
Analysis of software vulnerabilities through
historical data

MAGNUS TÖRNQUIST
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

M
A

G
N

U
S TÖ

R
N

Q
U

IST
A

nalysis of softw
are vulnerabilities through historical data

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-598

http://www.eit.lth.se

Analysis of software vulnerabilities through
historical data

Magnus Törnquist
magnusvmt@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Martin Hell

Assistant Supervisor: Jonathan Sönnerup

Examiner: Thomas Johansson

June 29, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Popular science summary

Lately there has been increasing media coverage of cyber crime, especially in re-
lation to the elections in France and the United States. Every day information is
being stolen from governments, businesses and private citizens. Information that
can be sold, used for blackmail or for other nefarious purposes. Commonly this
information is obtained through exploiting vulnerabilities in software. A vulnera-
bility is essentially a bug in the code and they are very hard to avoid, especially
in large complex programs. Having vulnerabilities in software is inevitable and
software is everywhere: in every computer, router, webcam, mobile device and
even in some coffeemakers. As long as these devices are connected an intruder
has a wide variety of options on how to attack a network and the fast growth of
Internet of Things (IoT) has lead to a huge amount of new devices on networks all
over the world. This reality means that larger organizations have to spend a lot
of time making sure all their software is updated and keeping track of potential
breaches. This also means that it is very important for the software developer to
maintain their code and patch any discovered vulnerabilities quickly. So how does
an organization, the developer of an IoT product or a regular user choose which
software to use if they are concerned about software security and is there a way
to help them do it? That is what this thesis explores.

The general idea is to to find a way to measure the security levels of software.
This would make comparisons between software easier for end-users. In order to
accomplish this we gather and analyze a large amount of software data to gain
an understanding of which metrics are important and why. This data includes all
historical vulnerabilities for the software, their severity and any public exploits
that might exist to make use of these vulnerabilities. It also includes other data
about the software such as popularity and how often the developers release new
version of the software. A total of 44 software products were chosen to include a
wide variety of software, both in type (what the software was designed to do) and
popularity. Since this is a large amount of software and the data gathering process
is slow, the analysis is divided into two parts. One part is a broad comparison
between the software based on data that has been automatically collected, the
other part is a detailed comparison between five software using data that has been
manually gathered. We also look at previous research on the subject and give an
overview of interesting ideas and concepts.

The results of this analysis are used to present suggestions for how these met-

i

rics could currently be implemented. But more importantly the results are used to
draw conclusions and suggest new ways in which this problem can be approached
in the future to make further progress in the field of software security metrics. One
of the conclusions made is that machine learning could be used in the future to
solve some of the issues that presented themselves during analysis, however a ma-
chine learning strategy requires huge amounts of data that is not easily available
yet.

ii

Abstract

Software security has become an increasingly hot topic of debate during the last
few years of cyberattacks, especially now that we are entering the era of Internet
of Things. How does the developer of a product decide which software to include
from a security perspective and is it possible to create a tool for software com-
parison that the developer could use for this purpose? The aim of this thesis is
to investigate which metrics are available for measuring the overall level of secu-
rity in software and suggest ways in which these metrics can be used. This study
is done partly by reviewing previous research on software security metrics and
partly by analyzing metrics in different categories such as general metrics about
the software, metrics based on historical data and more detailed metrics about
the vulnerabilities in the software. A small survey is also performed to gather the
opinions about some of these metrics from potential end-users of a scoring system.
Ideas for scoring systems that can use these metrics are suggested, however no
weights for these metrics are determined. The conclusion is that under current
circumstances creating a good automated scoring system is difficult due to a lack
of data, however there are exciting opportunities for continued research and ideas
for new approaches are presented.

iii

iv

Acknowledgements

First and foremost I would like to offer my sincerest gratitude to my supervisor
Martin Hell and assistant supervisor Jonathan Sönnerup at the Department of
Electrical and Information Technology, Lund University, for allowing me to work
on this thesis and for aiding me throughout both planning and execution.

I would also like to thank Prof. Krzysztof Nowicki at the Department of
Statistics, Lund University, for his advice and for an interesting discussion on the
limits of statistics.

Furthermore, I would like to extend my appreciation to each and every one of
the respondents to the survey, your participation was very valuable.

Last but not least, I would like to thank my family and friends for the con-
tinued support and encouragement they have given me during the entirety of my
education.

v

vi

Contents

1 Introduction 1
1.1 Problem description and research motivation 1
1.2 Outline . 2

2 Background 3
2.1 Vulnerabilities and weaknesses . 3

2.1.1 CVE 3
2.1.2 CWE 4

2.2 Information sources . 4
2.2.1 Databases 4
2.2.2 Mailing lists 4
2.2.3 Other sources 5

2.3 Vulnerability metrics . 5
2.3.1 CVSS version 2 5
2.3.2 CVSS version 3 8
2.3.3 CVSS temporal metrics 10
2.3.4 CWSS 11
2.3.5 CERT-CC severity metric 11
2.3.6 SANS vulnerability analysis scale 12
2.3.7 Qualitative rating systems 12

2.4 Statistical tools and methods . 13
2.4.1 Linear regression 13
2.4.2 None-linear regression 13
2.4.3 Chi-Squared test 13
2.4.4 Coefficient of determination 13

3 Previous metric research 15
3.1 WIVSS . 15
3.2 PVL . 15
3.3 VRSS . 16
3.4 OWASP risk rating . 16
3.5 Policy security score . 17
3.6 K-zero day safety . 18
3.7 Predictive algorithms . 18

vii

3.8 Other work on security metrics . 19

4 Method 21
4.1 Analysis outline . 21
4.2 Software selection . 21
4.3 Vulnerability data . 22

4.3.1 Historical data 22
4.3.2 CVSS 23
4.3.3 Temporal data 23

4.4 Vulnerability types . 24
4.5 Exploits . 24
4.6 Data sources . 24
4.7 Other software data . 25

4.7.1 Users and popularity 25
4.7.2 Developers 26
4.7.3 Language 26
4.7.4 Documentation 26
4.7.5 Release activity 26

4.8 Data gathering process . 26
4.9 Survey . 27

5 Results 29
5.1 Vulnerability analysis of multiple categories 29
5.2 Vulnerability analysis of a single category 31
5.3 Exploit source analysis . 39
5.4 Survey results . 40

6 Practical application of the results 45
6.1 Predictive algorithms . 45
6.2 Scoring system development . 47

6.2.1 Naive scoring system suggestion 48
6.2.2 Modular scoring system suggestion 49
6.2.3 Scoring system with CVSS modification 51
6.2.4 IMDB inspired weighting 52

7 Conclusions and further research 55
7.1 Summary of the results and conclusions 55
7.2 Thoughts on future research . 56

A Software selection and categories 65

B Regression results 67

viii

List of Figures

2.1 CVSS v2 subgroups and metrics from the CVSS v2 user guide [21].
Copyright FIRST, used with permission. 6

2.2 CVSS v3 subgroups and metrics from the CVSS v3 user guide [22].
Copyright FIRST, used with permission. 8

4.1 Vulnerability life timeline . 22
4.2 Alternative vulnerability life timeline 23
4.3 Diagram of the collected data and its sources. 25
4.4 Table used during the survey. 27

5.1 Average CVSS Score per category 29
5.2 The average CVSS sub-metric values per category 30
5.3 Average number of CVEs per Month for each category 31
5.4 Correlation between CVE/Month and the number of Google hits . . 32
5.5 Correlation between CVE/Month and the number of Bing hits 33
5.6 CVSS base score distributions . 35
5.7 The average CVSS sub-metric values 36
5.8 The number of days from disclosure to exploit 37
5.9 The number of days from discovery to disclosure 38
5.10 The number of days from disclosure to patch 38
5.11 Average temporal scores for the software in the encryption category. . 39
5.12 Histogram of the number of days from the CVE published date to the

exploit date . 40
5.13 Correlation matrix of survey results 44
5.14 Survey table with the average ratings of 12 respondents 44

6.1 Fitting the AML VDM to the cumulative number of OpenSSL vulner-
abilities . 46

6.2 Fitting the AML VDM to the cumulative number of OpenSSH vulner-
abilities . 46

B.1 Regression analysis summary of the survey results 67
B.2 Summary of the regression with an ordered logistic model 68

ix

x

List of Tables

5.1 Search hits based on an average over 10 weeks 32
5.2 Information about the gathered dates. 32
5.3 More information about how many of each date were gathered. . . . 33
5.4 Statistics gathered from open source repositories 33
5.5 Average CVSS base score for the chosen software. 34
5.6 Exploit data for the entire lifespan of the software 37
5.7 P-values of t-test after multiple linear regression in R. 41
5.8 P-values of Z-test after regression with an ordered logistic model in R. 41

6.1 Estimated parameter values and coefficient of determination 45
6.2 Score after applying the naive scoring system (lower is better) 49
6.3 Parameters and final score . 50
6.4 Score results after normalization . 51
6.5 IMDB formula applied with m=10 (lower is better) 53

xi

xii

Abbreviations

ALM Alhazmi Malaiya Logistic
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DDoS Distributed Denial of Service
IoT Internet of Things
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
OWASP Open Web Application Security Project
PVL Product Value Loss
VDM Vulnerability Discovery Model
VM Virtual Machine
VRSS Vulnerability Rating and Scoring System
VTEM Vulnerability Timeline and Exposure Metrics
WIVSS Weighted Impact Vulnerability Scoring System

xiii

xiv

Chapter1
Introduction

Internet of Things (IoT) has been growing at a very fast pace, predictions show
that 26 billion IoT devices will exist in 2020 [1]. Together these devices, that are
usually online at all times, have access to a huge amount of bandwidth and com-
puting resources which means that when compromised even a small proportion of
these devices can create a powerful botnet. Botnets are currently a booming busi-
ness where the operators lease out botnet services to anyone willing to pay. On
top of that military organizations have been expanding their focus on cyberwar-
fare, nation states are with increasing frequency using illegally obtained data for
geopolitical strategy, financial institutions are being heavily targeted and millions
of private citizens have their personal information and identities stolen every year.
With all this in mind there is plenty of motivation to explore the field of software
security.

The most common approach for attacks on these devices is through their soft-
ware. The software can be compromised remotely either because of misconfigura-
tion (default passwords, incorrect privileges etc.) or through exploiting vulnera-
bilities which are essentially bugs in the code of the software. One vulnerability
that, with good reason, received widespread media attention was Heartbleed [2].
Heartbleed was a vulnerability that allowed an attacker to send malformed pack-
ets to a server running OpenSSL and the software would respond by leaking data
from memory, data that could be highly sensitive like private encryption keys.
Vulnerabilities like this are unavoidable in software and what is important is how
the developer of the software handles them.

If we look at what we know about software vulnerabilities from the perspective
of a user or a developer of IoT products, how are they to know which software
developer handles vulnerabilities in the best possible way? With other words,
how do they choose the best software from a security perspective? That is the
fundamental question that this thesis is built upon. The following two sections of
this chapter will further detail the objectives of the thesis and present an outline
of the report structure.

1.1 Problem description and research motivation

The idea behind this thesis is to analyze software and attempt to find a way to
compare software from a security perspective which could help developers choose

1

2 Introduction

a software to use in their project. The thesis has the following three objectives:

1. Examine which metrics are available for measuring software security and
evaluate their value.

2. Study available scoring systems and other methods of measuring software
security.

3. Develop and suggest scoring systems based on what has been learned.

The scoring systems should give a user the ability to compare a set of software
and help the user choose the best from a security perspective.

1.2 Outline

The report is organized as follows:

• Chapter 1 Introduction: Introduces the reader to the problem, specifies the
objectives for the thesis and contains an outline of the report.

• Chapter 2 Background: Contains information about what a vulnerability
is, where they are found and different methods of measuring them. This
chapter also has information on what statistical methods and tools were
used during analysis.

• Chapter 3 Previous metric research: Provides an overview of previous aca-
demic works on the subject of software security metrics.

• Chapter 4 Method: Presents an outline of the analysis process. It explains
how the software was chosen, how the data was gathered, what variables are
focused on and how they are defined.

• Chapter 5 Results: Compilation of analysis results for each of the four parts
of analysis. The results are presented with graphs and comments.

• Chapter 6 Practical application of the results: Provides ideas for using the
analysis results and other gathered data in a practical way.

• Chapter 7 Conclusions and future research: Summarizes the findings, con-
cludes the thesis and contains ideas for where future work can be focused.

Chapter2
Background

The (in)security of a software is analyzed through the collection of vulnerabilities
the software has had during its lifespan, therefore understanding vulnerabilities
is paramount for the task at hand. This chapter covers how a vulnerability is
defined, where vulnerabilities are found and introduces different metrics used to
measure them. It also includes the statistical methods and tools that were used
during the analysis.

2.1 Vulnerabilities and weaknesses

The Wikipedia article on vulnerability(computing) [3] claims that a vulnerability is
a weakness. However in the context of this thesis a vulnerability will be defined as
a specific bug in a specific software which can be abused in an unintended manner
to potentially cause a negative impact to the user of the software. The reason for
this distinction is that a weakness is used as a broader term that describes design
or implementation errors that can lead to a vulnerability. While the thesis will
be fully focused on vulnerabilities this section describes the most common way of
enumerating both.

2.1.1 CVE

Common Vulnerabilities and Exposures (CVE) is a dictionary of publicly known
information security vulnerabilities and exposures run by the MITRE Corpora-
tion [4]. It is sponsored by the U.S. Department of Homeland Security and is
now the industry standard for identifying vulnerabilities with what they call CVE
Identifiers (eg. CVE-1999-0400). These identifiers are given to a vulnerability by
a CVE Numbering Authority (CNA) together with a description of the vulnera-
bility. Many of the larger software vendors act as their own CNA and therefore
add their own vulnerabilities to the dictionary [5]. By their own disclaimer [6]
CVE is not a vulnerability database. They do however feed into the U.S. National
Vulnerability Database (NVD) [7] that adds some additional analysis like metrics.
In this report a reader will see wordings like ”a CVE” or ”the CVEs”, which are
implicative referrals to the vulnerability entries in the CVE dictionary.

3

4 Background

2.1.2 CWE

Common Weakness Enumeration (CWE) has the same function as CVE but it
enumerates weaknesses [8] instead. According to their FAQ [9] the difference
between weaknesses and vulnerabilities is that a software weakness is an error that
can lead to a vulnerability. Therefore the CWE identifies the underlying problem
rather than a specific software vulnerability (eg. CWE-89: SQL injection). This
is why the definitions made earlier are important, while ”Missing Authorization ”
is a weakness ”Missing Authorization in software X” is a vulnerability.

2.2 Information sources

A vulnerability can be published almost anywhere, depending on who discovers
it. This means that there is no go-to place for all vulnerabilities and a manual
search of the web is recommended when trying to find a vulnerability in a specific
software.

2.2.1 Databases

Apart from the already mentioned U.S. National Vulnerability Database [7] three
other big databases are Vulndb [10], CVE Details [11] and IBM xForce Exchange [12].

Vulndb is a vulnerability database that Risk Based Security provides to its
paying customers. It maps all vulnerabilities with CVE identifiers and more. Ac-
cording to vulndbs statistics they reported 14185 vulnerabilities in 2015, over 6000
more vulnerabilities than NVD/CVE [13]. They use their own version of Common
Vulnerability Security System (CVSS) metrics (more on this in Section 2.3.1), as
well as Vulnerability Timeline and Exposure Metrics (VTEM). ”VTEM uses vul-
nerability timeline data such as discovery, disclosure and patch availability dates
to measure the vendor’s overall responsiveness to correcting vulnerabilities” [14]
VTEM was launched in 2015 and the specifics of VTEM would be of great rele-
vance to this thesis, unfortunately they are not public.

CVE Details works in the same vein as NVD, it uses the CVE dictionary and
adds some detail and analysis about the vulnerabilities. It also provides RSS feeds
which makes it easier to stay on top of vulnerabilities for a chosen set of software.

IBM xForce Exchange was created in 2015 to consolidate threat intelligence
from multiple sources and make it easily accessible both through a web interface
and through a RESTful API.

In 2010 Messacci and Nguyen analyzed and compared vulnerability databases
by focusing on Mozilla Firefox [15]. Their work shows that many sources did not
have information about exploit publishing date and their conclusions support the
claim that using any single source for vulnerabilities does not give good coverage.

2.2.2 Mailing lists

Mailing lists are a great source for continuous updates on new vulnerabilities and
discussions around them. Seclists [16] has a comprehensive list of security mailing

Background 5

lists. Two good ones for vulnerability updates are Bugtraq [17] and Full Dis-
closure [18]. Founded in 1993, Bugtraq is one of the oldest active mailing lists
for vulnerabilities. Vulnerabilities disclosed here must not always have received a
CVE and is therefore a good source for 0-day (zero-day) vulnerabilities. A 0-day
vulnerability is a vulnerability that has not been disclosed in public previously.
Full Disclosure was restarted in 2014 after the original owner did not want to run
it anymore. Even though it is not as popular as Bugtraq some 0-days have been
published there in the past and it is a good place to discuss an exploit further in
dept.

2.2.3 Other sources

Other possible sources for vulnerabilities are Github repositories and Twitter.
Some Twitter accounts run bots that automatically post vulnerabilities, these can
be valuable to follow. If the potentially vulnerable software has a repository on
Github looking at the bug and discussion section there might be very useful.

2.3 Vulnerability metrics

The National Institute of Standards and Technology (NIST), the institute be-
hind CVSS, has developed a standard to ”assist in the development, selection,
and implementation of measures to be used at the information system and pro-
gram levels” [19]. It lists the following four factors that must be considered when
developing a security metric:

• Measures must yield quantifiable information (percentages, averages, and
numbers)

• Data that supports the measures needs to be readily obtainable

• Only repeatable information security processes should be considered for
measurement

• Measures must be useful for tracking performance and directing resources

This standard described quantitative metrics where a score is set on the basis of
a rigid mathematical process. It is important to distinguish these from qualitative
rating systems that are often used on vulnerabilities. According to George Jelen
of the International Systems Security Engineering Association good metrics are
those that are SMART: Specific, Measurable, Attainable, Repeatable and Time-
dependent [20].

2.3.1 CVSS version 2

Common Vulnerability Scoring System (CVSS) is an open and free industry stan-
dard for measuring the severity of vulnerabilities in software. Version 2 of CVSS [21]
was released in June 2007 and is a very common security score used for vulnera-
bilities. It was replaced later by version 3 which is described in Section 2.3.2.

6 Background

Figure 2.1: CVSS v2 subgroups and metrics from the CVSS v2 user
guide [21]. Copyright FIRST, used with permission.

CVSS calculates three different scores: a base score, a temporal score and an
environmental score as seen in Figure 2.1. The base score is calculated based on
qualities the vulnerability has that do not change over time or in different en-
vironments, this is the only mandatory score. The temporal score is based on
characteristics which change over time, for example if an exploit or a fix exists.
This score is described in Section 2.3.3. The environmental score changes depend-
ing on the environment and how serious the impact of an attack on the vulnerable
system would be.

The CVSS v2 base score is a score between 0 and 10 rounded up to the nearest
decimal. According to the specification it is calculated as follows:

(2.1)BaseScore = round_to_1_decimal(((0.6 · Impact) + (0.4 ·Exploitability)

− 1.5) · f(Impact))

Exploitability = 20 ·AccessV ector ·AccessComplexity ·Authentication (2.2)

Impact = 10.41(1−(1−ConfImpact)(1−IntegImpact)(1−AvailImpact)) (2.3)

f(Impact) =

{
0, if Impact = 0

1.176, otherwise
(2.4)

2.3.1.1 Access Vector

Access Vector can assume three different values depending on the vulnerability:
Local(0.395), Adjacent Network(0.646) and Network(1.0). It is set to Network if
the vulnerability is possible to exploit remotely over the internet (OSI layer 3), to
Adjacent Network if the exploit requires an attacker to be closer to the target (can
not be performed through a router), to Local if the vulnerability is not bound to
the network stack and requires the ability to read/write to the system.

Background 7

2.3.1.2 Access Complexity

Access Complexity can assume three values: High(0.35), Medium(0.61) and Low(0.71).
It is set to Low if an attacker can expect the exploit to be successful on most
systems without any special preparation. It is set to Medium if there are some
additional requirements for access, such as an uncommon configuration. It is set
to High if the exploit requires the attacker to do reconnaissance and tailor the
exploit after the target.

2.3.1.3 Authentication

Authentication is a metric that measures what privileges an attacker needs before
exploiting the vulnerability. It can assume three values: None(0.704), Single(0.56)
and Multiple(0.45). None if there are no requirements for the attacker to au-
thenticate. Single if the attacker must authenticate once to proceed with the
exploitation. Multiple if the attacker needs to authenticate multiple times, even if
using the same credentials.

2.3.1.4 Confidentiality

Confidentiality and the two remaining sub-metrics all deal with the impact a vul-
nerability can have on the system. Confidentiality measures the importance of
the data that can be stolen by an attacker by exploiting the vulnerability. It can
assume three values: Complete(0.660), Partial(0.275) and None(0.0). Complete if
the attacker gains access to all the data in the impacted component or if the stolen
data is of critical importance (like a root password or encryption keys). None if
the attacker does not gain access to any restricted data. Partial if the attacker
gains access to some restricted data but it is constrained in some way and not
critical to the impacted component.

2.3.1.5 Integrity

This metric measures the integrity impact of an attack using the vulnerability.
Integrity in this case means how trustworthy is the data on the impacted device
after an attack. Can it be trusted to be the same as before the attack? The
Integrity metric can assume three values: Complete(0.660), Partial(0.275) and
None(0.0). Complete if the attacker has gained the ability to modify all the data
on the impacted component or if the data that the attacker is able to modify
present a clear danger to the component. Partial if the data the attacker can
modify does not have a serious impact on the component. None if the attacker
can not modify any data on the impacted component.

2.3.1.6 Availability

Availability measures the impact an attack has on the availability of the impacted
component, in other words, if the resources of the impacted components can be
accessed. A loss of availability can be sustained (while the attack is ongoing) or
persistent (the availability loss persist after the attack). The availability metric

8 Background

Figure 2.2: CVSS v3 subgroups and metrics from the CVSS v3 user
guide [22]. Copyright FIRST, used with permission.

can assume three values: Complete(0.660), Partial(0.275) and None(0.0). This is
set to Complete if the vulnerability is possible to exploit in such a way that the
attacker gains full control over the availability of the impacted component or if the
control the attacker gains can restrict resources that are of critical importance. It
is Partial, if exploiting the vulnerability impacts performance but does not allow
an attacker to completely cut off access to the component even if the exploit is
used multiple times. None, if the vulnerability does not impact the availability of
the component.

2.3.2 CVSS version 3

The newest version of CVSS, version 3, was released in June 2015 [22]. It looks
rather similar to version 2 as can be seen in Figure 2.2.

One of the big changes from the previous version is that version 2 always
measured impact on the host platform while version 3 measures the impact on
what they call the ”impacted component”. The impacted component can be any
software, hardware, or networking component. This is represented by a new metric
called Scope. Scope will be explained in greater detail in Section 2.3.2.5 Other
changes are rather minor like name changes of metrics and values. The CVSS v3
base score is described below for comparison.

The CVSS v3 base score is a score between 0 and 10 rounded up to the nearest
decimal. According to the specification it is calculated as follows:

BaseScore =

{
Impact+ Exploitability, if Scope=Unchanged
1.08(Impact+ Exploitability), if Scope=Changed

(2.5)

(2.6)Exploitability = 8.22 ·AttackV ector ·AttackComplexity
· PrivilegesRequired · UserInteraction

Background 9

Impact =

{
6.42ISCbase, if Scope=Unchanged
7.52(ISCbase − 0.029) − 3.25(ISCbase − 0.02)15, if Scope=Changed

(2.7)

ISCbase = 1 − [(1 − Confidentiality)(1 − Integrity)(1 −Availability)] (2.8)

Table 16 (page 20) in the specification [22] contains all possible numeric values
for these sub-metrics. Short explanations of them follow here:

2.3.2.1 Attack Vector

Attack Vector can assume four different values depending on the vulnerability:
Network(0.85), Adjacent(0.62), Local(0.55) and Physical(0.2). CVSS v3 added
the new value called Physical which the attack vector is set to if the vulnerability
can only be exploited with physical access to the vulnerable system.

2.3.2.2 Attack Complexity

Attack Complexity can assume two values: High(0.44) and Low(0.77). In CVSS
v3 the value Medium was removed while High and Low are still defined in the
same way as in version 2.

2.3.2.3 Privileges Required

Privileges Required the new version of the Authentication sub-metric in CVSS
version 2. It is a metric for what privileges an attacker needs before exploiting
the vulnerability. It can assume three values: None(0.85), Low(0.68 if Scope =
Changed, 0.62 otherwise) and High(0.50 if Scope = Changed, 0.27 otherwise).
None if the attacker does not need any privileges at all. Low if the attacker needs
”basic user” privileges. High if the attacker needs administrative privileges (root).

2.3.2.4 User Interaction

User interaction is a new addition in CVSS v3. It can only assume two values:
None(0.85) and Required(0.62). None if the vulnerability can be exploited by an
attacker without needing a user or user process of the targeted system to interact
in any way. It is set to Required if the attacker needs a user or a user process to
participate in the attack, for example by executing something.

2.3.2.5 Scope

Scope can assume two values: Changed or Unchanged. If the impacted component
is not governed by the same authorization scope as the vulnerable component, a
scope change has occurred. The authorization scope are the privileges to comput-
ing resources (CPU, memory etc.) that are granted to the vulnerable component

10 Background

by an authorization authority (e.g. an application, operating system or sandbox).
For example, a scope change occurs if a vulnerability in a virtual machine (VM)
compromises the underlying operating system (OS) because the VM and the OS
are seperate authorization authorities (one grants privileges to the VM users and
the other to the host system where the VM is running). Put simply, a scope
change occurs when breaking out of a sandbox environment. Since sandbox envi-
ronments are very common today (for example in modern web browsers) it makes
the addition of Scope the most important change from CVSS version 2 to version
3.

2.3.2.6 The impact metrics

The three remaining sub-metrics: Confidentiality, Integrity and Availability all
deal with the impact a vulnerability can have on the system. The only difference
between CVSS v2 and v3 is the name and numeric values that these impact metrics
can be set to. They can all assume the same three values: High(0.56), Low(0.22)
and None(0.0). They directly correspond to the values called Complete, Partial
and None in CVSS version 2.

2.3.2.7 CVSS in IoT software

CVSS has received criticism for being deceiving when applied on software used in
IoT. Since it was designed with classical computing software in mind, the score
does not take the potential for ”real” damage to property or even human life into
account [23].

2.3.3 CVSS temporal metrics

As mentioned in Section 2.3.1 CVSS includes an optional score called Temporal
Score that can change with time. Even though it is seldom included in vulnerability
databases and security advisories it is an interesting score to consider when com-
paring software security. According to the CVSS v2 and v3 documentation [21] [22]
it consists of three metrics: Exploitability, Remediation Level and Report Con-
fidence. The Temporal Score ranges from 0 to 10 but cannot go above the base
score, it is calculated like this:

(2.9)TemporalScore = round_to_1_decimal(BaseScore · Exploitability
·RemediationLevel ·ReportConfidence)

The numeric values these sub-metrics can take on differs a little between CVSS
v2 and v3, the version 2 numeric values have been used in this thesis. The version
3 numerics can be found in the CVSS v3 specification. Short explanations of the
metrics follow below:

2.3.3.1 Exploitability

Exploitability measures how difficult a vulnerability can be exploited using the
exploits available at the time of measuring. It can assume five different values:

Background 11

Unproven(0.85), Proof-of-Concept(0.9), Functional(0.95), High(1.00) and Not De-
fined(1.00). It is set to Unproven if no exploit code is available for example when
an exploit is theoretical. It is set to Proof-of-Concept if an exploit is only a proof-
of-concept. A proof-of-concept is an exploit not functional in all situations and
may require substantial modification by a skilled attacker. It is set to Functional if
exploit code is available. The exploit should work for most vulnerable components.
It is set to High if the vulnerability is exploitable automatically (for example by
a worm), or if no exploit is required and details on how to exploit the software
manually is widely available. It is set to Not Defined if the metric is to be ignored.

2.3.3.2 Remediation Level

Remediation Level measures if and how difficult it is to fix a vulnerability. It
can also assume five different values: Official Fix(0.87), Temporary Fix(0.90),
Workaround(0.95), Unavailable(1.00) and Not Defined(1.00). It is set to Official
Fix if a complete vendor solution is available. Either the vendor has issued an
official patch, or an upgrade is available. It is set to Temporary Fix if there
is an official temporary fix available, for example a temporary hotfix, tool, or
workaround. It is set to Workaround if there is an unofficial, non-vendor solution
available. It is set to Unavailable if there is no solution available. It is set to Not
Defined if the metric is to be ignored.

2.3.3.3 Report Confidence

Report Confidence measures the likelihood that the measured vulnerability ac-
tually exists and works as reported by evaluating the source of the vulnerabil-
ity report. This metric can assume four values: Unconfirmed(0.90), Uncorrobo-
rated(0.95), Confirmed(1.00) and Not Defined(1.00). It is set to Unconfirmed if
there is a single unconfirmed source or multiple conflicting reports. There is little
confidence in the validity of the reports. An example is a rumor that surfaces
from the hacker underground. It is set to Uncorroborated if there are multiple
non-official sources. These reports should not be too conflicting but can vary on
the smaller technical details. It is set to Confirmed if the vulnerability has been
acknowledged by the vendor or if the vulnerability has been confirmed by external
sources such as a functional exploit or a proof-of-concept. It is set to Not Defined
if the metric is to be ignored.

2.3.4 CWSS

Common Weakness Scoring System (CWSS) is similar to CVSS but measures
software weaknesses instead of vulnerabilities. It gives a score from 0 to 100 based
on a set of sub-metrics [8]. Since this thesis is focused on vulnerability metrics it
will not go into detail about scoring systems for software weaknesses.

2.3.5 CERT-CC severity metric

Previous to 2012-03-27 the CERT Coordination Center used a self-developed vul-
nerability metric [24]. This metric is on a non-linear scale from 0 to 180 and

12 Background

measures the severeness of a vulnerability by the following seven factors:

• Is information about the vulnerability widely available or known?

• Is the vulnerability being exploited?

• Is the Internet Infrastructure at risk because of this vulnerability?

• How many systems on the Internet are at risk because of this vulnerability?

• What is the impact of exploiting the vulnerability?

• How easy is it to exploit the vulnerability?

• What are the preconditions required to exploit the vulnerability?

These factors affect the final score with different weights.

2.3.6 SANS vulnerability analysis scale

The SANS vulnerability analysis scale is a now defunct vulnerability scale that
was developed and used by the SANS Institute. It divided vulnerabilities into four
priorities: Critical, High, Moderate and Low. Elisa Bertino et al. describe the
scale in a book from 2009 [25] and provide the following list of some key factors
used in the scale:

• The diffusion of the affected product.

• Whether the vulnerability affected a server or client system.

• Whether the vulnerability is related to default configurations/installations.

• The IT assets affected (e.g. databases, e-commerce servers).

• The network infrastructure affected (DNS, routers, firewalls).

• The public availability of exploit code.

• The difficulty in exploiting the vulnerability.

2.3.7 Qualitative rating systems

Some larger software vendors have their own qualitative rating systems where they
categorize the severity of vulnerability based on certain criteria. Some examples
are Microsoft [26] and Redhat [27] whose rating systems are very similar. They
divide vulnerabilities into four priorities:

• Critical: A vulnerability that can be exploited without user interaction and
can therefore be exploited automatically by worms.

• High: A vulnerability that can easily compromise the confidentiality, in-
tegrity, or availability of resources.

• Moderate: A vulnerability that could compromise the confidentiality, in-
tegrity, or availability of resources but is mitigated by some factor such as
authentication or unlikely configurations.

Background 13

• Low: This rating is given to all other issues that have a security impact.
These vulnerabilities are either very unlikely to be exploited or have minimal
impact.

2.4 Statistical tools and methods

This section contains the statistical tools and methods that are used or mentioned
in this report.

2.4.1 Linear regression

Linear regression is an approach in statistics to model the relationship between a
dependent variable and one or more independent variables. In simple terms it is
used to determine the equation of the line that best fits the given data points. All
linear regression is done in R [28] which is a programming language for statistical
computing.

2.4.2 None-linear regression

Non-linear regression is a form of regression analysis that is used when the obser-
vational data are best modeled by a nonlinear function. All non-linear regression
is performed through an iterative process using a trial version of IBM SPSS Statis-
tics [29].

2.4.3 Chi-Squared test

Chi-Squared (χ2) is a commonly used goodness-of-fit test. A goodness-of-fit test
is a test that measures how well a theoretical model fits the observed values, for
example how well a regression model fits the data. The equation for the test is
the following:

χ2 =
1

d

n∑
k=1

(Ok − Ek)2

Ek
(2.10)

It is a normalized sum of the squared differences between the observed and
theoretical values (O and E respectively). This sum together with the number of
degrees of freedom is used to look up the probability value (P-value) of the test
which helps determine its statistical significance.

2.4.4 Coefficient of determination

Similar to the Chi-Squared test, the coefficient of determination (r2) is a goodness-
of-fit measurement of how many data points fall within the results of a regression
model. It is the percentage of points the curve formed by regression analysis passes

14 Background

through. The coefficient of determination is the Pearson correlation coefficient (r)
squared. This correlation coefficient is calculated in the following way:

r =
n(
∑
xiyi) − (

∑
xi)(

∑
yi)√

[n
∑
x2i − (

∑
xi)2][n

∑
y2i − (

∑
yi)2]

(2.11)

Where x and y are the two datasets that are being compared for n number of
data points.

Chapter3
Previous metric research

There has been a fair amount of research on the topic of software security metrics
with a wide variety of different approaches. This chapter provides an overview
of multiple interesting ideas and concepts that were found on the subject. These
metrics will not be implemented, however ideas from Section 3.7 on predictive
algorithms will used later in this thesis.

3.1 WIVSS

Weighted Impact Vulnerability Scoring System (WIVSS) was proposed by Spanos
et al. in 2013 [30]. It was proposed to improve on CVSS v2 in terms of accuracy and
to have a more balanced score distribution. Some important differences between
WIVSS and CVSS v2 are:

• The impact score is between 0 and 7 instead of 0 and 10.

• Impact Score = Confidentiality + Integrity + Availability

• Confidentiality has the heaviest weight on the impact score. Confidentiality
> Integrity > Availability.

• When the confidentiality metric is set to ”None” then the other impact
metrics also are set to ”None”.

• The 33 possible sums of the three impact metrics must be different.

• Partial Impact = 0.5 * Complete Impact (in CVSS v3 these are called Low
and High)

3.2 PVL

Potential Value Loss (PVL) is a method of rating vulnerabilities developed by
Yang & Wang in 2012 [31]. It uses the following seven indicators to measure
severity.

• Loss of confidentiality of network node containing the vulnerability

• Loss of integrity of network node containing the vulnerability

15

16 Previous metric research

• Loss of availability of network node containing the vulnerability

• Asset value of network node containing the vulnerability

• The level that asset values of network node depends on its confidentiality

• The level that asset values of network node depends on its integrity

• The level that asset values of network node depends on its availability

These indicators were selected based on the criteria that they should be effec-
tive, usable and accurate. The paper demonstrates PVL by using the method to
rate published vulnerabilities for IP Multimedia Subsystem (IMS).

3.3 VRSS

Vulnerability Rating and Scoring System (VRSS) was proposed by Liu & Zhang
in 2011 [32]. Their idea was to create a hybrid scoring system by merging qual-
itative and quantitative scoring methods. The system combines the qualitative
metrics used in databases such as ISS X-Force and Vupen Security with the quan-
titative measuring in CVSS. Both of these databases had similar rating systems to
the qualitative metrics mentioned in the previous section. The authors reasoning
behind this was that analysis showed that the qualitative methods had greater
consistency than CVSS. VRSS divides vulnerabilities into three priorities: High,
Medium and Low. The purpose of the system was to replace the many different
vendor-specific metrics that were in use at the time.

In 2012 Liu et al. further developed VRSS in order to improve the accuracy and
have a bigger diversity in scoring [33]. The improvements enable the vulnerability
type (based on CWE) to help prioritizing vulnerabilities. Using the vulnerability
type together with a analytic hierarchy process on the basis of VRSS they analyzed
11,395 CVE vulnerabilities. The analysis of the results supports the claim that it
has better score distribution than CVSS and the previous version of VRSS.

3.4 OWASP risk rating

Open Web Application Security Project (OWASP) is a non-profit organization
with an online community that provides free information in the field of web ap-
plication security. They have developed their own risk rating system [34]. They
define risk as risk = likelihood · impact. Likelihood is the average of eight met-
rics, four of them pertaining to the ”Threat agent” (the attacker) and four to the
vulnerability. Each of these metrics can have a score between 0 and 9. In the
context of this thesis we are only interested in the proposed four metrics that are
about the vulnerability itself. This because the threat agent and the impact varies
between targets. The four metrics that are related to the vulnerability and their
suggested scale:

• Ease of discovery
How easy is it for this group of threat agents to discover this vulnerability?
Practically impossible (1), difficult (3), easy (7), automated tools available
(9)

Previous metric research 17

• Ease of exploit
How easy is it for this group of threat agents to actually exploit this vul-
nerability? Theoretical (1), difficult (3), easy (5), automated tools available
(9)

• Awareness
How well known is this vulnerability to this group of threat agents? Un-
known (1), hidden (4), obvious (6), public knowledge (9)

• Intrusion detection
How likely is an exploit to be detected? Active detection in application (1),
logged and reviewed (3), logged without review (8), not logged (9)

3.5 Policy security score

This metric, suggested by Muhammad Abedin et al. in 2006 attempts to measure
the quality of protection of a security policy [35]. The score ranges from 10 to 0,
10 being the most secure. It uses several factors to determine this score:

• EF: Exposure Factor

• TRF: Traffic Rate Factor

• EVM: Existing Vulnerability Measure

• HVM: Historical Vulnerability Measure

• AHVM: Aggregated Historical Vulnerability Measure

• TVM: Total Vulnerability Measure.

• PSS: Policy Security Score

Figure 1 on page 1 in the referenced paper [35] is a good flow-diagram of how
the Policy security score is calculated. The factors that are most interesting in the
context of this thesis are EVM and HVM. EVM(A) measures all vulnerabilities
that exist on system A.

EVM(A) = α1 · ln(
∑

vi∈EVS(A)

eSS(vi)) + α2 · ln(
∑

vj∈EVU (A)

eSS(vj)) (3.1)

SS(v) is the severity score (CVSS) of vulnerability v. The set EVU contains
vulnerabilities that have no patch available and EVS contains the vulnerabilities
that have patches available but they have not been applied. The alphas are weights
that can be adjusted accordingly.

The historical vulnerability measure is especially interesting in the context of
this thesis. Operating under the assumption that older vulnerabilities are analyzed
and patched with time it is used as an exponential decay of the severity score.

HVM(S) = ln(
∑

X∈{H,M,L}

wX ·
∑

vi∈HVX(S)

SS(vi) · e−β·Age(vi)) (3.2)

The sets H,M,L are the priority class of the vulnerability (High,Medium,Low)
and w is the weight for that specific priority. β controls the speed of the decay.

18 Previous metric research

3.6 K-zero day safety

K-zero day safety is a network security metric proposed by Wang et al. in 2014 [36].
A network security metric measures the security level of a particular network asset
unlike the previously discussed metrics that focus on specific vulnerabilities. The
authors state that one of the biggest issues with network security is the inability
to measure the unknown. The unknown in this case is if an attacker uses non-
public or previously undiscovered vulnerabilities. These are referred to as 0-day
vulnerabilities because they give no time for the software vendor to fix the issue. K-
zero day safety uses attack graphs to measure the number of 0-day vulnerabilities
required to compromise a network asset.

See Figure 3 on page 4 in the referenced paper [36] for an example of an
attack graph where each triple indicates an exploit (<vulnerability, source host,
destination host>) and each pair indicates a condition <condition, host>. It is
a directed graph with edges pointing from pre-conditions to their corresponding
exploits and from those exploits edges point to post-conditions. In the referenced
Figure there are four different ”paths” an attacker can take to the final target
(root,2), all require at least 3 vulnerabilities. For example if the pre-conditions
<http,1> (HTTP service on host 1) and <0,1> (connectivity between host 0 and
1) are fulfilled an attacker on host 0 can used a 0-day exploit for the HTTP server
which gives him user privileges on host 1 (<user,1>). Those privileges are used
with a second 0-day to exploit the secure shell service to gain user privileges on
host 2. In order to gain root access on the measured asset (host 2) the attacker will
need a third 0-day. Unpatched software can of course change the score drastically
depending on where it is positioned in the path to the asset. When analyzing
networks in this manner it becomes easier to find the weak links.

3.7 Predictive algorithms

On a software level, vulnerability discovery risk can be measured by estimating
the number of residual vulnerabilities as shown by the following equation:

RVD = V D −KVD

VD stands for Vulnerability Density, KVD stands for Known Vulnerability Den-
sity. This means that the software security is measured by the difference between
the number of known vulnerabilities and the total number of vulnerabilities that
will ever exist for that software. The main problem is estimating the total number
of future vulnerabilities. One approach to this problem is to use vulnerabilities dis-
covery models (VDMs). Some VDMs suggested include Alhazmi et al. [37] where
they proposed a model now called Alhazmi Malaiya Logistic (ALM), Rescorla [38]
who used an exponential model and Anderson [39] who based a discovery model
on thermodynamics. Joh et al. [40] attempted to use Weibull distribution as a
model but it did not always provide a good fit. These models use different vari-
ables and algorithms but generally a VDM is either time-based or effort-based.
The effort-based models take into account the number of users by using market
share data while the time-based use calendar time only.

Previous metric research 19

According to [41] the AML model seems to be the best fitting but it assumed
a symmetry in vulnerability discovery around the peak that is not always there.
Further research was made by for example Joh et al. [42] who tried to capture
asymmetric behavior by modeling the skewness of the distribution.

The following equation is the ALM model:

ΩAML(t) =
B

BC−ABt + 1

Note that Ω(t) approaches B as the time t approaches infinity. This means that B
represents the total number of vulnerabilities that will be found in the software. A
and C determine the slope during the different phases of the curve. During fitting
these 3 parameters can be estimated through non-linear regression analysis. These
parameters are then used when performing a goodness-of-fit test like the χ2 test
(Section 2.4.3). One method to find a good model is to try different models and
use a goodness-of-fit test to evaluate their success. This method was used in 2016
by Awad A Younis Mussa [43] where he compared ALM and a folded VDM model
and found that the folded VDM model performed better, but as the author himself
remarks in his conclusions, the folded VDM model needs further testing to develop
guidelines on how and when it should be used.

3.8 Other work on security metrics

In 1985 Mosleh et al. [44] proposed a bayesian probabilistic approach for risk
analysis. The authors model the potential loss as a family of normal distributions.
More recently, Xie et al. showed how bayesian networks can be applied on attack
graphs [45].

Another approach is fuzzy logic. Fuzzy logic has been widely used in risk
analysis and is also being used to prioritize vulnerabilities [46]. In 2013 Huang et
al. [47] applied a fuzzy delphi method on the CVSS score of a vulnerability to filter
out the base metric and the temporal metric. Then they used a fuzzy analytical
hierarchy process to obtain fuzzy membership values. These values are analyzed
with a synthetic decision making model to show to which degree the vulnerability
affected the security of the system. This method shows how different weight of
the evaluation criteria in CVSS affect the vulnerability priority.

20 Previous metric research

Chapter4
Method

This chapter presents the method used during the software and vulnerability anal-
ysis. The first section is an outline of the analysis process which gives an oversight
of how the analysis results will be presented. The second section explains how
software was chosen for analysis. The following sections provide information on
what variables were considered during analysis and will explain the data gathering
process. The last section explains the reasoning behind the survey and how it was
conducted.

4.1 Analysis outline

The analysis is divided into four parts, the first two are focused on analysis of soft-
ware and vulnerability data. The first part is a broad general comparison between
several software categories based on data that can and has been automatically
collected. The second part is a deeper look into one of the software categories and
the software contained within it. During this deeper look the analysis will focus
on the data points defined in this chapter. The third part is an analysis of the
public exploit sources and the fourth part is completely focused on the survey,
more about these parts in Sections 4.5 & 4.9 respectively. Interesting results of
this analysis will be presented in Chapter 5 and used to investigate options for a
software security metric in Chapter 6.

4.2 Software selection

In order to have a wide array of software available during analysis, software was
chosen based on popularity and on what application the software has. The follow-
ing nine categories of software were chosen:

• Video playback libraries and software

• HTTP-Servers

• Encryption libraries and software

• Script languages

• Firewall software

21

22 Method

• Virtualization software

• FTP-Servers

• Communication (Chat software)

• SQL-Servers

Each of these categories contain 4-6 various software of different popularity
levels for a total of 44 software from different developers. The exact software
chosen are listed in Appendix A. During this report these categories will be referred
back to in shortened form such as ”HTTP” or ”Encryption”.

4.3 Vulnerability data

This section specifies what vulnerability data is collected and what definitions are
used.

4.3.1 Historical data

Figure 4.1: Vulnerability life timeline

Five interesting points in time during the vulnerability life cycle have been
identified: Time of Introduction, Time of Exploitation, Time of Discovery, Time
of Disclosure and Time of Patching as shown in Figure 4.1. These points in time
are not necessarily in that order, for example the vulnerability can be discovered
by the vendor and therefore no exploit is released while the software is vulnerable
as shown in Figure 4.2.

We define the Time of Introduction (tv) as the point in time that the vulnera-
bility was introduced in the software. tv is almost always unknown and will not be
used in the analysis. The four remaining points in time have all been previously
used in analysis of vulnerabilities, for example in a paper by Shahzad et al. [48]
and in a large-scale analysis by Frei et al. [49].

We define the Time of Exploitation (te) as the oldest confirmed date at which
an exploit or proof of concept for exploiting the vulnerability was released.

Method 23

Figure 4.2: Alternative vulnerability life timeline

We define the Time of Discovery (td) as the date the vendor claims to have
discovered the vulnerability. Often this is not reported but in some cases it is
included at the time of disclosure.

We define the Time of Disclosure (t0) as the oldest date at which the vendor
publicly acknowledges the vulnerability. For a lot of the vulnerabilities in our
database this will be close to the date in the CVEs published field, the reason for
this being that these vulnerabilities are publicly acknowledged by the vendor after
the vulnerability has been patched but before the CVE is made public.

We define the Time of Patching (tp) as the date at which the software vendor
released either a software fix or a suggested solution to the specific vulnerability.
Third-party solutions are therefore excluded. If an official fix is available the date
the fix was released will be used as the Time of Patching even if alternative fixes
existed previously.

We compare the exploit-, discovery- and patch-time with the disclosure date
and analyze the distribution of these points in time in an attempt to quantify the
stages of the vulnerability life-cycle and discover trends.

4.3.2 CVSS

CVSS v2 is included in all CVE data gathered from NVD, CVSS v3 is included in
all CVEs published since the end of 2015. As previously described in Section 2.3.2
the main difference between version 2 and 3 is ”Scope”. For software where the
scope remains unchanged when exploited, CVSS v2 is sufficient. In the interest of
consistency and backward compatibility CVSS version 2 will be used during the
analysis.

4.3.3 Temporal data

Temporal metrics is an optional part of CVSS (see Section 2.3.3) and it is often
not included in vulnerability databases. If data about temporal metrics can be
found for the examined CVEs it will be collected and used together with the other

24 Method

CVSS data to calculate temporal scores for each CVE.

4.4 Vulnerability types

As described in Section 4.3.1, the defined points in time can be in different orders
(excluding vulnerability introduction). Depending on the order of these points
we divide the vulnerabilities into different types. For example if te < tp the
vulnerability was exploitable with no patch available from the vendor to protect
the user and if te < t0 it is a zero-day exploit.

Disclosure:

• Type 1: When te < t0. The exploit was published before the vulnerability
was disclosed. We call this a malicious discovery.

• Type 2: When te >= t0 The exploit was published together with or after a
public disclosure about the vulnerability has been made.

Patching:

• Type 1: When tp <= t0. The vulnerability was patched before a public dis-
closure was made. This means that the vulnerability was handled internally
before it became public and could cause harm on a larger scale. The vast
majority of the vulnerabilities collected belong to this category.

• Type 2: When t0 < tp. The vulnerability was patched at least one day after
a public disclosure was made.

• Type 3: When tp = null. No patch date or patch found for this vulnerability.

4.5 Exploits

Since the exploit publishing date is one of the important points in time identified
in Section 4.3.1 data about public exploits will be be gathered and an analysis
of that data will be performed as to determine the vulnerability coverage of our
exploit sources and to find any correlation between the publishing dates of public
exploits and vulnerabilities.

4.6 Data sources

The task is to collect as many of the dates above for the vulnerabilities in our
database, the difficulty in this is that no single source provides the dates. Finding
the points in time requires background research on each vulnerability. Therefore
we want to use sources with extensive references. By restricting ourselves to vul-
nerabilities that have a CVE-identifier we can use NVD as our only source of
vulnerabilities. NVD includes a list of external references with each CVE that
will be the source of dates to correlate with the points in time we are interested
in. As a source for public exploits and exploit dates we use exploit-db [50] and
the references on NVD. For the temporal data a mix of data from IBMs X-force

Method 25

Figure 4.3: Diagram of the collected data and its sources.

Exchange [12] and manual reference research was used. Figure 4.3 shows a rela-
tion diagram over the sources that were used and what data was collected from
them. The CVE identifiers were cross-referenced and added to the same database.
The ”vendor controlled site” in the diagram refers to any official channel the soft-
ware vendor uses to disclose vulnerabilities and announce patches, for example the
OpenSSL security advisory [51].

4.7 Other software data

This section lists some other data gathered about the vulnerabilities that may
prove to be interesting and relevant in the analysis.

4.7.1 Users and popularity

Being precise when measuring the popularity of a specific software is difficult since
vendors rarely publicize their user data. With the ultimate goal of automation in
mind the metric that will be used in its place is search engine hits. Since search
engine hits usually have a high variance it requires collection of data during an
extended period of time. Therefore data from both Google and Bing have been
collected once every week during two months for the chosen set of software. This
data has been used to evaluate the potential of using search engine hits as a metric
and to theorize about potential applications of it.

26 Method

4.7.2 Developers

The number of developers that worked on the software. This data is not always
available but if the project is open source it is often possible find.

4.7.3 Language

What programming language the software was written in. This data is almost
always available.

4.7.4 Documentation

It is no simple task to quantify what makes a good documentation since they often
target different user groups with different skills. However, usability is important
for all of them. Three heuristics have been identified that are important when
judging the usability of software documentation:

1. Search and navigation. A user should be able to find the required topic
using some form of search function, or by browsing to it.

2. Orientation. A users should be able to know where they are in the docu-
mentation relative to the whole.

3. Minimalist writing. The documentation should avoid irrelevant information.

Using these heuristics as a foundation together with personal judgment a score
from 0 (no documentation) to 3 (excellent documentation) is chosen.

4.7.5 Release activity

How many releases were made per day during a certain time period, measured in
days/release. This data has to be manually gathered since releases are published
on different sites for different software.

4.8 Data gathering process

The CVE data is available on NVD in a compressed XML format. This data
was gathered using a Python script that automatically downloaded, extracted and
inserted the data into a mongoDB database. Having the data stored in a database
simplifies the process of retrieving CVE data for a specific software. For example
a query retrieving all CVEs where ”OpenSSL” is listed among the products could
look like this:

db . cves . f i nd ({" products " : {" $ in " : [/ OpenSSL/] }}) . p re t ty ()

The data available is publish date, modified date, CVSS score, references and
a summary of the vulnerability. NVD does not include any specific vulnerability
data like the points in time defined in Section 4.3.1, exploit data or patch data.
This data was gathered manually and inserted into a spreadsheet. The temporal

Method 27

metrics on X-force Exchange were gathered using a script calling their API that
allows up to 5000 free searches per month. The public exploit data was gathered
from an offline version of exploit-db that is available on Github [52].

4.9 Survey

The importance (priority) of the different metrics that have been identified has to
be decided, not only to determine which metrics to include in a potential scoring
system but also to decide their weights if they are included. In order to accomplish
this a small survey has been performed amongst professionals in the software
security industry. To be specific, the survey was directed at "anyone with an
interest in software security and anyone who actively tries to pick secure software."

Figure 4.4: Table used during the survey.

Figure 4.4 shows the table used during the survey. Participants are asked to
rate the unnamed software from 1 to 10 where 1 is “I would definitely include this
software in a product” and 10 is “I would never include this software in a product”.
The participants are also asked to comment on which of the metrics they found
most useful, least useful and if they felt any metric was missing.

The metrics included in the survey were chosen based of the following criteria:

• Relevancy. The purpose of the survey is to determine the relevancy of the
metrics, therefore metrics that the author considered relevant were chosen.

• Automation possibility. All metrics in the table can and have been collected
automatically.

• Easy to understand. Since the survey has been sent to people that likely
do not possess knowledge about the inner workings of CVSS, the chosen
metrics have to be easy to explain and understand.

The final results of the survey will be analyzed partly through regression analy-
sis and partly through review of answers to the free text questions. The regression
analysis is performed to find the correlation between the metrics and the ratings
and the review is done to find common threads among the answers. The regression

28 Method

analysis combined with the comments received on the survey serves as the basis
for deciding what weights the metrics will have in a scoring system.

Chapter5
Results

The results of the analysis are presented in this chapter. The first two sections
are focused on vulnerability analysis, both broad and detailed. The third section
reviews exploit-db as a source for public exploits and the fourth is a compilation
of the survey results. Graphs and comments on these results are included.

5.1 Vulnerability analysis of multiple categories

Using only data collected automatically with scripts we extend the amount of
software analyzed. Nine categories of software have been chosen and the soft-
ware within those categories have been picked to represent a wide array of pop-
ularity. Listed in Appendix A are the categories and the keywords (most often
vendor:product_name) used in our search for vulnerabilities for specific software.

Figure 5.1: Average CVSS Score per category

29

30 Results

Figure 5.2: The average CVSS sub-metric values per category

Figure 5.1 compares these categories to each other based on average CVSS
score. The Figure shows that there is a large difference between these categories,
for example software examined in the ”Firewall” category have vulnerabilities with
an average CVSS score of 4.754 while the ”Video” software averaged 7.276. Two
theories that could explain this difference are:

1. Software developers for categories like ”Firewalls” or ”Encryption” have a
higher focus on security compared to developers of ”Video” software (for
obvious reasons).

2. Video players have a larger user base and are therefore a more viable option
for exploitation in most cases. For example, if a user is running a video
player that is vulnerable to code execution through a maliciously formed
video file an attacker will most likely try to trick the user into executing the
attackers code from the inside the network and bypass the firewall instead
of attacking the firewall software directly.

Figure 5.2 breaks down the CVSS score into the specific CVSS metrics and
shows that the security-focused categories are overall much better at handling the
Confidentiality, Integrity and Availability-impact of a vulnerability. This leads us
to the third theory which is that Windows-versions may be poisoning the data-
well. CVEs normally do not specify the underlying operating system which means
that for software like VLC the versions for the different operating systems are
mixed under the same software name while in the firewalls category the software
picked was all UNIX-based and do not have Windows-versions. A comparison of
the impact metrics between the Windows and Linux versions of the same software
would be interesting, unfortunately even though NVD tries to add details like
operating system the CVEs they provide are still lacking in this respect and data
collection would most likely have to be done manually or with another source to

Results 31

get a somewhat trustworthy result.

Figure 5.3: Average number of CVEs per Month for each category

Figure 5.3 is a graph that shows the average number of CVEs that are pub-
lished each month (30,44 days) in the different categories, starting with the date
of the first published CVE for that software. In conjunction with the previous
graph depicting the average CVSS scores (Figure 5.2) it shows that software in
some categories such as FTP-Servers, HTTP-Servers and communication (chat)
have a lower discovery frequency of vulnerabilities compared to other categories
but that these vulnerabilities still have a rather high average CVSS score. This is
because the impact (confidentiality, integrity and availability) of vulnerabilities in
these categories is high.

5.2 Vulnerability analysis of a single category

This section focuses on deeper analysis into the software in the ”Encryption”-
category and their CVEs. Currently the data analyzed in this section is restricted
to five programs and their vulnerabilities stretching from 2014-01-01 to 2016-09-27.
This restriction was necessary due to the time consuming nature of researching
the individual CVEs. In cases where data is available outside this range of dates
it will still be included.

Table 5.1 above shows the connection between popularity and security issues.
The data was collected once every week for 10 weeks for the five chosen software
by simply searching for the software names on the respective search engines and
retrieving the number of hits. It is not a big sample size but they do seem to corre-
late. See Figure 5.4 and 5.5. A metric sometimes used in Vulnerability Discovery

32 Results

Table 5.1: Search hits based on an average over 10 weeks

CVEs/Month Google hits Bing hits
OpenSSL 0,813 16922222 1153333
GnuTLS 0,272 484555 128777
LibreSSL 0,407 113333 136000
OpenSSH-p 0,043 2370000 343000
WolfSSL 0,187 97500 52300

Figure 5.4: Correlation between CVE/Month and the number of
Google hits

Models (see Section 3.7) is ”market share”, the average number of Google-hits can
be used as a rough way of estimating that without access to any official numbers.

Tables 5.2 and 5.3 show how many dates of each category that were collected
for the chosen software. Non-internal refers to being in patching category 2 as
defined in Chapter 4. When looking at 5.3 a reader may assume that the three
non-internal vulnerabilities for OpenSSL are the same vulnerabilities for which
exploit-dates are available, however this is not the case, none of them are.

Table 5.2: Information about the gathered dates.

of CVEs Have Discovered date Have patch date
OpenSSL 89 72 88
GnuTLS 14 2 13
LibreSSL 3 1 1
OpenSSH-p 15 3 11
WolfSSL 4 1 4

Results 33

Figure 5.5: Correlation between CVE/Month and the number of
Bing hits

Table 5.3: More information about how many of each date were
gathered.

of CVEs Disclosure date Exploit date Non-internal
OpenSSL 89 89 3 3
GnuTLS 14 6 1 4
LibreSSL 3 1 0 0
OpenSSH-p 15 8 1 6
WolfSSL 4 4 0 0

Table 5.4: Statistics gathered from open source repositories

of contributors Days/Release
OpenSSL 220 24.45
GnuTLS 14 17.1
LibreSSL 26 18.2
OpenSSH-p 14 83.75
WolfSSL 32 24.42

Some statistics gathered from the open source repositories can be seen in
Table 5.4. OpenSSH only had a repository for the portable version (OpenSSH-p)
and that is the repository we used for the data.

These statistics show that OpenSSL has by far the most contributors to the
source code which is unsurprising given that it is also the by far the most popular
software of the five. In theory more contributors could increase the risk of new

34 Results

vulnerabilities being introduced due to human error but it also means that the code
is more heavily scrutinized. The numbers also show that the portable version of
OpenSSH have more than three times as many days between releases as the other
software. There can be multiple reasons behind the slow release pace of OpenSSH,
for example a low amount critical bugs combined with a low amount of developers.
It is also an 18 year old piece of software that has been refined through the years
and might not require as much maintenance. There is no obvious correlation
between this data and the number of vulnerabilities in the software.

5.2.0.1 Documentation

These are the subjective scores given to the documentation based on the criteria
specified in Section 4.7.4.
OpenSSL docs [53]
Score:2/3
Motivation: Minimalist writing. Decent orientation and navigation. No search.
GnuTLS docs [54]
Score:3/3
Motivation: Minimalist writing. Excellent orientation and navigation.
LibreSSL docs [55]
Score:1/3
Motivation: Could only find autogenerated documentation. The real documenta-
tion seems to be a work in progress.
OpenSSH docs [56]
Score:2/3
Motivation: Minimalist writing. Good orientation and navigation. Search func-
tion available as the documentation is part of openBSD manual.
WolfSSL docs [57]
Score:3/3
Motivation: Extensive documentation with minimalist writing. Good orientation
and navigation.

5.2.0.2 CVSS base scores

Table 5.5: Average CVSS base score for the chosen software.

Software Average CVSS base score
OpenSSL 5.413
GnuTLS 5.723
LibreSSL 6.094
OpenSSH 7.5
WolfSSL 3.8

Table 5.5 shows the average CVSS scores for the software and Figure 5.6 compares
the CVSS base score distribution in OpenSSL, GnuTLS and OpenSSH. Both Li-

Results 35

(a) OpenSSL

(b) GnuTLS (c) OpenSSH

Figure 5.6: CVSS base score distributions

breSSL and WolfSSL had too few CVEs to make a proper distribution.

1. Vulnerabilities are labeled "low" if they have a CVSS base score of 0.0-3.9.

2. Vulnerabilities are labeled "medium" severity if they have a base CVSS base
score of 4.0-6.9.

3. Vulnerabilities are labeled "high" severity if they have a CVSS base score
of 7.0-10.0.

OpenSSL and GnuTLS have a similar distributions of CVSS scores while
OpenSSH has noticeably smaller percentage of medium severity vulnerabilities.
The reason for this is examined more closely in Section 5.2.0.3.

5.2.0.3 CVSS Sub-metrics

Figure 5.7 shows the average of the CVSS sub-metrics of the vulnerabilities in the
chosen software. Again, note that there are a very low number of CVEs with CVSS
metrics for LibreSSL(1) and WolfSSL(4) which makes the average values for these
software less reliable. The previous section showed that OpenSSH has a smaller
percentage vulnerabilities with a medium CVSS score compared to OpenSSL and
GnuTLS. Examining the sub-metrics shows that OpenSSH has a noticeably lower
average access vector which means that on average more of its vulnerabilities are
not exploitable remotely over the Internet. This of course decreases the risk of
the vulnerability being exploited and these non-remote vulnerabilities will in most

36 Results

Figure 5.7: The average CVSS sub-metric values

cases be of low severity. This increases the percentage of low severity vulnera-
bilities and decreases the medium percentage. Other than that, the severity of
vulnerabilities in this category seem to be at a similar level and therefore no other
conclusions about differences can be drawn.

5.2.0.4 Analysis of exploits

Using the proposed definitions in Chapter 4 Figure 5.8 represents te − t0 and it is
clear by looking at it that public exploits are far and few between for the chosen
software (note that WolfSSL had no exploits). For this reason the entire lifespan
(under their current names) of the software has been included in the search. Even
though this sample size is small we see that a vast majority of the vulnerabilities
belong in what we called ”Disclosure Category 2”, where te >= t0. All except three
of these vulnerabilities were disclosed before the exploit was released publicly on
exploit-db. Comparing this with the results from the exploit source analysis in
Section 5.3 leads to the conclusion that software exploits are most likely to be
released at the time of disclosure and that the CVE is published soon thereafter.
Table 5.6 shows exploit data for the entire lifespan of the chosen software.

5.2.0.5 Analysis of historical data

Figures 5.9 and 5.10 show scatter plots. These graphs are constructed by plotting
the disclosure date on the x-axis and on the y-axis the difference between the
Discovery and Patch-dates to the disclosure date in days.

Figure 5.9 represents td− t0 and only has data entries from OpenSSL because
they were the only vendor of those chosen that provide discovery dates. The
graph tells us that the vast majority of the vulnerabilities disclosed are fixed

Results 37

Figure 5.8: The number of days from disclosure to exploit

Table 5.6: Exploit data for the entire lifespan of the software

Number of CVEs
Total amount with at least % of CVEs
of exploits one exploit total with exploits

OpenSSL 30 14 214 5,93%
GnuTLS 4 4 40 10%
LibreSSL 2 2 3 66,66%
OpenSSH 22 8 83 10,38%
WolfSSL 0 0 6 0%

within a time-span of 3 months. Figure 5.10 shows tp − t0 and indicates that
most vulnerabilities are disclosed at or very soon after the time of patching which
makes them what we in Section 4.4 called patching type 1.

38 Results

Figure 5.9: The number of days from discovery to disclosure

Figure 5.10: The number of days from disclosure to patch

Results 39

Figure 5.11: Average temporal scores for the software in the encryp-
tion category.

5.2.0.6 Temporal scores

Temporal score metrics such as exploit type, remediation level and report confi-
dence were gathered from IBM xForce Exchange. Their calculated temporal scores
can not be used directly on our data since NVD and xForce exchange have not al-
ways evaluated a vulnerability the same way and therefore given it different CVSS
scores. With this discrepancy in mind we can still calculate our own temporal
scores based on the temporal metrics gathered from xForce and the CVSS data
gathered from NVD. Figure 5.11 shows the average temporal score for the cho-
sen software, please note that the score for LibreSSL is only based of one single
vulnerability which is the reason for it being an outlier.

5.3 Exploit source analysis

The source of exploits is exploit-db. Examining how viable it is as a source was
done by counting the number of CVEs with a reference to exploit-db:

> db . cves . f i nd ({ r e f e r e n c e s : {$elemMatch : { source : "EXPLOIT
DB"}}}) . count () ;

The result is that 2548 CVEs out of 81769 (3.12%) have a reference to exploit-
db. The exploit release dates for these exploits were automatically extracted by
using an offline version of exploit-db that can be found on their Github reposi-
tory [52]. The only other relevant date imported in large amounts is the CVE
publish date, this is used as a substitute for the disclosure date since they tend
to be close chronologically. Figure 5.12 shows a histogram of the number of days
from the CVE publishing date to the public release of the exploit on exploit-db.
The figure is based of 1831 data points after filtering out outliers (+-60 days). As

40 Results

Figure 5.12: Histogram of the number of days from the CVE pub-
lished date to the exploit date

is evident from the histogram a vast majority of the exploits were released shortly
before or the same day as the CVE was published.

5.4 Survey results

As of the time of analysis the survey has had 12 respondents. This is most likely too
few to make a proper statistical analysis however the data can still give interesting
results. When compiling the results the two exploit columns (low/high severity)
were split into four columns to provide both the absolute number of exploits and
also the percentage of exploits relative to the vulnerabilities. Using the multi-
variable linear regression function in R [28] automatically runs a student’s t-test
and produces the P-values found in Table 5.7.

Results 41

Table 5.7: P-values of t-test after multiple linear regression in R.

Predictor variables P-value
measure_date 0.582
cve_count 0.726
cve_month 0.223
avg_cvss 0.341
median_cvss 0.752
lowmed_vulns 0.701
highcrit_vulns NA
lowmed_exploits 0.621
highcrit_exploits 0.631
lowmed_exploit_percent 0.414
highcrit_exploit_percent NA
google_hits NA

The regression shows that none of the predictor variables have a low enough
P-value to be used (0.05 was required for 95% confidence). As can also be seen
from these results there is multicollinearity. Three predictor variables (Number of
high/critical vulnerabilities, High/crit exploit percentage and Google hits) are not
linearly independent which means that they can be removed without changing the
outcome of the regression. Regression with an ordered logistic regression model
was also attempted with the linearly dependent variables removed. This time a
Z-test is used by R and the P-values of this test can be seen in Table 5.8. These
results also show that the predictor variables all have high P-values. For the exact
output of the regression analysis refer to Appendix B.

Table 5.8: P-values of Z-test after regression with an ordered logistic
model in R.

Predictor variables P-value
measure_date 0.4585
cve_count 0.6888
cve_month 0.0924
avg_cvss 0.1086
median_cvss 0.8883
lowmed_vulns 0.6391
lowmed_exploits 0.5566
highcrit_exploits 0.5579
lowmed_exploit_percent 0.4011

To inspect the linear dependency more closely see Figure 5.13 which shows the
correlation matrix, the highest correlated predictor variables have been circled.
The correlation matrix shows that Google hits correlates heavily with the CVE

42 Results

count and frequency (which was also shown in Section 5.2). It also correlates to
both the number of high/critical vulnerabilities and high/critical exploits. The
other correlations such as between CVE count and vulnerabilities/exploits are
more obvious.

The answers to the surveys free text boxes follow below, very similar answers
were combined into one row.

More important variables:

• CVE/Month in combination with average CVSS score. (x2)

• CVE count

• CVE/Month

• Google hits in combination with exploits

• Google hits (x2)

• Google hits / CVE count ratio

• Number of high/critical with exploit

• Number of high/critical vulnerabilities

• Median CVSS Score

Less important variables:

• Google hits (x2)

• CVE metrics (only important in combination with popularity)

• CVE/Month

• Number of high/critical exploits.

• Number of low/med with exploits

• Exploit columns

• Median CVSS score

Missing variables:

• Time from exploit to patch (x3)

• Time from vulnerability to patch

• Time from critical vulnerability to patch

• Worst vulnerability to patch time

• Lines of code/Code complexity (x2)

• Ratio between lines of code and CVE count

• Number of active contributors to source

Results 43

• Release frequency

• Scope (exposed to the Internet?)

• How difficult the vulnerabilities are to fix and business criticality

• What the software is used for (what is at risk?)

• Type of product (security requirements), how important is the component
and alternatives to it

• A graph of CVE/month and avg. CVSS on a time line

• Details about how the CVSS score is calculated

• Who maintains the code (their priorities and security views)

Looking at the answers above the following immediate observation can be
made: The vast majority of respondents wanted more information than the vari-
ables provided in the survey, the most common one being some form of measure-
ment about how fast/easily the software is patched but plenty of other factors were
suggested as well. Although the responses leaned towards popularity being an im-
portant measurement, there was no clear winner or loser amongst the predictor
variables that were included in the survey.

The average ratings the software in the survey received can be seen in Fig-
ure 5.14. Except for the two standout (statistically) software in the top and the
bottom, the rest of the ratings lean toward the middle of the spectrum. This re-
sult is consistent with the indecision between variables and the lack of additional
information.

44 Results

Figure
5.13:

C
orrelation

m
atrix

of
survey

results

Figure
5.14:

Survey
table

w
ith

the
average

ratings
of

12
respondents

Chapter6
Practical application of the results

In order to use the vulnerability metrics that have been identified as metrics of
interest during analysis there has to be a mathematical system in place to support
them. This chapter provides some basic ideas for ways to implement such a system.

6.1 Predictive algorithms

As described in Section 3.7 attempts are being made at predicting the total number
of vulnerabilities that will exist in a specific software using Vulnerability Discovery
Models (VDMs) such as the ALMmodel. In order to estimate the three parameters
of the ALM model non-linear regression analysis was used to fit the cumulative
number of CVEs for OpenSSL and OpenSSH to the follwing model:

ΩAML(t) =
B

BC−ABt + 1

Table 6.1 shows the values that were obtained for the ALM parameters and r2,
the coefficient of determination(Section 2.4.4). Figures 6.1 and 6.2 give a visual
representation of the cumulative number of CVEs and the fitting attempt for
OpenSSL and OpenSSH respectively.

Table 6.1: Estimated parameter values and coefficient of determi-
nation

Software A B C r2

OpenSSL 0.005 218.131 1.029 0.967
OpenSSH 0.022 66.48 1.045 0.915

Figure 6.1 shows that the OpenSSL data fit the model very well, with an r2
value of 0.967 this means that 96.7% of the variance is explained by the model.
The OpenSSH data did not fit the AML model as well as OpenSSL, this is evident
when looking at Figure 6.2. Although its difficult to conclude what r2 value is
”good”, an r2 value of 0.915 seems to be a decent result. It is interesting to note
that the OpenSSH data looks almost linear and thus a linear model might fit this
data better, on the other hand a linear model would not fit the OpenSSL data.

45

46 Practical application of the results

Figure 6.1: Fitting the AML VDM to the cumulative number of
OpenSSL vulnerabilities

Figure 6.2: Fitting the AML VDM to the cumulative number of
OpenSSH vulnerabilities

Practical application of the results 47

6.2 Scoring system development

In order to measure the security on a software level some metrics must be included
that represent both the number of vulnerabilities discovered and the severity of
those vulnerabilities. Since the analysis shows that more popular software have
more vulnerabilities discovered in them, an additional sub-metric that measures
the user numbers of the software should improve the accuracy and prevent the
metric from heavily favoring unknown software. None of the metrics used in the
suggested scoring systems have been weighted properly and the suggestions are
ideas for someone who wishes to design their own system.

Each metric can be either:

• Collected automatically or collected manually.

• Relative to the other measurements or absolute.

The metrics that are focused on during the scoring system development in this
thesis are automatically collected and absolute. However this does not mean that
the final score has to be absolute since it can be made relative by normalizing.
Among the metrics presented in Chapter 5 the following three have both of these
attributes:

• Average number of CVEs per month: The average number of CVE entries
published each month. This is the metric that will represent the quantity
of vulnerabilities being discovered in the software. It is measured from the
earliest CVE publishing date.

• Average CVSS score: The average CVSS score given by NVD to the CVEs
used to calculate the metric above. This metric represents the severity of
the vulnerabilities discovered. This metric can also be used to further tailor
the metric to specific requirements, for example one could choose only to
look at CVEs where the CVSS Access Vector is set to "Network".

• Popularity data: The popularity data gathered using Google and Bing will
represent the user base size of the software.

Other metrics that do not have both of the desired attributes but that can
still be included are:

• Days from vulnerability disclosure to patch: One of the most sought-after
variables according to the survey. The data can be found manually and
applied in a number of ways. An easy way would be to just use the average
time. Another way would be to count the number of critical vulnerability
that are not patched within a fixed time period (for example 2 days) and
have each of those impact the score negatively.

• Days from disclosure to exploit release: If an exploit is released before the
disclosure it could affect the score in a negative way. There can be many
reasons why this happens of course, but none of them are positive.

• Days from CVE publishing date to exploit release: If a disclosure date is
not available this metric could be used as an inferior alternative to the one

48 Practical application of the results

above. The data shows that most vulnerabilities have a CVE published
within about two weeks after an exploit has been released, this could be
used as a cut-off point for what is considered good disclosure. The reason
that it is inferior to using a real disclosure date is that the software vendor
is not the only entity responsible for the process of giving a vulnerability a
CVE identifier and publishing the CVE. This makes it inconsistent.

• Percentage of vulnerabilities that have an available public exploit: Vulnera-
bilities with publicly available exploits are more likely to be used in attacks.
This metric would also indicate the level of interest exploit developers have
for the software in question. However as the data in table 5.6 shows the
results of this metric can become very skewed when dealing with software
that have few public vulnerabilities available.

• Days from exploit to patch: Based on the collected data and the analysis
of the ”Encryption” category, patches are almost always available before the
public release of an exploit. This makes the metric difficult to implement in
a consistent manner but it could work similar to ”Days from disclosure to
exploit” where every instance of this occurring would impact the final score.

• Documentation quality: Despite not finding an obvious correlation between
the quality of documentation and the security of software, it could be in-
cluded as a metric since the documentation is important if a developer wants
to use software functions in a secure and proper way. There is no objective
way to measure documentation quality and it is therefore up to the user
of the metric to choose a reasonable rating system themselves, for example
in this thesis the documentation was rated 0 to 3 based on some heuristics
(see section 4.7.4). This is an example of a metric that is not automatically
collected and therefore not used for any proposed metrics in this thesis.

6.2.1 Naive scoring system suggestion

The following is a very simplistic scoring system based on automatically collected
data.

a = Number of CVEs published per month

b = Average CVSS score for the CVEs used above

c = Google Hits

score = a · b · ln(c) (6.1)

The idea being that the software is not only judged on the the number of
vulnerabilities and their severity, but also its popularity. Popularity was included
because it correlated with the number of high/critical vulnerabilities and exploits,
no matter what this correlation is caused by. Table 6.2 shows the results of ap-
plying this system on the software in the encryption category.

Practical application of the results 49

Table 6.2: Score after applying the naive scoring system (lower is
better)

Software CVEs/Month Avg. CVSS score Google hits Score
OpenSSL 0.813 5.413 16922222 73.247
GnuTLS 0.272 5.723 48455 16.793
LibreSSL 0.407 6.094 113333 28.865
OpenSSH 0.043 7.5 237000 3.991
WolfSSL 0.187 3.8 97500 8.163

6.2.2 Modular scoring system suggestion

This scoring system consists of two parts, one base score that can be automatically
calculated based on public CVE data and a second part where manually collected
data is included in the software comparison. The survey showed that different
users look at different criteria, this sparked the idea for a modular system where
additional metrics can be added to the system with a user-decided weight. A
suggestion for such a system is the following:

score = ab+
1

N

N∑
i=1

wixi

0 <= xi <= 1

(6.2)

In the equation above a and b are the required base metrics that can be
automatically collected. Like in Section 6.2.1 they represent the number of CVEs
per month and their average severity. N is the number of additional metrics the
user wants to include. These additional metrics are included as xi and will have to
be weighted and evaluated from a metric to metric basis. The weights are included
as wi. When deciding weights it is important to note that with this scoring system
a lower score is better. This means that if a metric is included where a higher
number is better the sign of wi has to be negative. All included metrics xi are
restricted between 0 and 1 to easier gauge the metrics effect, one of the ways this
can be accomplished is using a logistic function:

f(x) =
L

1 + e−k(x−x0)
(6.3)

where
x0 = the x-value of the midpoint of the curve
L = the curve’s maximum value, and
k = the steepness of the curve

As an example of using this scoring system, we add a popularity metric and
include:

x1 =
1

1 + e−10
−5(Google_hits−105)

50 Practical application of the results

Which is a logistic function restricted between 0 and 1 where a lower amount
of Google hits will lower the final score. The variables of the function were chosen
as to provide a decent distribution amongst the five software we apply it on, the
same values would not work for more popular software. To increase the metrics
importance the weight is set higher than one.

w1 = 1.5

We then add a metric for vulnerability-to-patch duration:

x2 =
1

1 + e−1(avg_vulntopatch_days−5)

Here we simply use the average vulnerability to patch duration (measured
from the disclosure date) and set the upper limit to 10 days (higher averages than
10 will still give the maximum sub-score of 1) in order to remove the effect of
abnormally high averages that can be caused by data inconsistencies. We ignore
all cases where the number of days is negative or zero. We also add a third metric
that measures the percentage of vulnerabilities that have public exploits:

x3 = exploit_percentage

The exploit percentage metric will affect the scoring in the correct manner
(lower is better) and this metric is already restricted between 0 and 1 since the
percent is in decimal form. An additional idea could be to have the number of
vulnerabilities affect this metric to make it more fair. To finalize the example we
attach some weights to these metrics.

w1 = 1.5, w2 = 1, w3 = 1.3

As an example, this is how the score of OpenSSL is calculated with these
weights:

0.813·5.413+
1

3
(1.5· 1

1 + e−10−5(16922222−105) +1· 1

1 + e−1(22−5)
+1.3·0.0593) = 5.25

(6.4)
Table 6.3 shows the calculated parameters and the final score after applying

this system on the ”Encryption” software.

Table 6.3: Parameters and final score

Software a b x1 x2 x3 Score
OpenSSL 0.813 5.413 1 1 0.059 5.25
GnuTLS 0.272 5.723 0.374 1 0.1 2.12
LibreSSL 0.407 6.094 0.797 0 0.666 3.17
OpenSSH 0.043 7.5 0.533 1 0.104 0.96
WolfSSL 0.187 3.8 0.494 0 0 0.96

Practical application of the results 51

These results show that the final scores of OpenSSL, GnuTLS and LibreSSL
are a fair bit higher than for OpenSSH and WolfSSL who both received 0.96 as
their final score. The same final score is a surprising outcome given the fact that
OpenSSH and WolfSSL had a noticeable difference in their variables entering into
the scoring system. The score difference between the first three and other two is
mainly caused by their a & b values (CVEs/Month and avg. CVSS) because those
values were not restricted between 0 and 1 like the other metrics. This was the
desired effect for this particular system since we value those variables higher than
the others, but it could easily be offset by increasing the weights for the other
metrics. The results also show that the software received either the maximum(1)
or the minimum(0) in the ”days from disclosure to patch” metric x2, nothing
in between. This is because according to the data that was collected almost all
patches are released before or at the disclosure date and therefore ignored by us. A
few of the patches that came late were very late and increased the average enough
for x2 to hit its ceiling. This shows that the implementation of the x2 metric did
not work well in this particular situation and a removal or modification of it is in
order.

Since the final scores are not bound within a range it can be a good idea
to normalize the results for an easier comparison, this will make the final scores
relative to each other. This can be done for example using

x′ = (x−min(x))/(max(x) −min(x))

Through normalization the highest score (most dangerous software) of those we
calculate will be 1 and the lowest (the safest) 0. Table 6.4 shows the results after
normalization.

Table 6.4: Score results after normalization

Software Normalized Score
OpenSSL 1
GnuTLS 0.493
LibreSSL 0.737
OpenSSH 0
WolfSSL 0

The weights used during this implementation are just suggestions based on
observations during testing. This testing process is required when adding an addi-
tional metric and the weights should be tweaked based on how the user prioritizes
the metric. It is without a doubt the hardest part about implementing a scoring
system.

6.2.3 Scoring system with CVSS modification

Another scoring system suggestion is a system that is also based on the easily col-
lected CVE and CVSS data but instead of adding metrics on top of that it uses the
current CVSS sub-metrics, modifies their values based on manually collected data

52 Practical application of the results

and recalculates the CVSS score. For the specifics of the CVSS score calculation
refer to Section 2.3.1.

For example for every vulnerability where an exploit exists the CVSS sub-
metric Access Vector is set to Network we will multiply the Attack Complexity
sub-metric by 2. If the exploit was released before the vulnerability disclosure we
instead multiply it by 4. Alternatively if the correct data is available, the CVSS
temporal score could be calculated and modified with any metrics of interest.

6.2.4 IMDB inspired weighting

One idea for a software security metric is to weigh a softwares average CVSS score
differently depending on the amount of CVEs are available for the software. This
can be done with a so-called shrinkage estimator. One example of a website that
uses this method is IMDB [58] where their rating depends not only on the average
rating but also on the amount of votes. IMDB used to have the following formula
public on their site:

weighted rating = (v/(v +m)) ·R+ (m/(v +m)) · C

Where:
R = average for the movie (mean) = (Rating)
v = number of votes for the movie = (votes)
m = minimum votes required to be listed in the Top 250 (currently 3000)
C = the mean vote across the whole report

This formula will lean towards the average rating across all movies C when
there are less votes than the cut-off point m and more towards the average rating
for the movie R when there are more votes. This formula can be directly applied
on our software. Using mongoDBs aggregate framework we can run the following
code to get the average CVSS score of all the CVEs in our database:

db . cves . aggregate ([
{ "$match " : {

" cvss_score " : { " $gt " : 0 }
}} ,
{ "$group " : {

"_id " : nu l l ,
" avg_cvss_score " : { "$avg " : " $cvss_score " }

}}
])

This will match any CVE that has a CVSS score greater than 0, group them
together and take the average of the cvss_score field. The output we receive is:

{ "_id" : nu l l , " avg_cvss_score " : 6.257670867512725 }

We can use this value (rounded to 6.258) as our ”C” for the IMDB equation.
For example Table 6.5 shows the result of applying this formula on the ”encryption”
category with a cut-off point m=10. As can be seen in the table, software with
low amounts of CVEs are closer to the database average (6.258).

Practical application of the results 53

Table 6.5: IMDB formula applied with m=10 (lower is better)

Software Nbr of CVEs Avg. CVSS score IMDB formula score
OpenSSL 173 5.413 5.459
GnuTLS 39 5.723 5.832
LibreSSL 1 7.5 6.371
OpenSSH 83 6.094 6.112
WolfSSL 2 3.8 5.848

54 Practical application of the results

Chapter7
Conclusions and further research

7.1 Summary of the results and conclusions

The larger vulnerability analysis of the different software categories shows a sig-
nificant difference in average CVSS score and average number of CVEs per month
between the different categories. This is attributed to differences in user base size
and developer focus. Categories such as ”Firewalls” have less average confiden-
tiality impact, integrity impact and availability impact compared to more popular
software categories such as ”Video” or ”Communication”. Apart from the theo-
ries above it is also suggested that this difference may be affected by some of the
chosen software having Windows versions. In retrospect this study between cate-
gories would have had more trustworthy results by limiting all of the software to
one operating system.

In the more detailed software analysis a finding that is backed-up by other
research is that the size of the user base for a piece of software correlates with
the number of vulnerabilities in software. It is important to note that this does
not mean that a less used software is more secure, only that fewer vulnerabilities
are found and disclosed. In theory, this could decrease the number of exploitation
attempts from ”script-kiddies” who only use publicly available exploits but it is
unlikely to protect from any kind of targeted attack.

Using the average CVSS score as a metric for software security is less reliable
for unpopular software because of the large gap in CVE amount between less
popular and popular software. Using weighting to make sure software with fewer
CVEs moves closer to the overall average CVSS score is a viable way of making
this gap smaller.

Among the other collected data such as documentation quality and Github
statistics no obvious correlation was found with the number of vulnerabilities in
the software.

The small survey showed multiple things. First of all that there is not any form
of consensus as to which metrics included in the survey were the most important
or least important, this outcome could potentially have been different with a larger
number of respondents but it is likely that there is disagreement in general among
experts. However what was agreed upon is that there was information missing in
the survey. Most of the suggestions for additional metrics were similar to the ones
examined in the detailed analysis section, for example time to patch and open

55

56 Conclusions and further research

source data like code complexity. At the time of writing these metrics are not
available anywhere freely and therefore a scoring system based on automatically
collected data is unlikely to be developed without a serious time investment. Most
of the respondents answered that they would evaluate the software manually look-
ing more closely at things such as what parts of the software they have to use,
the scope of the software and how business critical it is which also indicates to me
that such a scoring system might not even be the best tool for the job. Instead
a service where all relevant data was gathered and presented to the user, without
evaluating it, might be a solution more in line with the requirements of end-users.
After all, the data gathering process is time-consuming.

7.2 Thoughts on future research

NIST published a report in 2010 [59] that identifies the following five research
areas that could help progressing the state of the art in security metrics.

• Formal Models of Security Measurement and Metrics

• Historical Data Collection and Analysis

• Artificial Intelligence Assessment Techniques

• Practicable Concrete Measurement Methods

• Intrinsically Measurable Components.

Out of these five points this thesis focused on historical data collection and
analysis. Similar to the Policy Security Score in Section 3.5 the main idea was
to use historical vulnerability data combined with CVSS. This approach is an
interesting one and one worth exploring further. There are a few challenges, the
main one being data collection and the lack of data in general. Most of the research
in this field, including this thesis, is heavily dependent on the CVE identifiers and
the databases that collect information about them. However these databases lack
important data such as exploit/patch dates and the CVE identifiers themselves
do not represent all the vulnerabilities that exist, they are far from optimal. This
was more apparent when OSVDB (Open Source Vulnerability Database) was still
active since they had a large number of vulnerabilities and exploits (with dates)
without CVE identifiers. Many vulnerabilities still have no identifier or reference
other than the OSVDB ID. The content of OSVDB was commercial only (the
”Open” part of the website title is rather inappropriate) which makes hosting a
mirror of OSVDB illegal. As such the closing of OSVDB was a big loss (of data)
for everyone researching exploits and vulnerabilities.

If further progress is to be made towards a fully automated scoring system,
there will need to be more data easily available online. Vulnerability data, what
specific software the vulnerabilities affect (with build numbers), software data
about the specific builds (release date, user data etc), patch frequency, developer
data. The more data the better. If a large amount of data was easy to collect, an
interesting approach would be using machine learning and apply some clustering
method or other ”big data”-approach. Using machine learning could be very effec-
tive with a large amount of data to find which metrics are interesting and which

Conclusions and further research 57

metrics can be ignored. Another approach could use an effort-based vulnerability
discovery model, like the folded VDM mentioned in 3.7 to automate the process
of predicting the number of vulnerabilities in the future based on the number of
vulnerabilities per ”user-month”. Overall software security is a complex system
depending on a large number of variables. Similar to predicting the weather, it is
unlikely that the problem can be solved with a simple algorithm.

Additionally if any security metric is to be developed with a focus on Internet
of Things, measuring the potential environmental impact is a must. A suggestion
for this is creating a completely separate scoring system that is applied on the
product the software is used in. This scoring-system could for example range from
0 (harmless) to 100 (loss of human life) and be used as a weight on the severity of
any vulnerabilities found within the measured product.

58 Conclusions and further research

References

[1] Internet of Things growth prediction. url: http://www.gartner.
com/newsroom/id/2636073 (visited on 2017-05-26).

[2] Heartbleed. url: http://heartbleed.com/ (visited on 2017-05-26).

[3] Wikipedia on vulnerability(computing). url: https://web.archive.
org/web/20170429232133/https://en.wikipedia.org/wiki/
Vulnerability_(computing) (visited on 2017-02-05).

[4] Common Vulnerabilities and Exposures. url: https://cve.mitre.
org/ (visited on 2016-08-26).

[5] CVE Numbering Authorities. url: https://cve.mitre.org/cve/
cna.html (visited on 2016-09-13).

[6] CVE FAQ Question A6. url: https://cve.mitre.org/about/faqs.
html#a6 (visited on 2016-09-13).

[7] National Vulnerability Database. url: https://nvd.nist.gov/home.
cfm (visited on 2016-08-26).

[8] Common Weakness Enumeration. url: https://cwe.mitre.org/
(visited on 2016-08-26).

[9] CWE FAQ Question A2. url: https://cwe.mitre.org/about/faq.
html#A.2 (visited on 2016-09-13).

[10] Vulndb. url: https://www.riskbasedsecurity.com/vulndb/ (vis-
ited on 2016-09-15).

[11] CVE Details. url: http://www.cvedetails.com/ (visited on 2016-09-15).

[12] IBM X-Force Exchange. url: https://exchange.xforce.ibmcloud.
com (visited on 2016-11-28).

[13] vulndb 2015 vulnerability trends. url: https://www.riskbasedsecurity.
com/vulndb-quickview-2015-vulnerability-trends/ (visited on
2016-09-15).

59

http://www.gartner.com/newsroom/id/2636073
http://www.gartner.com/newsroom/id/2636073
http://heartbleed.com/
https://web.archive.org/web/20170429232133/https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://web.archive.org/web/20170429232133/https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://web.archive.org/web/20170429232133/https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/cve/cna.html
https://cve.mitre.org/cve/cna.html
https://cve.mitre.org/about/faqs.html#a6
https://cve.mitre.org/about/faqs.html#a6
https://nvd.nist.gov/home.cfm
https://nvd.nist.gov/home.cfm
https://cwe.mitre.org/
https://cwe.mitre.org/about/faq.html#A.2
https://cwe.mitre.org/about/faq.html#A.2
https://www.riskbasedsecurity.com/vulndb/
http://www.cvedetails.com/
https://exchange.xforce.ibmcloud.com
https://exchange.xforce.ibmcloud.com
https://www.riskbasedsecurity.com/vulndb-quickview-2015-vulnerability-trends/
https://www.riskbasedsecurity.com/vulndb-quickview-2015-vulnerability-trends/

60 REFERENCES

[14] Risk Based Security: PreBreach Risk Reduction Through Data Anal-
ysis. url: http://web.archive.org/web/20160915124408/http:
//banking-insurance.cioreview.com/vendor/2016/risk_based_
security (visited on 2016-09-15).

[15] Fabio Massacci and Viet Hung Nguyen. Which is the Right Source
for Vulnerability Studies? An Empirical Analysis on Mozilla Fire-
fox. Tech. rep. University of Trento, Italy, 2010. doi: 10 . 1145 /
1853919.1853925. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.452.9317&rep=rep1&type=pdf.

[16] Seclists. url: http://seclists.org/ (visited on 2016-09-15).

[17] Bugtraq. url: http://seclists.org/bugtraq/ (visited on 2016-08-26).

[18] Full Disclosure Mailing List. url: http://seclists.org/fulldisclosure/
(visited on 2016-09-15).

[19] Elizabeth Chew et al. Performance measurement guide for informa-
tion security. Tech. rep. National Institute of Standards and Technol-
ogy, Gaithersburg, 2008. url: http://csrc.nist.gov/publications/
nistpubs/800-55-Rev1/SP800-55-rev1.pdf.

[20] George Jelen. SSE-CMM Security Metrics. Tech. rep. National Insti-
tute of Standards et al., 2000.

[21] Common Vulnerability Scoring System version 2 specification. url:
https://www.first.org/cvss/cvss-v2-guide.pdf (visited on
2016-09-13).

[22] Common Vulnerability Scoring System version 3 specification. url:
https://www.first.org/cvss/cvss-v30-specification-v1.7.
pdf (visited on 2016-09-13).

[23] CVSS and the Internet of Things. url: http://web.archive.org/
web/20160810152902/https://insights.sei.cmu.edu/cert/
2015/09/cvss- and- the- internet- of- things.html (visited on
2016-09-15).

[24] CERT/CC Vulnerability Metric. url: http://www.kb.cert.org/
vuls/html/fieldhelp#metric (visited on 2016-09-18).

[25] Elisa Bertino et al. Security for Web Services and Service-Oriented
Architectures. 2009, pp. 43–44.

[26] Security Bulletin Severity Rating System. url: https://technet.
microsoft.com/en-us/security/gg309177.aspx (visited on 2016-09-22).

[27] Redhat Severity Ratings. url: https://access.redhat.com/security/
updates/classification/ (visited on 2016-09-22).

http://web.archive.org/web/20160915124408/http://banking-insurance.cioreview.com/vendor/2016/risk_based_security
http://web.archive.org/web/20160915124408/http://banking-insurance.cioreview.com/vendor/2016/risk_based_security
http://web.archive.org/web/20160915124408/http://banking-insurance.cioreview.com/vendor/2016/risk_based_security
http://dx.doi.org/10.1145/1853919.1853925
http://dx.doi.org/10.1145/1853919.1853925
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.9317&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.9317&rep=rep1&type=pdf
http://seclists.org/
http://seclists.org/bugtraq/
http://seclists.org/fulldisclosure/
http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
https://www.first.org/cvss/cvss-v2-guide.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.7.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.7.pdf
http://web.archive.org/web/20160810152902/https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
http://web.archive.org/web/20160810152902/https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
http://web.archive.org/web/20160810152902/https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
http://www.kb.cert.org/vuls/html/fieldhelp#metric
http://www.kb.cert.org/vuls/html/fieldhelp#metric
https://technet.microsoft.com/en-us/security/gg309177.aspx
https://technet.microsoft.com/en-us/security/gg309177.aspx
https://access.redhat.com/security/updates/classification/
https://access.redhat.com/security/updates/classification/

REFERENCES 61

[28] R. url: https://cran.r-project.org/ (visited on 2017-04-17).

[29] IBM SPSS Statistics. url: https://www.ibm.com/us-en/marketplace/
spss-statistics (visited on 2017-05-15).

[30] Georgios Spanos, Angeliki Sioziou, and Lefteris Angelis. “WIVSS: a
new methodology for scoring information systems vulnerabilities”. In:
Proceeding PCI ’13 Proceedings of the 17th Panhellenic Conference
on Informatics (2013), pp. 83–90. doi: 10.1145/2491845.2491871.

[31] Yulong Wang and Yi Yang. PVL: A Novel Metric for Single Vulnera-
bility Rating and Its Application in IMS. Tech. rep. State Key Labora-
tory of Networking, Switching Technology, Beijing University of Posts,
and Telecommunications, 2012. url: http://archive.is/G3VPT.

[32] Qixu Liu and Yuqing Zhang. “VRSS: A new system for rating and
scoring vulnerabilities”. In: Computer Communications Volume 34 Is-
sue 3, March (2011), pp. 264–273. doi: 10.1016/j.comcom.2010.
04.006.

[33] Qixu Liu et al. “Improving VRSS-based vulnerability prioritization
using analytic hierarchy process”. In: Journal of Systems and Software
Volume 85 Issue 8, August (2012), pp. 1699–1708. doi: 10.1016/j.
jss.2012.03.057.

[34] OWASP Risk Rating Methodology. url: https://www.owasp.org/
index.php/OWASP_Risk_Rating_Methodology (visited on 2016-09-18).

[35] Muhammad Abedin et al. Vulnerability Analysis For Evaluating Qual-
ity of Protection of Security Policies. Tech. rep. Department of Com-
puter Science, The University of Texas at Dallas, 2006. url: https:
//www.utdallas.edu/~lkhan/papers/Abedin2006.pdf.

[36] Lingu Wang et al. “k-Zero Day Safety: A Network Security Metric
for Measuring the Risk of Unknown Vulnerabilities”. In: IEEE Trans.
Dependable Sec. Comput 11(1) (2014), pp. 30–44. url: http://csrc.
nist.gov/staff/Singhal/ieee_tdsc_2013_final_version.pdf.

[37] Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Security Vulner-
abilities in Software Systems: A Quantitative Perspective. Tech. rep.
Department of Computer Science, Colorado State University, 2005.
url: http://www.cs.colostate.edu/~malaiya/635/IFIP-10.pdf.

[38] Eric Rescorla. “Is finding security holes a good idea?” In: (). url:
https://www.dtc.umn.edu/weis2004/rescorla.pdf.

[39] Jinyoo Kim, Yashwant K. Malaiya, and Indrakshi Ray. “Security in
Open versus Closed Systems – The Dance of Boltzmann, Coase and
Moore”. In: (). url: http://emidio.planamente.ch/docs/linux/
toulouse.pdf.

https://cran.r-project.org/
https://www.ibm.com/us-en/marketplace/spss-statistics
https://www.ibm.com/us-en/marketplace/spss-statistics
http://dx.doi.org/10.1145/2491845.2491871
http://archive.is/G3VPT
http://dx.doi.org/10.1016/j.comcom.2010.04.006
http://dx.doi.org/10.1016/j.comcom.2010.04.006
http://dx.doi.org/10.1016/j.jss.2012.03.057
http://dx.doi.org/10.1016/j.jss.2012.03.057
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.utdallas.edu/~lkhan/papers/Abedin2006.pdf
https://www.utdallas.edu/~lkhan/papers/Abedin2006.pdf
http://csrc.nist.gov/staff/Singhal/ieee_tdsc_2013_final_version.pdf
http://csrc.nist.gov/staff/Singhal/ieee_tdsc_2013_final_version.pdf
http://www.cs.colostate.edu/~malaiya/635/IFIP-10.pdf
https://www.dtc.umn.edu/weis2004/rescorla.pdf
http://emidio.planamente.ch/docs/linux/toulouse.pdf
http://emidio.planamente.ch/docs/linux/toulouse.pdf

62 REFERENCES

[40] HyunChul Joh, Jinyoo Kim, and Yashwant K. Malaiya. Vulnerability
Discovery Modeling using Weibull Distribution. Tech. rep. Department
of Computer Science, Colorado State University, 2008. url: http:
//www.cs.colostate.edu/~malaiya/pub/weibull08.pdf.

[41] O. H. Alhazmi and Y. K. Malaiya. Modeling the Vulnerability Discov-
ery Process. Tech. rep. Department of Computer Science, Colorado
State University, 2005. url: http : / / www . cs . colostate . edu /
~malaiya/pub/issre05.pdf.

[42] HyunChul Joh and Yashwant K. Malaiya. Modeling Skewness in Vul-
nerability Discovery Models in Major Operating Systems. Tech. rep.
Department of Computer Science, Colorado State University, 2010.
url: http://www.cs.colostate.edu/~malaiya/p/joh.skewness.
2010.pdf.

[43] “Quantifying the security risk of discovering and exploiting software
vulnerabilities”. In: (2016), pp. 19–21. url: https://dspace.library.
colostate.edu/bitstream/handle/10217/176641/Mussa_colostate_
0053A_13672.pdf?sequence=1.

[44] Ali Mosleh, E. Richard Hilton, and Peter S. Browne. Bayesian prob-
abilistic risk analysis. Tech. rep. 1985, pp. 5–12. doi: 10 . 1145 /
1041838.1041839. url: http://oplab.im.ntu.edu.tw/download/
pubication/journal/J43_2013_A%20novel%20approach%20to%
20evaluate%20software%20vulnerability%20prioritization.pdf.

[45] Peng Xie et al. “Using Bayesian Networks for Cyber Security Analy-
sis”. In: (). url: http://people.cs.ksu.edu/~xou/publications/
dsn10_preprint.pdf.

[46] Maxwell Dondo. A Vulnerability Prioritization System Using A Fuzzy
Risk Analysis Approach. Tech. rep. 2008. url: http://cradpdf.
drdc-rddc.gc.ca/PDFS/unc112/p533528_A1b.pdf.

[47] Chien-Cheng Huang et al. A novel approach to evaluate software vul-
nerability prioritization. Tech. rep. 2013, pp. 2822–2840. doi: 10 .
1016/j.jss.2013.06.040. url: http://oplab.im.ntu.edu.tw/
download/pubication/journal/J43_2013_A%20novel%20approach%
20to%20evaluate%20software%20vulnerability%20prioritization.
pdf.

[48] Muhammad Shahzad, M. Zubair Shafiq, and Alex X. Liu. A Large
Scale Exploratory Analysis of Software Vulnerability Life Cycles. Tech.
rep. Department of Computer Science and Engineering Michigan State
University, 2012. url: https : / / www . cse . msu . edu / ~alexliu /
publications/VulnerabilityDB/VulnerabilityDB_ICSE2012.pdf.

http://www.cs.colostate.edu/~malaiya/pub/weibull08.pdf
http://www.cs.colostate.edu/~malaiya/pub/weibull08.pdf
http://www.cs.colostate.edu/~malaiya/pub/issre05.pdf
http://www.cs.colostate.edu/~malaiya/pub/issre05.pdf
http://www.cs.colostate.edu/~malaiya/p/joh.skewness.2010.pdf
http://www.cs.colostate.edu/~malaiya/p/joh.skewness.2010.pdf
https://dspace.library.colostate.edu/bitstream/handle/10217/176641/Mussa_colostate_0053A_13672.pdf?sequence=1
https://dspace.library.colostate.edu/bitstream/handle/10217/176641/Mussa_colostate_0053A_13672.pdf?sequence=1
https://dspace.library.colostate.edu/bitstream/handle/10217/176641/Mussa_colostate_0053A_13672.pdf?sequence=1
http://dx.doi.org/10.1145/1041838.1041839
http://dx.doi.org/10.1145/1041838.1041839
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://people.cs.ksu.edu/~xou/publications/dsn10_preprint.pdf
http://people.cs.ksu.edu/~xou/publications/dsn10_preprint.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc112/p533528_A1b.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc112/p533528_A1b.pdf
http://dx.doi.org/10.1016/j.jss.2013.06.040
http://dx.doi.org/10.1016/j.jss.2013.06.040
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
http://oplab.im.ntu.edu.tw/download/pubication/journal/J43_2013_A%20novel%20approach%20to%20evaluate%20software%20vulnerability%20prioritization.pdf
https://www.cse.msu.edu/~alexliu/publications/VulnerabilityDB/VulnerabilityDB_ICSE2012.pdf
https://www.cse.msu.edu/~alexliu/publications/VulnerabilityDB/VulnerabilityDB_ICSE2012.pdf

REFERENCES 63

[49] Stefan Frei et al. Large-Scale Vulnerability Analysis. Tech. rep. Com-
puter Engineering and Networks Laboratory ETH Zurich, Switzer-
land, 2006. url: http://x3.techzoom.net/Papers/Large_Scale_
Vulnerability_Analysis_(2006).pdf.

[50] Exploit-DB. url: https://www.exploit-db.com/ (visited on 2016-11-21).

[51] openSSL Security Advisory. url: https://www.openssl.org/news/
secadv/ (visited on 2017-01-16).

[52] Exploit-DB github. url: https://github.com/offensive-security/
exploit-database (visited on 2017-01-27).

[53] openSSL Documentation. url: https://www.openssl.org/docs/
(visited on 2017-01-17).

[54] gnuTLS Documentation. url: http://gnutls.org/documentation.
html (visited on 2017-01-17).

[55] libreSSL Documentation. url: https://fossies.org/dox/libressl-
2.5.0/ (visited on 2017-01-17).

[56] openSSH Documentation. url: https://www.openssh.com/manual.
html (visited on 2017-01-17).

[57] wolfSSL Documentation. url: https://www.wolfssl.com/wolfSSL/
Docs.html (visited on 2017-01-17).

[58] Exploit-DB. url: http://www.imdb.com/ (visited on 2016-12-05).

[59] Wayne Jansen. Directions in Security Metrics Research. Tech. rep.
National Institute of Standards and Technology, 2010, p. 16.

http://x3.techzoom.net/Papers/Large_Scale_Vulnerability_Analysis_(2006).pdf
http://x3.techzoom.net/Papers/Large_Scale_Vulnerability_Analysis_(2006).pdf
https://www.exploit-db.com/
https://www.openssl.org/news/secadv/
https://www.openssl.org/news/secadv/
https://github.com/offensive-security/exploit-database
https://github.com/offensive-security/exploit-database
https://www.openssl.org/docs/
http://gnutls.org/documentation.html
http://gnutls.org/documentation.html
https://fossies.org/dox/libressl-2.5.0/
https://fossies.org/dox/libressl-2.5.0/
https://www.openssh.com/manual.html
https://www.openssh.com/manual.html
https://www.wolfssl.com/wolfSSL/Docs.html
https://www.wolfssl.com/wolfSSL/Docs.html
http://www.imdb.com/

64 REFERENCES

AppendixA
Software selection and categories

List of selected categories and software. The software are listed by their search
keyword in the database, most commonly ”vendor:product”.

• Video players

– ffmpeg:ffmpeg

– apple:quicktime

– Libav:libav

– videolan:vlc_media_player

– qemu

• HTTP-Servers

– apache:Http_Server

– nginx:nginx

– Rejetto:Http_File_Server

– IBM:Http Server

– Lighttpd

– Monkey-project:Monkey_Http_Daemon

• Encryption

– openbsd:OpenSSL

– gnu:GnuTLS

– openbsd:OpenSSH

– openbsd:LibreSSL

– WolfSSL:WolfSSL

• Script languages

– PHP:PHP

– rubyonrails:Ruby_On_Rails

– perl:perl

65

66 Software selection and categories

– microsoft:Asp.net

• Firewalls

– Pfsense:Pfsense

– Netfilter_Core_Team:Iptables

– Ipcop:Ipcop

– Comodo Internet Security

• Virtualization

– vmware:player

– docker:docker

– microsft:Hyper-V

– oracle:Vm_Virtualbox

– openvz

– xen:xen

• FTP-Servers

– CoreFtp:core_FTP

– Proftpd:ProFTPD

– Glftpd:Glftpd

– Pureftpd

– beasts:vsftpd

– Zftpserver

• Communication (chat programs)

– kvirc:kvirc

– irssi:irssi

– cisco:spark

– Skype:Skype

– Microsoft:Skype_For_Business

• SQL-Servers

– microsoft:sql_server

– mysql:mysql

– postgresql:postgresql

AppendixB
Regression results

Figure B.1: Regression analysis summary of the survey results

67

68 Regression results

Figure B.2: Summary of the regression with an ordered logistic
model

Analysis of software vulnerabilities through
historical data

MAGNUS TÖRNQUIST
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

M
A

G
N

U
S TÖ

R
N

Q
U

IST
A

nalysis of softw
are vulnerabilities through historical data

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-598

http://www.eit.lth.se

	exjobb_magnus tornquist.pdf
	Introduction
	Problem description and research motivation
	Outline

	Background
	Vulnerabilities and weaknesses
	CVE
	CWE

	Information sources
	Databases
	Mailing lists
	Other sources

	Vulnerability metrics
	CVSS version 2
	CVSS version 3
	CVSS temporal metrics
	CWSS
	CERT-CC severity metric
	SANS vulnerability analysis scale
	Qualitative rating systems

	Statistical tools and methods
	Linear regression
	None-linear regression
	Chi-Squared test
	Coefficient of determination

	Previous metric research
	WIVSS
	PVL
	VRSS
	OWASP risk rating
	Policy security score
	K-zero day safety
	Predictive algorithms
	Other work on security metrics

	Method
	Analysis outline
	Software selection
	Vulnerability data
	Historical data
	CVSS
	Temporal data

	Vulnerability types
	Exploits
	Data sources
	Other software data
	Users and popularity
	Developers
	Language
	Documentation
	Release activity

	Data gathering process
	Survey

	Results
	Vulnerability analysis of multiple categories
	Vulnerability analysis of a single category
	Exploit source analysis
	Survey results

	Practical application of the results
	Predictive algorithms
	Scoring system development
	Naive scoring system suggestion
	Modular scoring system suggestion
	Scoring system with CVSS modification
	IMDB inspired weighting

	Conclusions and further research
	Summary of the results and conclusions
	Thoughts on future research

	Software selection and categories
	Regression results

