).

Once the signal is high, it needs to be made low again, if the next frame’s CRC is to be sent. This
is done by issuing the “Reset Tx Underrun/EOM latch” command by writing 0xC0 to WR0. In SDLC
mode, it can also be done automatically by the SCC. To do this, set high bit 1 in WR7’ (this is a
special “SDLC enhancement” register. It exists along with the normal WR7 and is written to by first
setting WR15 bit 0 to 1, to select it).

The resetting of this signal must be done after writing the first character of a frame, and before the
final “empty” condition arises. (This is because it cannot be reset while the shift register is empty).
The most convenient way is to issue it after writing the frame’s first character.

Only the low to high transition of this signal will cause an interrupt if enabled.
�� � #

�����

����	
 ���
� $�� ���%� &�
���'�
 �
�'�
'��
 � � � �� ���� ���� ���� ���!!!!� ����� ����� ����� ������������
�� ��
�� ��
�� ��
�� ������
��

��

��

��
��������
In the RC36100, the Tx and Rx interrupts are directly connected to the Peripheral Expansion

Interrupt Controller.
Also connected to the Controller is a single common SCC interrupt line, on which the SCC is

capable of internally prioritizing multiple pending interrupts as follows:
 1. Rx Chl-A
 2. Tx Chl-A
 3. E/S Chl-A
 4. Rx Chl-B
 5. Tx Chl-B
 6. E/S Chl-B
The SCC offers two approaches to interrupt handling:

◆ ACKNOWLEDGED: the SCC handles prioritizing
◆ NON-ACKNOWLEDGED: the SCC does not handle prioritizing

In ACKNOWLEDGED interrupt handling, the SCC internally prioritizes multiple pending interrupts,
presenting them one at a time in RR2 in response to an ACKNOWLEDGE signal. The interrupt
selected is the one with the highest priority of those pending. It is termed the IUS (INTERRUPT
UNDER SERVICE), and when it has been processed, a “Reset IUS” command must be issued to the
SCC (by writing 0x38 to WR0), after which the process is repeated for the next pending interrupt.

The interrupt is presented in RR2 encoded in bits 3:1 as follows:
000: Channel B Tx
001: Channel B E/S
010: Channel B Rx Data
011: Channel B Rx Special Condition
100: Channel A Tx
101: Channel A E/S
110: Channel A Rx Data
111: Channel A Rx Special Condition
In NON-ACKNOWLEDGED interrupt handling, prioritizing is not done, and the driver looks at

certain “interrupt pending” bits in RR3 to identify simultaneously pending interrupts, which it handles
in a suitable manner and sequence.

The RR3 bits are:
Bit 0: Set if Channel-B E/S interrupt is pending.
Bit 1: Set if Channel-B Tx interrupt is pending.
Bit 2: Set if Channel-B Rx interrupt is pending.
Bit 3: Set if Channel-A E/S interrupt is pending.
Bit 4: Set if Channel-A Tx interrupt is pending.
Bit 5: Set if Channel-A Rx interrupt is pending.

Note: In this mode, Rx Data interrupts and Rx Special Condition interrupts are not sepa-
rately indicated as they are in Acknowledged mode. Interrupt handler software will have to check
RR1 for special conditions and RR0 for data).

It is important to note that these bits can be read only in RR3 of Channel A. They do not appear
in RR3 of channel B. (Because SCC interrupt handling must combine both channels, it is an area in
which both channels can behave differently).

Selecting between Acknowledged and Non-Acknowledged modes is done by reading or not
reading RR2 on entering the interrupt service routine. If RR2 is read then acknowledged interrupt
handling starts. Otherwise it does not.

Just as RR3 is read in channel A, RR2 must be read in channel B. (A read of RR2 in channel will
return the value that was last written into WR2).

In Non-Acknowledged mode, RR3 can be read once on entering the interrupt service routine, and
all the bits in it can be processed in a single pass. Then it can even be read and processed again
before leaving the ISR. This can allow multiple interrupt events to get processed in a single ISR invo-
cation. In this mode, unlike in Acknowledged mode, it is not necessary to explicitly acknowledge the
interrupt with a “Reset IUS”. Another advantage of using this mode is that software can give a higher
priority to any type of event than the SCC would have done.
�� � (

�����

����	
 ���
� $�� ���%� &�
���'�
 �
�'�
'��
(Alert: As with other SCC registers, reading RR2 or RR3 is a two step process. Between the two
steps, that is while the value in WR0 is either 2 or 3, preparatory to accessing RR2 or RR3, the SCC
freezes its entire interrupt structure so that the RR2 and RR3 values are not altered. The sequence
should not be prolonged for any reason, as doing may lead to missed interrupts and unstable opera-
tion).

Unlike the AMD 85C30, the RC36100 requires certain bits in WR9, the interrupt configuration
register, to have fixed values: Bits 0, 1, 2 high, bit 4 low, bit 5 high.

The AMD 85C30 is a product intended for use in diverse environments, and has a plethora of
interrupt configuration options. The RC36100 reduces much of this complexity for programmers.
Specifically, the RC36100 does not have interrupt acknowledge cycles, and hence no vectored inter-
rupts. It also does not participate in interrupt daisy chaining with external devices. Status bits are
always present in bits 3-2-1 of RR3 in channel A.

������������ ������������������������������������

DMA operation utilizes the fact that, in the RC36100, the “Rx Character Available” and the “Tx
Buffer Empty” signals are internally connected to DMA request lines.

(In the AM85C30, certain signals may be used for DMA or for other purposes. In the RC36100,
these are always used for DMA. To ensure this, WR1 bit 5, bit 6 and bit 7 and WR14 bit 2 are all set
to 1. The effect is to have the DMA connections active. They are also permanently enabled, so that
control of DMA must be done through the DMA controller).

Therefore, instead of using polling or interrupts to transfer characters, the DMA channels
assigned to the SCC Tx and Rx are enabled to transfer characters.

An issue in using DMA is the handling of receive errors. DMA will not read RR1 to check for
receive errors. To cater to this, the SCC provides three modes of receive interrupt operation. These
are “interrupt on all characters and on special conditions”, “interrupt on first character - of a frame - or
on special conditions”, and “interrupt on special conditions only”.

Of these, the first is unsuitable for DMA, since DMA picks up received characters. The second is
relevant when it is necessary for software to reset the Tx Underrun/EOM latch after writing the
frame’s first character. It is not necessary if done automatically by the SCC in SDLC mode. It is also
not needed in Asynchronous mode. In these cases the third option can be used. Note that, while
responding to Special Condition interrupts, do not pick up received characters, even if they are ready.
That is the DMA’s job.

In SDLC, the SCC offers an on-board Frame Status FIFO for the high speed reception of SDLC
frames. Up to ten consecutive received frames have their sizes recorded in entries in this FIFO. Also
recorded is the occurrence of CRC errors in these frames. (Unlike in the AMD product, overrun errors
are not recorded. These can still be detected since they will lead to CRC errors).

The FIFO is enabled by setting bit 2 of WR15. To check FIFO status, the registers RR6, RR7, and
RR1 must be read, in that order. (For the AMD 85C30, the sequence is RR7, RR6, RR1). RR7 Bit 6 is
set if the FIFO has one or more entries. RR7 Bit 7 is set if the FIFO has overflowed. If there is an
entry, then its frame size is recorded in RR6 (bits 7-0) and RR7 bits 5-0 (bits 13 - 8 of the size. The
size is 14 bits, allowing 16K frames) and RR1 will have the CRC and overrun error bits from the FIFO
entry, and real-time values for its remaining bits.

When using the FIFO, DMA should be used, as it is pointless to use polled or interrupt I/O with the
FIFO doing its job. Rx should be on interrupt, in the “Special Only” mode. (This is because, even
though CRC errors are recorded in the FIFO, the CPU still has to issue “Error Reset” commands to
clear special conditions.

Each “Error Reset” will clear all the special conditions till that point). If an overrun error occurs, the
SCC locks the DMA. Issuing the “Error Reset” will also unlock the DMA. (Software can also discover
the overrun condition by reading RR1 in the special condition interrupt, although it is not recorded in
the FIFO).

A FIFO overflow or receiving an Abort means the FIFO has to be flushed of all its entries and all
received data till that point discarded (as it is no longer known what data belongs to which frame). For
this reason, during FIFO operation, the E/S interrupt for BREAK/ABORT should remain enabled, and
if it occurs the handler should arrange for the FIFO to be flushed as soon as possible.
�� �)

�����

����	
 ���
� *+
���	
 ������
����
Other SCC Subsystems include data encoding methods and digital phase locked loop
commands.

���������������� ��������������������������������

ENCODING methods supported by the SCC includes Non Return to Zero (NRZ, transitions at bit
cell boundaries, levels same as values - zero or one), Non Return to Zero Inverted (NRZI, zero
means a transition at bit cell boundary, 1 means no transition), FM0 (transition at each boundary, and
if zero then a further transition in mid cell), and FM1 (like FM0, but with mid cell transition if 1). The
receiver can also decode Manchester encoding (data level in first half of each bit cell, its complement
in second half). Encoding is specified by writing WR10 bits 6-5, with 00 = NRZ, 01 = NRZI, 10 = FM1,
11 = FM0. (The AMD manual deals with issues related to encoding. Also, encodings other than NRZ
may create problems in Asynchronous mode, if the line is left at level zero after sending a byte. In this
mode level zero is interpreted as a BREAK).

���������������
 ����
 ����
 ����
 ����������������� ������������������������ ���������������� ������������������������

In FM and NRZI modes, a Digital Phase Locked Loop (DPLL) can be used to extract the clock
from the data, for more reliable reception. DPLL operation is initiated by issuing the “Enter Search
Mode” command (by writing 001 to WR14 bits 7-5). At any time if the DPLL misses one or more
expected transitions, it sets the “One Clock Missing” bit (RR10 bit 7) or the “Two Clocks Missing bit”
(RR10, bit 6).

Recovery from this condition is by issuing a “Reset Missing Clocks” command (by writing 010 to
WR14 bits 7-6). The command “Disable DPLL” (011 to WR14 bits 7-6) disables the DPLL, and
another “Enter Search Mode” command must be given to restart it. For other DPLL commands see
the description of WR14 bits 7-6 in the SCC Registers section below.

����������������������� ������ ������ ������ �����������������������������������
AUTOENABLES, selected by setting bit 5 of the WR3, makes the CTS input the transmitter

enable and the DCD input the receiver enable. Both are active high.
LOCAL LOOPBACK mode (selected by setting WR14 bit 4) internally connects TxD to RxD so

that all transmitted data also reaches the receiver. AUTO ECHO mode (selected by setting WR14 bit
3) TxD is only connected to RxD internally (and not to the outside). RxD also remains connected to
the outside.

���������������� ���������������� ����������������

(SDLC LOOP MODE is described in detail in the AMD manual).

����������������"�"�"�"������ �������� �������� �������� �������
The BAUDRATE GENERATOR (BRG) is a 16 bit counter, generating a clock transition each time

it reaches zero. The countdown value is written into WR13 (high byte) and WR12 (low byte). (For
applications where the BRG may be started and stopped, the AMD manual explains how to do this
glitchlessly).

 The BRG is enabled by setting WR14 bit 0. The BRG’s clock source is chosen by WR14 bit 1.
This bit is set to drive the BRG from the system clock, PCLK. On the RC36100, PCLK is half the
value of the externally attached crystal. (eg 25 Mhz if the crystal is 50 Mhz). If this bit is reset, the
BRG clock is taken from the RTxC input, ie the SerialPrimaryClkIn pin.

The DPLL’s CLOCK may be the BRG output or the RTxC input, selected by setting WR14 bits 7-5
to 100 for BRG and 101 for RTxC.

The TRANSMIT CLOCK source and RECEIVE CLOCK source are selected by WR11 bits 4-3
(transmit) and bits 6-5 (receive). Values for these bits are 00 to select RTxC, 01 for TRxC (ie the Seri-
alSecondaryClk pin), 10 for the BRG output, and 11 to be driven by the DPLL’s output.

The TRxC pin becomes an input if WR11 bit 2 is 0. Otherwise it is an output and WR11 bits 1-0
determine whether it carries the Transmit Clock (01), BRG output (10), or the DPLL output (11). (The
remaining value, 00, is used in the AMD product to make it carry the output of an externally attached
crystal. The RC36100 does not support an external crsytal).
�� � ,

�����

����	
 ���
� ��� ����	
��� ��-'����
In addition to these, there are many lesser features and enables, which are covered in the AMD
manual. To know whether any such feature is supported in the RC36100, look at the corresponding
register in the SCC registers section below. This will indicate what bit values are accepted for each
register.

��� ������ ������ ������ ������������ ��#
�������� ��#
�������� ��#
�������� ��#
�������
Reset: A hardware reset is accomplished by a read from location 0xFFFF_E810. This resets both

SCC channels. Writing 11 to WR9 bits 7-6 also does a hardware reset. Individual channels are reset
by writing to the same bits, 10 to reset channel A, and 01 to reset channel B. (Unlike most other regis-
ters, for which each channel has a copy, only one copy of WR9 exists, shared by both channels.
Therefore a WR9 write can be done in either channel). Following power on, it is recommended that
four hardware resets be done for proper SCC initialization. A reset on either channel does not affect
ongoing operations on the other channel.

Parameter setting: Following a reset, the transmitter and receiver are both disabled. Before
enabling them, all operating parameters must be specified by writing values into registers.

The steps in starting up the SCC are listed next. (Exact register values can be obtained from the
“SCC registers” section).

◆ At the outset, the Tx (Transmit), Rx (Receive), Digital Phase Locked Loop (DPLL), and Baud
Rate Generator (BRG) must all be disabled to prevent output glitches while parameters
are being set. (Since all the registers cannot be written to simultaneously, there will be
times when different register hold mutually incompatible values). Of these, all are disabled
by a reset, except the BRG, which is disabled only by a hardware reset, and not by a chan-
nel reset.

◆ Interrupts and DMA should also be disabled through WR1.
◆ Next a “Null” command should be issued by writing 0 to WR0.
◆ WR4 is used to specify the basic mode (SDLC, Synch, Asynch). Therefore it must be the first

to be set, as values written into other registers are often interpreted according to the mode.
◆ WR10, which sets encoding (as well as miscellaneous SDLC settings) is set next. One SDLC

setting, called “Mark or Flag on idel” should be set to “Mark” (bit 3 is 1).
◆ WR6 and WR7 carry the synchronizing pattern in SDLC and Synchronous modes. These are

to be set next. (Note, WR7 is distinct from the Enhanced SDLC register, WR7’. If WR15 bit
0 is 0 - which it is after a reset - then WR7 is accessed. Otherwise WR7’ is.

◆ Receive parameters are now written to WR3, followed by transmit parameters to WR5, but
neither should be enabled as yet.

◆ A dummy “interrupt vector” value is written into WR2. (It can be any value. The RC36100
SCC does not use vectored interrupts).

◆ Clocking parameters are now written into WR11.
◆ The baud rate divisor is written into WR12 and WR13.
◆ Issue two DPLL commands to WR14 (using bits 7-5) setting the DPLL clock source and the

DPLL mode (FM or NRZI). While issuing these commands, keep bit 0 low to keep the BRG
disabled.

◆ Write to WR15 keeping bit 0 high to make WR7’ accessible. (The other bits are as per the
External/Status interrupt enables desired, and to enable the SDLC Frame Status FIFO if
needed. Enabling E/S interrupts is harmless since the master interrupt enable, WR9 bit 3,
is low after a reset, and till it is set interrupts cannot occur).

◆ Write desired value to WR7’.
◆ Write to WR14 to enable DPLL and BRG. (Only enable if they are to be used).
◆ Enable Rx through WR3, then Tx through WR5.
◆ If SDLC mode, then change the “SDLC Mark on idle” setting in WR10 to “Flag on idle” (bit 3

set to 0).
◆ Issue the “Reset Tx CRC command” to WR0.
◆ Issue the “Reset E/S int” command to WR0. Repeat this once.
�� � �.

�����

����	
 ���
� &/�
◆ Enable interrupts and DMA through WR1.
◆ The last step is to enable the Master Interrupt Enable (Set WR9 bit 3 to 1).

�$��$��$��$�
In Asynchronous Mode, there is no special I/O sequence (other than the transmit and receive

logic described earlier).
In Synchronous and SDLC modes, it is also necessary to reset the transmit underrun latch after

each frame’s first byte, and to reset Tx and Rx CRC logic at frame starts.
In SDLC, the SCC can be programmed to do all of this automatically, by setting various bits in

WR7’. (See the “SCC Registers” section). In Synchronous mode, or if WR7’ bits are not used, it is
necessary to do all of this in software. Consult the AMD manual.

������������ ������������������������������������
The following drawings illustrate in detail the SCC write registers and the associated bit configura-

tion for each.

Note: These abbreviations are used throughout the following register drawings: Sn=SYNC
bit n; An=Address bit n; MS=Monosync; BS=Bisync; SD=SDLC

 ���������������� !!!!���������������������������� """"

Figure 15.3 Write Register 0 (WR0) Bit Values and Field Descriptions

 ���������������� !!!!���������������������������� 				

Figure 15.4 Write Register 1 (WR1) Bit Values and Configurations

01234567

00 = Null Code
01 = Reset RX CRC Checker
10 = Reset Tx CRC Generator
11 = Reset Tx Underrun/EOM Latch

000 = Null Code
001 = Select Registers 8-15
010 = Reset EXT/Status Interrupts
011 = Send SDLC Abort
100 = Enable Int on next Rx Character
101 = Reset Tx Int pending
110 = Error Reset
111 = Reset Highest IUS

Select register 0-7 (if bits 5:3 are 000)
Select register 8-15 (if bits 5:3 are 001)

1 1
Always A lways

01234567

00 = Rx Int Disable
01 = Rx Int 1st Character/Special Condition
10 = Rx Int All Rx Characters/Special Condition

1 = DMA Request

11 = Rx Int on Special Cond only

1= to treat RX Parity
 Error as a Sp Cond

1= to enable Tx Int

1= to enable External/Status Ints
�� � ��

�����

����	
 ���
� ��� �����
���
 ���������������� !!!!���������������������������� ####

Figure 15.5 Write Register 2 (WR2)

 ���������������� !!!!���������������������������� $$$$

Figure 15.6 Write Register 3 (WR3) Bit Values and Configurations

 ���������������� !!!!���������������������������� %%%%

Figure 15.7 Write Register 4 (WR4) Bit Values and Configurations

 ���������������� !!!!����������������������������

Figure 15.8 Write Register 5 (WR5) Bit Values and Configurations

Interrupt Vector

01234567

01234567

00 = Not used
01 = Rx 7 Bits/Character
10 = Rx 6 Bits/Character
11 = Rx 8 Bits/Character 1 = Auto Enables

1 = Enter HUNT enable*

* This bit is a command and does not retain its value.

1 = Rx CRC Enable

1 = Enable SDLC
 Search ModeAddress

 1 = Rx Enable

1 = Sync Character Load
Inhibit (synchronizing patterns
not loaded during RX)

01234567

00 = x1 Clock Mode
01 = x16 Clock Mode (Asynch only)
10 = x32 Clock Mode (Asynch only)
11 = x64 Clock Mode (Async only)

00 = 8/16 Sync Charac.
01 = 16/12 bit Sync(Bisync)
10 = SDLC
11 = External SYNC Mode

00 = Sync Modes enable
01 = Async with 1 stop bit/char
10 = Async with 1 1/2 Stop bits/char
11 = Async with 2 stop bits/char

0 = Odd Parity
1 = Even Parity

1 = enable Parity

01234567

0 = set DTR high
1 = set DTR low

0 = RTS High
1 = RTS Low

1 = Enable Tx CRC00 = Not used
01 = Tx 7 bits/character
10 = Tx 6 bits/character
11 = TX 8 bits/character

1 = send Break

1 = Tx enable

0 = Calculate CRC by SDLC
 method
1 = Calculate CRC by
 CRC-16 method
�� � ��

�����

����	
 ���
� ��� �����
���
 ���������������� !!!!���������������������������� &&&&

Figure 15.9 Write Register 6 (WR6) Bit Values and Configurations

 ���������������� !!!!���������������������������� ''''

Figure 15.10 Write Register 7 (WR7) Bit Values and Configuration

01234567

S7 (MS-8)
S1 (MS-6)
S7 (BS-16)
S3 (BS-12)
A7 (SD)
A7 SD, group

S6 (MS-8)
S0 (MS-6)
S6 (BS-16)
S2 (BS-12)
A6 (SD)
A6 (SD, group

Address

address

S5 (MS-8)
S5 (MS-6)
S5 (BS-16)
S1(BS-12)
A5 (SD)
A5 (SD, group
address

S4(MS-8)
S4(MS-6)
S4(BS-16)
S0(BS-12)
A4 (SD)
A4 (SD, group
address

S3 (M S-8)
S3 (M S-6)
S3 (BS -16)
1 (B S-12)
A 3 (SD)
x (S D g rou p
add ress

S2 (MS-8)
S2 (MS-6)
S2 (BS=16)
1 (BS=12)
A2 (SD)
X (SD, group
address

S1 (MS-8)
S1 (MS-6)
S1 (BS-16)
1 (BS=12)
A1 (SD)
X (SD, group
address

S0 (MS-8)
S0 (MS-6)
S0 (BS-16)
1 (BS=12)
A0 (SD)
x (SD, group
address

01234567

S7 (MS-8)
S5 (MS-6)
S15 (BS-16)
S11 (BS-12)
0 (SD)

S6 (MS-8)
S4 (MS-6)
S14 (BS-16)
S10 (BS-12)
1 (SD)

S5 (MS-8)
S3 (MS-6)
S13 (BS-16)
S9(BS-12)
1 (SD)

S4(MS-8)
S2(MS-6)
S12(BS-16)
S8(BS-12)
1(SD)

S3 (M S-8)
S1 (M S-6)
S1 1 (BS -16)
S7 (BS =12)
1(S D)

S2 (MS-8)
x (MS-6)
S10(BS=16)
S6 (BS=12)
1(SD)

S1 (MS-8)
x (MS-6)
S9 (BS-16)
S5 (BS=12)
1 (SD)

S0 (MS-8)
x (MS-6)
S8 (BS=16)
S4 (BS=12)
0 (SD)
�� � ��

�����

����	
 ���
� ��� �����
���
 ���������������� !!!!���������������������������� ''''((((

Figure 15.11 Write Register 7’ (WR7’) Bit Values and Configuration

 ���������������� !!!!����������������������������)))) �� ��� ���� !�������*

 ���������������� !!!!���������������������������� ++++

Figure 15.12 Write Register 9 (WR9) Bit Values and Configuration

 ���������������� !!!!���������������������������� 	"	"	"	"

Figure 15.13 Write Register 10 (WR10) Bit Values and Configuration

Always
0

Always
0

01234567

1 = Readback
WR3 = RR9
WR4 = RR4
WR5 = RR5
WR10 = RR11

1 = Receive
CRC bytes.

1 = Force TxD
 high at end of
a character in
SDLC NRZI
mode (avoid
abort)

1 = postpone
RTS low
(when WR5
bit 1 set) to
end of SDLC
frame closing
flag.

1 = SCC
reset the Tx
underrun/
EOM latch
at the start
of each fram e.

1 = tx at
least 1 flag
prior to the
1st character
of a new
SDLC fram e.

Always Always
1 0

Always Always Always
1 1 1

01234567

00 = No reset (null command)
01 = Reset Channel B
10 = Reset Channel A
11 = Force Hardware Reset

1 = Master
Interrupt Enable
0 = All interrupts
disabled

1 = SDLC
Loop Mode

01234567

0 = CRC preset to 0
(used in CRC-16)
1 = CRC preset to 1 00 = NRZ encoding

01 = NRZI encoding
10 = FM1 encoding
11 = FM0 encoding

1 = Go active
on Poll in
SDLC Loop Mode

1 = send TxD to
high level (“Mark”)
when SDLC idle
0 = send SDLC flags

1 = send SDLC abort
if Tx underruns
0 = Send SDLC flags

1 = 6/12 bit sync
0 = 8/16 bit sync

�� � �

�����

����	
 ���
� ��� �����
���
 ���������������� !!!!���������������������������� 								

Figure 15.14 Write Register 11 (WR11) Bit Values and Configuration

 ���������������� !!!!���������������������������� 				#### ������� ���
�, -.�� �/ ��� 0��� !��� 1��������
2�3� ��������*

 ���������������� !!!!���������������������������� 	$	$	$	$ ������� ��� ���� -.�� �/ ��� 0��� !��� 1��������
2�3� ��������*

 ���������������� !!!!���������������������������� 	%	%	%	%

Figure 15.15 Write Register 14 (WR14) Bit Values and Configuration

Always
 0

01234567

1 = TRxC is an output

00 = Rx Clock from RTxC
input
01 = RX Clock from RTxC
input
10 = Rx Clock from Baud Rate gen.
11 = Rx Clock from DPLL output

00 = Tx clock from RTxC

01 = Tx clock from TRxC
input

input
10 = Tx Clock from BRG
output
11 = Tx Clock from DPLL
output

0 = TRxC pin is an
 input

00 = Not used
01 = TRxC carries Tx Clk
output
10 = TRxC carries BRG output
11 = TRxC carries DPLL
 output

Always
 1

01234567

000 = DPLL Null command
001 = DPLL Enter Search Mode
010 = DPLL Reset missing clock
011 = DPLL Disable
100 = Set DPLL source to BRG
101 = Set DPLL source to RTxC
110 = Set DPLL FM mode
111 = Set DPLL NRZI mode

1 = Select local
loopback

1 = Select Auto Echo

0 = Baude Rate Generator
source is RTxC
1 = BRG source system clock
 PCLK

1 =Enable Baude
Rate Generator
�� � ��

�����

����	
 ���
� ��� �����
���
 ���������������� !!!!���������������������������� 	
	
	
	

Figure 15.16 Write Register 15 (WR15) Bit Values and Configuration

!!!!������������ !!!!���������������������������� """"

Figure 15.17 Read Register 0 (RR0) Bit Values and Configuration

!!!!������������ !!!!���������������������������� 				

Figure 15.18 Read Register 1 (RR1) Bit Values and Configuration

!!!!������������ !!!!���������������������������� ####4444 !���� -��� !# �� ������
 �5 ���
���� ���������
������ ��� -��� $4	� �� ������
 0*

Vector values are as follows:
000: Channel B Tx
001: Channel B E/S
010: Channel B Rx Data

01234567

1 = Break/ Abort

interrupt

1 = Tx Underrun/
 EOM External/Status
interrupt

1 = CTS External/
Status interrupt 1 = SYNC/

HUNT External/
Status interrupt

1 = DCD External/
Status interrupt

External/Status

1 = Zero Count External/
Status interrupt

1 = Enhanced SDLC
register, W7’ (not W7)

01234567

1 = if Break or SDLC-
Abort detected

1 = if Tx Underrun/EOM
is high

1= CTS input is high
1 = if SYNC/HUNT
bit is low or if SYNC
not achieved while
HUNTing

1 = if DCD input is
low

1 = while Baud Rate
 Generator is at Zero Cnt

1 = if Rx Character
is available

01234567

1 = if SDLC End of Frame
(EOF) detected

1 = if CRC Error or
Framing Error occurs

1 = if Rx Overrun Error
occurs 1 = if Parity

Error occurs

Reserved

Reserved

1 = When all Async
mode characters sent.
Used for modem control
�� � �#

�����

����	
 ���
� ��� �����
���
011: Channel B Rx Special Condition
100: Channel A Tx
101: Channel A E/S
110: Channel A Rx Data
111: Channel A Rx Special Condition

!!!!������������ !!!!���������������������������� $$$$ ����������������������������

 ���� �����
�
�
�
.�.�.�.�

Figure 15.19 Read Register 3 (RR3) (Channel A only) Bit Values and Configuration

!!!!������������ !!!!���������������������������� %%%% �� ��� ����-��� �������� /�� !% �/ !'(-�� & �� ���*

!!!!������������ !!!!����������������������������

 �� ��� ����-��� �������� /�� !
 �/ !'(-�� & �� ���*

!!!!������������ !!!!���������������������������� &&&& ������� ���
�,��� -.�� �/ ��� 6��3� ��7� 8�
��
,����� ��� ���3��� ����. ��/ ��.� �/ ��� ���� �����8� 6��3� ������
6�6�*

!!!!������������ !!!!���������������������������� ''''

Figure 15.20 Read Register 7 (RR7) Bit Values and Configuration

Always
0000

Always
0

01234567

1 = Channel A Rx IP
(Interrupt Pending)

1 = Channel A Tx IP
(Interrupt Pending)

1 = Channel A E/S
IP (interrupt pending)

1 = Channel B Tx IP
(interrupt Pending)

1 = Channel B E/S
(interrupt pending)IP

01234567

1 = SDLC receive Frame
Status FIFO has overflowed

1 = One or more entries in
the SDLC Rx Frame

Status FIFO.

Bits 13-8 of the Frame Size value of the topmost (if any) F.S. FIFO entry.
�� � �(

�����

����	
 ���
� ��� �����
���
�� � �)

�����

����������	
�

�
����
���

������� 	

��������������������	
�����	
�����	
�����	
�����
The RC36100 RISController integrates bus controllers and peripherals around the RISCore3000

family CPU core. One of the many on-chip peripherals is the Bidirectional Centronics Parallel Port,
which is described in this chapter through a functional overview complete with signal pin descriptions
and various aspects of their timing.

������������

������������
◆ Bidirectional ParallelPortTarget/Peripheral/PrinterController provided on-chip
◆ Provides 9 pin interface to Bidirectional Centronics IEEE 1284 Standard Parallel Port
◆ Provides 2 pins for host transceiver control
◆ Reuses 3 I/O Controller pins for peripheral transceiver control
◆ Uses external transceiver or bidirectional FIFO for data storage
◆ DMA auto-initiate via internal interrupt
◆ Compatible 8-bit input host to peripheral protocol (backward compatibility with Centronics stan-

dard)
◆ Nibble mode peripheral to host output protocol (Microsoft/PC standard)
◆ Byte mode peripheral to host output protocol (IBM PS2 applications)
◆ ECP bidirectional protocol (Windows PC/Laser standard)
◆ EPP bidirectional protocol (Datacom applications)
◆ 200KBytes/sec to 1 MByte/sec data transfer rate

����������������� ��� ��� ��� ����������������������

Figure 16.1 Block Diagram of the Bidirectional Parallel Port.

CentStrobe
CentAck
CentBusy
CentPaperError
CentSelect
CentAutoFeed
CentInit
CentFault
CentSelectIn

Control
Signal
State
Machine

Decoder

BIU Controller Address and Control

Register
Bank

BIU Controller Data

CentCS

CentWrStrobe

CentRdOEn
CentHostStrobe

CentHostOEn

/(IoRdStrobe)

/(IoWrStrobe)
/(IoCS(7))
�� � �

�����

�����	
���
�� ������	� ���� ��	���	�
��������������������������������
The Bidirectional Parallel Port Target/Peripheral/Printer Interface is an implementation of the inter-

face described in “Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for
Personal Computers,” IEEE Standard 1284.

The purpose of this interfacing function is to allow Laser Printers or add-in communication cards
(such as external SCSI drives or external Ethernet ports) to communicate with a PC host in both
directions, by use of receive and transmit channels.

In the IBM PC compatible environment, the original Centronics compatible mode is only unidirec-
tional and cannot report general purpose status information back to the PC host. However, with the
addition of a reverse transfer 4-bit IEEE 1284 nibble mode, the Centronics port on the printer periph-
eral can now communicate bidirectionally with the majority of legacy PC hosts by using the present
printer status lines to pass 4-bits at a time back to the PC host. In newer PC’s, such as the PS2
series, the PC hosts can use a truer bidirectional mode such as the IEEE 1284 reverse transfer byte
mode.

The RC36100 also supports the newer IEEE 1284 Extended Capabilities Port mode (ECP) and
IEEE 1284 Enhanced Parallel Port (EPP) mode, which provide more efficient interlocked hand-
shaking as well as symmetric byte and host controlled read/write byte channel protocols, respec-
tively. Both ECP and EPP are commonly found on Enhanced IDE I/O PC cards.

The Bidirectional Parallel Port Interface uses 14 pins (see block diagram in Figure 16.1). The pins
include 9 control signals multiplexed in/out with PIO. The data lines are supported by either an
external 8-bit data register transceiver chip or bidirectional FIFO that is controlled by the I/O
Controller chip select pair, IoCS(7:6); the I/O read strobe; and the I/O write strobe. These pins also
include 2 external register control lines: One is used to clock the data from the PC to the printer port,
while the other enables the external register to the PC.

When used with two 8-bit external buffers/transceivers and a compliant physical connector, the
RC36100 Bidirectional Parallel Port Interface implementation meets the IEEE 1284 definition of a
compliant device. The RC36100 supports the following peripheral modes:

◆ Compatible (standard forward transfer)
◆ nibble (4-bit reverse transfer)
◆ byte (8-bit reverse transfer)
◆ ECP (Extended Capabilities Port) (forward and reverse interlocked handshake transfers with

arbitration for host/port control)
◆ EPP (Enhanced Parallel Port) (host controlled forward and reverse read/write-liketransfers)

The RC36100 also contains support for the negotiation phase necessary for transition between
the different modes. As described below, each mode has different phases associated with them:

Compatible Mode Phases are:
 1. Forward Data Transfer
 2. Forward Idle
 3. (Negotiation)
Nibble and Byte Mode Phases are:
 1. Forward Data Transfer
 2. Forward Idle
 3. Negotiation
 4. Host Busy Data Available
 5. Reverse Data Transfer
 6. Host Busy Data Not Available
 7. Reverse Idle
 8. Interrupt Host
 9. Terminate

Note: In nibble and byte modes, the RC36100 Centronics port always goes from state 3 -->
7 and then to state 8 --> 4, never from state 3 to 4. For data ready status, this requires the host
to poll using the 7/4 states, not in the 3/4 states.
�� � �

�����

�����	
���
�� ������	� ���� ��	���	�
ECP Mode Phases are:
 1. Forward Data Transfer
 2. Forward Idle
 3. Negotiation
 4. Setup
 5. Forward Idle
 6. Forward
 7. Forward to Reverse
 8. Reverse Idle
 9. Reverse
 10. Reverse to Forward
 11. Terminate

EPP Mode Phases are:
 1. Forward Data Transfer
 2. Forward Idle
 3. Negotiation
 4. Initial EPP Idle
 5. Address Read
 6. Data Read
 7. Address Write
 8. Data Write
 9. EPP Idle
 10. Terminate

Support for the compatible mode includes the three variations listed in Table 16.1.

Table 16.1 Compatible Forward Data Transfer Variations.

���
����
����
����
�����������������

� �� �� �� �����������������

The Parallel Port Interface is initially put into “compatible mode” after reset. While in compatible
mode, the host can send data out to the peripheral in a forward data transfer phase. To get into any of
the other modes that support reverse data transfers, the port must undergo a negotiation phase in
order to see if the port can support the requested mode. The Bidirectional Parallel Port Interface soft-
ware driver must also configure the compatible mode to one of the three supported modes (IBM,
classic, or standard) and to a data transfer option (DMA or interrupt per byte). Setting any of these
modes and options is done by writing to the mode register.

In the interrupt per byte mode, the RC36100 will read data from the external Centronics Data
Register each time it responds to a CentRdInt interrupt. In the DMA mode, the RC36100 will initialize
one of the Internal DMA Channel Controllers register to the start of the DMA operation. The Bidirec-
tional Parallel Port Interface software driver can be notified by interrupt when the DMA counter
reaches the terminal count.

The negotiation is indicated by:
 1. Host asserts 1284Active (nSelectIn) and de-asserts HostBusy (nAutoFd).
 2. The peripheral responds by bringing AckDataReq (PError), nDataAvail (nFault), Xflag (Select)

high and PtrClk (nAck) low.
 3. Host nStrobes 8-bit extensibility request value on the data lines and also brings HostBusy

(nAutoFd) high.
 4. Peripheral sets Xflag (Select) to a particular value, and in the nibble and byte modes,

nDataAvail (nFault) and AckDataReq (PError). Busy and Ptr (nAck) are set appropriately.

��������
 �����	����� ������
�

Centronics Classic Busy-after-Strobe Ack(2500 ns)-after-Busy

IBM/Epson Busy-after-Strobe Ack(2500 ns)-while-Busy

Standard 1284 Busy-while-Strobe Ack(500 ns)-in-Busy
�� � �

�����

�����	
���
�� ������	� ���� ��	���	�
After step 1, the peripheral will generate a CentNegInt interrupt. After step 3, the RC36100 is
interrupted by the Parallel Port Interface CentWrInt signal. The interrupt service routine must then
read the extensibility request value from the external Centronics Data Register and write the appro-
priate mode and response bits back to the Parallel Port Interface so that it can finish the negotiation.
If the extensibility link bit is asserted, then a second CentWrInt will occur during the negotiation.

A host request to return to compatibility mode, from any of the other modes, is indicated to the
RC36100 by the assertion of the CentRstInt interrupt.

������������������������ ����
��
��
��
�� ��������������������

When the host requests a two-nibble (8-bits total) transfer, the Parallel Port Interface interrupts
the RC36100 by asserting CentWrInt. The RC36100 responds by writing data to the Parallel Port's
Nibble Data Register. The Parallel Port Interface then sends the two nibbles out to the host over the
appropriate Centronics control lines in two consecutive nibble transactions.

���������������� ����
��
��
��
�� ��������������������

The Parallel Port Interface will interrupt the RC36100 by asserting CentWrInt when the host
requests a byte transfer. The RC36100 will respond by writing data to the external Centronics Data
Register.

Note: In Nibble and Byte Mode, the peripheral can arbitrate for the port, but only if it is left in
reverse idle phase.

�������������������������������� �� ����

����� ��� ��� ��� �������� ��� ��� ��� �
��
��
��
�� ��������������������

The ECP Mode allows both the host and the printer port to arbitrate for the bus and send
commands/data to each other. A maximum of 128 different channels (communication streams) are
supported by the protocol.

DMA and interrupt-per-byte options are supported for the ECP mode.
In the interrupt-per-byte option, the Parallel Port Interface will first assert CentRdInt for host read

or write requests, and then it will assert CentWrInt for host write requests or CentRdInt for host read
requests. The RC36100 will read or write from the external Centronics Data Register in response to
the interrupts.

In reverse transfer, in response to CentWrInt, the RC36100 needs to write to the Parallel Port's
Status Register (to the Busy bit) to indicate if it is sending a command or data byte, and also write the
data/command to an external Centronics Data Register.

In forward transfer, in response to CentRdInt, the RC36100 needs to read from the Parallel Port's
Command Register (nAutoFd bit) to see if the Centronics Data Register has a data or command byte.
Run Length Encoding (RLE) Compression/decompression, if implemented, must be done by the soft-
ware driver.

In the DMA transfer option, data will be transferred by an internal DMA channel as long as the
direction of the host requests matches the direction of the DMA. Software must handle Centronics
interrupts until the address and control is set up. Afterwards, a data stream can be handled by DMA.
CentWrInt will be asserted when the host requests data. CentRdInt will be asserted when the host
sends data or when the host sends a command byte.

����������������������������� ��� ��� ��� �������������������������� ����

�������� �������� ����� ����� ����� �
��
��
��
�� ������������������������

The EPP mode allows the host to address the printer port much like a read and writable memory
interface. However, as per the IEEE1284 specification, the peripheral can not initiate transfers in this
mode.

DMA and interrupt-per-byte options are supported for the EPP mode. In the interrupt-per-byte
option, the Parallel Port Interface will assert CentRdInt for host read requests, and will assert Cent-
WrInt for host write requests. The RC36100 will read or write from the external Centronics Data
Register in response to the interrupts.

CentWrInt will be asserted when the host requests data (from the IEEE1284 port to the host).
CentRdInt will be asserted when the host sends data or when the host sends an address byte. Soft-
ware must handle Centronics interrupts until the address and control is set up. Afterwards, a data
stream can be handled by DMA.
�� � �

�����

�����	
���
�� ������	� ���� 	
���
�
�! "
�	���#�� $ %&� '	(�	���
������������ ����
�
�
�
���������
� �
� �
� �
� �
��
��
��
�� ������������������������

The CPU control mode allows direct control of the peripheral signals by writing values to the Bidi-
rectional Parallel Port’s status register.

�����
��
��
��
��������������������������� ���� ���� ���� ������������������

To allow for higher data rates than those specified by the IEEE1284 Standard, the minimum
delay—such as on Strobe/Busy and Busy/Ack— can be programmed to lower values than the
minimum required by the standard.

�� ������������������������
��� � ��
��� � ��
��� � ��
��� � ������ ����� � � �

����������������

���������������� ��������!!!!��������

The Centronics Return to Compatibility Idle interrupt can be generated from the following condi-
tions:

◆ at the beginning of the negotiation mode phase. If generated due to the start of the negotia-
tion phase, then the Negotiation Interrupt Pending field (bit 11) of the control register will be
set.

◆ when the Initialize Negated field (nInit) is asserted and the Select In Negated field (nSelectIn,
1284Active) is not asserted. If generated due to the assertion of the nInit field bit, the
iprime Interrupt Pending field (bit 14) of the control register will be set.

Note: When the reset Interrupt pending field is set, the iprime Interrupt field may or may not
be set, depending on the state of the nInit field bit.

◆ when the peripheral returns to the compatibility mode idle. If generated because a return to
the compatibility mode phase has occurred, then the reset interrupt pending field (bit 9) of
the control register will be set.

Note: A return to the compatibility idle phase may be caused when the nInit field (bit 2 of the
Centronics Host Status Register) is asserted while the nSelectIn (bit 1 of the Host Status
Register, 1284 Active) field is not asserted and the Bidirectional Parallel Port has not been set
to the CPU control mode. Termination (either valid or immediate) of one of the IEEE 1284 modes
will also cause a return to the compatibility mode.

To clear a CentRtcInt interrupt generated by the peripheral, write 1 to the appropriate pending bit
(bit 9, bit 11, or bit 14) of the control register in the parallel port interface, write 1 to bit 12 of the inter-
rupt pending register 0 in the interrupt controller.

���������������� � � � �!!!!��������

The Centronics Read Interrupt will be generated during a forward transfer1 phase to read informa-
tion from an external Centronics data register into the peripheral. To clear a CentRdInt interrupt
generated by the peripheral, write 1 to bit 14 of the interrupt pending register 0 in the interrupt
controller.

�����������������"�"�"�"�!�!�!�!��������

The Centronics Write Interrupt will be generated during a negotiation to read an extensibility
request value from an external Centronics data register. This interrupt will also be generated during a

reverse transfer1 phase to write information to an external Centronics data register from the periph-
eral. To clear a CentWrInt interrupt generated by the peripheral, write 1 to bit 13 of the interrupt
pending register 0 in the interrupt controller.

####����$ $ $ $ ���� � � � �%%%%

A DMA Read Request is generated during a forward transfer1 phase to read information from an
external Centronics data register and write it to the DMA target location.

1. Depending on the parallel port mode, a transfer can be data, commands, or addresses.
�� �)

�����

�����	
���
�� ������	� ���� ��
 %	�
��#���
�
####����$$$$"�"�"�"� ����%%%%

A DMA Write Request is generated during a reverse transfer1 phase to write information read
from a DMA source location to an external Centronics data register.

!�� �����!�� �����!�� �����!�� ���������������������������������
Note that the following pin descriptions are given in terms of the Centronics Modes. Actually, each

mode has various phases that may further define the functionality of the signal. Please refer to IEEE
1284 Standard for additional detail.

������������������������������������

������������ �������������������������������� ����

����� �� �� �� �����������������

������������� !� !� !� !����������������&�&�&�&��������� '�'�'�'���������������������

�������������'�'�'�'��
���
���
���
����� !!!!��������(�(�(�(�

(Aliases: nStrobe, HostClk, nWrite)
Centronics Strobe:
Compatibility: Data strobe.
Nibble: Acknowledges reverse data transfer.
Byte: Acknowledges reverse data transfer.
ECP: Handshakes with Busy.
EPP: Indicates Address write or Data write.

����������������$$$$����)))) *(*(*(*(�����(�(�(�(����

(Aliases: nAck PtrClk, PeriphClk, Int)
Centronics Acknowledge:
Compatibility: Data Acknowledge.
Nibble: Data Acknowledge.
Byte: Data Acknowledge.
ECP: Handshakes with HostAck.
EPP: Active High Interrupt.

�����������������(�(�(�(�������� *(*(*(*(�����(�(�(�(����

(Aliases: Busy PtrBusy, PeriphAck, nWait)
Centronics Busy:
Compatibility: Active high indication that the peripheral is busy.
Nibble: In later phases of nibble mode, Data bit 3 and 7.
Byte: Active high indication that the peripheral is busy.
ECP: Flow control in the forward direction, Command/Data bit in the reverse direction.
EPP: Active low wait signal delaying an address or data.

���
��
��
��
� ****(�(�(�(�����(�(�(�(�

(Aliases: PError, AckDataReq, nAckReverse)
Centronics PaperError:
Compatibility: When asserted with nFault, indicates a Paper Error. Additional uses during other

phases including 1284Support.
Nibble: Data bits 2 and 6.
Byte: Same as nFault.
ECP: Request nReverseRequest.
EPP: User Defined (unused).

�������������'�'�'�'�������������������� *(*(*(*(�����(�(�(�(����

(Aliases: Select Xflag, Xflag)

��������������������

������������� '� '� '� '��������������������++++

Compatibility: Peripheral is on line. In other phases, the Extensibility Flag (XFlag).

1. Depending on the parallel port mode, a transfer can be data, commands, or addresses.
�� � �

�����

�����	
���
�� ������	� ���� ��
 %	�
��#���
�
Nibble: Data bits 1 and 5.
Byte: Peripheral is on line. In other phases, the Extensibility Flag (XFlag).
ECP: In some phases, the Extensibility Flag (XFlag).
EPP: User Defined (unused).

�������������$�$�$�$(�(�(�(�
,
,
,
,������������ !!!!��(��(��(��(����

(Aliases: nAutoFd HostBusy, HostAck, nDStrb)

��������������������

������������� $� $� $� $((((����

 ,,,,������������++++

Compatibility: Typically indicates auto linefeed mode, but often unused or redefined. Also used
during Negotiation Phase as HostBusy.

Nibble: Typically indicates auto linefeed mode. In other phases, used for several purposes.
Byte: Typically indicates auto linefeed mode. In other phases, used for several purposes.
ECP: Handshakes with PeriphClk.
EPP: Denotes data cycle.

����������������!!!!������������ !!!!�����(�(�(�(����

(Aliases: nInit, nReverseRequest)

��������������������

������������� !� !� !� !����������-�+������-�+������-�+������-�+

Compatibility: When pulsed with 1284Active de-asserted, resets to idle phase.
Nibble: When pulsed with 1284Active de-asserted, resets to idle phase.
Byte: When pulsed with 1284Active de-asserted, resets to idle phase.
ECP: Host allows the peripheral to drive the bi-directional data signals.
EPP: When asserted, resets to compatibility mode.

�������������,��,��,��,�((((�������� *(*(*(*(�����(�(�(�(����

(Aliases: nFault nDataAvail, nPeriphRequest)

��������������������

������������� ,�(�� ,�(�� ,�(�� ,�(�����++++

Compatibility: Set low indicating an error. In other phases, set high to ack 1284, data available.
Nibble: Data bits 0 and 4.
Byte: Set low indicating an error. In other phases, set high to ack 1284 and data available.
ECP: Peripheral requests communication with host which host may chose to ignore.
EPP: User defined (unused).

�������������'�'�'�'�����������������!�!�!�!���� !!!!��(��(��(��(����

(Aliases: nSelectIn 1284Active, 1284Active, nAStrb)

��������������������

������������� '� '� '� '�������������������� !!!!��������(�(�(�(�++++

Compatibility: Selects this peripheral (if Centronics is shared). In some phases, indicates
1284Active.

Nibble: Selects this peripheral (if Centronics is shared). In some phases, indicates 1284Active.
Byte: Selects this peripheral (if Centronics is shared). In some phases, indicates 1284Active.
ECP: Active high, if de-asserted, return to compatibility mode.
EPP: Indicates an address cycle.

������������������������������������

������������ �������������������������������� ����

�������� �����������
���
���
���
���������������� �� ������������
�
�
�
����� !!!!����������������&�&�&�&���������
'�'�'�'���������������������

��������������������'�'�'�'�////+
+
+
+
���� *(*(*(*(�����(�(�(�(����

Centronics I/O Chip Select: Use either 1 or both of the IoCS(7:6) pins to create this signal. The
RC36100 uses this active low signal to select the externally provided 8-bit Centronics Data Register/
Transceiver. With some types of transceivers, CentCS(7:6) must both be used and/or they must be
externally gated with CentRdStrobe and or CentWrStrobe.
�� � *

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
����������������"�"�"�"�'�'�'�'��
���
���
���
�� *(*(*(*(�����(�(�(�(����

Centronics Write Strobe: Use IoWrStrobe to create this signal. The RC36100 uses this active
low signal to write data into a registered transceiver so that the host may later retrieve the data. The
transceiver must also be gated with an appropriately programmed IoCS().

���������������� � � � �*�*�*�*����� *(*(*(*(�����(�(�(�(����

Centronics Read Output Enable: Uses IoRdStrobe to create this signal. The RC36100 uses this
active low signal to read data into the peripheral from the registered transceiver which the host had
previously stored. The transceiver must also be gated with an appropriately programmed IoCS().

����������������.
.
.
.
��������'�'�'�'�����

�������� *(*(*(*(�����(�(�(�(����

Centronics Host Strobe: This signal is similar to CentStrobe, but it is active high and gated for
actual host data writes, since CentStrobe is also used by various IEEE 1284 modes to acknowledge
actions other than writes. Active high output is attached to an external registered transceiver in order
to clock/latch-enable the data from the host into the registered transceiver. The CentHostStrobe pin is
multiplexed with a PIO pin, and thus the PIO pin must be programmed to the CentHostStrobe special
effect and to be an output.

����������������.
.
.
.
��������****�������� *(*(*(*(�����(�(�(�(����

Centronics Host Output Enable: Active low output attached to an external registered data trans-
ceiver in order to allow the host to read data from the registered transceiver. The CentrHostOEn pin
is multiplexed with a PIO pin, and thus the PIO pin must be programmed to use the CentHostOEn
special effect and to be an output.

�������������������������������� �����"���������"���������"���������"��������
 Table 16.2 lists the Bidirectional Parallel Port Interface addresses and descriptions. Note that Big

Endian software must offset these addresses by b’10 (0x2).

Table 16.2 Bidirectional Parallel Port Interface Centronics Controller Registers.

�.��/ ����	�� %	�
��#���

0xFFFF_EC00 Centronics Sub Mode Register

0xFFFF_EC04 Centronics Status Register

0xFFFF_EC08 Centronics Control Register

0xFFFF_EC0C Centronics Nibble Data Register

0xFFFF_EC10 Centronics Host Status Register

0xFFFF_EC14 Centronics Minimum Delay Register

0xFFFF_EC18 Centronics LSB Host time-out Register

0xFFFF_EC1C Centronics MSB Host time-out Register

0xFFFF_EC20 Centronics LSB Host time-out Counter

0xFFFF_EC24 Centronics MSB Host time-out Counter
�� � -

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
��������������������

������������� '� '� '� '(�(�(�(� ����

�������� ����������������������������
����0000�������������'�'�'�'(�(�(�(�����
�
�
�
�� � � � ��������1111����

Figure 16.2 Centronics Sub ModeRegister (‘CentSubModeReg’).

Additional programming information and instructions for the Centronics Sub Mode Register are
located in Figure 16.2, Table 16.3, and Table 16.4.

Table 16.3 Centronics Sub ModeRegister (‘CentSubModeReg’) Bit Assignments.

��������������������

������������� �� �� �� �
���
���
���
����������������������� ''''(�(�(�(� ����
��
��
��
��� �� �� �� �0000'('('('(��������

��������1111���� ,�,�,�,�������������

Table 16.4 Centronics Compatible Sub Mode (‘SubMode’) Field Encoding.

��������������������

������������� '� '� '� '������������((((� � � � ����������������������������
����0000�������������'�'�'�'������������(�(�(�(� ��������1111����

Figure 16.3 Centronics Status Register (‘CentStatusReg’).

The Centronics Status Register is shown in Figure 16.3. Additional programming information and
instructions for this register are located in Table 16.5, Table 16.16, Table 16.17, Table 16.18, Table
16.19, Table 16.20, Table 16.9, Table 16.10, Table 16.11, Table 16.12, and Table 16.13.

��� %	�
��#���

1:0 CMode

����	 �
���

‘11’ Classic Centronics.

‘10’ Reserved.

‘01’ IBM/Epson.

‘00’ Standard 1284 (default).

Note: See Table 16.1 for more information.

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
SubMode

2

'0''0'

14

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
BusynAcknFaultSelectBufful Per nPer

ReqAck
PError

8 1 1 1 1 1 1 1 1
'0'
�� � 0

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�

Table 16.5 Centronics Status Register (‘CentStatusReg’) Bit Assignments.

�������������������������������� �� ����

�������� ����((((&&&&&&&&�������� ,(,(,(,(�������� ��������((((&&&&,,,,(�(�(�(�����

Through software, while in the ECP mode, the BufFul bit in the status register can be used to indi-
cate whether the peripheral buffer is full. If the BufFul bit is set, then the Centronics Parallel Port
Interface will hold off forward transfers, and the host side will then be unable to continue transferring
data, preventing peripheral buffer overrun.

Table 16.6 ECP Buffer Full Field

�������������������������������� �� ������������������������������������� $�� $�� $�� $�)�)�)�)�
2�
2�
2�
2����������������� ,,,,���������������� ��������������������$�$�$�$�))))����

Note that in the ECP mode status register, the nPerReq and nPerAck fields are used to replace
nFault and Busy fields, respectively. This eases software driver development, because nFault and
Busy fields do not need to be saved when the parallel port changes from compatibility mode to ECP
mode.

Table 16.7 ECP Peripheral Acknowledge Field

�������������������������������� �� �� �%�%�%�%((((������������ ,,,,���������������� �������������������� �%�%�%�%����

Table 16.8 ECP Peripheral Request Field

��� %	�
��#���

7 ECP Peripheral Buffer Full (BufFul)

6 ECP Peripheral Acknowledge (PerAck)

5 ECP Peripheral Request Negated (NPerReq)

4 Printer Error (PError)

3 Printer On Line Select (Select)

2 Printer Fault Negated (nFault)

1 Printer is Acknowledging Negated (nAck)

0 Printer is Busy (Busy)

����	 �
���

‘1’ Peripheral buffer full during forward transfer in ECP mode.

‘0’ Peripheral buffer not full during forward transfer in ECP mode.

����	 �
���

‘1’ Reverse transfer Data in ECP mode.

‘0’ Reverse transfer Commands in ECP mode.

����	 �
���

‘1’ Peripheral request communication with the host in ECP mode.

‘0’ Peripheral not request communication with the host in ECP mode.
�� � �1

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
���������������������������� ���������
��
��
��
� ����0��0��0��0����������

�1�1�1�1� ,�� ,�� ,�� ,�������������++++

Table 16.9 Printer Error Field (‘PError’) Field Encoding.

���������������������������� ****���� 3333��������� '� '� '� '�������������������� ����0000'��'��'��'��������������1111���� ,,,,����������������++++

Table 16.10 Select (‘Select’) Field Encoding.

���������������������������� ,�,�,�,�((((�� ��� ��� ��� �0000,�(�,�(�,�(�,�(�����1�1�1�1� ,,,,����������+��+��+��+

Table 16.11 Printer Fault (‘Fault’) Field Encoding.

���������������������������� $�$�$�$�)�)�)�)�
2�
2�
2�
2����������������� ������������������������� �� �� �� �0000$�$�$�$�))))����1111���� ,,,,����������������++++

Table 16.12 Printer Acknowledge Negated (‘AckN’) Field Encoding.

���������������������������� ����((((�������� �0�0�0�0�(�(�(�(��������1�1�1�1� ,,,,����������������++++

Table 16.13 Printer Busy Field (‘Busy’) Encoding.

��������������������

������������� �� �� �� �
���
���
���
���
�
�
�
� ������������������������� �� �� �� �0000��������������������

���
���
���
���
���� ��������1�1�1�1�

Figure 16.4 Centronics Control Register (‘CentControlReg’).

����	 &	�
�
+

‘1’ Printer Error

‘0’ Normal (default).

����	 &	�
�
+

‘1’ Printer on line

‘0’ Printer off line (default).

����	 &	�
�
+

‘1’ Printer Fault

‘0’ Normal (default).

����	 &	�
�
+

‘1’ Normal

‘0’ Printer Acknowledge (default).

����	 &	�
�
+

‘1’ Printer Busy

‘0’ Printer not Busy (default).

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
NegModeNegRep

IPrime
Pending‘0’ 0 DMA

Int
Nib
ID

HBDA
En

31111111

Reset
En

Reset
Pend

Neg
En

Neg
Pend

CS(6)
Mask

CS(7)
Mask

1 1 1 1 1 1
�� � ��

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
Figure 16.4 illustrates the Centronics Control Register and its fields. Field encoding values are
given in Table 16.14, Table 16.24, and Table 16.25.

Table 16.14 Centronics Control Register (‘CentControl’) Bit Assignments.

!!!!�������������������� !!!!��������������������((((�������� ���������������������������� ,,,,����������������

Table 16.15 Iprime Interrupt Pending Field Encoding

The Iprime interrupt is generated when the host asserts the nInit signal and the nSelectIn
(1284Active) is high. When this occurs, all of the parallel port state machines will be reset. The Iprime
Interrupt Pending field fit is set whenever the host has asserted nInit and the nSelectIn signal is not
asserted.

Thus, bit 14—together with bit 9 and bit 11 of the control register—can be used to determine the
cause of a CentRtcInt interrupt. If bits 14 and 9 are both set, then the CentRtcInt interrupt is caused
by the assertion of the nInit signal while nSelectIn is not asserted and the peripheral is not in the CPU
control mode. If only bit 9 is set to 1, then the CentRtcInt interrupt is caused by the termination of one
of the IEEE 1284 modes.

!!!!

�'�'�'�'����////����4444 !!!!

����'�'�'�'�

� ���� ���� ���� ���)))) ������������������������

Typically, a system using the RC36100 bidirectional centronics interface will use an external buffer
to buffer data between the CPU bus and the Centronics port. These bits control whether one or both
of IoCS(7:6) signals are used to control that buffer. The most common strategy is to use one IoCS for
reads and one for writes; although, other systems may simply use one IoCS and decode reads or
writes from the control bus.

In addition, when writing to the external Centronics data register, SysAddr(15) must be low.

��� %	�
��#���

14 Iprime Interrupt Pending Field (Iprime Pending)

13 IoCS(7) Mask Enable

12 IoCS(6) Mask Enable

11 Negotiation Interrupt Pending

10 Negotiation Interrupt Enable

9 Reset Interrupt Pending

8 Reset Interrupt Enable

6 DMA or Interrupt in ECP/EPP mode

5 Nibble ID mode supported

4 Host busy data available (HBDA) enable

3 Negotiation XFlag Reply (NegRep)

2:0 Negotiation Mode (NegMode)

����	 �
���

1
On read, Iprime interrupt pending

On write, clear Iprime interrupt

0
On read, no Iprime interrupt pending

On write, do not change current interrupt state
�� � ��

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�

Table 16.16 IoCS(7:6) Mask Enable Field Encoding

��������������������

���������������� ������������
�
�
�
�����������������

���� !!!!��������������������((((�������� ����������������������������

Table 16.17 Centronics Negotiation Interrupt Pending Field.

��������������������

���������������� ������������
�
�
�
�����������������

���� !!!!��������������������((((�������� ������������������������

Table 16.18 Centronics Negotiation Interrupt Enable Field.

��������������������

���������������� ���������������� !!!!��������������������(�(�(�(����� ����������������������������

Table 16.19 Centronics Reset Interrupt Pending Field.

��������������������

���������������� ���������������� !!!!��������������������(�(�(�(�� �� �� �� ���������������������

Table 16.20 Centronics Negotiation Interrupt Enable Field.

����	 �
���

'1' Use IoCS for Centronics (SysAddr(15) must be low on writes)

'0' Don't use IoCS for Centronics

����	 �
���

'1'
On reads, means negotiation interrupt is pending.

On writes, clears the pending interrupt.

'0'
On reads, means no negotiation interrupt is pending.

On writes, means do not change current interrupt state.

����	 �
���

'1' Signal Pending Negotiation Interrupts to the interrupt controller.

'0' Do not signal the interrupt controller (default).

����	 �
���

'1'
On reads, means reset interrupt is pending.

On writes, clears the pending interrupt.

'0'
On reads, means no reset interrupt is pending.

On writes, means do not change current interrupt state.

����	 �
���

'1' Signal Pending Reset and Pending iprime Interrupts to the interrupt controller.

'0' Do not signal the interrupt controller (default).
�� � ��

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
####����$$$$

� !� !� !� !�����������������(��(��(��(����� ,,,,���������� ��� ��� ��� ����� ������������5555��� ���� ���� ���� �
��
��
��
��

Table 16.21 DMA or Interrupt in ECP/EPP Mode Field Encoding

When this field is set to 1, in forward ECP mode or in EPP mode, all data transfers are DMA
based and command transfers (in forward ECP mode) or address (in EPP mode) transfers are inter-
rupt based.

Note: The reverse ECP mode is not affected by setting this field.

In forward ECP mode or in EPP mode, if DMA is desired, then this field must be set to 1. Other-
wise, if this field is set to 0, then interrupt-per-byte is used for all transfers, including data, commands,
or addresses. For other modes, this field is don’t care. Either interrupt based or DMA based can be
used to perform transfers depending on the setup in the interrupt or DMA controllers.

������������������������ !!!!#### �
�
�
�
�������� ,,,,����������������

Table 16.22 Nibble ID Mode Field Encoding

During Negotiation, if the Centronics Parallel Port is to support the Nibble ID mode, then set the
Nibble ID Field in the control register to 1, set NegRep Field to 0, and set the negotiation mode field
to the nibble mode (001).

....

�������� ����((((�������� #�#�#�#��������� $$$$6�6�6�6������������������������� ������������������������ ,,,,���������� ��� ��� ��� �....����####$$$$����

Table 16.23 Host Busy Data Available Enable Field Encoding

When the host busy data available is true in nibble, byte, nibble ID, or byte ID mode, setting this
field to 1 enables more efficient reverse transfers. If this field is not enabled when host busy data
available is true, then the reverse transfer will still occur, however, more delay will be incurred than
when enabled. Note that this field must be set to 0 when the host busy data available is not true.

����	 �
���

1
In ECP mode forward transfer, use DMA for data and Interrupt for commands.

In EPP mode, use DMA for data and interrupt for addresses

0
In ECP mode forward transfer, use interrupt for data or commands.

In EPP mode forward transfer, use interrupt for data or addresses

����	 �
���

1 Nibble ID mode is supported

0 Nibble ID mode is not supported

����	 �
���

1 Host Busy data available is enabled

0 Host Busy data available is not enabled
�� � ��

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
���
����
����
����
�����������������

���� 7,7,7,7,������������ ���������������� ����0000������������ ��������1111���� ,,,,����������������++++

Table 16.24 Negotiation XFlag Reply (‘NegRep’) Field Encoding.

���
����
����
����
�����������������

���� ����

�������� ����0000����������������
�
�
�
�����1111���� ,,,,����������������++++

Table 16.25 Negotiation Mode (‘NegMode’) Field Encoding.

During negotiation, if nibble mode is not supported, write 1 to the NegRep field and 111 (termina-
tion) to the NegMode field in the control register. For any other unsupported IEEE 1284 modes
(including nibble ID), write 0 to the NegRep field and 111 (termination) to the NegMode field in the
control register.

If nibble mode is supported, write 0 to the NegRep field and 001 (nibble) to the NegMode field. If
nibble ID is supported, write 0 to NegRep field, 001 (nibble) to NegMode field, and 1 to the nibble ID
field in the control register. For all other supported IEEE 1284 modes, write 1 to the NegRep field and
then write to the appropriate Negotiation Mode field in the control register.

��������������������

���������������� ������������������������ #�#�#�#��������� ���������������������������� �0�0�0�0��#�#�#�#��������� ��������1�1�1�1�

Figure 16.5 Centronics Nibble Data Register (‘CentNibbleDataReg’).

The Centronics nibble data register cannot be written to until the peripheral recognizes the Cent-
WrInt signal generated to request nibble data for a reverse transfer in nibble mode. During the nibble
mode reverse transfer, two consecutive nibbles of data are taken from this register and transferred
using four parallel interface control lines.

����	 �
���

‘1’
Nibble Mode: mode requested not supported.

Other Modes: mode requested supported (default).

‘0’
Nibble Mode: mode requested supported.

Other Modes: mode requested not supported.

����	 �
���

b‘111’ Termination

b’110’ Extensibility Link

b’101’ CPU Control

b’100’ EPP

b’011’ ECP

b’010’ Byte

b’001’ Nibble

b’000’ Compatible (default)

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9

LS Nibble Data

4

'0'

8

MS Nibble Data

4

�� � �)

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
Table 16.26 Centronics Nibble Data Register (‘CentNibbleDataReg’) Bit Assignments.

Figure 16.5 and Figure 16.6 are illustrations of the Centronics Nibble Data and Host Status Regis-
ters. Additional programming instructions for these registers are located in Table 16.26, Table 16.27,
Table 16.28, Table 16.29, Table 16.30, Table 16.31.

��������������������

���������������� .
.
.
.
�� '�� '�� '�� '������������(�(�(�(� ���������������������������� ����0000����������������....
�
�
�
��'�'�'�'������������((((� � � � ��������1111����

Figure 16.6 Centronics Host Status Register (‘CentHostStatusReg’).

Table 16.27 Centronics Host Status Register (‘CentHostStatusReg’) Bit Assignments.

$$$$((((����

,,,,������������ ���������������������������� ����0000�$�$�$�$(�(�(�(�
,
,
,
,���������1�1�1�1���� ,,,,����������������++++

Table 16.28 AutoFeed Negated (‘nAutoFeed’) Field Encoding.

!!!!����������������������������----���� ���������������������������� ����0000����!!!!������������1111���� ,,,,����������������++++

Table 16.29 Initialize Negated (‘nInit’) Field Encoding.

��� %	�
��#���

7:4 Most Significant Nibble Data

3:0 Least Significant Nibble Data

��� %	�
��#���

3 AutoFeed Negated (nAutoFd)

2 Initialize Negated (nInit)

1 Select In Negated (nSelectIn)

0 Host Strobe Negated (nStrobe)

����	 &	�
�
+

‘1’ Normal (default).

‘0’ AutoFeed mode.

����	 &	�
�
+

‘1’ Normal (default).

‘0’ Initialize the printer.

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
nStrobe

112

nSelect
In

nInitnAuto
 Fd

111

'0'
�� � ��

�����

�����	
���
�� ������	� ���� '	+���	� %	,�
����
�
''''�������������������� !!!!���� ���������������������������� �0�0�0�0����''''�����������������!��!��!��!�1111���� ,,,,����������������++++

Table 16.30 Select In Negated (‘nSelectIn’) Field Encoding.

....

����� '� '� '� '��
��
��
��
�������� ���������������������������� ����0000����''''��������

��1��1��1��1� ,�� ,�� ,�� ,�������������++++

Table 16.31 Host Strobe Negated (‘nStrobe’) Field Encoding.

��������������������

������������� ��� ��� ��� ��������������((((���� ####���������������� ������������������������� �� �� �� �0000�������������#�#�#�#������� ��� ��� ��� ��������1111����

Figure 16.7 Centronics Minimum Delay Register (‘CentDelayReg’).

The Centronics Minimum Delay Register allows programmable parallel port interface delay timing.
The D500ns field is used for minimum delays in IEEE 1284 modes, while the D2500ns field is used
for minimum delays in the compatibility mode.

Figure 16.7 is an illustration of the Centronics Minimum Delay Register. Refer to Table 16.32,
Table 16.33, Table 16.34, and Table 16.35 for additional programming information.

Table 16.32 Centronics Minimum Delay Register (‘CentDelayReg’) Bit Assignments.

����	 &	�
�
+

‘1’ Don’t select this printer (default).

‘0’ Select this printer.

����	 &	�
�
+

‘1’ Host Strobe pulse de-asserted (default).

‘0’ Host Strobe pulse asserted.

��� %	�
��#���

15 Reserved. Must be written as ‘0’.

14:8 200ns Delay Type Field (D500ns)

7 Reserved. Must be written as ‘0’.

6:0 2500ns Delay Type Field (D2500ns)

15 0 7 6 8 5 4 3 2 114 13 12 11 10 9
D2500ns'0'

1

'0'

1 77

D500ns
�� � �*

�����

�����	
���
�� ������	� ���� 2�3�
+ %��+��3
89898989:::::�:�:�:����� ####���� ������ ������ ������ ���������� ,�,�,�,������������� ����0000####88889::�9::�9::�9::�����1111� ,�� ,�� ,�� ,�������������++++

Table 16.33 2500ns Delay Type Field (‘D2500ns’) Field Encoding.

9:9:9:9:::::�������� #�#�#�#������������� ���������������� ,,,,���������������� �0�0�0�0#9#9#9#9:::::�:�:�:�����1111���� ,,,,����������������++++

Table 16.34 500ns Delay Type Field (‘D500ns’) Field Encoding.

Table 16.35 Example Settings for Delay Type Fields.

3333'�'�'�'�5555�'�'�'�'���� .
.
.
.
�������� ����������������;;;;****((((���� ����������������������������

The 16-bit LSB Host Time-Out Counter register and the 10-bit MSB Host Time-Out Counter
register form a 26-bit compare register. When the value set in these two registers equals the host
time-out counter value, a host time-out occurs. Both registers must be set to an appropriate value so
that the peripheral has a host time-out delay of one second. This 26-bit host time-out counter allows
maximum parallel port input clock frequencies of 67.11 MHz with a one second host time-out delay.

3333'�'�'�'�5555�'�'�'�'���� .
.
.
.
�������� ����������������;;;;****((((���� ����
(
(
(
(���������������� ����������������������������

The 16-bit LSB Host Time-Out Counter and the 10-bit Host Time-Out Counter form a 26-bit host
time-out counter, which is readable/writable when the host time-out counter is enabled during host
response time period for interface testing purposes. This counter is for diagnostic purposes only and
is not intended to be read from or written to by users.

#����� ��#����� ��#����� ��#����� ����������������������
Figure 16.8 illustrates a typically classic compatible mode transaction.

Note: All Centronics signals are generated or sampled on the falling edge of SysClk.

����	 �
���

‘0x7f’ 0x7f clock delay.

...

'0x01’ 0x01 clock delay.

‘0x00’ undefined. (default).

����	 �
���

‘0x7f’ 0x7f clock delay.

...

0x01’ 0x01 clock delay.

‘0x00’ undefined. (default).

 � � � �4444 &&&&55556666 �)11
��)11
��)11
��)11
�)11
)11
)11
)11
����

33 0x53 0x11

25 0x3f 0xOd

20 0x32 0xOa

16 0x28 0x08
�� � �-

�����

�����	
���
�� ������	� ���� ����	3 78�3#�	
Figure 16.8 Typically Classic Compatible Mode Transaction.

$%���� &$%���� &$%���� &$%���� &''''��������������������
Figure 16.9 illustrates typical parallel port system connections.

Figure 16.9 Typical Parallel Port System Connections.

Note: The virtual address for the external Centronics data register write clock, IoCS(7), (in
this example, FCT16-952) must have address bit 15 low.

CentStrobe

CentAck

CentBusy

IoCS

ACKN

BUSY

PAPEROUT

SELECT

FAULT

DSTROBE

AUTOFEED

INPRM

SELECTIN

D(7:0)
SysData(7:0)

CentAck

CentBusy

CentPaperError

CentSelect

CentFault

IoCS(6)

CentStrobe

CentAutoFeed

CentInit

CentSelectIn

OE

3085 drw 08.1.1x

CentHostStrobe
CLKIoCS(7) CLK

CentHostOEn

FC
T1

6-
95

2

FC
T2

44
FC

T2
44

RC36100
�� � �0

�����

�����	
���
�� ������	� ���� ����	3 78�3#�	

�� � �1

�����

����� �����	
��	����

	�
 ����� �
������

��
���� ��
��������������������	
�����	
�����	
�����	
�����
There are a number of initialization selectable features in the RC36100. These mode selectable

features are determined by the polarity of the appropriate reset configuration mode inputs, when the
rising edge of SysReset occurs.

This chapter discusses the reset initialization sequence that is required by the RC36100 and includes
information on the processor’s configuration mode selectable features and the boot program software
requirements.

���� ������ ������ ������ ������������������
The RC36100 requires a very simple reset sequence. There are only two concerns for the system

designer:
◆ That the set-up and hold time requirements of the reset configuration mode feature inputs with

respect to the rising edge of SysReset are met.
◆ That the minimum SysReset pulse width is satisfied.

���� ����� ����� ����� ���������
����
����
����
��������������� ����� ����� ����� ��				���� ����������������

������������
The RC36100 has features that are determined at reset time. This is achieved by using a latch

internal to the CPU: this latch samples the contents of the reset mode feature bus at the negating edge
of SysReset. The encoding of the mode selectable features on the reset mode feature bus is described
in Table 17.1.

Table 17.1 RC36100 Reset Configuration Mode Features

���� ����� ����� ����� ���������
����
����
����
��������������� ����� ����� ����� ��				� ��� ����������� ��� ����������� ��� ����������� ��� ������������������

�����������������������������	�	�	�	 ������������	
	
	
	
��������

�������������������������������� ����	��	��	��	������

System Reset is an active-low-input master processor reset signal that initializes the processor. The
processor’s optional features are established during the last cycle of reset, using the reset configuration
mode inputs from ExcSInt(2:0).

��������������������				������������������������ ����	��	��	��	������

Exception Synchronized Interrupt: These signals are the same as the RC3051 SInt(2:0) signals
except for the Reset Configuration Modes.

��� �	
� ��
����

ExcSInt(0) LittleEndian/BigEndian

ExcSInt(1) BootProm16

ExcSInt(2) BootProm8
�� � �

�����

����� �����
���
��	�
�
 ����� ��	����� ����� ���
��	�
Table 17.2 Boot Prom Reset Configuration Modes for ExcSIntN(2:1) pins.

Note: The values of the Reset Initialization Vector for the Boot PROM are inverted relative
to the internal size field in the configuration register of the Memory Controller.

����������������������������	�	�	�	��
�
�
�
				

Use Little Endian Addressing: if asserted (active high), the processor will operate as a little-endian
machine, and the RE bit of the status register would then allow user-mode big-endian tasks to
operate in a little-endian system. If negated (inactive high), the processor will operate as a big-endian
machine, and the RE bit will allow little-endian user-mode tasks to operate on a big-endian machine.

 ���������!�!�!�!��������"#"#"#"#

8-bit Boot PROM Mode: If asserted (active low), this mode will cause the Memory Controller to
initialize memory chip selects, MemIoCs(0), sub-regions to 8-bit ports instead of 32-bit ports. Thus,
an 8-bit boot PROM can be used to initialize the RC36100. If both BootProm8 and BootProm16 are
asserted low, then the Memory Controller will initialize the Memory Chip select pair, MemIoCs(1:0), to
use interleaved 32-bit ports. Table 17.2 shows the encoding of this bit at reset.

 ���������!�!�!�!��������"�$"�$"�$"�$

16-bit Boot PROM Mode: If asserted (active low), this mode will cause the Memory Controller to
initialize memory chip select MemIoCs(0) to 16-bit ports instead of 32-bit ports. A 16-bit boot PROM
can be used to initialize the RC36100. If both BootProm8 and BootProm16 are asserted low, then the
Memory Controller will initialize the Memory Chip select pair, MemIoCs(1:0), to use interleaved 32-bit
ports.

�������������������%���%���%���%���� ��������������������� �� �� �� �&&&&��������'
'
'
'
�����	�	�	�	���� ((((����������������

The RISCore32 series features a number of modes, which are selected at Reset time. Although
most of those modes are irrelevant, a number of equivalences can be made:

◆ IBlkSize = 4 word refill.
◆ DBlkSize = 1 or 4 word refill, depending on the DBlockRefill mode as selected in the CP0

Cache Configuration register.
◆ Reverse Endianness capability enabled.
◆ Instruction Streaming enabled.
◆ Partial Word Stores enabled.

Other modes of the RISCore32 series pertain primarily to its cache interface, which is incorpo-
rated within the RC36100 and transparent to users of this processor.

���� ������� ������� ������� �����������������������
While Reset is asserted, the processor maintains its interface in a state that allows the rest of the

system to also be reset. Specifically:
◆ SysClk operates at one-half the ClkIn frequency.
◆ SysData() is tri-stated
◆ SysALEn is driven de-asserted (high).
◆ Control signals are driven de-asserted (high).
◆ SysAddr() and SysDiag functions are driven (value undefined).

�
��� ��������	�

‘11’ 32-bit wide (non-interleaved) Boot Prom

‘10’ 16-bit wide Boot Prom

‘01’ 8-bit wide Boot Prom

‘00’ 64-bit wide (interleaved 32-bit wide) Boot Prom
�� � �

�����

����� �����
���
��	�
�
 ����� ��	����� �		� !	"�#
�� ��$����%����
The RC36100 samples for the negation of SysReset relative to a falling edge of SysClk. On a
rising edge of SysClk, 6 cycles after the negation of SysReset is detected, the processor initiates a
read request for the instruction located at the Reset Exception Address Vector. These cycles are a
result of:

◆ SysReset input synchronization performed by the CPU. The SysReset input uses special
synchronization logic, thus allowing SysReset to be negated asynchronously to the pro-
cessor. This synchronization logic introduces a two cycle delay between the external nega-
tion of SysReset and the negation of SysReset to the execution core.

◆ Internal clock cycles in which the execution core flushes its pipeline, before it attempts to
read the exception vector.

◆ One additional cycle for the read request to propagate from the internal execution core to the
read interface, as described in Chapter 8.

���� ���������� ���������� ���������� ��������������

��
���
���
���
�����������������������������
Basic mode selection is performed using hardware during the reset sequence, as discussed in the

mode initialization section. However, there are certain aspects of the boot sequence that must be
performed by software.

The assertion and subsequent negation of reset forces the CPU to begin execution at the reset
vector, which is physical address 0x1FC0_0000. This address resides in uncached, un-mapped
memory, and thus does not require that the caches be initialized for the processor to execute boot
code.

The processor must perform the following activities during boot:
◆ Initialize the CP0 Status Register. The processor must be assured of having the kernel

enabled to perform the boot sequence. Typically, a'mtc0 rx, CO_SR' instruction is one of
the first few instructions in the boot sequence. Specifically, co-processor usable bits, and
cache control bits, must be set to the desired value before any data references (cached or
uncached), diagnostics or initialization occur.

◆ Initialize the CP0 Configuration Registers. The software should decide on the Cache Config-
uration, Port Sizes, and Bus Control during initialization.

◆ Initialize the caches. The processor must determine the sizes of the on-chip caches, and
flush each entry, as discussed in Chapter 3. This must be done before the processor
attempts to execute cacheable code.

◆ Re-initialize CP0 Registers. The processor should establish appropriate values in various
CP0 registers, including:

- The IM bits of the status register.
- The BEV bit.
- Initialize KUp/IEp so that user state can be entered using a RFE instruction.

◆ Initialize on-chip memory and I/O controllers. The boot software should establish the appro-
priate timing parameters, control options, timer values, PIO uses, etc., as appropriate to
the particular system.

- Note that the Serial Ports have a special reset initialization sequence. For more details, refer
to the “Serial Port Initialization and General User’s Notes” section in Chapter 15.

◆ Enter User State.
Branch to the first user task and perform an RFE to enter the user mode.

����� �	����� �	����� �	����� �	

���������������� ������ �������� �������� �������� ��������������������������
The timing requirements of the processor reset sequence are illustrated below. The timing

diagrams reference AC parameters whose values are contained in the RC36100 data sheet.

�������������������� !!!!����������������))))����������������

There are two parameters to be concerned with: the power on reset pulse width and the warm
reset pulse width.
�� � &

�����

����� �����
���
��	�
�
 ����� ��	����� ��
���
 ����� '�%��� �
��
%�
((((������������ ����	�	�	�	������
��*
�
��*
�
��*
�
��*
������������	 +�	 +�	 +�	 +�""""�	�	�	�	���� �����&��&��&��&�������������""""�	�	�	�	��������

The mode initialization vectors are sampled by an internal transparent latch, whose output enable
is directly controlled by the SysReset input of the processor. The internal structure of the processor is
illustrated in Figure 17.3. As illustrated in Figure 17.4, the mode vectors have a set-up and hold time
with respect to the rising edge of SysReset.

Figure 17.1 illustrates the power on reset requirements of the RC36100 family. Figure 17.2 illus-
trates the warm reset requirements of the processor.

Figure 17.1 Cold Start

Figure 17.2 Warm Reset

Vcc

SysClkIn

SysReset
t23

Vcc

SysClkIn

SysReset
t23

SysClkIn

SysReset
t23
�� � (

�����

����� �����
���
��	�
�
 ����� ��	����� ��
���
 ����� '�%��� �
��
%�

Figure 17.3 Configuration Mode Initialization Logic

Figure 17.4 Mode Vector Timing

�������������������� �������������������� +�+�+�+�"�"�"�"� �����&�&�&�&����������"���"���"���"�				��������

The reset signal incorporates special synchronization logic that allows it to be driven from an
asynchronous source. This allows the processor SysReset signal to be derived from a simple circuit,
such as an RC network, with a time constant long enough to guarantee that the reset pulse width
requirement is met.

Such a system should buffer the RC circuit such that a sufficiently fast monotonic rise time is
generated which is capable of synchronously resetting any external state machines and logic at the
same time as resetting the CPU.

The SysReset set-up time parameter can be thought of as the amount of time SysReset must be
negated before the rising edge of SysClk, for guaranteed recognition. Failure to meet this require-
ment will delay the internal recognition of the end of reset by one clock cycle. This does not affect the
timing of the sampling of the mode initialization vectors. Figure 17.5 illustrates the set-up time param-
eter of the RC36100.

ExcSInt(0)

ExcSInt(1)

ExcSInt(2)

SysReset

SysClk

BigEndian

BootProm 8

CPU_Reset

Transparent
Latch

Reset
Synchronizer

En

R C36100 C onfigura tion M ode Initializa tion Logic

BootProm 16

DiagTriState TriState

SysClk

SysReset
t25

t26
Mode Vector Inputs:

ExcSInt(2:0)
�� �)

�����

����� �����
���
��	�
�
 ����� ��	����� ��
���
 ����� '�%��� �
��
%�
��������,,,,����				 �����&��&��&��&�������������"�	"�	"�	"�	��������

The input clock timing requirements are illustrated in Figure 17.6. The system designer does not
need to be explicitly aware of the timing relationship between ClkIn and SysClk. Note that SysClk is
driven even during the SysReset period as long as ClkIn is provided.

Figure 17.5 Reset Timing

Figure 17.6 RC36100 Clocking

SysClk

SysReset
t25

SysClkIn

SysClk

t20
t21

t22

t32

tsys

t33
�� � *

�����

�������	�

����
��

������� ��
��������������������	
�����	
�����	
�����	
�����
This chapter discusses features that have been included to facilitate the debugging of RC36100-

based systems. These features are intended to be used by an in-circuit emulator, in-circuit tester, board-
level tester, logic analyzer, a hardware modeler (or similar tool).

������������

������������
◆ Hardware trace/halt support, cache write suppression, and K0 preservation
◆ Cause register write option of the exception code bits (CP0)
◆ Instruction stepping support via virtual address debug trace watch register
◆ The ability of the processor to have instruction and data cache misses forced, thus allowing all

internal cache accesses to be displayed on the bus interface.
◆ The ability to tri-state all output pins including SysClk, thus allowing an in-circuit emulator or

tester to drive and control the output pins directly.
◆ The ability to deterministically set the phase relationship of the SysClk output relative to the

SysClkIn input. This feature allows board level testers and hardware modelers to control the
SysClk output.

◆ The ability to distinguish data and instruction accesses, allowing logic analyzers to do instruction
disassembly.

◆ A software breakpoint instruction.

Note: The features described in this chapter are intended for initial debug or production testing
rather than for use in an end-user system.

The following are several debug/emulator hooks included in the normal functioning chip:
◆ tri-stateable outputs
◆ tracepoint register
◆ extended CP0 cache configuration register

����������������������������������	��	��	��	
�
�
�
� �
�
�
�
�����
�
�
�
��������

The tri-stateable outputs feature uses a dedicated input pin that if asserted causes all outputs
(including SysClk) on the chip to tri-state. This feature is used in in-circuit manufacturing tests and by in-
circuit emulators with non-socketed target CPUs.

�� ������������������������������������

The tracepoint registers consist of two memory mapped virtual address registers and a control
register. When enabled through the control register, the tracepoint registers cause an exception when
the virtual address register has the same value as the internal ALU stage Program Counter (PC).

When the exception occurs, a status/cause bit in the control register is set so that software can locate
the exception’s cause. Tracepoints in a delay slot will work, but they are not recommended. Tracepoints
will set the BD CP0 Cause Register bit as expected; however, it would be up to the software to jump past
the delay slot correctly (by subtracting 4 and re-executing the branch).

�������������������������������� ������������ �������������������� ���������������������
��
��
��
��������������������� ��������������������������������

The CP0 Cache Configuration Register, as described in an earlier section, contains several software
controllable Force Cache Miss features that allow logic analyzers to interface to the RC36100.

��������

�������� ������������ ������������ �������������������������������� ������������������������

The RC36100 adds a control bit, which if asserted, enables writes to the CP0 Cause register cause
field and the CP0 EPC.
�� � �

�����

����	
���
������� ��� ������������
 ������������

������������ �������������������������������� �������� ��������	
�	
�	
�	
�!!!!�"�"�"�"

�

�

�

�����������������

It is envisioned that operating system debug kernels always echo MTC0 writes. Addresses are
reserved in a scheme that frames the following registers:

◆ 32 General Purpose Registers.
◆ 32 CP0 Registers (only 16 presently used for RISCore3000 family systems).
◆ 64 CP1 Floating Point Registers (presently, only 32 are used for RISCore3000 family sys-

tems).

Table 18.1 Reserved Emulator Addresses.

��� �������� �������� �������� ���������������������������������

####����				
�!
�!
�!
�!�"�"�"�"

�
�
�
������������� ������������ #�#�#�#��������������������������������� ��������������������
�
�
�
�

#�#�#�#��������������������������!$�!$�!$�!$������������������������ ����

��
��
��
��
����

Diagnostic Cached versus Uncached and Burst Miss Address 3: An output signal specifying
cacheability type attribute of external system bus transactions. Signal is low during Uncached refer-
ences, high during Cached ones. During the second clock of burst reads, outputs the miss address 3.
The first and remainder clocks output cached versus uncached.

#�#�#�#���������%%%%������������!!!!#�#�#�#��������� �
�
�
�
�����
�
�
�
����

Diagnostic Instruction versus Data Status and Burst Miss Address 2: An output signal spec-
ifying data type attribute of external system bus transactions. Signal is high during Instruction refer-
ences, low during Data references.

During the second clock of burst reads, outputs the miss address 2. The first and remainder
clocks output instruction versus data. Internal DMA transactions are always data transactions.

#�#�#�#�������������
�
�
�
� ����

��
��
��
��
����

Diagnostic Run: A pseudo-synchronized active low output version of the internal CPU core
RunN signal.

#�#�#�#���������&���&���&���&�������������������'�'�'�'����� �
�
�
�
�����
�
�
�
����

Diagnostic Branch Taken: A pseudo-synchronized active low output signal indicating when a
branch is taken (same as the RC3041A).

#�#�#�#���������((((������������������������ �
�
�
�
�����
�
�
�
����

Diagnostic Jump Register or Exception: A pseudo-synchronized active low output signal indi-
cating when a jump register instruction is executed or an exception is taken. DiagJorExe must either
be externally gated with DiagRun and DiagBranchTaken or have pre-initialized all instruction cache
data fields.

#�#�#�#���������%%%%������������������������
�
�
�
����� ����
�
�
�
�����
�
�
�
�

Diagnostic Internal Resource Write: An active low output signal indicating that an MTC0
instruction to register 3 was executed. This signal is used to indicate to the debug/emulator that it
may want to interrogate the RC36100 to find out if a control register that may have an effect on
debug/emulator interpretation was altered.

��������))))����������������

****������������������������

��������������������������������

FFFF_8F68 K0 $26

FFFF_8F6C K1 $27

FFFF_8F8C CP0 $3 Config
�� � �

�����

����	
���
������� ��	����� ������������
#�#�#�#��� %%%%�����
�
�
�
����

Diagnostic Tri-State: An input signal that when asserted low causes all outputs to tri-state. Can
be used to:

 1. Disable target board CPU during emulation.
 2. Disable CPU during in-circuit manufacturing testing.

#�#�#�#���������%%%%��#�#�#�#����� %%%%��
��
��
��
����

Diagnostic Instruction Cache Write Disable: An active low input signal that disables instruction
cache misses from updating the instruction cache. Meant to be asserted after DiagFICM and an
instruction miss.

#�#�#�#��������� � � � �++++ %%%%�����
��
��
��
�

Diagnostic Force Instruction and Data Cache Miss: An active low input signal causing all
instructions and data loads (except internal partial word store reads) to miss the cache and do an
external system bus read. In this mode no newly initiated read cache misses are written into the
cache. During the assertion of DiagFCM, internal generation of ‘AckN’ is delayed on burst reads until
after the bus transaction completes.

Note: Although emulators typically assert this pin during functional operation, the non-
emulator user should either assert or not assert this pin during power-up and continuously leave
it asserted or not asserted.

#�#�#�#���������%%%%��������#�#�#�#����� %%%%�����
�
�
�
����

Diagnostic Interrupt Disable: An active low input signal when asserted, causes all external and
internal interrupts to be disabled.

#�#�#�#���������,�,�,�,��������� �
�
�
�
�����
�
�
�
����

Diagnostic No Chip Select: An active low input signal concurrently asserted with SysALEn indi-
cating that no external chip select was activated for this read or write. On subsequent bus clocks,
after SysALEn asserts, active low indicates that an internal chip select has been activated.

#�#�#�#���������%%%%������������������������
#
#
#
#"�"�"�"�&&&&

����-�-�-�-����� �
�
�
�
�����
�
�
�
����

Diagnostic Internal DMA Channel Bus Grant: An active low output signal asserted whenever
one of the four internal DMA channels receives a bus grant. This signal can be gated with a periph-
eral chip select to distinguish between a peripheral control register access versus a DMA access.

�������������������������������� ��
Note that Big Endian software must offset these addresses by b’10 (0x2), if halfword accesses are

used.

Table 18.2 Debug Interface Register Address Assignments

����� ������� �����������

0xFFFF_E500 Tracepoint Control Register

0xFFFF_E504 Debug Control Register

0xFFFF_E510 TraceLSB(0) Address Register

0xFFFF_E514 TraceMSB(0) Address Register

0xFFFF_E520 TraceLSB(1) Address Register

0xFFFF_E524 TraceMSB(1) Address Register
�� � �

�����

����	
���
������� ��	����� ������������
+�+�+�+�&&&& #�#�#�#�	
�	
�	
�	
� ������������������������������������� *� *� *� *������������������������ ��������������������������������
....�& #�& #�& #�& #�	�	�	�	

���� �� *����*����*����*������������ ��������������������������������
////0000#�#�#�#�	
�	
�	
�	
���������������������****������������������������11112222

Figure 18.1 Debug Tracepoint Address Register (‘MSB DebugTraceAddrReg’).

Figure 18.2 Debug Tracepoint Address Register (‘LSB DebugTraceAddrReg’).

When the Debug Tracepoint Virtual Address Register MSB and LSB matches the internal
program counter (ALU pipeline stage), and the feature is enabled via the debug tracepoint control
register, an exception is taken and a debug tracepoint control register cause bit is set.

Table 18.3 Debug Tracepoint Address Register (‘DebugTraceAddrReg’)
Bit Assignments.

####����				
�
�
�
� �� ������������������������

 ��������������������������������
////0000#�#�#�#�	
�	
�	
�	
���

������������11112222

Figure 18.3 Debug Tracepoint Control Register (‘DebugTraceControlReg’).

The Debug Tracepoint Control Register is used to access and control tracepoint and single step
functions.

��� �����������

15:2 Tracepoint Virtual Address

1:0 Reserved ‘0’

15 0 7 6 8 5 4 3 2 1

16

14 13 12 11 10 9

MSB Tracepoint Virtual Address Bits 31-16

15 0 7 6 8 5 4 3 2 1

14

14 13 12 11 10 9

LSB Tracepoint Virtual Address Bits 15:2

2

 '0'

15 0 7 6 8 5 4 3 2 1
'0'

14 13 12 11 10 9
CTP1

12 1

CTP0 TP1 TP0

1 1 1
�� � �

�����

����	
���
������� ��	����� ������������

Table 18.4 Table Debug Tracepoint Control Register (‘DebugTraceControlReg’)
Bit Assignments.

��������������������3�3�3�3������4 /�4 /�4 /�4 /0�0�0�0�12121212 �� �� �� ��

����5555

Must be written to ‘0’ for future compatibility. Value when read is undefined.

�����
�
�
�
�������� �������� �� /0/0/0/0������1��1��1��12222 � � � �����

����5555

After getting an exception, if the CTP field is found to be an active ‘1’, the exception handler
should acknowledge the exception by writing a ‘0’ to the CTP bit. There are two fields: branch taken/
branch not taken‘.

Table 18.5 Cause is a Tracepoint (‘CTP’) Field Encoding.

�� ////0��0��0��0��11112222 � � � ��
�
�
�
����5555

Table 18.6 Tracepoint Enable (‘TP’) Field Encoding.

####����				
�
�
�
� ���������������������
�
�
�
 ��������������������������������
////0000#�#�#�#�	
�	
�	
�	
�������������������������

���������1�1�1�12222

Figure 18.4 Debug Control Register (‘DebugControlReg’).

��� �����������

15:4 Reserved ‘0’

3 CTP1

2 CTP0

1 TP1

0 TP0

!�"�� ������

‘1’ Cause of exception is Tracepoint.

‘0’ Cause of exception is not Tracepoint (default).

!�"�� ������

‘1’ Tracepoint On. Forces CPU to allow tracepoint register to activate if the Program
Counter matches the Tracepoint Address Register.

‘0’ Tracepoint Off (default).

15 0 7 6 8 5 4 3 2 1
'0'

14 13 12 11 10 9

15

Wr

1

�� �

�����

����	
���
������� ��	����� ������������
Table 18.7 Debug Control Register (‘DebugControlReg’) Bit Assignments.

��������������������3�3�3�3������4 /�4 /�4 /�4 /0�0�0�0�12121212 �� �� �� ��

����5555

Must be written to ‘0’ for future compatibility. Value when read is undefined.

��������������������	�
�	�
�	�
�	�
�����) /) /) /) /0000��������11112222 �� �� �� ��
�5
�5
�5
�5

Table 18.8 Writability (‘Wr’) Field Encoding.

%%%%��������������������
�6��
�6��
�6��
�6������ ����))))��
��
��
��
'''' ������������ ����������������

Another feature for board level testing is the ability to initialize the phase of SysClk to its high
phase. A low to high transition on Reset will cause the internally synchronized (delay of less than or
equal to 2 clocks) version of Reset to always set SysClk high during its next phase. Thus the state of
SysClk can be deterministically controlled within a known number of ClkIn transitions. The two cases
are shown in Figure 18.5 and in Figure 18.6.

Figure 18.5 RC36100 SysClk Phase Initialization Case A

Figure 18.6 RC36100 SysClk Phase Initialization Case B

$$$$���������������� #���#���#���#��� ������������ %%%%����������������
�
�
�
����������������� #�#�#�#���������������������""""	
	
	
	
))))

The RC36100 provides a Diagnostic pin which during its data phase outputs whether a read
transaction is the result of an instruction fetch or the result of a data fetch. This information is inde-
pendent of the information given during the address phase of whether or not the read was a result of
a cached or uncached read. Note that this pin is undefined on writes; however, by necessity all writes
must be data writes.

��� �����������

15:1 Reserved ‘0’

0 Wr

!�"�� ������

‘1’ Allow CP0 Cause Bits and EPC Register to be written.

‘0’ CP0 Cause Bits and EPC Register are read only.

SysClk

SysReset

t25 t33

SysClk

SysReset

t25 t33
�� � #

�����

����	
���
������� $���� %�������������
����� ������� ������� ������� ��������	���	���	���	�����������������������������
◆ SysAddr Changes in the last clock of DRAM Burst Writes.

During DRAM Burst writes, the SysAddr may change in the last clock of the burst.
Because the DRAM address is actually latched on the asserting edge of CAS, this does
not present a functional failure, and users can ignore this condition. However, emulators
and Logic Analyzers as well as test vector samplers for board testing may need this infor-
mation as far as when to latch the display address.

◆ SysAddr is late on unused bus cycles.
The SysAddr bus switches very late in the clock during unused bus cycles, specifically 1
clock before SysALE asserts. Most users can ignore the switches. However, during board
testing, test vector samplers should avoid sampling the address during this clock.
�� � &

�����

����	
���
������� $���� %�������������

�� � �

�����

�����
����

AckN
Burst DRAM reads 10-6

address bus width 7-1
address error 6-12
addressing with Load/Store Left/Right 2-6
assembler 2-18

�

BadVAddr register 6-19
bandwidth 3-4
bidirectional multiplexers 8-44
Bidirectional Port

10-bit MSB/LSB Host Time-Out Counter registers 16-18
block reads 3-5
board level testing features 18-6
Boot PROM Mode 17-2
BRANCH instruction 6-19, 6-20, 6-22
BREAK instruction 6-19
bus error 6-18
Bus Interface 2-13, 7-5, 7-12, 8-16, 8-23, 9-7

timing type field 8-10
Bus Interface Control Register 2-10
Bus Interface Control Signals

SysAddr(25:0) 7-2
SysALEn* 7-3
SysBurstFrame* 7-3
SysBusError* 7-4
SysClk* 7-3
SysClkIn 7-2
SysData(31:0) 7-2
SysDataRdy* 7-4
SysRd* 7-3
SysReset* 7-3
SysWait* 7-4
SysWr* 7-3

bus interface timing
16-bit PCMCIA-style I/O read 9-10
16-bit PCMCIA-style I/O write 9-13
I-type I/O reads 9-8
I-type I/O write 9-11
M-type I/O reads 9-9
M-type I/O write 9-12

Bus Interface Unit 3-5, 7-2, 8-1, 10-1–10-2, 11-2
DramRdBTA’ 10-20
I/O Controller 9-1
I/O Controller decoder 9-2

Bus Interface Unit (BIU) Acknowledge signals 8-2
����� � �

�����

�����
Bus Interface Unit Controller 8-2, 8-5
DRAM interface 10-3

BusyN signal
dual-port memory systems 8-48

byte ordering convention. See endianness.

�

cache
definition of 3-1

cache controller
software loading modulo 16 address 4-5

cache isolation 3-6
cache locking 3-3

exception response time 6-8
cache refill

streaming 3-3
cache strategy type 3-2
cache swapping 3-6
calculating Start2BurstAck values 8-14
CAS pulse width

controlling DRAM speeds 10-28
Cause register 6-13, 6-18, 6-19, 6-20, 6-21

5-bit exception code 6-3
Interrupt handling 6-10
Interrupt Servicing 6-11

Cause register 6-22
Cause register 6-19
CentWrInt*

Nibble and Byte mode phase 16-4
clearing software interrupts 6-11
CMOS type loads 7-3
Computational instructions

definition of 2-2
Context register 6-19
CPU pipeline 8-5

DramBurstAck’ 10-21
CPU pipeline frequency 5-4

�

data bus width 7-1
Data formats and Addressing 2-5
DBlockRefill 5-5, 7-5
Dedicated PIO Signals

PIO(41:0) 12-1
default mode

Parallel Port Interface 16-3
default value

DRAM Refresh Count Register 10-9
DramMSBBankMask Register 10-14

Diagnostic Interface Control Signals
DiagBranchTaken* 18-2
DiagC/UnC* 18-2
DiagFCM* 18-3
DiagInst/Data* 18-2
DiagInstCacheWrDis* 18-2
DiagIntDis* 18-3
����� � 	

�����

�����
DiagInternalDmaBusGnt* 18-3
DiagInternalWr* 18-2
DiagJRorExe* 18-2
DiagNoCS* 18-3
DiagRun* 18-2
DiagTriState* 18-3

Diagnostic pin 18-6
DMA

generated write types 7-15
DMA Controller Signals

DmaBusGnt*(1:0) 11-5
DmaBusReq*(1:0) 11-5
DmaDne* 11-5
MemWrEn*(3:0) 11-6
SysALEn* 11-6
SysBurstFrame* 11-6
SysRd* 11-6
SysWr* 11-6

DRAM access speed 10-6
DRAM access to a new page 10-18
DRAM accesses 7-2
DRAM Bus Controller Interface Signals

DRAMCAS*(3:0) 10-3
DRAMRAS*(3:0) 10-3
DramRdEnEven* 10-3
DramRdEnOdd* 10-3
DramWrEnEven* 10-3
DramWrEnOdd* 10-3
SysAddr(13:2) 10-2

DRAM chips 10-22
DRAM Control Signal State Machine 10-1
DRAM Controller

memory types supported 10-5
page comparator algorithm 10-5
programming wait states 10-5
refresh arbitration 10-8

DRAM interface
16-bit mode 10-4
32-bit mode 10-4

DRAM Multiple Data Reads 10-29
DRAM systems using FCT245 10-45
DRAMRdEnEven

in 16-bit mode 10-29
DRAM-style multiplexed Row- and Column- address lines 10-2
Dual-Port memory systems 8-48

�

eliminating external state machines 8-2
endianness 2-11, 4-5, 5-8, 7-1, 7-3, 7-16, 8-4, 8-46–8-47, 9-3, 9-4, 9-21, 9-22, 10-3–10-4, 11-2
endianness configuration 2-5
EntryHi register 6-19
EPC register 6-19–6-21, 6-23
exception detection 6-1
exception handling 2-7, 2-20, 5-1
Exception Interface Signals

ExcInt*(4:3) 13-2
����� �

�����

�����
ExcSBrCond(3:2) 13-2
ExcSInt*(2:0) 13-2

exception pipeline 6-3
Exceptions

Address Error 4-2
Breakpoint 6-19
Bus Error 6-19
Co-processor Unusable 6-20
definition of 6-1
Interrupt 6-20
Overflow 6-21
precise 6-2
Reserved Instruction 6-21
Reset 6-22
Restore From Exception (RFE) 4-2
System Call 6-22

external DMA
unaligned page accesses 10-6

external DMA agent 7-3
external memory system

read termination 7-10

�

FCT244 buffers 8-41, 8-42, 8-46–8-47, 9-22
FCT245 bidirectional multiplexors 8-44
FCT245 non-latched transceiver 10-17
FCT245 transceivers 9-4, 9-19, 9-22

DRAM systems 10-45
FCT245-type systems

DRAM reads 10-3
FCT245-Type transceivers 8-42, 10-1, 10-34
FCT260 Latched Multiplexer 10-17
FCT260 Multiplexers

DRAM systems 10-46
FCT260 tranceivers 10-34
FCT260-Type transceiver 10-1
FCT543 16-bit bidirectional registers 8-45
FCT543 Latched Mode 10-17
FCT543 Registered Transceivers

DRAM systems 10-47
FCT543 transceivers 8-41, 8-46, 8-47, 9-4
FCT543-Type transceivers 10-34
floating point interrupt 6-9

�

I/O Bus Controller Interface Signals
IoCS*(7:0)/MemCS*(7:0) 9-2
IoRd*/IoDStrobe* 9-3
IoWr*/IoRdHWr 9-3
MemAddr*(29:26) 9-3
MemByteEn*(3:0) 9-3
MemWrEn*(3:0) 9-3

I/O Controller
System Address bus 9-3

I/O Controller read timing
using RdStart2Datum field 9-14
����� � �

�����

�����
using Start Repeat Field 9-14
using SysWait* 9-15

I/O Controller write timing
using StartRepeat Field 9-16
using SysWait* 9-17
using WrStart2Datum field 9-16

I/O interface
using BIU controller signals 9-3

I/O signal
PCMCIA style 9-8

I/O signals
Intel type 9-8
Motorola type 9-8

I/O-Type selection 9-3
IEEE 1284 Enhanced Parallel Port (EPP) mode 16-2
IEEE 1284 Extended Capabilities Port mode (ECP) 16-2
immediate formats 2-14
interleaved memory system using FCT543 10-39
internal physical address bus 3-1
interrupt handling

software 6-15
Interrupt input types 6-8
inverted MemAddr(27:26) 8-48
I-Type instruction format 2-2

�

J-Type instruction format 2-2
J-type instruction format 2-18
Jump and Branch instructions 2-2

	

Kernel mode
kseg0 4-2
kseg1 4-2
kseg2 4-2
kuseg 4-2

link chaining registers 11-2
Little Endian Addressing 17-2
Load/Store instructions

definition of 2-2
locking values into cache 3-7
LSB SysAddr bits

bus interface 7-2

�

main memory 3-3, 3-5, 3-6, 3-7, 3-9, 4-6, 7-6
masking interrupts 6-9
memory accesses

Wait-State Generator control 8-5
memory address protection 2-8
memory bandwidth

block refills 3-3
Memory Controller 8-5
����� � �

�����

�����
register sets contained 8-5
Memory Controller Signals

MemAddr*(29:26) 8-3
MemByteEn*(3:0) 8-3
MemCS*(7:0)/IoCS*(7:0) 8-3
MemRdEnEven* 8-3
MemRdEnOdd* 8-3
MemWrEn*(3:0) 8-3

memory interface
BIU Controller Signals 8-4

Memory latency
block refill 3-3

memory management 2-7, 2-8, 2-20, 3-2, 3-6, 4-1, 4-3, 5-1
memory managemet models 4-6
memory sizing 3-6
MemWrEn signal

DRAM systems 10-8
MemWrEn*(3)/MemWrEn*(0)

8-bit accessess 8-3
MemWrEn*(3:2)/MemWrEn*(1:0)

16-bit accesses 8-3
mfc0 instruction 6-12
MIPS architecture 2-5, 2-11, 2-21, 5-1, 6-2, 6-9, 9-3, 9-21

byte alignment constraints 2-6
CP0 Special Registers 2-7
instruction formats 2-2
Program Status Word (PSW) register 2-1

MIPS ISA 2-19
modem control outputs/inputs

Serial Ports 15-2

�

non-DRAM transactions
Write bus Turn-Around field 10-33

on-chip cache 6-16, 6-17, 7-6
on-chip resources 4-4
on-chip write buffer 7-5

�

page mode DRAMs 10-22
Parallel Port Interface Signals

CentAck* 16-6
CentAutoFeed* 16-7
CentBusy 16-6
CentCS(7:6) 16-7
CentFault* 16-7
CentHostOEn* 16-7
CentHostStrobe 16-7
CentInit* 16-7
CentPaperError 16-6
CentSelect 16-6
CentStrobe* 16-6

PCI-style accesses 8-3
����� �

�����

�����
PCMCIA-type accesses 8-3
pipeline 9-5
pipeline hazard

hardware handling of 2-10
optimizing compilers 2-10
software handling of 2-10

pipeline stages 2-8, 6-6, 6-7, 6-8
pipeline stalls 2-10, 5-3
priority algorithm

for DMA channels 11-2
priority scheme

fixed or rotating 11-2
privilege state 5-9
processor cycles

fix up and stall 3-5
programmable link chaining registers 11-2
programmable Wait-State Generator 8-2
PWM feature 14-2

�

Quad word reads 7-5

�

RAS and CAS
AddrSetup field 10-27

RdCEnN
external memory system 7-10
wait-state generated 8-5

read buffer 7-10
recognizing external interrupts 6-14
reduced frequency mode

using DRAM 10-8
Refresh function 10-9
Registers

BadVAddr register 5-8, 6-3
Bidirectional Parallel Port Interface 16-8
Bus Interface Control 2-10
Cache Configuration 5-2
Cause Register 5-6, 6-3
Centronics Control Register 16-11
Centronics Host Status Register 16-16
Centronics Minimum Delay Register 16-17
Centronics Nibble Data Register 16-15
Centronics Status Register 16-9
Centronics Sub Mode Register 16-9
DBlock Refill (DBR) 3-4
Debug Control 18-5, 18-6
Debug Tracepoint Control 18-4
DMA LSB Control for Link A..D 11-10
DMA LSB Control Register for Channel 0..3 11-10
DMA LSB Count for Channel 0..3 11-9
DMA LSB Count for Link A..D 11-9
DMA LSB Source Address Register for Channel 0..3 11-6
DMA LSB Source Address Register for LinkA..D 11-6
DMA LSB Target Address for Channel 0..3 11-9
DMA LSB Target Address for Link A..D 11-9
����� � �

�����

�����
DMA MSB Count for Link A..D 11-10
DMA MSB Count Register for Channel 0..3 11-10
DMA MSB Source Address for Channel 0..3 11-8
DMA MSB Source Address for Link A..D 11-8
DMA MSB Target Address for Link A..D 11-9
DMA MSB Target Address Register for Channel 0..3 11-9
DRAM CAS Multiplexer Select Register for Pair (1:0, 3:2) 10-10
DRAM LSB Control Register for Bank 0..3 10-15
DRAM MSB Bank Mask Register for Bank 0..3 10-14
DRAM MSB Base Address Register for Bank 0..3 10-13
DRAM MSB Control Register 10-4
DRAM MSB Control Register for Bank 0..3 10-18
DRAM RAS Multiplexer Select Register for Pair(1:0, 3:2) 10-10
DRAM Refresh Compare 10-9
DRAM Refresh Count 10-7
Exception Handling 6-3
Exception Program Counter (EPC) 5-7
External DMA Control Register 0..1 11-15
LSB Debug Tracepoint Address 18-4
LSB/MSB Host Time-Out Counter Register 16-18
LSB/MSB Host Time-Out Register 16-18
Memory and I/O Control Register7..0 9-7
Memory Controller 8-45
MSB Debug Tracepoint Address 18-4
Page Mask Register 3-9
Peripheral Expansion Interrupt Controller 13-2
PIO Data Register 0..2 12-3
PIO Direction Register 0..2 12-3
PIO Effect Select Register 0..2 12-4
PRId Register 4-3, 5-1, 5-10
Program Status Word (PSW) 2-1
Read Register 0 15-16
Read Register 1 15-16
Read Register 2 15-16
Read Register 3 (Channel A only) 15-17
Read Register 4 15-17
Read Register 5 15-17
Read Register 6 15-17
Read Register 7 15-17
Status Register 3-6, 4-3, 5-8, 6-3
Timer Compare Register 0..2 14-4
Timer Control Register 0..2 14-5
Timer Count Register 0..2 14-4
Timer Prescaler Count Register 14-4
Timer Pulse Width Modulation Register 0 14-5
Timer PWM Count Register 14-4
Wait-State Generator 8-11
Write Register 0 15-11
Write Register 1 15-11
Write Register 10 15-14
Write Register 11 15-15
Write Register 12 15-15
Write Register 13 15-15
Write Register 14 15-15
Write Register 15 15-16
Write Register 2 15-11
����� � �

�����

�����
Write Register 3 15-12
Write Register 4 15-12
Write Register 5 15-12
Write Register 6 15-12
Write Register 7 15-13
Write Register 7’ 15-14
Write Register 8 15-14
Write Register 9 15-14

Restore From exception (RFE) 6-10
Return From Exception (RFE) 2-8, 6-14, 6-15
ROM systems 8-47
R-Type instruction format 2-2
R-type instruction format 2-18
run cycle

definiton of 3-5

�

SBrCond signals
interrupt handling control 6-15
interrupt polling 6-15

SCC Controller Interface Signals
Serial Sync(1:0) 15-4

SCC Controller Signals
RTS(1:0) 15-5
SerialCTS(1:0) 15-5
SerialPClkIn*(1:0) 15-4
SerialRxData(1:0) 15-4
SerialSClk*(1:0) 15-4
SerialSync*(1:0) 15-5
SerialTxData(1:0) 15-4

SCC EXTERNAL/STATUS interrupt 15-6
SCC Receive interrupts 15-5
Single data reads 7-5
software configured options

DRAM controller 10-4
software initialization sequence 9-2, 10-2
Software interrupts 6-11
Special instructions

definition of 2-2
SRAM memory system 8-47
Status register 6-14, 6-15, 6-18, 6-22

Interrupt handling 6-10
supervisory mode 4-2
synchronization logic 17-5
SysAddr(13:2)

DRAM acccess 10-2
SysClk reference clock 7-2
SysData bus

32-bit peripheral connection 9-4
SysData(15:0) bus

peripheral register reads 7-3
SysReset set-up time parameter 17-5
System Interface

16-bit port data lines 7-16
16-bit port write transactions 7-15
8-bit port data lines 7-16
����� � �

�����

�����
8-bit port write transactions 7-16
cycle types 7-6
DMA Controller 7-5, 11-2
memory controllers 7-7
memory subsystem support 7-10
narrow memory subsystems 7-5
priority levels 7-5
RdCEnN signal 7-9
read transaction 7-8
streaming cycles 7-6
Wait Stall Cycles 7-6
WbEmptyN control signal 7-16

SysWait*
overriding WSG settings 8-5
pipeline delay 9-5

SysWr*
DRAM systems 10-8

�

TAG memories 3-2
Timer Peripheral Signals

TC*(2:0)/TimerGate*(2:0) 14-3
timing diagrams

access to interleaved memory system using FCT260 10-36
access to odd bank interleaved FCT260-type 10-37
access to the odd bank of an interleaved FCT543 10-40
ClkIn Requirements 17-6
CPU Latency to Start of Read 7-8
Data Sampling 7-10
direct interrupt operation wave forms 6-9
DRAM staggered refresh 10-44
DRAM write transaction 10-30
External DMA Operations 11-17
FCT245 Interleaved reads

DRAM Controller 10-34
FCT260 interleaved reads

DRAMLSB Control Register 10-35
instruction streaming internal operation 7-14
interleaved FCT245 writes 10-41
interleaved FCT245-type Writes 10-42
interleaved FCT260 Writes 10-42
interleaved FCT543 reads

DRAM Controller 10-38
interleaved FCT543 Writes 10-43
internal processor states on 4-word burst read 7-13
Mode Initialization Requirements 17-4
processor reset sequence 17-3
RAS Asserted Throughout Write 10-32
read cycle termination 7-12
read transaction 8-16
refresh cycle of DRAM chips 10-44
single word interleaved FCT245 write 10-41
single word interleaved FCT260 write 10-42
Start of Bus Read Operation 7-9
two datum write transaction 10-34
write Bus Turn-Around 10-33
����� � ��

�����

�����
write cycle termination 7-17
write transactions 8-23
write-buffer-full operation 7-18

�

virtual address format 4-1
virtual indexing 3-2
virtual tagging 3-2
virtual-to-physical addresses 4-3
�

Wait-State Generator 8-5, 9-2
DRAM Controller 10-1
I/O accesses 9-5
I/O Controller 9-4, 9-14
overriding programmed settings 9-5

write buffer 3-3, 7-14, 7-16
write operation 3-3
write types 7-15
write-back operation 2-9
����� � ��

�����

�����
����� � �	

	Version 2.1
	August 1998
	IDT79RC36100 Highly Integrated RISController
	Hardware User’s Manual
	about.pdf
	Summary of Contents
	Where To Find More Product Information
	About This Manual

	toc.pdf
	Table of Contents

	lot.pdf
	Table�2.1 Instruction Set Mnemonics 2-5
	Table 2.2 RC36100 CP0 Registers 2-8
	Table 2.3 Big-Endian (32-bit memory system) 2-12
	Table 2.4 Byte Addressing in Load/Store Operations (32-bit memory) 2-12
	Table 2.5 Big-Endian (16-bit memory system) 2-13
	Table 2.6 Byte Addressing in Load/Store Operations (16-bit memory) 2-13
	Table 2.7 Load and Store Instructions 2-14
	Table 2.8 ALU Immediate Operations 2-15
	Table 2.9 Three Operand Register-Type Operations 2-16
	Table 2.10 Shift Operations 2-17
	Table 2.11 Multiply and Divide Operations 2-17
	Table 2.12 Jump Instructions 2-18
	Table 2.13 Branch Instructions 2-19
	Table 2.14 Special Instructions 2-19
	Table 2.15 Co-Processor Operations 2-20
	Table 2.16 System Control Co-Processor (CP0) Operations 2-21
	Table 2.17 Opcode Encoding 2-23
	Table 3.2 Data Cache to Address Mapping under Various Cache Locking Conditions 3-12
	Table 4.2 RC36100 On-Chip Resources and Address Map 4-5
	Table 4.3 Example: FIFO load code using FCM memory space .4-6
	Table�5.1 RC36100 CPO Register Addresses 5-2
	Table 5.2 RC36100 Cache Configuration Register Lock Field 5-3
	Table 5.3 RC36100 DBlockRefill Field 5-3
	Table 5.4 RC36100 D-Cache Index Control Field 5-3
	Table 5.5 RC36100 Halt Field 5-4
	Table 5.6 RC36100 I-Cache Index Control Field 5-4
	Table 5.7 RC36100 Reduced Frequency Mode Field 5-4
	Table 5.8 RC36100 ForceDCacheMiss Field 5-5
	Table 5.9 RC36100 ForceICacheMiss Field 5-5
	Table 5.10 RC36100 Data Cache Write Disable Field 5-5
	Table 5.11 RC36100 Instruction Cache Write Disable Field 5-6
	Table 5.12 Cause Register Exception Codes 5-7
	Table 6.2 Cause Register Exception Codes 6-4
	Table 6.3 Exception Vectors When BEV = 0 6-6
	Table 6.4 Exception Vectors When BEV = 1 6-6
	Table 6.5 RC36100 Exception Priority 6-7
	Table 8.2 List of the memory and I/O Controller Registers (2 of 2) 8-7
	Table 8.3 Memory and I/O Controller Base Addresses 8-8
	Table 8.4 Memory Mask Field Definitions and Values 8-9
	Table 8.5 Memory and I/O Control Register Bit Assignments 8-10
	Table 8.6 Memory Type Field ('MemType') Encoding 8-10
	Table 8.7 PortSize ('MemSize') Encoding 8-11
	Table 8.8 Memory LSB Wait-State Register ('MemLSBWaitStateReg') Bit Assignments 8-11
	Table 8.9 Start to the first Datum (‘RdStart2Datum’ and 'WrStart2Datum') Field Encoding. 8-12
	Table 8.10 Datum-to-Datum (RdDatum2Datum, WrDatum2Datum) Field Encoding .8-12
	Table 8.11 Memory MSB Wait-State Register ('MemMSBWaitStateReg') Bit Assignments 8-13
	Table 8.12 Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field Encoding ..8-13
	Table 8.13 First Read to AckN on Burst Reads (‘Start2BurstAck’) Field Encoding . 8-13
	Table 8.14 Byte Enables on Reads (‘BEn’) Field Encoding ..8-14
	Table 8.15 Bus Turn-Around (‘BTA’) Field Encoding 8-14
	Table 8.16 PCMCIA and RC36100 Functional Equivalents ..8-49
	Table�9.1 Memory and I/O Controller Register Addresses and Description 9-6
	Table 9.2 Memory Type (MemType) Field Values and Descriptions ... 9-7
	Table 9.3 Portsize Width Field Values and Definitions ... 9-7
	Table�10.1 DRAM Controller Registers 10-7
	Table 10.2 DRAM Refresh Count Register (DramRefreshCountReg’) Bit Assignments ..10-8
	Table 10.3 DRAM Refresh Compare Register (‘DramRefreshCompareReg’) Bit Assignments ..10-9
	Table 10.4 Refresh Disable (‘RefreshDis’) Field Encodings ..10-9
	Table 10.5 Common Refresh Settings for 8ms/512 or 16ms/1024 DRAMs ..10-9
	Table 10.6 DRAM RAS Mux Select Register Bit Assignments 10-10
	Table 10.7 DRAM CAS Mux Select Register (‘DramCasMuxSelReg’) Bit Assignments 10-11
	Table 10.8 Example ‘DramRasMuxSelReg’ and ‘DramCasMuxSelReg’ Settings 10-13
	Table 10.9 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment 10-14
	Table 10.10 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment 10-14
	Table 10.11 DRAM MSB Bank Mask Bit Settings 10-14
	Table 10.12 DRAM LSB Control Register (‘DramLSBControlReg’) Bit Assignments 10-15
	Table 10.13 PageMask (‘PMask’) Bits 10-16
	Table 10.14 DRAM LSB Page Mask Bit Settings 10-16
	Table 10.15 DRAM Type (‘DramType’) Settings 10-16
	Table 10.16 DRAM Port Width (‘Size’) Encoding Field 10-17
	Table 10.17 DRAM MSB Control Register Bit Assignments 10-18
	Table 10.18 RAS Precharge (‘RASP’) Field Encodings 10-18
	Table 10.19 RAS Address Hold Time (‘RASAddrHold’) Field Encoding 10-19
	Table 10.20 Address Setup Time to RAS or to CAS (‘AddrSetup’) Field Encoding 10-19
	Table 10.21 CAS Width (‘CASW’) Field Encoding 10-20
	Table 10.22 DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field Encoding 10-20
	Table 10.23 DRAM Write Cycle Bus Turn-Around (‘DramWrBTA’) Field Encoding 10-20
	Table 10.24 DRAM Burst Read Acknowledge (‘DramBurstAck’) Encoding 10-21
	Table 10.25 Typical DRAM Burst Read Acknowledge Settings 10-21
	Table�11.1 Fixed Priority Encoding 11-3
	Table 11.2 Internal Channel DMA Controller Register Address Map 11-7
	Table 11.3 Internal DMA LSB Control Register (‘DmaLSBControlReg’) Bit�Assign�ments 11-10
	Table 11.4 Arbitration Type (‘Arb’) Field Encoding 11-11
	Table 11.5 Keep Bus (‘Bus’) Field Encoding 11-11
	Table 11.6 Allow DMADone (‘Done’) Field Encoding 11-11
	Table 11.7 Wait for Interrupt (‘Int’) Field Encoding 11-12
	Table 11.8 Burst Type (‘Burst’) Field Encoding 11-12
	Table 11.9 Source Byte Enable Type (‘SBE’) Field Encoding 11-12
	Table 11.10 Target Byte Enable Type (‘TBE’) Field Encoding 11-12
	Table 11.11 Source Big Endianess Type (‘SEndian’) Field Encoding 11-13
	Table 11.12 Target Big Endianess Type (‘TEndian’) Field Encoding 11-13
	Table 11.13 Increment Source Address (‘HInc’) Field Encoding 11-13
	Table 11.14 Increment Target Address (‘TInc’) Field Encoding 11-13
	Table 11.15 Internal DMA MSB Control Register (‘DmaMSBControlReg’) Bit Assignments 11-14
	Table 11.16 Stop (‘Stop’) Field Encoding 11-14
	Table 11.17 Break (‘Break’) Field Encoding 11-14
	Table 11.18 Reserved Link (‘RsvdLink’) Field Encoding 11-14
	Table 11.19 Link (‘Link’) Field Encoding 11-14
	Table 11.20 Burst Size (‘BurstSize’) Field Encoding 11-15
	Table 11.21 External DMA Controller Register Address Assignments 11-15
	Table 11.22 External DMA Control Register (‘ExtDmaControlReg’) Bit Assignments 11-16
	Table 11.23 Enable Channel (‘EC’) Field Encoding .11-16
	Table 11.24 Bus Request Protocol High (‘ReqH’) Field Encoding 11-16
	Table 11.25 Sample MemWrEn and SysBurstFrame 1 clock later (‘SampleLate’) Field Encoding .11-16
	Table�12.1 Alternate RC36100 functions mapped to PIO pins 12-2
	Table 12.2 PIO Register Address Assignments ...12-3
	Table 12.3 PIO Data (‘PIOData’) Field Encoding ...12-3
	Table 12.4 Lock (‘Lock’) Field Encoding ...12-4
	Table 12.5 Direction (‘Dir’) Field Encoding ...12-4
	Table 12.6 Lock (‘Lock’) Field Encoding 12-4
	Table 12.7 Effect Select (‘EffectSel’) Field Encoding 12-5
	Table�13.1 Expansion Interrupt Controller Register Address Assignments 13-2
	Table 13.2 Expansion Interrupt Mask Register 1 and Expansion Interrupt Pending Register 1 Bit Ass...
	Table 13.3 Expansion Interrupt Mask Register 0 and Expansion Interrupt Pending Register 0 Bit Ass...
	Table 13.4 Pending Interrupt Field Encoding 13-4
	Table 13.5 Interrupt Mask Field Encoding 13-4
	Table 13.6 DMA Channel versus Interrupt De-Multiplexer 13-5
	Table 13.7 Select Interrupt (‘SelInt()’) Field Encoding 13-5
	Table�14.1 Timer0 Count Algorithm 14-2
	Table 14.2 Timer1 and Timer2 Count Algorithm 14-2
	Table 14.3 Timer Register Physical Address Map 14-3
	Table 14.4 Timer Pulse Width Modulation Register (‘TimerPWMReg’) Bit Fields 14-5
	Table 14.5 Timer Control Register (‘TimerControlReg’) Bit Assignments 14-6
	Table 14.6 Lock (‘Lock’) Field Encoding 14-6
	Table 14.7 Lock Count and Compare (‘LockCC’) Field Encoding 14-6
	Table 14.8 Write Compare Ack (‘Ack’) Field Encoding 14-6
	Table 14.9 PIO is Input Gate (‘Gate’) Field Encoding 14-7
	Table 14.10 BusTimeout (‘BTO’) Field Encoding 14-7
	Table 14.11 Timer Enable (‘TimerEn’) Field Encoding 14-7
	Table 14.12 Prescaler Select (‘PSel’) Field Encoding 14-7
	Table�15.1 Bit Assignment for the interrupt outputs 15-4
	Table 15.2 Steering Register 15-4
	Table�16.1 Compatible Forward Data Transfer Variations 16-3
	Table 16.2 Bidirectional Parallel Port Interface Centronics Controller Registers 16-8
	Table 16.3 Centronics Sub ModeRegister (‘CentSubModeReg’) Bit Assignments 16-9
	Table 16.4 Centronics Compatible Sub Mode (‘SubMode’) Field Encoding 16-9
	Table 16.5 Centronics Status Register (‘CentStatusReg’) Bit Assignments 16-10
	Table 16.6 ECP Buffer Full Field 16-10
	Table 16.7 ECP Peripheral Acknowledge Field 16-10
	Table 16.8 ECP Peripheral Request Field 16-10
	Table 16.9 Printer Error Field (‘PError’) Field Encoding 16-11
	Table 16.10 Select (‘Select’) Field Encoding 16-11
	Table 16.11 Printer Fault (‘Fault’) Field Encoding 16-11
	Table 16.12 Printer Acknowledge Negated (‘AckN’) Field Encoding 16-11
	Table 16.13 Printer Busy Field (‘Busy’) Encoding 16-11
	Table 16.14 Centronics Control Register (‘CentControl’) Bit Assignments 16-12
	Table 16.15 Iprime Interrupt Pending Field Encoding 16-12
	Table 16.16 IoCS(7:6) Mask Enable Field Encoding 16-13
	Table 16.17 Centronics Negotiation Interrupt Pending Field 16-13
	Table 16.18 Centronics Negotiation Interrupt Enable Field 16-13
	Table 16.19 Centronics Reset Interrupt Pending Field 16-13
	Table 16.20 Centronics Negotiation Interrupt Enable Field 16-13
	Table 16.21 DMA or Interrupt in ECP/EPP Mode Field Encoding 16-14
	Table 16.22 Nibble ID Mode Field Encoding 16-14
	Table 16.23 Host Busy Data Available Enable Field Encoding 16-14
	Table 16.24 Negotiation XFlag Reply (‘NegRep’) Field Encoding 16-15
	Table 16.25 Negotiation Mode (‘NegMode’) Field Encoding 16-15
	Table 16.26 Centronics Nibble Data Register (‘CentNibbleDataReg’) Bit Assignments 16-16
	Table 16.27 Centronics Host Status Register (‘CentHostStatusReg’) Bit Assignments 16-16
	Table 16.28 AutoFeed Negated (‘nAutoFeed’) Field Encoding 16-16
	Table 16.29 Initialize Negated (‘nInit’) Field Encoding 16-16
	Table 16.30 Select In Negated (‘nSelectIn’) Field Encoding 16-17
	Table 16.31 Host Strobe Negated (‘nStrobe’) Field Encoding 16-17
	Table 16.32 Centronics Minimum Delay Register (‘CentDelayReg’) Bit Assignments 16-17
	Table 16.33 2500ns Delay Type Field (‘D2500ns’) Field Encoding 16-18
	Table 16.34 500ns Delay Type Field (‘D500ns’) Field Encoding 16-18
	Table 16.35 Example Settings for Delay Type Fields 16-18
	Table�17.1 RC36100 Reset Configuration Mode Features 17-1
	Table 17.2 Boot Prom Reset Configuration Modes for ExcSIntN(2:1) pins 17-2
	Table�18.1 Reserved Emulator Addresses 18-2
	Table 18.2 Debug Interface Register Address Assignments 18-3
	Table 18.3 Debug Tracepoint Address Register (‘DebugTraceAddrReg’) Bit Assignments 18-4
	Table 18.4 Table Debug Tracepoint Control Register (‘DebugTraceControlReg’) Bit Assignments 18-5
	Table 18.5 Cause is a Tracepoint (‘CTP’) Field Encoding 18-5
	Table 18.6 Tracepoint Enable (‘TP’) Field Encoding 18-5
	Table 18.7 Debug Control Register (‘DebugControlReg’) Bit Assignments 18-6
	Table 18.8 Writability (‘Wr’) Field Encoding 18-6
	List of Tables

	lof.pdf
	Figure 1.1 RC36100 Block Diagram 1-1
	Figure 1.2 RC36100 Logic Symbol 1-7
	Figure 1.3 Low-cost RC36100 Based System 1-12
	Figure 1.4 Development Support 1-13
	Figure 2.1 CPU Registers 2-2
	Figure 2.2 Instruction Encoding 2-3
	Figure 2.3 Byte Ordering Conventions 2-6
	Figure 2.4 Unaligned Words 2-7
	Figure 2.5 5-Stage Pipeline 2-9
	Figure 2.6 5-Instructions per Clock Cycle 2-9
	Figure 2.7 Load Delay 2-10
	Figure 2.8 Branch Delay 2-10
	Figure 3.1 Cache Line Selection 3-2
	Figure 3.2 RC36100 Execution Core and Cache Interface 3-4
	Figure 3.3 Phased Access of Instruction and Data Caches 3-5
	Figure 3.4 RC36100 Instruction Cache Index Address Path 3-8
	Figure 3.5 RC36100 Cache in One Portion 3-10
	Figure 3.6 RC36100 Cache in Two Portions 3-10
	Figure 3.7 RC36100 Cache in Four Portions 3-11
	Figure 4.1 Virtual Address Format 4-1
	Figure 4.2 Virtual-to-Physical Address Translation in RC36100 4-4
	Figure 5.1 RC36100 CPO Registers 5-1
	Figure 5.2 RC36100 Cache Control Register 5-2
	Figure 5.3 RC36100 Cause Register 5-6
	Figure 5.4 RC36100 Status Register 5-8
	Figure 5.5 RC36100 PrID Register 5-10
	Figure 6.1 RC36100 Cause Register 6-3
	Figure 6.2 The Status Register 6-5
	Figure 6.3 Pipelining in the RC3051 family 6-6
	Figure 6.4 Synchronized Interrupt Operation Wave Forms 6-8
	Figure 6.5 Direct Interrupt Operation Wave Forms 6-9
	Figure 6.6 Synchronized BrCond Inputs 6-10
	Figure 6.7 Kernel and Interrupt Status Being Saved on Interrupts 6-11
	Figure 6.8 Code Sequence to Initialize Exception Vectors 6-12
	Figure 6.9 Preserving Processor Context 6-13
	Figure 6.10 Exception Cause Decoding 6-13
	Figure 6.11 Exception Service Branch Table 6-14
	Figure 6.12 Returning from Exception 6-15
	Figure 6.13 Polling System Using BrCond 6-16
	Figure 6.14 Using BrCond for Fast Interrupt Decoding 6-17
	Figure 7.1 RC36100 Bus Interface Unit Block Diagram 7-1
	Figure 7.2 CPU Latency to Start of Read 7-8
	Figure 7.3 Start of Bus Read Operation 7-9
	Figure 7.4 Data Sampling 7-10
	Figure 7.5 Read Cycle Termination 7-12
	Figure 7.6 Internal Processor States on 4-word Burst Read 7-13
	Figure 7.7 Instruction Streaming Internal Operation Example 7-14
	Figure 7.8 Write Cycle Termination 7-17
	Figure 7.9 Write-Buffer-Full Operation 7-18
	Figure 8.1 RC36100 Memory Bus Controller Block Diagram 8-2
	Figure 8.2 Memory and I/O MSB Base Address Register ('MemMSBBaseAddrReg') 8-7
	Figure 8.3 Memory and I/O LSB Base Address Register ('MemLSBBaseAddrReg') 8-7
	Figure 8.4 Memory and I/O MSB Bank Mask Register ('MemMSBBankMaskReg') 8-9
	Figure 8.5 Memory and I/O LSB Bank Mask Address Register ('MemLSBBankMaskReg') 8-9
	Figure 8.6 Memory and I/O Control Register Bit Assignments 8-10
	Figure 8.7 Memory LSB Wait-State Register ('MemLSBWaitStateReg') 8-11
	Figure 8.8 Memory MSB Wait-State Register (‘MemMSBWaitStateReg) 8-12
	Figure 8.9 1-Datum Read with 0 Wait-States 8-17
	Figure 8.10 1-Datum Read with 0 Wait-States Using an Odd Chip Select 8-18
	Figure 8.11 1-Datum Read with 1 Wait-State using StartRepeat Field 8-19
	Figure 8.12 Read with Wait-State using RdStart2Datum Field 8-20
	Figure 8.13 Read with Wait-State using SysWait 8-21
	Figure 8.14 4-Word Burst Read with 0 Wait-States 8-22
	Figure 8.15 4-Word Burst Read with Wait-States using�RdDatum2Datum Field 8-22
	Figure 8.16 PCMCIA-Style Memory Read with 0 Wait-States 8-23
	Figure 8.17 1-Datum Write with 0 Wait-States 8-25
	Figure 8.18 1-Datum Write with 0 Wait-States using FCT245-Type Field 8-26
	Figure 8.19 1-Datum Write with Wait-State using StartRepeat Field 8-27
	Figure 8.20 1-Datum Write with Wait-State using WrStart2Datum Field 8-28
	Figure 8.21 1-Datum Write with Wait-State using SysWait 8-29
	Figure 8.22 Multi-Datum Burst Write 8-30
	Figure 8.23 Multi-Datum Burst Write using Wait-State with WrDatum2Datum 8-31
	Figure 8.24 PCMCIA-Style Memory Write with 0 Wait-State 8-32
	Figure 8.25 Interleaved Read using FCT260-Type Field 8-33
	Figure 8.26 Interleaved “Even” Read of FCT260-Type Memory 8-34
	Figure 8.27 Interleaved “Odd” Read of FCT260-Type Memory 8-35
	Figure 8.28 Interleaved Read using FCT245-Type Field 8-36
	Figure 8.29 Interleaved Read using FCT543-Type Field 8-37
	Figure 8.30 “Even” Read of FCT543-Type Memory 8-38
	Figure 8.31 “Odd” Read of FCT543-Type Memory 8-39
	Figure 8.32 Interleaved Write using FCT260-Type and FCT543-Type Fields 8-40
	Figure 8.33 Interleaved Write using FCT245-Type Field 8-41
	Figure 8.34 32-bit SRAM System 8-42
	Figure 8.35 32-bit SRAM System using an Odd Chip Select 8-42
	Figure 8.36 32-bit SRAM System using FCT245-Type 8-43
	Figure 8.37 Interleaved FCT245-Type System 8-44
	Figure 8.38 Interleaved FCT260-Type System 8-45
	Figure 8.39 Interleaved FCT543-Type System 8-46
	Figure 8.40 16-bit Big Endian SRAM System 8-47
	Figure 8.41 16-bit Little Endian SRAM System 8-47
	Figure 8.42 8-bit Big Endian SRAM System 8-48
	Figure 8.43 8-bit Little Endian SRAM System 8-48
	Figure 9.1 RC36100 I/O Bus Controller Block Diagram 9-2
	Figure 9.2 Memory and I/O Control Register (‘MemIoCntrlReg(7..0)’) 9-7
	Figure 9.3 I-Type I/O Read with 0 Wait-States 9-9
	Figure 9.4 I/M-Type I/O Read, 0 Wait-States 9-10
	Figure 9.5 PCMCIA-Style I/O Read with 0 Wait-States 9-11
	Figure 9.6 I-Type I/O Write with 0 Wait-States 9-12
	Figure 9.7 M-Type I/O Write with 0 Wait-States 9-13
	Figure 9.8 PCMCIA-Style I/O Write with 0 Wait-States 9-14
	Figure 9.9 I/O Read with Internal Wait-States 9-15
	Figure 9.10 I/O Read with external SysWait Wait-State 9-16
	Figure 9.11 I/O Write with Internal Wait-States 9-17
	Figure 9.12 I/O Write with external SysWait Wait-State 9-18
	Figure 9.13 I-Type I/O System with Direct Bus Connection 9-18
	Figure 9.14 M-Type I/O System with Direct Bus Connection 9-19
	Figure 9.15 I-Type I/O System using FCT245 Transceivers 9-19
	Figure 9.16 M-Type I/O System using FCT245 Transceivers 9-20
	Figure 9.17 I-Type I/O System using FCT543 Transceivers 9-20
	Figure 9.18 M-Type I/O System using FCT543 Transceivers 9-21
	Figure 9.19 16-bit I/O System with Big Endian Connection 9-22
	Figure 9.20 16-bit I/O System with Little Endian Connection 9-22
	Figure 9.21 8-bit I/O System with Big Endian Connection 9-23
	Figure 9.22 8-bit I/O System with Little Endian Connection 9-23
	Figure 10.1 RC36100 DRAM Bus Controller Block Diagram 10-2
	Figure 10.2 DRAM Refresh Count Register (‘DramRefreshCountReg’) 10-7
	Figure 10.3 DRAM Refresh Compare Register 10-8
	Figure 10.4 DRAM RAS Mux Select Register (‘DramRasMuxSelReg’) 10-10
	Figure 10.5 DRAM CAS Mux Select Register 10-10
	Figure 10.6 DRAM MSB Base Address Register (“DramMSBBaseAddrReg’) 10-13
	Figure 10.7 DRAM MSB Bank Mask (‘DramMSBBankMask(3:0)’) Registers 10-14
	Figure 10.8 DRAM LSB Bank Control Register (‘DramLSBControlReg’) 10-15
	Figure 10.9 DRAM MSB Bank Control Register (‘DramMSBControlReg’) 10-18
	Figure 10.10 Basic DRAM Read 10-23
	Figure 10.11 RAS asserted at End of Transfer 10-24
	Figure 10.12 RAS asserted at Start of Transfer 10-25
	Figure 10.13 RAS Precharge at start of Transfer 10-26
	Figure 10.14 Extended Row Address Hold 10-27
	Figure 10.15 Extended Address Set-up 10-28
	Figure 10.16 Extended CAS Width 10-29
	Figure 10.17 Multiple Data read 10-30
	Figure 10.18 Basic DRAM Write 10-31
	Figure 10.19 RAS Asserted Throughout DRAM Write 10-32
	Figure 10.20 Write Bus Turn-around 10-33
	Figure 10.21 Two Datum Write 10-34
	Figure 10.22 Interleaved ‘FCT245 type read 10-35
	Figure 10.23 Interleaved FCT260 Read 10-36
	Figure 10.24 Single word access to even bank of FTC260-type system 10-37
	Figure 10.25 Single word access to odd bank of FCT260-type system 10-38
	Figure 10.26 Interleaved FCT543 Read 10-39
	Figure 10.27 Single word access to even bank of FCT543-type system 10-40
	Figure 10.28 Single word access to odd bank of FCT543-type system 10-41
	Figure 10.29 Interleaved FCT245-type Writes 10-42
	Figure 10.30 Interleaved FCT260, FCT543-type Writes 10-43
	Figure 10.31 DRAM Staggered Refresh 10-44
	Figure 10.32 Interleaved FCT245 Interface 10-45
	Figure 10.33 Interleaved FCT260 Interface 10-46
	Figure 10.34 Interleaved FCT543 Interface 10-47
	Figure 11.1 DMA Controller Address and Data Flow Diagram 11-1
	Figure 11.2 Rotating Priority Scheme 11-3
	Figure 11.3 Internal DMA Algorithm 11-4
	Figure 11.4 Internal DMA LSB Source Address Register (‘DmaLSBSourceAddrReg’) 11-8
	Figure 11.5 Internal DMA MSB Source Address Register (‘DmaMSBSourceAddrReg’) 11-8
	Figure 11.6 Internal DMA LSB Target Address Register (‘DmaLSBTargetAddrReg’) 11-9
	Figure 11.7 Internal DMA MSB Target Address Register (‘DmaMSBTargetAddrReg’) 11-9
	Figure 11.8 DMA LSB Count Register (‘DmaLSBCountReg’) 11-9
	Figure 11.9 Internal DMA MSB Count Register (‘DmaMSBCountReg’) 11-10
	Figure 11.10 Internal DMA LSB Control Register (‘DmaLSBControlReg’) 11-10
	Figure 11.11 Internal DMA MSB Control Register (‘DmaMSBControlReg’) 11-13
	Figure 11.12 External DMA Control Register (‘ExtDmaControlReg’) 11-15
	Figure 11.13 External DMA Single Data Read using the Memory Controller (Data Transfer from Memory...
	Figure 11.14 External DMA Single Data Write using the Memory Controller (Data Transfer from Devic...
	Figure 11.15 External DMA Two-Data Burst Read using the Memory Controller (Data Transfer from Mem...
	Figure 11.16 External DMA Two-Data Burst Write using the Memory Controller (Data Transfer from De...
	Figure 12.1 PIO Block Diagram 12-1
	Figure 12.2 PIO Data Register (‘PioDataReg’) 12-3
	Figure 12.3 PIO Direction Register (‘PioDirReg’) 12-3
	Figure 12.4 PIO Effect Select Register (‘PioEffectSelReg’) 12-4
	Figure 13.1 Expansion Interrupt Controller (to CPU Interrupt) 13-1
	Figure 13.2 Expansion Interrupt Controller: Steering Interrupts to DMA Requests 13-2
	Figure 13.3 Expansion Interrupt Mask Register (‘ExpIntMaskReg’) 13-3
	Figure 13.4 Expansion Interrupt Pending Register (‘ExpIntPendReg’) 13-3
	Figure 13.5 Expansion Interrupt DMA Select Register (‘ExpIntDMASelReg’) 13-4
	Figure 14.1 Block Diagram of the RC36100 Timers 14-1
	Figure 14.2 Timer Prescaler Count Register (‘TimerPrescalerCountReg’) 14-4
	Figure 14.3 Timer Count Register (‘TimerCountReg’) 14-4
	Figure 14.4 Timer Compare Register (‘TimerCompareReg’) 14-4
	Figure 14.5 Timer Pulse Width Modulation Register (‘TimerPWMReg’) 14-5
	Figure 14.6 Timer Control Register (‘TimerControlReg’) 14-5
	Figure 15.1 Block Diagram of Serial Communication Controller 15-2
	Figure 15.2 Programmer access to the Serial Communications Controller 15-3
	Figure 15.3 Write Register 0 (WR0) Bit Values and Field Descriptions 15-11
	Figure 15.4 Write Register 1 (WR1) Bit Values and Configurations 15-11
	Figure 15.5 Write Register 2 (WR2) 15-12
	Figure 15.6 Write Register 3 (WR3) Bit Values and Configurations 15-12
	Figure 15.7 Write Register 4 (WR4) Bit Values and Configurations 15-12
	Figure 15.8 Write Register 5 (WR5) Bit Values and Configurations 15-12
	Figure 15.9 Write Register 6 (WR6) Bit Values and Configurations 15-13
	Figure 15.10 Write Register 7 (WR7) Bit Values and Configuration 15-13
	Figure 15.11 Write Register 7’ (WR7’) Bit Values and Configuration 15-14
	Figure 15.12 Write Register 9 (WR9) Bit Values and Configuration 15-14
	Figure 15.13 Write Register 10 (WR10) Bit Values and Configuration 15-14
	Figure 15.14 Write Register 11 (WR11) Bit Values and Configuration 15-15
	Figure 15.15 Write Register 14 (WR14) Bit Values and Configuration 15-15
	Figure 15.16 Write Register 15 (WR15) Bit Values and Configuration 15-16
	Figure 15.17 Read Register 0 (RR0) Bit Values and Configuration 15-16
	Figure 15.18 Read Register 1 (RR1) Bit Values and Configuration 15-16
	Figure 15.19 Read Register 3 (RR3) (Channel A only) Bit Values and Configuration 15-17
	Figure 15.20 Read Register 7 (RR7) Bit Values and Configuration 15-17
	Figure 16.1 Block Diagram of the Bidirectional Parallel Port 16-1
	Figure 16.2 Centronics Sub ModeRegister (‘CentSubModeReg’) 16-9
	Figure 16.3 Centronics Status Register (‘CentStatusReg’) 16-9
	Figure 16.4 Centronics Control Register (‘CentControlReg’) 16-11
	Figure 16.5 Centronics Nibble Data Register (‘CentNibbleDataReg’) 16-15
	Figure 16.6 Centronics Host Status Register (‘CentHostStatusReg’) 16-16
	Figure 16.7 Centronics Minimum Delay Register (‘CentDelayReg’) 16-17
	Figure 16.8 Typically Classic Compatible Mode Transaction 16-19
	Figure 16.9 Typical Parallel Port System Connections 16-19
	Figure 17.1 Cold Start 17-4
	Figure 17.2 Warm Reset 17-4
	Figure 17.3 Configuration Mode Initialization Logic 17-5
	Figure 17.4 Mode Vector Timing 17-5
	Figure 17.5 Reset Timing 17-6
	Figure 17.6 RC36100 Clocking 17-6
	Figure 18.1 Debug Tracepoint Address Register (‘MSB DebugTraceAddrReg’) 18-4
	Figure 18.2 Debug Tracepoint Address Register (‘LSB DebugTraceAddrReg’). 18-4
	Figure 18.3 Debug Tracepoint Control Register (‘DebugTraceControlReg’) 18-4
	Figure 18.4 Debug Control Register (‘DebugControlReg’) 18-5
	Figure 18.5 RC36100 SysClk Phase Initialization Case A 18-6
	Figure 18.6 RC36100 SysClk Phase Initialization Case B 18-6
	List of Figures

	ch01.pdf
	Introduction
	Figure�1.1 RC36100 Block Diagram

	RC36100 Features List
	Device Overview
	CPU Core
	System Control Co-Processor
	Clock Generator Unit
	Instruction Cache
	Data Cache
	Bus Interface Unit
	Memory Controller
	DRAM Controller
	I/O Controller
	DMA Control and Interface
	Counter/Timers
	PIO Interface
	Serial Communications Controller
	Interrupt Controller
	IEEE 1284 Bidirectional Centronics

	Pin Information
	Logic Symbol
	Figure�1.2 RC36100 Logic Symbol

	Pin Descriptions
	Table�1.1 RC36100 Pin Descriptions (Page 4 of 4)

	System Usage
	Figure�1.3 Low-cost RC36100 Based System

	Development Support
	Figure�1.4 Development Support

	Performance Overview
	RC36100 Device Overview

	ch02.pdf
	Instruction Set Architecture
	Introduction
	Processor Features Overview
	CPU Registers Overview
	Figure 2.1 CPU Registers

	Instruction Set Overview
	Figure 2.2 Instruction Encoding
	Table 2.1 Instruction Set Mnemonics

	Programming Model
	Data Formats and Addressing
	Figure 2.3 Byte Ordering Conventions
	Figure 2.4 Unaligned Words

	CPU General Registers
	CP0 Special Registers
	Table 2.2 RC36100 CP0 Registers

	Operating Modes
	Pipeline Architecture
	Figure 2.5 5-Stage Pipeline
	Figure 2.6 5-Instructions per Clock Cycle

	Pipeline Hazards
	Figure 2.7 Load Delay
	Figure 2.8 Branch Delay

	Instruction Set Summary
	Instruction Formats
	Instruction Notational Conventions
	Load and Store Instructions
	Big-Endian (32-bit memory system)
	Table 2.3 Big-Endian (32-bit memory system)

	Little-Endian (32-bit memory system)
	Table 2.4 Byte Addressing in Load/Store Operations (32-bit memory)

	Big-Endian (16-bit memory system)
	Table 2.5 Big-Endian (16-bit memory system)

	Little-Endian (16-bit memory system)
	Table 2.6 Byte Addressing in Load/Store Operations (16-bit memory)
	Table 2.7 Load and Store Instructions

	Computational Instructions
	Table 2.8 ALU Immediate Operations
	Table 2.9 Three Operand Register-Type Operations
	Table 2.10 Shift Operations
	Table 2.11 Multiply and Divide Operations

	Jump and Branch instructions
	Table 2.12 Jump Instructions
	Table 2.13 Branch Instructions

	Special Instructions
	Table 2.14 Special Instructions

	Co-processor Instructions
	Table 2.15 Co-Processor Operations

	System Control Co-processor (CP0) Instructions
	Table 2.16 System Control Co-Processor (CP0) Operations

	RC36100 Opcode Encoding
	Table 2.17 Opcode Encoding

	ch03.pdf
	Introduction
	Fundamentals of Cache Operation
	RC36100 Cache Organization
	Basic Cache Operation
	Figure 3.1 Cache Line Selection

	Memory Address to Cache Location Mapping
	Cache Addressing
	Write Policy
	Partial Word Writes
	Instruction Cache Line Size
	Data Cache Line Size
	Summary
	Figure 3.2 RC36100 Execution Core and Cache Interface

	Cache Operation
	Basic Cache Fetch Operation
	Figure 3.3 Phased Access of Instruction and Data Caches

	Cache Miss Processing
	Instruction Streaming

	Cacheable References
	Software Directed Cache Operations
	Cache Sizing
	1. Swap Caches (not needed for D-Cache sizing)
	2. Isolate Caches
	3. Write a value at location 8000_0000
	4. Write a value at location 8000_0200 (8000_0000 + 512B) Read location 8000_0000. Examine the CM...
	5. Write a value at location 8000_0400 (8000_0000 + 1kB) Read location 8000_0000. Examine the CM ...
	6. etc...
	Cache Flushing

	1. Isolate Caches
	2. Perform a byte write every 4 bytes, starting at location 0, until 256 such writes have been pe...
	3. Return the data cache to its normal state by clearing the IsC bit.

	1. Swap Caches
	2. Isolate Caches
	3. Perform a byte write every 16 bytes (based on the instruction cache line size of 16 bytes). Th...
	4. Return the caches to their normal state (unswapped and not isolated).
	Forcing Data into the Caches

	Cache-Locking Operation
	Figure 3.4 RC36100 Instruction Cache Index Address Path
	Figure 3.5 RC36100 Cache in One Portion
	Figure 3.6 RC36100 Cache in Two Portions
	Figure 3.7 RC36100 Cache in Four Portions
	Table 3.1 Instruction Cache to Address Mapping under Various Cache Locking Conditions
	Table 3.2 Data Cache to Address Mapping under Various Cache Locking Conditions

	Summary
	Cache Architecture

	ch04.pdf
	Virtual-to-Physical Address Translation and Address Map
	Virtual Memory in the RISCore32 series Architecture
	Figure 4.1 Virtual Address Format

	Privilege States
	User Mode Virtual Addressing
	Kernel Mode Virtual Addressing

	RC36100 address translation
	Figure 4.2 Virtual-to-Physical Address Translation in RC36100
	Table 4.1 Virtual and Physical Address Relationships in Base Versions
	On-Chip Registers
	Table 4.2 RC36100 On-Chip Resources and Address Map

	Cache Miss Area
	Table 4.3 Example: FIFO load code using FCM memory space.

	Summary

	ch05.pdf
	Introduction
	Coprocessor 0 Bus Interface Control
	Figure 5.1 RC36100 CPO Registers
	Table 5.1 RC36100 CPO Register Addresses

	Cache Configuration Register
	Figure 5.2 RC36100 Cache Control Register
	Lock ('Lock')
	Table 5.2 RC36100 Cache Configuration Register Lock Field

	Reserved-High ('1')
	Reserved-Low ('0')
	DBlockRefill ('DBR')
	Table 5.3 RC36100 DBlockRefill Field

	D-CacheIndexControl ('DCI')
	Table 5.4 RC36100 D-Cache Index Control Field

	Halt Mode ('Halt')
	Table 5.5 RC36100 Halt Field

	I-CacheIndexControl ('ICI')
	Table 5.6 RC36100 I-Cache Index Control Field

	ReduceFrequency ('RF')
	Table 5.7 RC36100 Reduced Frequency Mode Field

	ForceDCacheMiss ('FDCM')
	Table 5.8 RC36100 ForceDCacheMiss Field

	ForceICacheMiss ('FICM')
	Table 5.9 RC36100 ForceICacheMiss Field

	DCacheWriteDisable('DWrD')
	Table 5.10 RC36100 Data Cache Write Disable Field

	I-CacheWriteDisable ('IWrD')
	Table 5.11 RC36100 Instruction Cache Write Disable Field

	The Cause Register
	Figure 5.3 RC36100 Cause Register
	Table 5.12 Cause Register Exception Codes
	The EPC (Exception Program Counter) Register
	Bad VAddr Register
	The Status Register
	Figure 5.4 RC36100 Status Register

	PRId Register
	Figure 5.5 RC36100 PrID Register
	Coprocessor 0 Register Set

	ch06.pdf
	Introduction
	RC36100 Exception Model
	Table 6.1 RISCore3000 Family Architecture Exceptions
	Precise vs. Imprecise Exceptions

	Exception Processing
	Exception Handling Registers
	The Cause Register
	Figure 6.1 RC36100 Cause Register
	Table 6.2 Cause Register Exception Codes

	The EPC (Exception Program Counter) Register
	Bad VAddr Register
	The Status Register
	Figure 6.2 The Status Register

	Exception Vector Locations
	Table 6.3 Exception Vectors When BEV = 0
	Table 6.4 Exception Vectors When BEV = 1

	Exception Prioritization
	Figure 6.3 Pipelining in the RC3051 family
	Table 6.5 RC36100 Exception Priority

	Exception Latency
	Interrupts Inputs in the RC36100
	Interrupt Operation in the RC36100
	Figure 6.4 Synchronized Interrupt Operation Wave Forms
	Figure 6.5 Direct Interrupt Operation Wave Forms

	Using the BrCond Inputs
	Figure 6.6 Synchronized BrCond Inputs

	Interrupt Handling
	Figure 6.7 Kernel and Interrupt Status Being Saved on Interrupts

	Interrupt Servicing
	Basic Software Techniques For Handling Interrupts
	Figure 6.8 Code Sequence to Initialize Exception Vectors

	Preserving Context
	Figure 6.9 Preserving Processor Context

	Examining Exceptions
	Figure 6.10 Exception Cause Decoding
	Figure 6.11 Exception Service Branch Table

	Returning From Exceptions
	Figure 6.12 Returning from Exception

	Special Techniques
	Interrupt Masking
	Using BrCond For Fast Response
	Figure 6.13 Polling System Using BrCond
	Figure 6.14 Using BrCond for Fast Interrupt Decoding

	Cache Locking
	Nested Interrupts
	Catastrophic Exceptions

	Handling Specific Exceptions
	Address Error Exception
	Cause
	Handling
	Servicing

	Breakpoint Exception
	Cause
	Handling
	Service

	Bus Error Exception
	Cause
	Handling
	Servicing

	Co-processor Unusable Exception
	Cause
	Handling
	Servicing
	Interrupt Exception
	Cause
	Handling
	Servicing

	Overflow Exception
	Cause
	Handling
	Servicing

	Reserved Instruction Exception
	Cause
	Handling
	Servicing

	Reset Exception
	Cause
	Handling
	Servicing

	System Call Exception
	Cause
	Handling
	Servicing
	Interrupt and Exception Handling

	ch07.pdf
	Introduction
	Bus Interface Overview
	Figure 7.1 RC36100 Bus Interface Unit Block Diagram

	Pin Description
	System Bus Interface Signals
	SysAddr(25:0) Output/(Input during external DMA)
	SysData(31:0) Input/Output

	Clock and Reset Signals
	SysClkIn Input
	SysClk Output
	Reset Input

	Bus Interface Control Signals
	SysALEn Output (Input during external DMA)
	SysRd Output (Input during external DMA)
	SysWr Output (Input during external DMA)
	SysBurstFrame Output (Input during external DMA)
	SysDataRdy Output
	SysWait Input
	SysBusError Input

	CPU Core Transaction Types
	Read Operation
	Write Operations
	Multiple Operations
	1. DRAM refreshes may delay the start of a read or write DRAM data access.
	2. Ongoing transactions are completed without interruption.
	3. DMA requests are serviced according to the DMA priorities established in the RC36100 DMA Contr...
	4. Instruction cache misses are processed.
	5. Pending writes are processed.
	6. Data cache misses or uncacheable reads/uncacheable instruction fetches are processed.

	Execution Engine Fundamentals
	Execution Core Cycles
	Cycles
	Run Cycles
	Stall Cycles
	1. Micro-TLB Miss and Partial Word Store
	2. Data Cache Miss or Write Busy Stall
	3. Instruction Cache Miss
	4. Multiply/Divide Unit Busy

	Internal Acknowledgment
	Read Interface Timing Overview
	Initiation of a Read Request
	Figure 7.2 CPU Latency to Start of Read

	Memory Addressing
	Figure 7.3 Start of Bus Read Operation

	Initiation of the Data Phase
	Bringing Data into the Processor
	Figure 7.4 Data Sampling.

	Terminating the Read
	Latency Between Processor Operations
	Figure 7.5 Read Cycle Termination.

	Processor Internal Activity
	Figure 7.6 Internal Processor States on 4-word Burst Read.
	Figure 7.7 Instruction Streaming Internal Operation Example.

	The Write Interface
	Importance of Writes in RC36100 Systems

	Types of Write Transactions
	32-Bit Write Transactions
	16-Bit Transactions
	8-Bit Transactions

	Write Interface Timing Overview
	Initiating the Write
	Memory Addressing
	The Data Phase
	Terminating the Write
	Figure 7.8 Write Cycle Termination
	Latency Between Processor Operations

	Write Buffer Full Operation
	Figure 7.9 Write-Buffer-Full Operation
	System Bus Interface Unit Overview

	ch08.pdf
	Introduction
	Features
	Block Diagram
	1. The access is to the Memory Controller's Register Bank.
	2. The access is in one of the Memory Controller's Chip Select Areas that is responsible for cont...
	Figure 8.1 RC36100 Memory Bus Controller Block Diagram

	Memory Controller Signals
	MemCS(7:0)/ Output
	IoCS(7:0)
	MemRdEnEven Output
	MemRdEnOdd Output
	MemWrEn(3:0) / Output/(Input during DMA)
	MemByteEn(3:0)/
	MemAddr(29:26)/
	BIU Controller Signals
	SysAddr(25:0) Output/Input
	SysData(31:0) Output/Input
	SysWait Input

	Memory Controller Overview
	Chip Selects
	Transceiver Control Interface
	Wait-State Generator
	Register Option Programmability

	Register Descriptions
	Table 8.1 List of the Memory and I/O Controller Registers (1 of 2).
	Table 8.2 List of the memory and I/O Controller Registers (2 of 2)
	Memory MSB Base Address Register for Bank 7..0 ('MemMSBBaseAddrReg(7..0)’), and Memory LSB Base A...
	Figure 8.2 Memory and I/O MSB Base Address Register ('MemMSBBaseAddrReg').
	Figure 8.3 Memory and I/O LSB Base Address Register ('MemLSBBaseAddrReg').

	1. 1. Bits 31:28 of each group of four MemCS base addresses is set by the first MemCS of the group.
	2. 2. Bits 27:15 of each MemCS base address is used to distinguish the starting address of each m...
	3. 3. Bits 14:0 are always ignored.
	Table 8.3 Memory and I/O Controller Base Addresses.

	Memory MSB Bank Mask Register for Bank 7..0 ('MemMSBBankMaskReg(7..0)’), and Memory LSB Bank Mask...
	Figure 8.4 Memory and I/O MSB Bank Mask Register ('MemMSBBankMaskReg').
	Figure 8.5 Memory and I/O LSB Bank Mask Address Register ('MemLSBBankMaskReg').

	1. Bits 31:28 of each group of four MemCS Bank masks is set by the first MemCS of the group.
	2. Bits 27:15 of each MemCS Bank mask are used to distinguish the size of each memory space.
	3. Bits 14:0 are always ignored.
	Table 8.4 Memory Mask Field Definitions and Values

	Memory and I/O Control Register for Bank 7..0 ('MemControlReg(7..0)’),
	Figure 8.6 Memory and I/O Control Register Bit Assignments.
	Table 8.5 Memory and I/O Control Register Bit Assignments.

	1. Use FCT543 mode for FCT260 or FCT543 non-interleaved even banks.
	2. FCT245 banks can be booted in the default FCT543 mode but must be put into the FCT245 mode bef...
	3. PCMCIA-Style supports a PCMCIA host mode subset that is likely to be used with PCMCIA peripher...
	Table 8.6 Memory Type Field ('MemType') Encoding.

	Port Size Width (‘MemSize’) Field
	Table 8.7 PortSize ('MemSize') Encoding.

	Memory LSB Wait-State Register for Bank 7..0 ('MemLSBWaitStateReg(7..0)’)
	Figure 8.7 Memory LSB Wait-State Register ('MemLSBWaitStateReg').

	1. Time from CS asserted to the first RdCEnN for read burst or time to RdCEnN and AckN for single...
	2. Time between the RdCEnN's for burst reads or AckN's for burst DMA writes.
	3. Time from the first RdCEnN to the AckN for burst reads or time from first AckN to last AckN fo...
	4. The functionality of the SysWaitN signal for the corresponding control area.
	Table 8.8 Memory LSB Wait-State Register ('MemLSBWaitStateReg') Bit Assignments.

	Read Start Cycle to the First Datum (‘RdStart2Datum’) Field: and Write Start Cycle to the First D...
	Table 8.9 Start to the first Datum (‘RdStart2Datum’ and 'WrStart2Datum') Field Encoding.

	Read Datum to Datum (‘RdDatum2Datum') Field: and Write Datum to Datum (‘WrDatum2Datum') Field:
	Table 8.10 Datum-to-Datum (RdDatum2Datum, WrDatum2Datum) Field Encoding

	Memory MSB Wait-State Register for Bank 7..0 ('MemMSBWaitStateReg(7..0)’)
	Figure 8.8 Memory MSB Wait-State Register (‘MemMSBWaitStateReg).
	Table 8.11 Memory MSB Wait-State Register ('MemMSBWaitStateReg') Bit Assignments.

	Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field
	Table 8.12 Repeat Start Bus Cycle State 0 (‘StartRepeat’) Field Encoding.

	Start of Read to AckN on Burst Reads (‘Start2BurstAck’) Field
	Table 8.13 First Read to AckN on Burst Reads (‘Start2BurstAck’) Field Encoding.

	Byte Enables on Reads (‘BEn’) Field
	Table 8.14 Byte Enables on Reads (‘BEn’) Field Encoding.

	Read Cycle Bus Turn-Around (‘RdBTA’) Field
	Table 8.15 Bus Turn-Around (‘BTA’) Field Encoding.

	Formulas for Calculating Memory Controller Start2BurstAck Field Valuei

	Memory Controller Timing Diagrams
	Read Transactions
	Basic 1-Datum Read with 0 Wait-States
	Figure 8.9 1-Datum Read with 0 Wait-States.

	1-Datum Read with 0 Wait-States using Odd Chip Select
	Figure 8.10 1-Datum Read with 0 Wait-States Using an Odd Chip Select.

	Read with Wait-State using Start Repeat Field
	Figure 8.11 1-Datum Read with 1 Wait-State using StartRepeat Field.

	Read with Wait-State using RdStart2Datum Field
	Figure 8.12 Read with Wait-State using RdStart2Datum Field.

	Read with Wait-State using SysWait
	Figure 8.13 Read with Wait-State using SysWait.

	4-Word Burst Read with 0 Wait-States
	Figure 8.14 4-Word Burst Read with 0 Wait-States.
	Figure 8.15 4-Word Burst Read with Wait-States using�RdDatum2Datum Field.

	Basic 16-bit PCMCIA-style Memory Read with Zero Wait-States
	Figure 8.16 PCMCIA-Style Memory Read with 0 Wait-States

	Write Transactions
	Single Datum Write
	Figure 8.17 1-Datum Write with 0 Wait-States

	1-Datum Write with 0 Wait-States using FCT245-Type Field
	Figure 8.18 1-Datum Write with 0 Wait-States using FCT245-Type Field.

	1-Datum Write with Wait-State using StartRepeat Field
	Figure 8.19 1-Datum Write with Wait-State using StartRepeat Field.

	1-Datum Write with Wait-State using WrStart2Datum Field
	Figure 8.20 1-Datum Write with Wait-State using WrStart2Datum Field.

	1-Datum Write with Wait-State using SysWait
	Figure 8.21 1-Datum Write with Wait-State using SysWait.

	Multi-Datum Burst Write
	Figure 8.22 Multi-Datum Burst Write.

	Multi-Datum Burst Write using Wait-State with WrDatum2Datum
	Figure 8.23 Multi-Datum Burst Write using Wait-State with WrDatum2Datum.

	Basic PCMCIA-Type Memory Write with 0 Wait-States
	Figure 8.24 PCMCIA-Style Memory Write with 0 Wait-States

	Interleaved-Type Transactions
	Interleaved Read using FCT260-Type Field
	Figure 8.25 Interleaved Read using FCT260-Type Field.
	Figure 8.26 Interleaved “Even” Read of FCT260-Type Memory
	Figure 8.27 Interleaved “Odd” Read of FCT260-Type Memory
	Figure 8.28 Interleaved Read using FCT245-Type Field.

	Interleaved Read using FCT543-Type Field
	Figure 8.29 Interleaved Read using FCT543-Type Field.
	Figure 8.30 “Even” Read of FCT543-Type Memory
	Figure 8.31 “Odd” Read of FCT543-Type Memory

	Interleaved Writes
	Figure 8.32 Interleaved Write using FCT260-Type and FCT543-Type Fields.
	Figure 8.33 Interleaved Write using FCT245-Type Field.

	System Examples
	Figure 8.34 32-bit SRAM System.
	Figure 8.35 32-bit SRAM System using an Odd Chip Select.
	32-bit SRAM using 245 Transceivers
	Figure 8.36 32-bit SRAM System using FCT245-Type.
	Figure 8.37 Interleaved FCT245-Type System.
	Figure 8.38 Interleaved FCT260-Type System.
	Figure 8.39 Interleaved FCT543-Type System

	16-bit SRAM/ROM
	Figure 8.40 16-bit Big Endian SRAM System.
	Figure 8.41 16-bit Little Endian SRAM System.

	8-bit SRAM/ROM
	Figure 8.42 8-bit Big Endian SRAM System.
	Figure 8.43 8-bit Little Endian SRAM System.

	Dual-Port-Type
	PCMCIA-Style Application
	Table 8.16 PCMCIA and RC36100 Functional Equivalents.
	Memory Controller

	ch09.pdf
	Introduction
	Features
	Block Diagram
	Figure 9.1 RC36100 I/O Bus Controller Block Diagram

	I/O Bus Controller Interface Signals
	IoCS(7:0)/ Output
	MemCS(7:0)
	IoRd/ Output
	IoDStrobe
	IoWr/ Output
	IoRdHWr
	MemAddr(29:26) / Output/(Input during DMA)
	MemWrEn(3:0) /
	MemByteEn(3:0)

	BIU Controller Signals
	SysAddr Output/Input
	SysData Output/Input
	SysWait Input

	Overview of the I/O Controller
	Chip Selects
	Signal Control Interface
	Wait-State Generator
	Register Option Programmability

	Register Descriptions
	Note: Big Endian software must offset these addresses by b'10 (0x2), if halfword operations are u...
	Table 9.1 Memory and I/O Controller Register Addresses and Descriptions

	Memory and I/O Control Register7..0 ('MemIoCntrlReg(7..0)’)
	Figure 9.2 Memory and I/O Control Register (‘MemIoCntrlReg(7..0)’)

	Memory Type (‘MemType’) Field
	Note:
	PCMCIA-Style supports a PCMCIA host mode subset that is likely to be used with PCMCIA peripherals...
	Table 9.2 Memory Type (MemType) Field Values and Descriptions

	Portsize Width (‘MemSize’) Field
	Table 9.3 Portsize Width Field Values and Definitions

	I-Type I/O Type:
	M-Type I/O Type:
	PCMCIA-I/O Style:

	I/O Controller Timing Diagrams
	I/O Datum Size

	Read Transactions
	Basic I-Type I/O Read with 0 Wait-States
	Figure 9.3 I-Type I/O Read with 0 Wait-States

	Basic M-Type I/O Read with 0 Wait-States
	Figure 9.4 I/M-Type I/O Read, 0 Wait-States

	Basic 16-bit PCMCIA-style I/O Read with 0 Wait-States
	Figure 9.5 PCMCIA-Style I/O Read with 0 Wait-States

	Basic I-Type I/O Write with 0 Wait-States
	Figure 9.6 I-Type I/O Write with 0 Wait-States

	Basic M-Type I/O Write with 0 Wait-States
	Figure 9.7 M-Type I/O Write with 0 Wait-States
	Figure 9.8 PCMCIA-Style I/O Write with 0 Wait-States

	Read with Wait-State using Start Repeat Field
	Read with Wait-State using RdStart2Datum Field
	Figure 9.9 I/O Read with Internal Wait-States

	Read with Wait-State using SysWait
	Figure 9.10 I/O Read with external SysWait Wait-State

	1-Datum Write with Wait-State using StartRepeat Field
	1-Datum Write with Wait-State using WrStart2Datum Field
	Figure 9.11 I/O Write with Internal Wait-States

	1-Datum Write with Wait-State using SysWait
	Figure 9.12 I/O Write with external SysWait Wait-State

	System Examples
	32-bit I/O Device Directly Connected to Bus
	Figure 9.13 I-Type I/O System with Direct Bus Connection
	Figure 9.14 M-Type I/O System with Direct Bus Connection

	I/O Reset Application
	32-bit I/O Device using 245 Transceivers
	Figure 9.15 I-Type I/O System using FCT245 Transceivers
	Figure 9.16 M-Type I/O System using FCT245 Transceivers

	32-bit I/O Device using 543 Transceivers
	Figure 9.17 I-Type I/O System using FCT543 Transceivers
	Figure 9.18 M-Type I/O System using FCT543 Transceivers

	Using more than one device behind each transceiver
	16-bit I/O Devices
	Figure 9.19 16-bit I/O System with Big Endian Connection
	Figure 9.20 16-bit I/O System with Little Endian Connection

	8-bit I/O Devices
	Figure 9.21 8-bit I/O System with Big Endian Connection
	Figure 9.22 8-bit I/O System with Little Endian Connection
	I/O Controller

	ch10.pdf
	Introduction
	Features
	Block Diagram
	Figure 10.1 RC36100 DRAM Bus Controller Block Diagram

	DRAM Bus Controller Interface Signals
	SysAddr(13:2) Output
	DramRAS(3:0) Output
	DramCAS(3:0) Output
	DramWrEnEven Output
	DramWrEnOdd Output
	DramRdEnEven Output
	DramRdEnOdd Output
	BIU Controller Signals
	SysData Output/Input
	SysALEn Input/Output
	SysWait Input

	Overview of the DRAM Controller
	Address mapping
	32-bit and16-bit mode support
	Types of memory supported
	Programmable wait state generation
	Page Comparator Algorithm
	Unaligned page accesses
	Refresh Timing
	Initialization
	Programmable features
	Signal Control Interface
	Wait State Generator
	Register Option Field Programmability

	Register Descriptions
	Table 10.1 DRAM Controller Registers.
	DRAM Refresh Count Register (‘DramRefreshCountReg’)
	Figure 10.2 DRAM Refresh Count Register (‘DramRefreshCountReg’)
	Table 10.2 DRAM Refresh Count Register (DramRefreshCountReg’) Bit Assignments.

	Staggered Refresh
	Refresh Arbitration
	Panic Mode Refresh Application
	Reduced Frequency Mode Application
	DRAM Refresh Compare Register
	Figure 10.3 DRAM Refresh Compare Register.
	Table 10.3 DRAM Refresh Compare Register (‘DramRefreshCompareReg’) Bit Assignments.
	Table 10.4 Refresh Disable (‘RefreshDis’) Field Encodings.
	Table 10.5 Common Refresh Settings for 8ms/512 or 16ms/1024 DRAMs.

	DRAM RAS Multiplexer Select Register for Pair(1:0, 3:2) (‘DramRasMuxSelReg'1_0, 3_2)
	Figure 10.4 DRAM RAS Mux Select Register (‘DramRasMuxSelReg’).
	Table 10.6 DRAM RAS Mux Select Register Bit Assignments.

	DRAM CAS Multiplexer Select Register for Pair (1:0, 3:2) (‘DramCasMuxSelReg'1_0, 3_2)
	Figure 10.5 DRAM CAS Mux Select Register
	Table 10.7 DRAM CAS Mux Select Register (‘DramCasMuxSelReg’) Bit Assignments.
	Table 10.8 Example ‘DramRasMuxSelReg’ and ‘DramCasMuxSelReg’ Settings.
	DRAM MSB Base Address Register for Bank 0..3
	Figure 10.6 DRAM MSB Base Address Register (“DramMSBBaseAddrReg’)
	Table 10.9 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment.
	Table 10.10 Example Bank Base Address Register (‘DramMSBBaseAddrReg’) Assignment.

	DRAM MSB Bank Mask Register for Bank 0..3 (‘DramMSBBankMaskReg(0..3)’)
	Figure 10.7 DRAM MSB Bank Mask (‘DramMSBBankMask(3:0)’) Registers.
	Table 10.11 DRAM MSB Bank Mask Bit Settings.

	DRAM LSB Control Register for Bank 0..3 (‘DramLSBControlReg(0..3)’)
	Figure 10.8 DRAM LSB Bank Control Register (‘DramLSBControlReg’)
	Table 10.12 DRAM LSB Control Register (‘DramLSBControlReg’) Bit Assignments.

	RASPageMask (‘RASPageMask’) Field (bits 15:8)
	Table 10.13 PageMask (‘PMask’) Bits.
	Table 10.14 DRAM LSB Page Mask Bit Settings.

	DRAM Type (‘DramType’) Field (bits 7:5)
	Table 10.15 DRAM Type (‘DramType’) Settings.

	FCT543-Type (Latched Non-Multiplexer Type)
	FCT245 Type (Non-latched Transceiver Type)
	FCT260-Type (Latched Multiplexer Type)
	Port Size (‘Size’) Field (bits 4:3)
	Table 10.16 DRAM Port Width (‘Size’) Encoding Field.

	DRAM MSB Control Register for Bank 0..3 (‘DramMSBControlReg'0..3)
	Figure 10.9 DRAM MSB Bank Control Register (‘DramMSBControlReg’).
	Table 10.17 DRAM MSB Control Register Bit Assignments.

	RAS Precharge Period (‘RASP’) Field (bit 15:14)
	Table 10.18 RAS Precharge (‘RASP’) Field Encodings.

	RAS Address Hold Time (‘RASAddrHold’) Field (bit 13)
	Table 10.19 RAS Address Hold Time (‘RASAddrHold’) Field Encoding.

	Address Setup Time to RAS and to CAS (‘AddrSetup’) Field (bit 12)
	Table 10.20 Address Setup Time to RAS or to CAS (‘AddrSetup’) Field Encoding.

	CAS Active Pulse Width (‘CASW’) Field (bit 11:10)
	Table 10.21 CAS Width (‘CASW’) Field Encoding.

	DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field (bit 9:8)
	Table 10.22 DRAM Read Cycle Bus Turn-Around (‘DramRdBTA’) Field Encoding.

	DRAM Write Cycle Bus Turn Around (‘DramWrBTA’) Field (bit 6)
	Table 10.23 DRAM Write Cycle Bus Turn-Around (‘DramWrBTA’) Field Encoding.

	Burst Acknowledge Placement (‘DramBurstAck’) Field (bit 4:0)
	Table 10.24 DRAM Burst Read Acknowledge (‘DramBurstAck’) Encoding.
	Table 10.25 Typical DRAM Burst Read Acknowledge Settings

	Timing Diagrams
	Standard DRAM Chip Summary
	Basic New Page DRAM Read
	Figure 10.10 Basic DRAM Read

	RAS Asserted at End of Transfer
	Figure 10.11 RAS asserted at End of Transfer

	RAS Asserted at Start of Transfer
	RAS Asserted Throughout Transfer
	Figure 10.12 RAS asserted at Start of Transfer

	RAS Precharge Field
	Figure 10.13 RAS Precharge at start of Transfer

	RAS Address Hold Field
	Figure 10.14 Extended Row Address Hold

	Address Setup Field
	Figure 10.15 Extended Address Set-up

	CAS Width Field
	Figure 10.16 Extended CAS Width

	Multiple Data Reads
	Figure 10.17 Multiple Data read

	Basic DRAM Write
	Figure 10.18 Basic DRAM Write
	RAS Asserted at Start of Write
	RAS Asserted at End of Write
	RAS Asserted Throughout Write
	Figure 10.19 RAS Asserted Throughout DRAM Write

	Other DRAM timing Controls
	Write Bus Turn-Around
	Figure 10.20 Write Bus Turn-around

	Two Datum Write Transaction
	Figure 10.21 Two Datum Write

	Interleaved Read Timing Diagrams
	Interleaved FCT245 Reads
	Figure 10.22 Interleaved ‘FCT245 type read

	Interleaved FCT260 Reads
	Figure 10.23 Interleaved FCT260 Read
	Figure 10.24 Single word access to even bank of FTC260-type system
	Figure 10.25 Single word access to odd bank of FCT260-type system

	Interleaved FCT543 Reads
	Figure 10.26 Interleaved FCT543 Read
	Figure 10.27 Single word access to even bank of FCT543-type system
	Figure 10.28 Single word access to odd bank of FCT543-type system

	Interleaved Writes
	Single Word Interleaved FCT245 Write
	Interleaved FCT245 Writes
	Figure 10.29 Interleaved FCT245-type Writes

	Single Word Interleaved FCT260 Write
	Interleaved FCT260 Writes
	Interleaved FCT543 Writes
	Figure 10.30 Interleaved FCT260, FCT543-type Writes

	Refresh
	Figure 10.31 DRAM Staggered Refresh

	System Examples
	DRAM System using FCT245 Transceivers
	Figure 10.32 Interleaved FCT245 Interface

	Low Cost DRAM System using FCT245 Transceivers
	Very Low Cost DRAM System without Transceivers
	DRAM System using FCT260 Multiplexers
	Figure 10.33 Interleaved FCT260 Interface

	DRAM System using FCT543 Registered Transceivers
	Figure 10.34 Interleaved FCT543 Interface
	DRAM Controller

	ch11.pdf
	Introduction
	Features
	Figure 11.1 DMA Controller Address and Data Flow Diagram.

	Block Diagram Overview
	Functional Overview
	Internal DMA Channels
	Figure 11.2 Rotating Priority Scheme
	Table 11.1 Fixed Priority Encoding

	Internal DMA Algorithm
	Figure 11.3 Internal DMA Algorithm.

	External DMA Channels
	Pin Descriptions
	Direct Memory Access (DMA) Controller Signals
	DmaBusReq(1:0) Input
	DmaBusGnt(1:0) Output
	DmaDone Input
	System Control Signals used during DMA Controller Accesses
	SysALEn Output/(Input during External DMA)
	SysBurstFrame Output/(Input during External DMA)
	SysRd Output/(Input during External DMA)
	SysWr Output/(Input during External DMA)
	MemWrEn(3:0) Output/(Input during External DMA)
	SysRd:
	MemWrEn():
	SysDataRdy Output

	Register Descriptions
	Internal DMA Controller Register Descriptions
	Table 11.2 Internal Channel DMA Controller Register Address Map

	DMA LSB Source Address Register for Channel 0..3 (‘DmaLSBSourceAddrReg(0..3)’)
	DMA LSB Source Address Register for Link A..D (‘DmaLSBSourceAddrReg(A..D)’)
	Figure 11.4 Internal DMA LSB Source Address Register (‘DmaLSBSourceAddrReg’).

	DMA MSB Source Address Register for Channel 0..3 (‘DmaMSBSourceAddrReg(0..3)’)
	DMA MSB Source Address Register for Link A..D (‘DmaMSBSourceAddrReg(A..D)’)
	Figure 11.5 Internal DMA MSB Source Address Register (‘DmaMSBSourceAddrReg’).

	DMA LSB Target Address Register for Channel 0..3 (‘DmaLSBTargetAddrReg(0..3)’)
	DMA LSB Target Address Register for Link A..D (‘DmaLSBTargetAddrReg(A..D)’)
	Figure 11.6 Internal DMA LSB Target Address Register (‘DmaLSBTargetAddrReg’).

	DMA MSB Target Address Register for Channel 0..3 (‘DmaMSBTargetAddrReg(0..3)’)
	DMA MSB Target Address Register for Link A..D (‘DmaMSBTargetAddrReg(A..D)’)
	Figure 11.7 Internal DMA MSB Target Address Register (‘DmaMSBTargetAddrReg’).

	DMA LSB Count Register for Channel 0..3
	DMA LSB Count Register for Link A..D
	Figure 11.8 DMA LSB Count Register (‘DmaLSBCountReg’).

	DMA MSB Count Register for Channel 0..3 (‘DmaMSBCountReg(0..3)’)
	DMA MSB Count Register for Link A..D (‘DmaMSBCountReg(A..D)’)
	Figure 11.9 Internal DMA MSB Count Register (‘DmaMSBCountReg’).

	DMA LSB Control Register for Channel 0..3 (‘DmaLSBControlReg(0..3)’)
	DMA LSB Control Register for Link A..D (‘DmaLSBControlReg(A..D)’)
	Figure 11.10 Internal DMA LSB Control Register (‘DmaLSBControlReg’).
	Table 11.3 Internal DMA LSB Control Register (‘DmaLSBControlReg’) Bit�Assign�ments.

	Arbitration Type (‘Arb’) Field (Bit 15):
	Table 11.4 Arbitration Type (‘Arb’) Field Encoding

	Keep Bus (‘Bus’) Field (Bit 14):
	Table 11.5 Keep Bus (‘Bus’) Field Encoding

	Allow DMADone (‘Done’) Field Bit (13):
	Table 11.6 Allow DMADone (‘Done’) Field Encoding.

	Wait for Interrupt (‘WInt’) Field (Bit 12):
	Table 11.7 Wait for Interrupt (‘Int’) Field Encoding

	Burst Type (‘Burst’) Field (Bit 9):
	Table 11.8 Burst Type (‘Burst’) Field Encoding.

	Source Byte Enable Type (‘SBE’) Field (Bit7:6):
	Table 11.9 Source Byte Enable Type (‘SBE’) Field Encoding.

	Target Byte Enable Type (‘TBE’) Field (Bit 5:4):
	Table 11.10 Target Byte Enable Type (‘TBE’) Field Encoding

	Source Endianness Type (‘SEndian’) Field (Bit 3):
	Table 11.11 Source Big Endianess Type (‘SEndian’) Field Encoding

	Target Endianness Type (‘TEndian’) Field (Bit 2):
	Table 11.12 Target Big Endianess Type (‘TEndian’) Field Encoding

	Increment Source Address (‘SInc’) Field (Bit 1):
	Table 11.13 Increment Source Address (‘HInc’) Field Encoding

	Increment Target Address (‘TInc’) Field (Bit 0):
	Table 11.14 Increment Target Address (‘TInc’) Field Encoding

	DMA MSB Control Register for Channel 0..3 (‘DmaMSBControlReg(0..3)’)
	DMA MSB Control Register for Link A..D (‘DmaMSBControlReg(A..D)’)
	Figure 11.11 Internal DMA MSB Control Register (‘DmaMSBControlReg’).
	Table 11.15 Internal DMA MSB Control Register (‘DmaMSBControlReg’) Bit Assignments

	Stop (‘Stop’) Field (Bit 15):
	Table 11.16 Stop (‘Stop’) Field Encodin

	Break (‘Break’) Field (Bit 14):
	Table 11.17 Break (‘Break’) Field Encoding

	ReservedLink Field (‘RsvdLink’) (Bit 13:10):
	Table 11.18 Reserved Link (‘RsvdLink’) Field Encoding

	Link (‘Link’) Field (Bit9:8):
	Table 11.19 Link (‘Link’) Field Encoding

	Burst Size (‘BurstSize’) Field (Bit 3:0)
	Table 11.20 Burst Size (‘BurstSize’) Field Encoding

	External DMA Controller Registers
	Table 11.21 External DMA Controller Register Address Assignments
	External DMA Control Register 0..1 (‘ExtDmaControlReg(0..1)’)
	Figure 11.12 External DMA Control Register (‘ExtDmaControlReg’)
	Table 11.22 External DMA Control Register (‘ExtDmaControlReg’) Bit Assignments

	Stop Channel (‘EC’) Field (Bit 15):
	Table 11.23 Enable Channel (‘EC’) Field Encoding

	Bus Request Protocol High (‘ReqH’) Field (Bit 14):
	Table 11.24 Bus Request Protocol High (‘ReqH’) Field Encoding

	Sample MemWrEn and SysBurstFrame 1 Clock Later (‘SampleLate’)�Field (Bit 11):
	Table 11.25 Sample MemWrEn and SysBurstFrame 1 clock later (‘SampleLate’) Field Encoding

	External DMA Transactions
	External DMA Operation Timing Diagrams
	Figure 11.13 External DMA Single Data Read using the Memory Controller (Data Transfer from Memory...
	Figure 11.14 External DMA Single Data Write using the Memory Controller (Data Transfer from Devic...
	Figure 11.15 External DMA Two-Data Burst Read using the Memory Controller (Data Transfer from Mem...
	Figure 11.16 External DMA Two-Data Burst Write using the Memory Controller (Data Transfer from De...

	System Examples
	Memory-to-Memory Copying
	Transfers between I/O and Memory
	Distinguishing Between CPU and Internal DMA Accesses
	Internal DMA Channel Chaining
	Direct Memory Access (DMA) Controller

	ch12.pdf
	Introduction
	Features
	Block Diagram
	Figure 12.1 PIO Block Diagram.

	Overview
	Pin Descriptions
	PIO(n) Input/Output
	1 This PIO pin must be programmed to be an output before the internal peripheral may be programme...
	2 The Register-Number and Bit-Position fields describe which of the PIO Data, Direction, and Effe...
	Table 12.1 Alternate RC36100 functions mapped to PIO pins

	Register Definitions
	Table 12.2 PIO Register Address Assignments.
	PIO Data Register 0..2 (‘PioDataReg'0..2)
	Figure 12.2 PIO Data Register (‘PioDataReg’).

	PIO Data (‘PIOData’) Field:
	Table 12.3 PIO Data (‘PIOData’) Field Encoding.

	PIO Direction Register 0..2 (‘PioDirReg'0..2)
	Figure 12.3 PIO Direction Register (‘PioDirReg’).

	Lock (‘Lock’) Field:
	Table 12.4 Lock (‘Lock’) Field Encoding.

	Direction (‘Dir’) Field:
	Table 12.5 Direction (‘Dir’) Field Encoding.

	PIO Effect Select Register 0..2 (‘PioEffectSelReg'0..2)
	Figure 12.4 PIO Effect Select Register (‘PioEffectSelReg’).

	Lock (‘Lock’) Field:
	Table 12.6 Lock (‘Lock’) Field Encoding.

	Effect Select (‘EffectSel’) Field:
	Table 12.7 Effect Select (‘EffectSel’) Field Encoding.
	Parallel Input/ Output (PIO)

	ch13.pdf
	Introduction
	Features
	Block Diagrams
	Figure 13.1 Expansion Interrupt Controller (to CPU Interrupt).
	Figure 13.2 Expansion Interrupt Controller: Steering Interrupts to DMA Requests.

	Overview
	Pin Descriptions
	Exception Signals
	ExcSInt(2:0),
	ExcInt(4:3) Input
	ExcSBrCond(3:2) Input
	Table 13.1 Expansion Interrupt Controller Register Address Assignments

	Expansion Interrupt Mask Register 0..1 (‘ExpIntMaskReg0..1)’),
	Expansion Interrupt Pending Register 0..1 (‘ExpIntPendReg0..1)’),
	Figure 13.3 Expansion Interrupt Mask Register (‘ExpIntMaskReg’).
	Figure 13.4 Expansion Interrupt Pending Register (‘ExpIntPendReg’).

	Reserved Low (‘0’) Field:
	Mask Bits (‘Mask’) Field:
	Table 13.2 Expansion Interrupt Mask Register 1 and Expansion Interrupt Pending Register 1 Bit Ass...

	Pending Bits (‘Pend’) Field:
	Table 13.3 Expansion Interrupt Mask Register 0 and Expansion Interrupt Pending Register 0 Bit Ass...
	Table 13.4 Pending Interrupt Field Encoding.
	Table 13.5 Interrupt Mask Field Encoding.

	Expansion Interrupt DMA Select Register (‘ExpIntDMASelReg’)
	Figure 13.5 Expansion Interrupt DMA Select Register (‘ExpIntDMASelReg’).

	Select Interrupt ‘SelInt()’ Field:
	Table 13.6 DMA Channel versus Interrupt De-Multiplexer.
	Table 13.7 Select Interrupt (‘SelInt()’) Field Encoding.
	Peripheral Expansion Interrupt Controller

	ch14.pdf
	Introduction
	Features
	Block Diagram
	Figure 14.1 Block Diagram of the RC36100 Timers.

	Overview
	Table 14.1 Timer0 Count Algorithm
	Table 14.2 Timer1 and Timer2 Count Algorithm

	Pin Descriptions
	Timer Peripheral Signals
	TC(2:0), Input/Output
	TimerGate(2:0)

	Register Descriptions
	Table 14.3 Timer Register Physical Address Map
	Timer Prescaler Count Register (‘TimerPrescalerCountReg’)
	Figure 14.2 Timer Prescaler Count Register (‘TimerPrescalerCountReg’).

	Timer Count Register 0..2, Timer PWM Count Register
	(‘TimerCountReg’0..2, TimerPWMCount Reg’0)
	Figure 14.3 Timer Count Register (‘TimerCountReg’).

	Timer Compare Register 0..2 (‘TimerCompareReg'0..2)
	Figure 14.4 Timer Compare Register (‘TimerCompareReg’).

	Timer Pulse Width Modulation Register 0 (‘TimerPWMReg0’)
	Figure 14.5 Timer Pulse Width Modulation Register (‘TimerPWMReg’).
	Table 14.4 Timer Pulse Width Modulation Register (‘TimerPWMReg’) Bit Fields.

	Timer Control Register 0..2 (‘TimerControlReg'0..2)
	Figure 14.6 Timer Control Register (‘TimerControlReg’).
	Table 14.5 Timer Control Register (‘TimerControlReg’) Bit Assignments.

	Lock (‘Lock’) Field (Bit 15):
	Table 14.6 Lock (‘Lock’) Field Encoding.

	Lock Count and Compare (‘LockCC’) Field (Bit 14):
	Table 14.7 Lock Count and Compare (‘LockCC’) Field Encoding.

	Write Compare Ack (‘Ack’) Field (Bit13):
	Table 14.8 Write Compare Ack (‘Ack’) Field Encoding.

	PIO is Input Gate (‘Gate’) Field (Bit 11):
	Table 14.9 PIO is Input Gate (‘Gate’) Field Encoding.

	BusTimeout (‘BTO’) Field (Bit 10):
	Table 14.10 BusTimeout (‘BTO’) Field Encoding.

	Timer Disable (‘TimerDis’) Field (Bit 9):
	Table 14.11 Timer Enable (‘TimerEn’) Field Encoding

	Prescaler Select (‘PSel’) Field (Bit 3:0):
	Table 14.12 Prescaler Select (‘PSel’) Field Encoding.
	Timers

	ch15.pdf
	Introduction
	Features
	Overview
	Figure 15.1 Block Diagram of Serial Communication Controller
	Figure 15.2 Programmer access to the Serial Communications Controller

	Registers
	1. Write the register number (such as 11 for RR1 or WR11) to WR0.
	2. Read or write RR0 or WR0. This will actually access register 11.

	Interrupts
	Table 15.1 Bit Assignment for the interrupt outputs

	DMA
	Table 15.2 Steering Register

	External connections of the SCC
	SCC Operations
	Polled Operation
	Interrupt operation

	The SCC’s Interrupt Structure
	1. Rx Chl-A
	2. Tx Chl-A
	3. E/S Chl-A
	4. Rx Chl-B
	5. Tx Chl-B
	6. E/S Chl-B
	DMA operation
	Data Encoding
	Digital Phase Locked Loop (DPLL)

	External Connections
	SDLC Loop Mode

	Clocking Options
	SCC Operating Sequence
	I/O
	SCC Registers
	Write Register 0
	Figure 15.3 Write Register 0 (WR0) Bit Values and Field Descriptions

	Write Register 1
	Figure 15.4 Write Register 1 (WR1) Bit Values and Configurations

	Write Register 2
	Figure 15.5 Write Register 2 (WR2)

	Write Register 3
	Figure 15.6 Write Register 3 (WR3) Bit Values and Configurations

	Write Register 4
	Figure 15.7 Write Register 4 (WR4) Bit Values and Configurations

	Write Register 5
	Figure 15.8 Write Register 5 (WR5) Bit Values and Configurations

	Write Register 6
	Figure 15.9 Write Register 6 (WR6) Bit Values and Configurations

	Write Register 7
	Figure 15.10 Write Register 7 (WR7) Bit Values and Configuration

	Write Register 7’
	Figure 15.11 Write Register 7’ (WR7’) Bit Values and Configuration

	Write Register 8 is the Data Register.
	Write Register 9
	Figure 15.12 Write Register 9 (WR9) Bit Values and Configuration

	Write Register 10
	Figure 15.13 Write Register 10 (WR10) Bit Values and Configuration

	Write Register 11
	Figure 15.14 Write Register 11 (WR11) Bit Values and Configuration

	Write Register 12 carries the low byte of the Baud Rate Generator Time Constant.
	Write Register 13 carries the high byte of the Baud Rate Generator Time Constant.
	Write Register 14
	Figure 15.15 Write Register 14 (WR14) Bit Values and Configuration

	Write Register 15
	Figure 15.16 Write Register 15 (WR15) Bit Values and Configuration

	Read Register 0
	Figure 15.17 Read Register 0 (RR0) Bit Values and Configuration

	Read Register 1
	Figure 15.18 Read Register 1 (RR1) Bit Values and Configuration

	Read Register 2: Reads back WR2 in channel A, includes interrupt status (in bits 3:1) in Channel B.
	Read Register 3 (Channel A only)
	Figure 15.19 Read Register 3 (RR3) (Channel A only) Bit Values and Configuration

	Read Register 4 is the readback register for WR4 if WR7’ bit 6 is set.
	Read Register 5 is the readback register for WR5 if WR7’ bit 6 is set.
	Read Register 6 carries the lowest byte of the Frame Size value within the topmost entry (if any)...
	Read Register 7
	Figure 15.20 Read Register 7 (RR7) Bit Values and Configuration
	Serial Ports

	ch16.pdf
	Introduction
	Features
	Block Diagram
	Figure 16.1 Block Diagram of the Bidirectional Parallel Port.

	Overview
	1. Forward Data Transfer
	2. Forward Idle
	3. (Negotiation)

	1. Forward Data Transfer
	2. Forward Idle
	3. Negotiation
	4. Host Busy Data Available
	5. Reverse Data Transfer
	6. Host Busy Data Not Available
	7. Reverse Idle
	8. Interrupt Host
	9. Terminate

	1. Forward Data Transfer
	2. Forward Idle
	3. Negotiation
	4. Setup
	5. Forward Idle
	6. Forward
	7. Forward to Reverse
	8. Reverse Idle
	9. Reverse
	10. Reverse to Forward
	11. Terminate

	1. Forward Data Transfer
	2. Forward Idle
	3. Negotiation
	4. Initial EPP Idle
	5. Address Read
	6. Data Read
	7. Address Write
	8. Data Write
	9. EPP Idle
	10. Terminate
	Table 16.1 Compatible Forward Data Transfer Variations.

	Negotiation Phase

	1. Host asserts 1284Active (nSelectIn) and de-asserts HostBusy (nAutoFd).
	2. The peripheral responds by bringing AckDataReq (PError), nDataAvail (nFault), Xflag (Select) h...
	3. Host nStrobes 8-bit extensibility request value on the data lines and also brings HostBusy (nA...
	4. Peripheral sets Xflag (Select) to a particular value, and in the nibble and byte modes, nDataA...
	Nibble Mode Phase
	Byte Mode Phase
	Extended Capabilities Port (ECP) Mode Phase
	Enhanced Parallel Port (EPP) Mode Phases
	CPU Control Mode Phases
	Programmable Timing

	Centronics, Interrupts & DMA Requests
	CentRtcInt
	CentRdInt
	CentrWrInt
	DMARdReq
	DMAWrReq

	Pin Descriptions
	Bidirectional Parallel Port Centronics Interface Signals
	CentStrobe Input
	CentAck Output
	CentBusy Output
	CentPaperError Output
	CentSelect Output
	Centronics Select:
	CentAutoFeed Input
	Centronics Auto Feed:
	CentInit Input
	Centronics Initialize:
	CentFault Output
	Centronics Fault:
	CentSelectIn Input
	Centronics Select Input:
	Bidirectional Parallel Port Centronics Peripheral and Host Interface Signals
	CentCS(7:6) Output
	CentWrStrobe Output
	CentRdOEn Output
	CentHostStrobe Output
	CentHostOEn Output

	Register Definitions
	Table 16.2 Bidirectional Parallel Port Interface Centronics Controller Registers.
	Centronics Sub Mode Register (‘CentSubModeReg’)
	Figure 16.2 Centronics Sub ModeRegister (‘CentSubModeReg’).
	Table 16.3 Centronics Sub ModeRegister (‘CentSubModeReg’) Bit Assignments.

	Centronics Compatible Sub Modes (‘SubMode’) Field
	Table 16.4 Centronics Compatible Sub Mode (‘SubMode’) Field Encoding.

	Centronics Status Register (‘CentStatusReg’)
	Figure 16.3 Centronics Status Register (‘CentStatusReg’).
	Table 16.5 Centronics Status Register (‘CentStatusReg’) Bit Assignments.

	Extended Capabilities Port Buffer Full (BufFul)
	Table 16.6 ECP Buffer Full Field

	Extended Capabilities Peripheral Acknowledge Field (nPerAck)
	Table 16.7 ECP Peripheral Acknowledge Field

	Extended Capabilities Peripheral Request Field (nPerReq)
	Table 16.8 ECP Peripheral Request Field

	Printer Error (‘PError’) Field:
	Table 16.9 Printer Error Field (‘PError’) Field Encoding.

	Printer On Line Select (‘Select’) Field:
	Table 16.10 Select (‘Select’) Field Encoding.

	Printer Fault (‘Fault’) Field:
	Table 16.11 Printer Fault (‘Fault’) Field Encoding.

	Printer Acknowledge Negated (‘AckN’) Field:
	Table 16.12 Printer Acknowledge Negated (‘AckN’) Field Encoding.

	Printer Busy (‘Busy’) Field:
	Table 16.13 Printer Busy Field (‘Busy’) Encoding.

	Centronics Control Register (‘CentControlReg’)
	Figure 16.4 Centronics Control Register (‘CentControlReg’).
	Table 16.14 Centronics Control Register (‘CentControl’) Bit Assignments.

	Iprime Interrupt Pending Field
	Table 16.15 Iprime Interrupt Pending Field Encoding

	IoCS(7), IoCS(6) Mask Enable
	Table 16.16 IoCS(7:6) Mask Enable Field Encoding

	Centronics Negotiation Interrupt Pending
	Table 16.17 Centronics Negotiation Interrupt Pending Field.

	Centronics Negotiation Interrupt Enable
	Table 16.18 Centronics Negotiation Interrupt Enable Field.

	Centronics Reset Interrupt Pending
	Table 16.19 Centronics Reset Interrupt Pending Field.

	Centronics Reset Interrupt Enable
	Table 16.20 Centronics Negotiation Interrupt Enable Field.

	DMA or Interrupt Field in ECP/EPP Mode
	Table 16.21 DMA or Interrupt in ECP/EPP Mode Field Encoding

	Nibble ID Mode Field
	Table 16.22 Nibble ID Mode Field Encoding

	Host Busy Data Available Enable Field (HBDA)
	Table 16.23 Host Busy Data Available Enable Field Encoding

	Negotiation XFlag Reply (‘NegRep’) Field:
	Table 16.24 Negotiation XFlag Reply (‘NegRep’) Field Encoding.

	Negotiation Mode (‘NegMode’) Field:
	Table 16.25 Negotiation Mode (‘NegMode’) Field Encoding.

	Centronics Nibble Data Register (‘CentNibbleDataReg’)
	Figure 16.5 Centronics Nibble Data Register (‘CentNibbleDataReg’).
	Table 16.26 Centronics Nibble Data Register (‘CentNibbleDataReg’) Bit Assignments.

	Centronics Host Status Register (‘CentHostStatusReg’)
	Figure 16.6 Centronics Host Status Register (‘CentHostStatusReg’).
	Table 16.27 Centronics Host Status Register (‘CentHostStatusReg’) Bit Assignments.

	AutoFeed Negated (‘nAutoFeed’) Field:
	Table 16.28 AutoFeed Negated (‘nAutoFeed’) Field Encoding.

	Initialize Negated (‘nInit’) Field:
	Table 16.29 Initialize Negated (‘nInit’) Field Encoding.

	Select In Negated (‘nSelectIn’) Field:
	Table 16.30 Select In Negated (‘nSelectIn’) Field Encoding.

	Host Strobe Negated (‘nStrobe’) Field:
	Table 16.31 Host Strobe Negated (‘nStrobe’) Field Encoding.

	Centronics Minimum Delay Register (‘CentDelayReg’)
	Figure 16.7 Centronics Minimum Delay Register (‘CentDelayReg’).
	Table 16.32 Centronics Minimum Delay Register (‘CentDelayReg’) Bit Assignments.

	2500ns Delay Type Field (‘D2500ns’) Field:
	Table 16.33 2500ns Delay Type Field (‘D2500ns’) Field Encoding.

	500ns Delay Type Field (‘D500ns’) Field:
	Table 16.34 500ns Delay Type Field (‘D500ns’) Field Encoding.
	Table 16.35 Example Settings for Delay Type Fields.

	LSB/MSB Host Time-Out Register
	LSB/MSB Host Time-Out Counter Register

	Timing Diagram
	Figure 16.8 Typically Classic Compatible Mode Transaction.

	System Example
	Figure 16.9 Typical Parallel Port System Connections.
	Bidirectional Parallel Port

	ch17.pdf
	Introduction
	Reset Timing
	Reset Configuration Mode Features
	Table 17.1 RC36100 Reset Configuration Mode Features

	Reset Configuration Mode Pin Descriptions
	Exception Signals
	SysReset Input
	ExcSInt(2:0) Input
	Table 17.2 Boot Prom Reset Configuration Modes for ExcSIntN(2:1) pins.

	LittleEndian
	BootProm8
	BootProm16
	RISCore32 series Equivalent Modes

	Reset Behavior
	Boot Software Requirements
	Detailed Reset Timing Diagrams
	Reset Pulse Width
	Mode Initialization Timing Requirements
	Figure 17.1 Cold Start
	Figure 17.2 Warm Reset
	Figure 17.3 Configuration Mode Initialization Logic
	Figure 17.4 Mode Vector Timing

	Reset Setup Time Requirements
	ClkIn Requirements
	Figure 17.5 Reset Timing
	Figure 17.6 RC36100 Clocking
	Reset Initialization and Input Clocking

	ch18.pdf
	Introduction
	Features
	Tri-Stateable Outputs
	Tracepoint Registers
	Extended CP0 Cache Configuration Register
	Cause and EPC Register Writes
	Features specific to debug/emulators
	Table 18.1 Reserved Emulator Addresses.

	Pin Descriptions
	Debug/Emulator and Diagnostic Signals
	DiagCache/UnCache Output
	DiagInst/Data Output
	DiagRun Output
	DiagBranchTaken Output
	DiagJRorExe Output
	DiagInternalWr Output
	DiagTriState Input
	1. Disable target board CPU during emulation.
	2. Disable CPU during in-circuit manufacturing testing.
	DiagInstCacheWrDis Input
	DiagFCM Input
	DiagIntDis Input
	DiagNoCS Output
	DiagInternalDmaBusGnt Output

	Register Descriptions
	Table 18.2 Debug Interface Register Address Assignments
	MSB Debug Tracepoint Address Register LSB Debug Tracepoint Address Register (‘DebugTraceAddrReg’)
	Figure 18.1 Debug Tracepoint Address Register (‘MSB DebugTraceAddrReg’).
	Figure 18.2 Debug Tracepoint Address Register (‘LSB DebugTraceAddrReg’).
	Table 18.3 Debug Tracepoint Address Register (‘DebugTraceAddrReg’) Bit Assignments.

	Debug Tracepoint Control Register (‘DebugTraceControlReg’)
	Figure 18.3 Debug Tracepoint Control Register (‘DebugTraceControlReg’).
	Table 18.4 Table Debug Tracepoint Control Register (‘DebugTraceControlReg’) Bit Assignments.

	Reserved Low (‘0’) Field:
	Cause is Tracepoint (‘CTP’) Field:
	Table 18.5 Cause is a Tracepoint (‘CTP’) Field Encoding.

	Tracepoint (‘TP’) Field:
	Table 18.6 Tracepoint Enable (‘TP’) Field Encoding.

	Debug Control Register (‘DebugControlReg’)
	Figure 18.4 Debug Control Register (‘DebugControlReg’).
	Table 18.7 Debug Control Register (‘DebugControlReg’) Bit Assignments.

	Reserved Low (‘0’) Field:
	Writability (‘Wr’) Field:
	Table 18.8 Writability (‘Wr’) Field Encoding.

	Initializing SysClk for Test
	Figure 18.5 RC36100 SysClk Phase Initialization Case A
	Figure 18.6 RC36100 SysClk Phase Initialization Case B

	Using Diag for Instruction Disassembly

	Other Considerations
	Debug Mode Features

	ix.pdf
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Index

