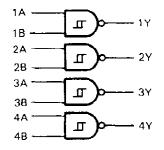
SDLS047

SN54132, SN54LS132, SN54S132, SN74132, SN74LS132, SN74S132 DUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS DECEMBER 1983 - REVISED MARCH 1988

- Operation from Very Slow Edges
- Improved Line-Receiving Characteristics
- High Noise Immunity

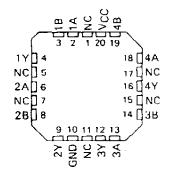

description

Each circuit functions as a 2-input NAND gate, but because of the Schmitt action, it has different input threshold levels for positive (V_{T+}) and for negative going (V_{T-}) signals.

These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clear, jitter-free output signals.

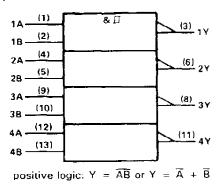
The SN54132, SN54LS132, and SN54S132 are characterized for operation over the full military temperature range of -55° C to 125° C. The SN74132, SN74LS132, and SN74S132 are characterized for operation from 0°C to 70°C.

logic diagram (positive logic)



SN54132, SN54LS132, SN54S132...J OR W PACKAGE SN74132...N PACKAGE SN74LS132, SN74S132...D OR N PACKAGE

(TOP VIEW)


140	1	U₁₄⊒vcc
18₫	2	13] 4B
1YC	3	12 0 4A
2AC	4	11]]4Y
28[]	5	10] 3B
2Y[6	₀ <u></u>]]3A
	7	8 <mark>]</mark>]3Y
	_	

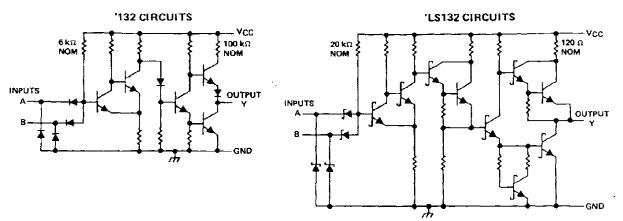
SN54LS132, SN54S132 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

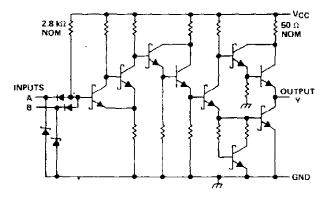
logic symbol[†]

¹This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

.



SN54132, SN54LS132, SN54S132, SN74132, SN74LS132, SN74S132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

schematics

'S132 CIRCUITS

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	I)	7 V
'LS132		
Operating free-air temperature:	SN54'	
	SN74'	
Storage temperature range		

NOTE 1: Voltages values are with respect to network ground terminal.

.

POST OFFICE BOX 555012 + DALLAS, TEXAS 75265

// contract and contract of contract

* <u>.</u>*

SN54132, SN74132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

recommended operating conditions

•. .

		SN5413	2		SN7413	N74132	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC Supply voltage	4.5	5	5.5	4.75	5	5.25	v
IOH High-level output current			- 0.8			- 0.8	mA
IOL Low-level output current			16			16	mΑ
TA Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDI	TIONST	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V	<u> </u>		1.5	1.7	2	v
V _T -	V _{CC} = 5 V			0.6	0.9	1.1	V
V _{hys} (V _{T +} - V _{T -})	V _{CC} = 5 V			0.4	0.8		v
VIK	V _{CC} = MIN,	lı = - 12 mA				- 1.5	V
∨он	VCC = MIN,	V _I ≈ 0.6 V,	IOH = - 0.8 mA	2.4	3.4		V
VOL	VCC = MIN,	V ₁ ≈ 2 V,	I _{OL} = 16 mA		0.2	0,4	V
I T +	Vcc≃5V,	VI ≈ VT+			- 0.43		mA
<u>ا</u>	Vcc = 5 V,				- 0.56		mΑ
h	V _{CC} - MAX,	V ₁ ≈ 5.5 V				1	mA
ЧН	V _{CC} = MAX,	V ₁ = 2.4 V				40	μД
	V _{CC} ≈ MAX,	V _{IL} = 0.4 V			- 0.8	- 1.2	ΜM
los§	Vcc ≈ MAX			- 18		- 55	mΑ
Іссн	V _{CC} = MAX				15	24	mΑ
ICCL	V _{CC} = MAX				26	40	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\$ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. \$ Not more than one output should be shorted at a time.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$ (see figure 1)

PARAMETER	FROM (INPUT)	TO {OUTPUT}	TEST CON	DITIONS	MIN	түр	MAX	UNIT
1PLH			0 100 0	C = 15 = 5	_]	15	22	ns
tрнL	Αηγ	Y	R _L = 400 Ω,	CL = 15 pF		15	22	ns

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

and the second second second

SN54LS132, SN74LS132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

recommended operating conditions

		s	N54LS1	32	S	SN74LS132		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current			- 0.4	-		- 0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TERT	···	S	N54LS1	32	S	N74LS1	32	UNIT
PARAMETER		TEST CONDI	FIONS '	MIN	TYP#	MAX	MIN	TYP#	MAX	
V _{T+}	V _{CC} = 5 V			1.4	1.6	1.9	1.4	1.6	1.9	V
VT-	V _{CC} = 5 V			0.5	0.8	1	0.5	0.8	1	V
V _{hys} (V _{T +} - V _{T -})	V _{CC} = 5 V			0.4	0.8		0.4	0.8		v
VIK	V _{CC} = MIN.	lj≖ 18 mA				- 1.5			1,5	V
∨он	V _{CC} = MIN,	V ₁ = 0.5 V,	IOH = - 0,4 mA	2.5	3.4		2.7	3.4		V
	Vcc = MIN,	Vi = 1.9 V	101 = 4 mA		0.25	0.4		0.25	0.4	V
VOL	$A CC = M(1)A^{2}$	v[-1.9 v	10L = 8 mA					0.35	0.5	} `
IT+	V _{CC} = 5 V,	$V_I = V_{T+}$			- 0.14			- 0.14		mA
Τ	VCC = 5 V,	VI = VT-			- 0.18			- 0.18		mA
11	V _{CC} = MAX,	VI = 7 V				0.1			0.1	mΑ
1 H	V _{CC} = MAX,	VI ≈ 2.7 V				20			20	μA
41	VCC = MAX,	VIL = 0.4 V				~ 0.4			- 0.4	mA
105 9	V _{CC} = MAX			- 20		100	- 20		- 100	mA
Іссн	V _{CC} = MAX				5.9	11		5.9	11	ΠA
1CCL	V _{CC} = MAX				8.2	14		8.2	14	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ} C$.

. .

\$ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	TYP	мах	UNIT
tPLH	Any	Y	$R_1 = 2 k \Omega_2$	C1 = 15 pF		15	22	ns
LtPHL			-			15	22	ns

SN54S132, SN74S132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

recommended operating conditions

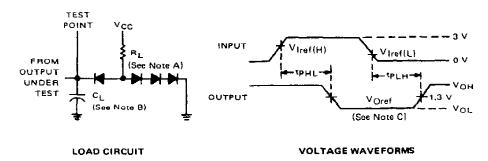
			SN54S132		SN74S132			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply volta	ge	4.5	5	5.5	4.75	5	5.25	V
IOH High-level of	utput current			- 1			- 1	mА
IOL Low-level or	stput current			20			20	mA
TA Operating fr	ee-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN5451	32	:	SN74S1	32	
PARAMETER	TEST CONDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V	1.6	1.77	1.9	1.6	1.77	1.9	V
√۲–	V _{CC} = 5 V	1.1	1.22	1,4	1.1	1.22	1.4	V
V _{hγs} (V _{T +} -V _{T -})	V _{CC} ≈ 5 V	0.2	0.55		0.2	0.55		v
VIK	V _{CC} = MIN. II = - 18 mA			- 1.Z			- 1.2	V
∨он	$V_{CC} = MIN, V_I = 1.1 V, I_{OH} = -1 mA$	2.5	3.4		2.7	3.4		V
VOL	$V_{CC} = MIN, V_{I} = 1.9 V, I_{OL} = 20 mA$			0.5			0.5	V
IT+	$V_{CC} = 5 V, V_I = V_{T+}$	1	~ 0.9			- 0.9		mΑ
	$V_{CC} = 5 V, V_1 = V_{T-}$		- 1.1			- 1.1		mA
	V _{CC} = MAX, V ₁ = 5.5 V			1			1	mA
Чн	V _{CC} = MAX, V ₁ = 2.7 V			50			50	μA
ιL.	V _{CC} = MAX, V _{1L} = 0.5 V			- 2	1		- 2	mA
losŝ	V _{CC} = MAX	- 40		- 100	- 40		- 100	mΑ
1ссн	V _{CC} = MAX		28	44		28	44	mΑ
1CCL	V _{CC} = MAX		44	68]	44	68	mA

 † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\$ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


switching characteristics, V_{CC} = 5 V, T_A = 25° C (see figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON		MIN	түр	мах	UNIT
^t PLH	AorB		R ₁ = 280 Ω,	C 15 cE		7	10,5	ns
^I PHL			110-20032,	C _L = 15 pF		8.5	13	r15

SN54132, SN54LS132, SN54S132, SN74132, SN74LS132, SN74S132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. All diodes are 1N3064 or equivalent.

B. C_{L} includes probe and jig capacitance.

C. Generator characteristics and reference voltages are:

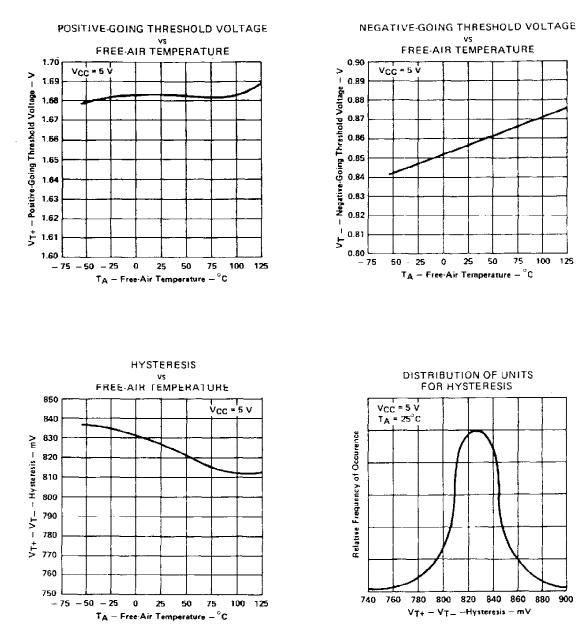
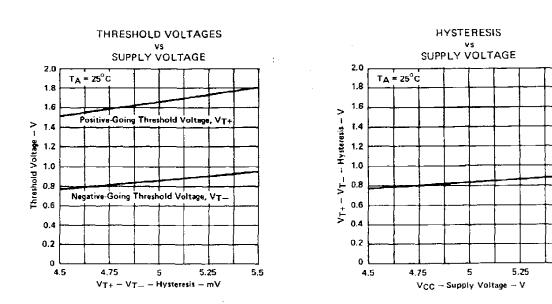

	G	enerator C	haracteris	tics	Reference Voltages				
	Zout	PRR	t _r	ų	Viref(H)	V _{I ref(L)}	VO ref		
SN54'/SN74'	50	1 MHz	10 ns	10 ns	1.7 V	0.9 V	1.5 V		
SN54LS'/SN74LS'	50	1 MHz	15 ns	6 ns	1.6 V	0.8 V	1.3 V		
ʻ\$132	50	1 MHz	2.5 ns	2.5 ns	1.8 V	1.2 V	1.5 V		

FIGURE 1

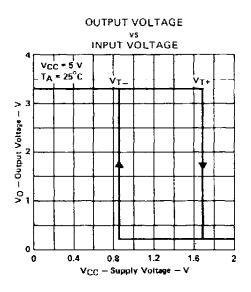
· • • • • •

.



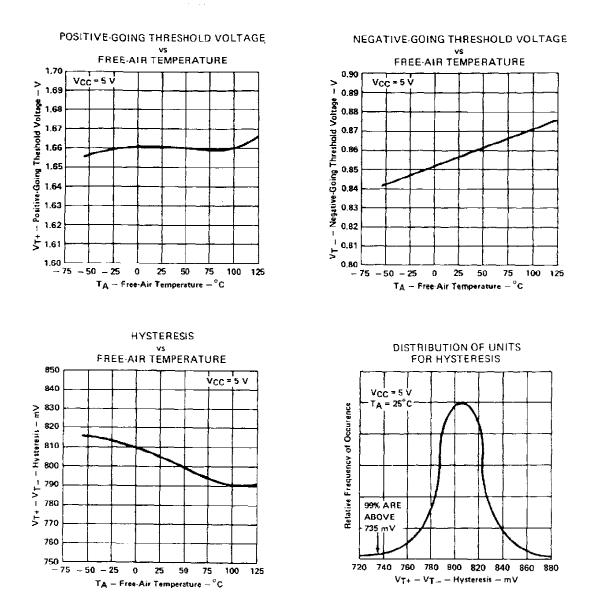
TYPICAL CHARACTERISTICS OF '132 CIRCUITS

 † Data for temperatures below 0 $^\circ$ C and 70 $^\circ$ C and supply below 4.75 V and above 5.25 V are applicable for SN54132 only.



SN54132, SN74132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

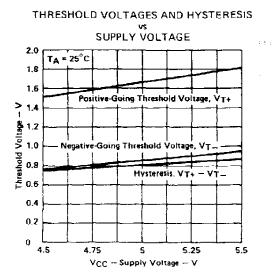
5.5


TYPICAL CHARACTERISTICS OF '132 CIRCUITS

 † Data for temperatures below 0°C and 70°C and supply below 4.75 V and above 5.25 V are applicable for SNS4132 only.

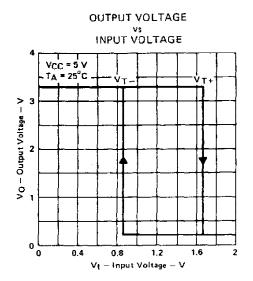
SN54LS132, SN74LS132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

TYPICAL CHARACTERISTICS OF 'LS132 CIRCUITS


[†] Data for temperatures below 0°C and above 70°C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS132 only.

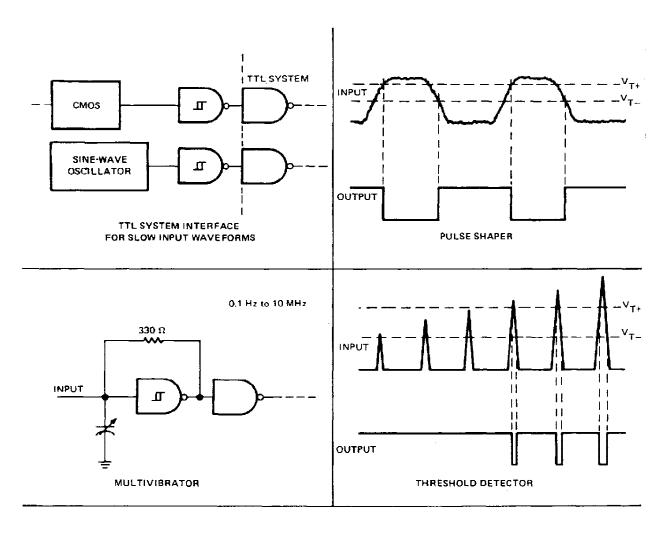
1

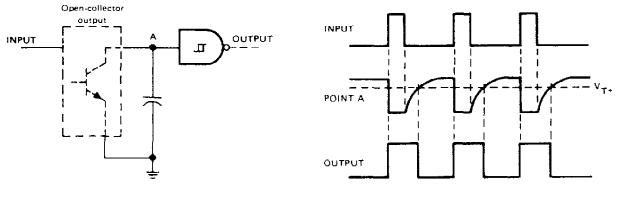
٢.


SN54LS132, SN74LS132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

٠.

TYPICAL CHARACTERISTICS OF 'L\$132 CIRCUITS


[†] Data for temperatures below 0°C and above 70°C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS132 only.



a second a second s

SN54132, SN54LS132, SN54S132, SN74132, SN74LS132, SN74S132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

TYPICAL APPLICATION DATA

PULSE STRETCHER

· -··· · · · · · · ·

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated