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Abstract

A recent trend in the IT world is the term Internet of Things (IoT). As more and
more devices get connected to the internet, and with companies trying to lower
production costs in order to stay competitive, security can easily be neglected.

In this report traditional Transport Layer Security (TLS) implementations
and post-quantum based TLS were evaluated and performance measurements were
conducted. The initial attempt was to run post-quantum secure algorithms on an
IoT device in order to see if an IoT device theoretically would be able to withstand
an attack from a quantum computer. Due to memory constraints it was not
possible to run the modified version of the cryptography library, PolarSSL, on the
intended IoT device. For that reason we switched to another platform, namely a
Raspberry Pi. The measurements were conducted on that platform and in-depth
analysis was performed to determine if current implementations of post-quantum
algorithms can be suitable for IoT devices or not.

The conclusion was that post-quantum algorithms are more time-consuming
than traditional algorithms used today. One of the experiments in this report
shows that using a post-quantum algorithm for the key exchange is 2.5 times
slower and needs 10 times as much RAM memory than a traditional solution
with the same security level. There is therefore no apparent need to start using
post-quantum algorithms today in terms of security level, when considering the
duration and RAM usage for the key exchange. With time and optimization some
of the algorithms evaluated in this report, or similar algorithms, could be good
candidates the day large quantum computers are produced.
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Chapter 1

Introduction

Axis communications is a company situated in Lund with their main focus on
manufacturing network cameras. They are however also developing other innova-
tive products which make use of network connectivity in order to communicate.
Axis has several self-developed hardware platforms which their current products
are running on. Most of these platforms have relatively high performance and are
often developed to process high resolution video. They are therefore not optimal
for products with low performance requirements or products not requiring video
encoding.

Axis is interested in using a new hardware platform for future products to
explore new areas. Two important constraints for this platform are price and
power consumption, but it also needs to be able to communicate securely.

1.1 Motivation

Finding secure solutions for small hardware platforms is a very up-to-date matter
since the growth of Internet of Things (IoT). As more devices get connected to
the Internet, the importance of security grows. Today’s society relies on these
connected devices and they are continuously increasing in number. To stay up
to date in a fast growing field, where large quantum computers may soon be
accessible, our focus will be on post-quantum cryptography.

An existing platform based on an ARM cortex m4 microcontroller will be used
to investigate performance differences between today’s Transport Layer Security
(TLS) solutions and post-quantum TLS solutions. The reader should be observant
of the fact that TLS is the successor to Secure Sockets Layer (SSL) but is still
sometimes referred to as SSL. This is the fact with for example the PolarSSL
which actually supports TLS.

The post-quantum algorithm used in in this project is based on the problem
Ring Learning With Errors (RLWE) [4] and the TLS-library is a modified version
of PolarSSL [5][6].

1.2 Project Aims and Main Challenges

The aim with this Master’s thesis work is to investigate how the performance
of the key exchange during a TLS handshake is affected by using post-quantum
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cryptography in a low performance environment. The measurements from the
post-quantum solutions will be compared to a standard TLS implementation and
in-depth analysis will be performed regarding suitability for [oT devices today and
in the future.

One of the main challenges is to modify an existing implementation to fit the
hardware constraints, e.g. memory and CPU speed, on the microcontroller. The
aim is to end up with a platform that is secure enough to withstand an attack
from a quantum computer, but lightweight enough to run on a microcontroller.

Goals:
e Get standard TLS, e.g. PolarSSL, running on the microcontroller
e Get post-quantum based TLS running on the microcontroller

e Measure performance for the key exchange on the standard implementation
and post-quantum implementation

e Evaluate the measurements

e Choose a suitable candidate in terms of performance versus security

1.3 Background

This section provides a short background of the different areas for this Master’s
thesis project. It will begin with describing the term Internet of Things and
then discuss the different post-quantum algorithms which were evaluated. The
cryptographic libraries WolfSSL and PolarSSL were also evaluated before imple-
mentation.

1.3.1 Internet of Things

One interpretation of the term Internet Of Things (IoT) is small embedded systems
integrated in everyday objects [7]. These devices often consist of sensors and other
components which can be monitored and controlled over networks and the Internet.
IoT devices are often used to create so called "smart" systems, for example smart
homes where the electrical devices in the home are interconnected and can be
monitored and controlled remotely.

The term I[oT is very broad. Some IoT-devices have extremely low performance
and very harsh performance constraints because they run on batteries for example.
As a consequence some can not even implement a full TCP/IP stack. Another
example of IoT devices can be devices that have not been connected to the internet
earlier, that offer higher performance e.g. a network camera.

IoT devices with lower performance often have constraints in terms of memory
usage and power consumption to make the cost and size as small as possible. Due
to these constraints some of the security mechanisms used in regular computers
are not possible to implement on these devices. At the same time, security on IoT
devices is very important since a successful attack on an IoT device can let an
intruder get full access to a complete system.
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1.3.2 Post-quantum algorithms

Post-quantum algorithms are thought to be secure against attacks using quantum
computers. This is not the case for today’s public-key algorithms which probably
will be broken, more about this will be described under Section 2.3. Research in
this area is important to stay one step ahead of tomorrow’s quantum computers.
This is probably the reason why there already are many different post-quantum
algorithms available, although there are no publicly known large-scale quantum
computers yet.

This section will shortly describe some of the post-quantum algorithms that
were considered early on in this project for key exchange in a TLS handshake.
The algorithms were evaluated to find an algorithm which was both lightweight
enough to run on an IoT device while also proven and well-documented.

Ring Learning With Errors

Ring Learning With Errors (RLWE) is based on the problem Learning With Errors
(LWE), but designed for polynomial rings. The greatest advantage of RLWE over
LWE is that the key size is much smaller for the same level of security. Having
a small key size can be very important for keeping the implementation efficient
with low overhead. Parameters suggested to provide 128 bits of security result in
public keys of size 6595 bits and private key of 14000 bits [8]. This can seem large
compared with today’s key size, but compared to LWE they are very small. The
security for both learning with error problems lie in the fact that it is as hard to
solve as the lattice problem Shortest Vector Problem, which is NP-hard [9]. RLWE
can be used for key exchange, signing and encryption. RLWE key exchange will
be explained further in Section 2.4.2.

N-th degree truncated polynomial ring

This algorithm is often abbreviated NTRU and is another contender due to the
fact that the public key size is approximately the same size as for RLWE, but with
a smaller private key, see Table 1.1. NTRU is also lattice-based like RLWE. At
the time of writing there are two main implementations of this algorithm. One is
patented and the other is open source. The open source version is licensed under
GPL, meaning that any software using it must also be made public. NTRU has
been added to WolfSSL and according to some benchmarks [10] NTRU performs
better compared to for example RSA.

Goppa-based McEliece

Goppa-based McEliece is built on the problem of error correcting codes, and in
this version the type of codes used are algebraic geometric codes, often referred
to as Goppa codes. The key size for this version of McEliece is very large even
compared to other post-quantum algorithms. For 128 bits of security, a public key
of 8373911 bits and a private key of 92027 bits are required [11|. The complexity of
the algorithm is lower than for some of the schemes used today, but the large key
size might be impractical, especially for small devices with constrained resources.
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Algorithm Public key size | Private key size
Ring Learning With Errors 6595 14000
N-th degree truncated polynomial ring 6130 6743
Goppa-based McEliece 8,373,911 92,027
MDPC-based McEliece 65542 4384
Supersingular isogeny DH 6144 6144

Table 1.1: A summary of the key sizes for the algorithms [1].

MDPC-based McEliece

This version of McEliece is also based on error correcting codes, but in this case
Moderate Density Parity Check (MDPC) codes. MDPC codes are higher-density
Low Density Parity Check (LDPC) codes which are used in telecommunication
[12]. The greatest advantage with this version of McEliece is that the key size is
much smaller compared to the Goppa-based version, but still retains its security
properties. The size of the keys are 65542 bits and 4384 bits for the public and
private keys respectively. The relatively small private key size is good for storage
space, which also is limited on a small device, but the rather large public key size
will limit network throughput.

Supersingular Isogeny Diffie-Hellman key exchange

Supersingular Isogeny Diffie-Hellman key exchange (SIDH) is an algorithm based
on the difficulty of calculating so called isogenies between elliptic curves [13]. As
the name implies it is used for key exchange similar to the popular Diffie-Hellman
key exchange, which will be described in Section 2.2.1, more specifically elliptic
curve Diffie-Hellman. SIDH is similar to elliptic curve Diffie-Hellman in terms of
computations and does provide forward secrecy, i.e. if a long term key is com-
promised previous sessions are still private. This is an advantage compared to
other post-quantum algorithms such as McEliece and NTRU which do not pro-
vide forward secrecy. The transmission overhead for SIDH is similar to many of
the public-key systems used today.

1.4 Evaluation and selection

In the end PolarSSL using RLWE as key exchange method was chosen. The
most important reason for this choice was the fact that there existed a post-
quantum modified version of PolarSSL that was accessible to the public. This was
important since it was not in the scope of the project to develop an implementation
from scratch. It is furthermore desirable to have the same base library when
performing measurements so only the part being analyzed differs between the
different algorithms, in this case the key exchange during a TLS handshake. This
could be done with the modified version of PolarSSL since it supports both classical
and post-quantum cryptography.
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RLWE was however chosen as the key exchange algorithm for several reasons.
It has reasonable key sizes compared to the other evaluated algorithms as can be
seen in Table 1.1, it has been used in similar projects with other low performance
devices [4][3] and it is thought to be secure [14]. The other algorithms could be
excluded with the following reasons; SIDH had very little support and was only
researched by a small number of people. NTRU was a good candidate, but could
mean some legal issues for the company due to it being patented. McEliece was
not suitable for an IoT device, because of the large keys, and there were also very
few existing implementations available.

Note that there are a lot of other algorithms that are not evaluated in this
project which possibly could be better choices. Which is the best algorithm to use
is also very specific to what project it is meant for since criteria can be prioritized
in different ways. When selecting an algorithm for a specific project it is important
to weigh all factors such as, key size, memory usage, existing code and so on. In
this project PolarSSL and RLWE were selected for the reasons stated above, but
might not be suited in another project.
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Chapter 2

Theory

This chapter will give the reader some background theory to understand the rest of
the project. Note that some basic prior knowledge is required in computer science,
computer security and mathematics to fully understand the report.

2.1 TLS

Transport Layer Security (TLS) is a cryptographic protocol used to ensure security
on the Internet and computer networks. TLS provides security for the underlying
transport layer in the OSI model [15]. The transport protocol Transmission Con-
trol Protocol (TCP) is often used together with TLS. TCP maintains a reliable
stream of bytes between two communicating computers but needs TLS to provide
authentication, data integrity and confidentiality during the communication [16],
how that is achieved will be described later.

One big advantage with TLS is that it can be used with many different methods
for encryption, authentication and key exchange. This makes it possible to adapt
the TLS implementation depending on what security level is needed or supported
by the parties setting up the connection [17].

2.1.1 Confidentiality

Communication between two computers achieves confidentiality when the connec-
tion is private and an eavesdropper can not understand the transferred data. To
maintain confidentiality TLS encrypts the data to be sent.

There are two kinds of encryption techniques; symmetric and asymmetric [18].
Symmetric cryptography refers to algorithms only using one secret key. This key is
used for encryption and decryption by both parties. The security in this technique
relies on the fact that the key is secret, the two communication parties must be
the only ones knowing the shared key.

In asymmetric cryptography each party has a private and a public key. The
private key is only known to the owner and the public key can be known to
everyone. The public key is used for encryption and the private key for decryption.
The sender uses the recipient’s public key to encrypt the message and it is only
the corresponding private key that can be used to decrypt the message.
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In order to use symmetric cryptography the private key needs to be shared
securely between the communicating parties. This is the main disadvantage com-
pared with asymmetric cryptography where the public key can be known by ev-
eryone [19]. On the contrary, asymmetric key sizes need to be rather large, which
makes asymmetric algorithms generally very time consuming. Therefore, asym-
metric cryptography is usually used for key exchange and symmetric cryptogra-
phy used during the actual message transmission. This is the way symmetric and
asymmetric cryptography is used in TLS.

2.1.2 Authentication

Confidentiality makes the transmission private between two communicating com-
puters but it is also important to ensure that the communicating party is in fact
who it claims to be.

Authentication is often obtained by using public key cryptography together
with certificates. A certificate is a digitally signed document that binds a subject,
which is the owner of the certificate, to its public key. One way to make this
binding reliable is to let a trusted Certificate Authority (CA), also called the
issuer, perform the binding. When browsing web sites on the Internet certificates
are used to verify that the web site is trusted and secure. Whether an issuer is
trusted or not is specified by a list of trusted CAs stored in the Trusted root CA
store in the browser.

Normally only the server is authenticated when browsing web sites, this is the
case in the example under Section 2.1.4. In some systems though, it is important
for the server to authenticate the client as well. Some servers have this as a
requirement and will not connect to a client that is not authenticated. Client
authentication can be conducted in the following way [20][21]:

1. The server sends a certificate request message.

2. The client creates a digital signature [22] by making a hash of randomly
generated data from the handshake and encrypts it with its private key.
The hash and a copy of the clients certificate is then sent to the server.

3. The server checks if the certificate is trusted and valid. The server can
then verify that the public key in the certificate actually corresponds to the
private key used to create the digital signature. If this is the case, the client
is considered as authenticated and the connection can be set up.

2.1.3 Integrity

To ensure integrity over the connection TLS uses checks on the messages being
received by using a Message Authentication Code (MAC) [23]. The MAC is used
for message authentication, but also to ensure the integrity of the message which
means that it has not been modified during the transmission.

A MAC function, or a keyed hash function, is similar to a hash function but
also needs a secret key to generate the digest. This makes it possible to not only
ensure integrity of the message, but also authenticate the sender of the message
due to the fact that the secret key only is known by the sender and recipient.
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Message integrity and authentication using MAC between a sender named Alice,
and a recipient named Bob, can be managed as explained below.

1. Alice uses the secret key and a keyed hash function to generate a MAC of
the message to be sent. She then appends the MAC to the original message
and sends it to Bob.

2. Bob receives the message and uses the same keyed hash function and secret
key as Alice used, to generate a new MAC from the received message. If the
generated MAC is the same as the one received from Alice, he can be sure
that the sender is in fact Alice and the message was not modified during the
transmission.

2.1.4 Handshake

The TLS handshake is used to let a client and a server that intend to set up a
session agree on cryptographic parameters. The handshake is performed with a
series of messages that are sent between the client and the server. Figure 2.1 shows
an example of how a handshake is performed when the client authenticates the
server [16].

The client sends a ClientHello to the server to initiate the session. The message
also contains a random number, a list of cipher suits in order of preference and
possibly a list of algorithms for compression which can also be set to none.

The server selects the best common cipher suite from the list the client sent
and a compression algorithm, if they have at least one in common. If the server
and client do not have a common cipher suite the connection will be aborted. If
they have at least one common cipher suite the server sends a ServerHello to the
client followed by a certificate. In this example RSA key exchange will be used.
Finally the server sends a ServerHelloDone to indicate that the ServerHello is
finished.

The client verifies the certificate to see if it is trusted and valid. If this is the
case, a pre-master secret is generated. The client then sends the pre-master secret
encrypted with the server’s public key. The pre-master secret is used to generate
the master secret, the client and the server calculates the master secret to let them
share a common secret key. In order for the server to access the pre-master secret,
it decrypts the message using its private key.

The client sends a ChangeCipherSpec message to notify that the following mes-
sages will use the recently negotiated keys and ciphers. The server also responds
with a ChangeCipherSpec. A ChangeCipherSpec is always followed by a Finished
message indicating that the key exchange and authentication processes were suc-
cessful, as illustrated in Figure 2.1. The Finished message includes all handshake
messages up to now encrypted with the negotiated secret. It is up to the receiver
to verify that the content of the message is correct. After this a secure connection
is established and both parties can send data protected by the parameters for this
session. When the data has been sent the connection is terminated. If one wishes
to send more data after that, a new connection must be established.
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Figure 2.1: A generic TLS handshake.
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2.2 Classical cryptography

Classical cryptography refers to the cryptographic algorithms that are used today,
but are regarded as vulnerable to attacks from large quantum computers using e.g.
Shor’s algorithm [24]. Integer factorization and Discrete logarithm are problems
believed to be hard to solve for digital computers, but can be solved in polynomial
time with Shor’s algorithm on quantum computers. The majority of the public-
key algorithms used at present time are based on these two problems. Examples
of classical cryptography algorithms are described below.

2.2.1 Diffie-Hellman

Diffie-Hellman key exchange is a way for two parties to exchange cryptographic
keys in a secure way. It is most commonly used to establish a shared secret be-
tween the parties, for example a symmetric key to be used for encryption. To
provide forward secrecy the so called ephemeral Diffie-Hellman is often used [25].
Ephemeral Diffie-Hellman, among other achieve forward secrecy by using tem-
porary keys which are different in each session, this is not the case for static
Diffie-Hellman where the same key is always used between two parties. Below is
an explanation of the algorithm and its parameters [26]. The public and private
keys in the context below shall not be confused with RSA public and private keys.
For a simplified illustration of the algorithm, see Figure 2.2.

e p - a large prime
e ¢ - a number that is mathematically linked to p.

e a - Alice’s private key.

b - Bob’s private key.
e A - Alice’s public key.

e B - Bob’s public key.

The numbers p and g are known to everyone, even potential attackers. The
selection of p and g is generally done beforehand.

The following demonstration illustrates how the algorithm works for Alice and
Bob to calculate the shared secret s:

1. Alice selects a random number a, and sends A = g* mod (p) to Bob.
2. Bob selects a random number b and sends B = g mod (p) to Alice.
3. Alice computes B* mod (p) = s

4. Bob computes A mod (p) = s
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Figure 2.2: lllustrating the Diffie-Hellman key exchange with colors
instead of variables, to get a general understanding of how the
algorithm works.
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2.2.2  Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is a public-key method using the algebraic
structure of elliptic curves. It uses points on an elliptic curve to decide a public
key that is mathematically linked to a private key [27].

One of the greatest advantages with ECC is that is has a much smaller key
size compared to equal security with non-ECC cryptography, for example RSA.

Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman (ECDH) is a type of Diffie-Hellman key exchange,
as the name indicates. The hardness of both the algorithms are based on discrete
logarithms but in this case more specifically elliptic curves over finite fields. The
sequence of sending and receiving data is the same as Diffie-Hellman as described
above and illustrated in Figure 2.2, but the calculations and the actual data being
sent differs. Below is a short explanation of how Alice can compute a shared secret
with Bob and the parameters being used [28]:

e T - elliptic curve domain parameters

e d, - Alice’s elliptic curve private key

dp - Bob’s elliptic curve private key

e (. - Alice’s elliptic curve public key

Qp - Bob’s elliptic curve public key

where d,, dp, Q, and Q) are associated with T. Alice can then compute the
shared secret s by:

1. Calculate the elliptic curve point P = (xp,yp) = daQp
2. Check if P # 0 and if P=0 output "invalid" and stop

3. The shared secret is given by s = zp

Bob can in a similar way receive s by doing the same calculations using his
private key dj, and Alice’s public key Q.

Elliptic Curve Digital Signing Algorithm

Elliptic Curve Digital Signing Algorithm (ECDSA) is an asymmetric signing al-
gorithm that uses the hardness of elliptic curves as security [29]. As the name
implies it is a variant of the algorithm Digital Signing Algorithm, proposed by the
National Institute of Standards and Technology (NIST). The same keys as men-
tioned in the section above are used to sign and verify data to provide authenticity
during communication.
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223 RSA

RSA can be used in four different ways; key generation, key distribution, encryp-
tion and decryption. It is the same core algorithm, but the way it is used differs,
which is clarified below.

e Key generation: Is how key-pairs are created, one public key and one pri-
vate key. The keys are linked in a way where only the private key can decrypt
a message encrypted with the public key. The procedure for generating the
key-pair is conducted in the following way [26]:

Select two primes p and q.
— Compute n = pq

— Compute ¢(n) = ¢(p)¢(q) = (p—1)(¢ —1) = n — (p+ ¢ — 1), where
¢(n) is Euler’s totient function [30].

— Select an integer e where 1 < e < ¢(n) and ged(e, ¢p(n)) = 1, e is the
public key.

— The private key d is computed as follows:

ed=1 mod (¢(n)) (2.1)

e Key distribution: Distributing keys can be done by Alice sending her
public key to Bob, and keeping her private key secret. Bob can now send
messages to Alice that only she can decrypt. Bob can in the same way
send his public key to Alice, to make it possible for her to send encrypted
certificates to Bob.

e Encryption: When Bob intends to send a message M to Alice, M is first
converted to the integer representation m of the message M, where 0 < m <
n and ged(m,n) = 1, the transformation of the message M to m is given by
a protocol. The cipher text ¢ is then computed in the following way: ¢ = m*
mod (n).

e Decryption: When Bob has sent a message M to Alice she can decrypt it
using her private key exponent d in the following way:

Cd

(m®) =m mod (n) (2.2)
which reveals the private message Bob sent to Alice.

224 AES

Advanced Encryption Standard (AES) is a block cipher algorithm based on sym-
metric keys [31]. The block size is fixed at 128 bits, but the key size can be one
of the following; 128, 192 or 256 bits. The plaintext that is to be encrypted is
transformed to several state matrices that are 4x4 matrices of 16 bytes, how a
state matrix is transformed can be seen in Figures 2.3, 2.4, 2.5 and 2.6.

The algorithm consists of four transformation steps, explained below:
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Figure 2.3: How the subByte step is performed.
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Figure 2.4: How the rows are shifted in the state matrix.

e SubBytes: In this step a substitution box (S-box) [32] is applied to each
byte of the state matrix. This is the only nonlinear operation in the AES
algorithm. Passing each byte through the S-box results in a new matrix as
shown in Figure 2.3. The S-box is composed of two invertible mappings.

e ShiftRows: This step shifts the bytes in each row cyclically, each row is
shifted with a different offset. In AES the offset is 0 for the first row, 1
for the second row, 2 for the third row and 3 for the last row. A visual
explanation can be seen in Figure 2.4. The reason that the ShiftRow step
is performed is to ensure that the columns are linearly dependent. If the
columns are linearly independent then AES degrades to four independent
ciphers.

e MixColumns: In this step each column in the state matrix is multiplied with
a fixed polynomial c(x) = 32% + 22 + z + 2, the coefficients are written
in hexadecimal representation. How this step is performed can be seen in
Figure 2.5.

e AddRoundKey: In this step the round key, which is derived from the cipher
key, is added by using bitwise XOR, on every byte in the state matrix. The

oF bz.;
s 2 bs.s

Figure 2.5: How the mixColumn step is performed.
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Figure 2.6: How the round key k is added to each byte in the state

matrix.

length of the round key is equal to the length of the block, which is 128 bits.
See Figure 2.6 for further details.

The structure of the algorithm and how the transformation steps are used
can be seen in the pseudocode in Listing A.1. The encryption and decryption
algorithms are not identical for AES, but the structure is the same.

2.3 Quantum computing

Quantum mechanics is very different from classical physics and can therefore re-
quire some extra thought for the inexperienced reader. In the section below,
quantum computers and post-quantum cryptography is described in a simplified
way. For the interested reader there are suggestions on possible further reading in
this section.

2.3.1 Quantum computers

Quantum computers are systems making use of quantum mechanics in order to
perform computations on data. Quantum computing is non-deterministic and
every computation has a probability to produce the correct answer. A quantum
bit, or qubit, is the quantum computers’ equivalent to the digital computers’ bit
[33]. Where a regular bit can be 0 or 1 a qubit can be 0, 1 or both. One often
refers to a qubit being 0,1 or both, but it is actually the state of an atom which
can be ground, excited or both depending on energy levels. Ground and excited
can easily be viewed as 0 and 1 for simplicity.

Imagine a computer with 2 bits resulting in four possible states the computer
can be in; 00, 01, 10 and 11. The difference between a digital computer and
a quantum computer is that the digital computer can only be in exactly one
state of the four states above, but a quantum computer can be in all four states
simultaneously. Every state has a probability, and the most probable state will be
the final state of the quantum computer when it is done with the computation.
To clarify, if the four states above are assigned a probability; A, B, C and D
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respectively, then that means that the probability of 00 being the current state is
A, the probability of 01 being the current state is B etc. The quality explained
above is called superposition and is one of the properties that makes quantum
computers powerful.

When performing a computation on a quantum computer it can at first, before
the state of the computer is observed, be in all states simultaneously. Later on
when the state is observed to get the result, all the states but the "correct" one
will collapse and in a sense become a regular bit register where the result can be
read.

One of the main differences between classical digital computers and quantum
computers is that in quantum computers the accuracy of the result can increase
polynomially with the input size. This characteristic makes quantum computers
tremendously more powerful compared with ordinary computers [24].

The greatest obstacles to overcome in order to create large fully functional
quantum computers is imprecision and decoherence [24]. Imprecision has to do
with what precision the quantum gates can have in order to still have a reasonable
probability to compute the correct answer. Decoherence happens when the state
of the machine is not coherent any more, in other words, when the states are
not coupled. Quantum computing relies on the fact that the states are coherent
and evolve in an undisturbed way. If not, they do not possess their ability to be
in superposition [33]. If a quantum computer has decohered it can not compute
any answers any more. The time it takes for a quantum computer to decohere
is actually the same amount of time the computer has to compute the correct
answer. After that point the computation has failed if no answer is produced.

2.3.2  Shor's Algorithm

There are two versions of Shor’s algorithm, one for solving discrete logarithms
and one for prime factorization. The building blocks of the algorithms are gates,
much like AND, OR and NOT in digital computers. The gates manipulate the
states and help them end up in the correct state with a high probability. Both
versions of the algorithm start in a superposition state and gradually increase the
probability to get the correct answer when the state is observed. Both algorithms
pose threats to today’s public key encryption standards. The prime factoriza-
tion algorithm would, for example, break RSA on a quantum computer, and the
discrete logarithm algorithm would for example break Diffie-Hellman and Elliptic
curve cryptography. The two algorithms are briefly described below. For a more
mathematical explanation the reader is welcome to read the following paper [24].

Prime factorization

The algorithm does not try to factor n directly, where n = pq, p and ¢ are large
primes. Instead, it tries to find the integer [r] that satisfies 2" = 1 mod (n).
Because p and ¢ are odd numbers, n must also be odd. To find one of the factors
of an odd integer n, the following operations can be performed. Given that there
exists a method to compute the order r [24]:

1. Choose a random x mod (n)
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2. Find the order r of x
3. Calculate ged(z™/? — 1,n)

Because
("2 =) (2"?+1)=2"-1=0 mod (n),

ged(x"/2 — 1,n) and ged(z"/? 4 1,n) must be two factors of n. This algorithm
can fail under some circumstances with low probability, the circumstances for
when the algorithms fails are when 7 is odd or if /2 = —1 mod (n). Shor’s
algorithm performs the computations in polynomial time on a quantum computer,
with the ordo notation O((logn)?loglogn) in complexity. The most crucial step
that actually makes this method work, is to calculate the order r of x. Calculating
r efficiently has to be be done on a quantum computer in order to perform the
algorithm in polynomial time. The computation is performed with the quantum
gates that were previously mentioned.

Discrete logarithm

The approach here is approximately the same as for the prime factorization prob-
lem, the difference is that it involves solving a different equation, namely ¢" =
mod (p), where 7 is an integer and 0 < r < p — 1. Here g is a generator for
x mod (p), x is a discrete logarithm and p is a prime. A generator g for x
mod (p) is the cyclic sequence of numbers [1, g, g%, ..., g? 2] where they represent
the remainder of mod (p). To solve the discrete logarithm equation on a clas-
sic computer using the most efficient known algorithm still has the complexity
(9(6(10“’)1/3(10g logp)z/a). This is why these calculations are not feasible in reason-
able time for large numbers which makes cryptography based on discrete loga-
rithms believed to be safe. Shor’s discrete logarithm algorithm runs in polynomial
time on a quantum computer and can calculate 7 correctly with a non-negligible
probability of it being correct. Running the algorithm multiple times will increase
the probability that r is the correct answer.

2.3.3 Grover's Algorithm

Grover’s Algorithm is another algorithm that utilizes quantum mechanics to effi-
ciently solve mathematical problems. The problem the algorithm solves is guessing
a key that "unlocks" a black-box. Classical digital computers can find the key to
a black-box in O(N) where N is the number of combinations in the domain. That
complexity is with a brute force attack that tries all possible combinations and the
worst case is that the last number is the correct number. With Grover’s Algorithm
one can find the key in O(N'/2) that is a considerable increase in speed if N is
large. In order to be protected against these attacks it is suggested to double the
length of the keys used today for symmetric encryption. The algorithm works in
the following way:

Given that |s) = 1/VN Zf;ol |z), where |s) is the uniform superposition of all
states.
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Perform the following "Grover iteration" r(N) times. The function (N), that
has asymptotic complexity O(N), is described below.

o Apply U_w, where U_w =TI — 2|w)(w|.
e Apply U s, where U_s = 2|s)(s| — I.

e Perform the measurement ). The result will be A\w with probability very
close to 1 for N > 1.

The reader is encouraged to read more about Grover’s algorithm [34].

2.4 Post-quantum cryptography

2.4.1 Lattice problem

A lattice problem is a mathematical problem thought to be hard to solve for both
classical and quantum computers. For use in cryptography, a lattice over Z" is
often considered. Z™ is a set of points, with integers as coordinates, in the n-
dimensional real time space R™ [14]. A lattice, L, spans Z™ which consists of a
set of n linearly independent vectors b:

d
1=1

where d is the rank, if d = n the lattice has full rank.

One of the so-called hard lattice problems is the shortest vector problem which
basically is to find the length of the shortest non-zero vector in a lattice. This
problem is NP-hard which essentially means there is no effective way of knowing
that a vector is actually the shortest vector without going through all the vectors
in the lattice and comparing if the given vector is shorter then all the other vectors.
For NP-hard problems there is no known algorithm that can solve the problem
in polynomial time, neither for regular nor quantum computers. This makes the
problem not feasible to solve and therefore often considered secure. These proper-
ties makes the lattice problem very convenient to use in cryptographic algorithms.
One algorithm that make use of the lattice problem is Ring Learning With Errors.

2.4.2 Ring Learning With Errors Key Exchange

Ring Learning With Errors (RLWE) is a computational problem that is used in
post-quantum cryptographic algorithms [35]. RLWE is derived from the problem
Learning With Errors (LWE) but is a larger problem designed for so-called poly-
nomial rings. LWE is a problem in machine learning to distinguish noisy linear
equations from random ones. RLWE can be reduced to the lattice problem short-
est vector problem and is, due to its NP-hardness considered to be secure against
quantum computers.

One suitable use for RLWE is in key exchange methods, which is used in Ring
Learning With Errors Key Exchange. The RLWE key exchange method is, similar
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to Diffie-Hellman, used to agree on a shared secret securely. Below is a simplified
explanation of the parameters and the overall steps for the method [8][36]:

e ¢ - a fixed polynomial
e s4 and ey - Alice’s private key

e sp and ep - Bob’s private key

The fixed polynomial a is known to everyone and the private keys are only
known to the owner. The private keys consist of two small polynomials where e is
an error term. To create and agree on a shared secret Alice and Bob perform the
following steps:

1. Alice creates her public key A = a* s4 + e and sends it to Bob.
2. Bob creates his public key B = a * sg + ep and sends it to Alice.
3. Alice computes the shared secret s4 * B =S4 *a*xSg+ 54 *€ep
4

. Bob computes the shared secret sp* A = sgp*xa*syq+ sg*ex

Since s4 *xeg — Sg * €4 is small, it is possible to assume that sy x B ~ sg * A
which means that Alice and Bob have agreed on an approximate shared secret. To
get an exact shared secret, Bob creates a string of "masking bits" which are sent
to Alice. The masking bits give an extra hint of Bob’s approximate secret that are
fed to a so-called reconciliation technique. The reconciliation technique together
with the masking bits provides Alice with enough information to let both parties
derive an exact shared secret with a very high probability.

2.4.3 Multivariate Signature Schemes

A multivariate public-key cryptosystem is an algorithm based on multivariate poly-
nomials which are polynomials consisting of more than one variable. This is the
main approach to provide a secure communication when large quantum computers
exist [37]. Some studies [38][3] further show that multivariate signature schemes
are theoretically more efficient than classical schemes like for example RSA or
ECDSA.

A suitable use for these cryptosystems are for signature schemes. Below is
a simple explanation of the parameters and the idea of a multivariate public-key
cryptosystem:

e F' - a multivariate system of quadratic polynomials which is easy to invert
e S and T - two affine linear invertible functions
e P=SxFxT

The functions S and T are used to hide the structure of F' by creating the
public key as P = S * F' « T which is hard to invert. The private key consists of
S, F and T and it is only when these parameters are known you can invert P.

Below, two post-quantum secure signing schemes using multivariate public key
cryptography will be described. These can be used to provide authenticity between
communicating parties.
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TTS

Tame Transformation Signatures (TTS) was first introduced in 2002 and is based
on T. Moh’s theory for digital signature using Tame Transformation [38]. It is an
extension of the first multivariate public-key cryptosystem named C* which was
broken.

There are different version of TTS and some of them are flawed which affect
the security of the cryptosystem [38][39]. Some articles even claim that TTS is
broken [40]. New versions of TTS which are gradually proposed are however said
to be secure.

Rainbow

The Rainbow signature scheme was first introduced in 2005 by J. Ding and D.
Smith. It is one of the most promising candidates to provide authenticity and
like other multivariate schemes it is very efficient and has a very fast signature
generation and verification [37].

The security of Rainbow has in the last years been investigated and many
attacks have been proposed [41]. These attacks have however not yet succeeded to
break the algorithm. This is partly due to the properties of Rainbow algorithm,
but also due to the complexity of the attacks resulting in them being infeasible to
run in polynomial time. For that reason Rainbow is considered secure at the time
of writing this report, even when considering large quantum computers.
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Chapter 3

System Description

This chapter will go through the hardware and software that was used during this
project. It will give the reader relevant information regarding the system to be
able to understand how it is configured. Furthermore it touches on the problems
encountered and how they were solved.

3.1 Hardware

The initial plan for this project was to do all the implementation and measure-
ments on a micro-controller. Due to memory problems and lack of RAM, the
measurements were in the end performed on a Raspberry Pi, more about the
problems that were encountered will be discussed in Section 6. This section will
describe the two hardware platforms, their specifications and their performance
differences.

3.1.1 STM3241G-EVAL

The STM3241G-EVAL [42] is an evaluation board with a STM32F4171G [43] mi-
crocontroller unit. It consists of an ARM Cortex-M4 core, memories and other
hardware units. Below is a more detailed list of the hardware components on the
microcontroller and the evaluation board. In Figure 3.1 a picture of the evaluation
board can be seen.

e A 168 MHz single-core Arm Cortex-M4 processor

e 1 Mbyte internal flash memory

192 Kbytes internal SRAM including 64 Kbyte of CCM (Core Coupled Mem-
ory)

2 Mbyte additional external RAM

1 Gbyte or more MicroSD card

Embedded ST-LINK/V2 debugger

23
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Figure 3.1: A picture of a STM3241G-EVAL.

3.1.2 Raspberry Pi 2 Model B
The Raspberry Pi 2 Model B [44] is a single-board computer with support for

Linux and other operating systems such as Raspbian [45], which is used in this
project. See Figure 3.2 for a picture of the board. It has the following hardware

specifications:

e A 900 MHz quad-core ARM Cortex-A7 processor
e 1 Gbyte of SDRAM

e 1 Gbyte or more MicroSD card
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Figure 3.2: A picture of a Raspberry Pi 2 Model B.

3.1.3 Performance differences

The main differences between the Raspberry Pi and the STM32 evaluation board
is that the Raspberry Pi has 4 cores, cache memory, higher clock speed and more
RAM. The code is not written to utilize more then one core at a time, to minimize
performance gains over the evaluation board. Even though the Raspberry Pi has
more RAM than the evaluation board, it has memory of a different kind. The
evaluation board has SRAM and the Raspberry Pi has SDRAM. SDRAM is a
slower and cheaper kind of RAM memory. The processor clock frequencies are
very different as well. To minimize speedup between the Raspberry Pi and the
evaluation board, the clock speed has been reduced to 700MHz which is slightly
more than 4 times faster. The clock speed was lowered in the operating system
Raspbian that was running on the Raspberry Pi. The cache memory is one of the
greatest problems when it comes to differences between the platforms. The code
gets a lot of speed up from data prefetching and cache memory because it contains
many loops and arrays that are written to and read from in order. To minimize
the effects mentioned above and make the measurements more applicable on an
IoT device the clock speed has been lowered and all parallel execution has been
turned off. Unfortunately most differences can not be levelled which is why the
Raspberry Pi will perform better than the evaluation board would.
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3.2 Software

In this project several software packages/libraries have been used to form the final
system. The individual software packages run on different levels in the system and
cover areas like operating system and TCP/IP stack. More detailed descriptions
about the individual software packages can be found below. Only the software
running on the platform is described here. The software running on the Raspberry
Pi was only the modified version of PolarSSL, apart from the operating system.
Other software such as tools etc. are left out.

3.2.1 FreeRTOS

FreeRTOS is an event driven Real Time Operating System (RTOS) that switches
processes or so-called tasks depending on priority. As most real time operating
systems FreeRTOS is also designed to be lightweight and have a small footprint to
save RAM and ROM. The exact amount of RAM and ROM used by the RTOS is
hard to say, because it is very dependent on the applications that FreeRTOS runs.
As a guideline it uses somewhere from 10KB of ROM and approximately 1KB of
RAM. This operating system was chosen partly because it had good support and
many users, but also because it was licensed under the GPL license which was
convenient for the company.

3.2.2 PolarSSL

PolarSSL is a cryptography library that for example can be used to ensure se-
cure communication over a network. In this project it was used to setup a TLS
connection between two communicating parties.

Two versions of PolarSSL were used in this project. One was a standard ver-
sion of PolarSSL and the other was a modified version with support for RLWE key
exchange and multivariate signing algorithms. The modified version was the out-
come of a research project that published their code and results [3]. The modified
version was developed for Linux systems with a lot of RAM and computational
power. Meaning that it is not ideal for an embedded system.

PolarSSL is now called mbedTLS. The reason why it is still called PolarSSL
in this report is because at the time it was modified to be post-quantum secure it
still bore the old name.

3.23 LwlP

LwIP is a lightweight TCP /TP stack that is intended for embedded systems. One
of the advantages with LwIP is that it keeps resource usage low, but at the same
time implements a full TCP/IP stack which can be very useful if the device is to
communicate with other devices in a network. It can also be used to implement
802.1x certificate solutions.
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Methodology

In this chapter the workflow and methodology is described. The aim of the project
was to run the measurements on the evaluation board, but as explained later that
was not possible.

4.1 Implementation on a STM3241G Evaluation Board

The following section describes the methodology during the project on the evalu-
ation board.

4.1.1 Workflow

The first step in the implementation part of the project was to set up a regular
lightweight version of PolarSSL with FreeRTOS and LwIP. When all components
worked together and the TLS connection had been verified, it was time to switch
cryptography library to the modified PolarSSL with support for post-quantum al-
gorithms. This is illustrated in Figure 4.1, where the modified version of PolarSSL
is called PQ-PolarSSL.

The new version of PolarSSL was included into the project and the first task
was to get classical cryptography working. The project seemed however to need
more RAM than was available, even for the classical cryptography.

To be able to run the new setup the external RAM on the evaluation board
was needed. A lot of work was needed to get the RAM working properly but it
made it possible to run the application with a post-quantum cipher suite, at least
to a certain point in the TLS handshake where the application crashed due to some
memory problem. Since it seemed to be a problem with FreeRTOS it was updated
to a newer version. This together with a change of memory allocator in FreeRTOS
did unfortunately not fix the problem. A more detailed description of the problems
and solutions will be described in Section 6.5.2. In the end the measurements were
executed on the Raspberry Pi, due to the fact that the bugs and problems with
external RAM and FreeRTOS were not solved in time. A description of that can
be found in Section 4.2.
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FreeRTOS

Figure 4.1: Shows what part of the software was changed and what
was left the same.

4.1.2 Test and debug

To test and debug the application during the implementation process different
techniques were used. When classical cryptography was running, a simple web-
server displaying a small website was set up on the evaluation board which could
be accessed via a web browser running on a computer connected to the same net-
work. Traffic could then be analyzed with the network analyzer Wireshark [46] to
verify that everything was working as expected.

Since normal web browsers do not support post-quantum cryptography an-
other technique to debug the modified version of PolarSSL was needed. Two
evaluation boards were connected to a switch, the two ports that the evaluation
boards were connected to mirrored their traffic to a third port. The third port
was connected to a computer that monitored the communication with Wireshark
to ensure that the TLS handshake was performed in a correct manner. This setup
is graphically shown in Figure 4.2

4.2 Implementation on a Raspberry Pi

421 Workflow

Since the modified version of PolarSSL was originally implemented to run on a
Linux machine it was also directly compatible with Raspbian running on the Rasp-
berry Pi. It could easily be compiled and built with a simple Make-command, and
then executed.

For simplicity both the server and the client were started on the same Rasp-
berry Pi communicating locally over localhost. Since only one party is operating at
a time and the focus of the thesis is not to measure network utilization this should
not affect the final result. The clock frequency for the processor was configured to
700 MHz to at least be a little more similar to an IoT device.

When the setup was verified to be correct, the server and the client were con-
figured to run with different cipher suites to compare the key exchange methods.
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Figure 4.2: Setup of how the evaluation boards were connected to
the computer running Wireshark.

4.2.2 Measurements

The measurements were conducted by using the clock in the operating system
and calculate the difference before and after the key exchange. Other techniques
like counting the number of clockcycles for a process were considered but since
the interest is in the total amount of execution time, both for the server and the
client, the clock was used.

The clock has a resolution of microseconds and to make the result more ac-
curate each key exchange method was executed 100 times and a mean value was
calculated.

For the LATTICEE (RLWE) based suites there are two sets of parameters that
offer different levels of security. Paraml offers 80 bits of security and param3 offers
128 bits of security [3]. For a more specific description of the different parameters,
see [47].

The cipher suites that were used during the tests were the following:

o TLS-DHE-RSA-WITH-AES-128-GCM-SHA256
TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA 256

o TLS-LATTICEE-RAINBOW-WITH-AES-128-GCM-SHA256 with paraml
TLS-LATTICEE-RAINBOW-WITH-AES-128-GCM-SHA256 with param3
TLS-LATTICEE-TTS-WITH-AES-128-GCM-SHA256 with param1

e TLS-LATTICEE-TTS-WITH-AES-128-GCM-SHA256 with param3

The RSA that was used in this project was 2048-bit RSA, and for ECC, 256-bit
ECC was used. The reason that DHE-RSA and ECDHE-ECDSA were selected was
that they are common key exchange methods at the present time and the cipher
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suite offered the same symmetric encryption and MAC as the post-quantum secure
cipher suites used. The other signing algorithms used were TTS and Rainbow,
where T'TS version one was used. There are several versions of TTS and version
one is believed to be insecure at present time. Rainbow on the other hand is not
regarded as broken.

The creators of the modified version of PolarSSL named the RLWE-based key
exchange method LATTICEE as you can see in the list above. In this report it
will be called RLWE.

As can be seen in the list above, the same MAC and encryption algorithm
were used for all the suites. Only the key exchange and signing algorithm differs.
That is to keep the measurements as accurate as possible, even though only the
key exchange part of the communication is timed.



Chapter 5

Results

In this section the main results will be presented. See Table 5.1 for information
about how long time the different key exchanges took. In Table 5.3 and Table 5.4
one can see the amount of RAM the client and the server application required to
execute respectively, analyzed with Valgrind [48] using the tool massif. In Table
5.2 performance information is displayed for both platforms. Dhrystone Million
Instructions Per Second (DMIPS) is a benchmark metric which can be used to
compare processor performance [49].

The key exchange methods using classical cryptography are faster than the
ones using post-quantum cryptography, the duration is however very dependent
on the parameters being used as can be seen in Table 5.1.

Cipher suite ‘ Time (s)
DHE-RSA 0.9141
ECDH-ECDSA 1.3716

RLWE-RAINBOW-paraml | 1.9293
RLWE-RAINBOW-param3 | 3.4594
RLWE-TTS-param1 1.7993
RLWE-TTS-param3 3.4216

Table 5.1: Duration of the key-exchange for different cipher suites
running on the Raspberry Pi.

Platform | DMIPS/MHz | DMIPS | Speed (MHz)
Raspberry Pi 2 Model b 1.9 1330 700

STM3241G-EVAL 1.25 210 168

Table 5.2: Performance figures for the hardware platforms.

The standard implementation of PolarSSL uses less RAM than showed in Table
5.3 and Table 5.4, and was possible to run in internal memory on the evaluation
board. Since the initial project was developed for an evaluation board it could
not run on a Linux machine and it was therefore not possible to evaluate with
Valgrind. What can be said is that the standard implementation requires less RAM

31



32 Results

than the 192KB of internal RAM that the evaluation board has. The memory
usage measurements shown in the tables are only for PolarSSL, in order to run
the application on the evaluation board it requires LwIP and FreeRTOS which
also require some RAM and ROM even if it is a small amount in comparison to
PolarSSL.

The server and client applications with the modified implementation of Po-
larSSL could not be run on the evaluation board in internal RAM regardless of
key exchange method. The application that required the least amount of RAM
was the server running DHE-RSA, which required at least 133KB more RAM
compared to the 192KB of internal RAM that the evaluation board had. From
this one can see that it is hard to implement post-quantum secure TLS on the
evaluation board due to memory constraints. Several of the key exchanges could
be run on the evaluation board with external RAM, that gives an indication that
it is possible, but will be slow in terms of performance.

Cipher suite RAM usage (kB)
DHE-RSA 342
ECDH-ECDSA 349
RLWE-RAINBOW-param1 1721
RLWE-RAINBOW-param3 2939
RLWE-TTS-param1 1683
RLWE-TTS-param3 2872

Table 5.3: RAM usage for the client application in PQ-PolarSSL.

Cipher suite RAM usage (kB)
DHE-RSA 325
ECDH-ECDSA 328
RLWE-RAINBOW-param1 1822
RLWE-RAINBOW-param3 2985
RLWE-TTS-param1 1717
RLWE-TTS-param3 2858

Table 5.4: RAM usage for the server application in PQ-PolarSSL.

The measurements performed on the code are from compiling the code with
GCC using optimization level 2. All other optimizations that can be turned on
in PolarSSL have been turned off, such as specific optimizations for algorithms or
other optimizations for using less RAM or ROM. Optimization for size has not
been used either when compiling the project.
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Analysis

In this project we have evaluated different key exchange methods and signing
algorithms to see if post-quantum secure cryptography could be used today. Fur-
thermore is it possible to use in a low performance IoT platform?

The measurements have been performed on a Raspberry Pi, even if it was not
our original idea of an IoT-device. One can however easily view it as an IoT-device
because the term IoT is very broad. What we refer to as an IoT device in our report
is a device with performance similar to our evaluation board. The analysis will
still cover IoT devices, even though a Raspberry Pi has fairly high performance.
Our theory about the future of IoT devices from a security standpoint will also be
presented.

In this thesis we have mainly focused on the actual performance i.e. how fast
a key exchange can be performed. Other factors that can be of equal importance
is footprint, memory usage, security, power consumption and so on. It is very
important to keep in mind that a recommendation in this report is not necessarily
the correct recommendation for another application running in another environ-
ment. The importance of the aspects mentioned above can differ a lot and might
result in a different key exchange method or higher respectively lower security
being selected.

It is not impossible that low performance IoT devices will have the computa-
tional power of a Raspberry Pi in the future. Because the cryptography analysis in
this project also is intended for the future, we still think it is relevant even though
no measurements have been performed on what we refer to as an IoT device in
this report. In this chapter these topics will be discussed and answered.

6.1 Measurements

As can be seen in Table 5.1 the classical algorithms have the fastest key exchange.
Thereafter comes the RLWE key exchange method with paraml using TTS as
authentication algorithm closely followed by Rainbow. The difference is however
only 0.4 seconds when comparing ECDH-ECDSA with RLWE-TTS using param1
which makes RLWE-TTS the best candidate for a post-quantum key exchange
method when considering speed. Looking at Table 5.3 and 5.4 one can see that
RLWE-TTS is also the method that uses the least amount of RAM, using param]l.

If looking at the same cipher suites but for param3 the durations are around
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1.5 seconds larger than the measurements for paraml. Also with these parameters
the TTS authentication algorithm is slightly faster than Rainbow. These results
are considerably longer than the ones with the classical algorithms, being almost
4 times slower than DHE-RSA and 2.5 times slower than ECDH-ECDSA.

According to our measurements the signing algorithm does not affect the per-
formance to a large extent. TTS is marginally faster than Rainbow according to
the result, which is to be expected since they are based on the same problem but
TTS has smaller private keys. For the same reason TTS uses less memory com-
pared to Rainbow. It is the key exchange itself that is the most time consuming
part.

Previously stated, in Section 4, 100 measurements were done for each cipher
suite to make the result more accurate. When looking at these measurements the
values were varying somewhat between the readings. This is probably in part due
to the complexity of the algorithms. The polynomials and parameters being used
for the key exchange are randomly generated and can therefore be of different
complexity. They are always the same length but can be harder or easier to
process by the algorithm and can therefore give some different results among the
runs. One must also keep in mind that the algorithm is non-deterministic, meaning
that the result can differ even for the same input. Another thing that could affect
the preciseness of the result is the fact that the application is not executed on a
real-time operating system. The risk with this is that another process with higher
priority could interrupt the execution of our measurement.

To get an indication about how many times faster the Raspberry Pi is com-
pared to the evaluation board one can look in Table 5.3, where DMIPS is presented
for both platforms. According to DMIPS is the processor used on the Raspberry
Pi over 6 times faster than the processor on the evaluation board.

6.2 Parameter choice

We have not tested all possible parameters for the algorithms and recently there
have been some suggestions for better parameters, some offering up to 70% key
reduction [50]. That would probably speed up the key exchange considerably. On
the other hand the mathematical problem could possibly increase in complexity
and therefore be more time consuming to compute. One must keep in mind that
it is not only the key size and overhead that is limiting the performance, it is also
the computation of the polynomials that takes up a lot of time. To save time one
could have the polynomials pre-generated, but that would not be a secure solution
even if it would save a lot of time.

The parameters are specific for the key exchange method RLWE. In the future
it is possible that not only new parameters will exist for RLWE, however it is
also possible that new lattice based cryptography algorithms are present. Because
the field of computer security and cryptography is always changing it is hard to
give a recommendation about parameters or even algorithms for that matter. The
parameters and algorithms selected at the time of the thesis where the ones best
suited for our needs at the time.
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6.3 Suitable for loT devices and security

Even in the future when the general performance has increased, there will still be
a need for cheap low performance devices. This is a big problem, when security
is neglected in order to produce cheap and innovative devices connected to the
internet. Companies will not start producing secure IoT devices until customers
start demanding high security and customers will not start demanding security
until they understand the risk they are at.

If one compares ECDH-ECDSA with RLWE-TTS-param1 or RLWE-RAINBOW-
paraml, the performance penalty is not too large. On the other hand, they only
offer 80 bits of security, as can be seen in Table 6.1, which is a rather low se-
curity level compared to the elliptic curve with 128 bits security. From this we
can conclude that it is pointless to use these cipher suites today because they are
slower and have lower security. But the day large quantum computers are around
DHE-RSA and ECDH-ECDSA will be broken and then 80 bits will be better than
none. The security level of 80 bits is however too low to be classed as secure and
preferably the corresponding cipher suites with parameter set 3 would be used to
provide 128 bits of security. On the other hand if memory usage is very important
it could be very hard to adopt one of the RLWE based key exchange methods
using parameter set 3, as they require almost 3MB of RAM each.

Cipher suite bits of security
DHE-RSA 112
ECDH-ECDSA 128
RLWE-RAINBOW-param1 80
RLWE-RAINBOW-param3 128
RLWE-TTS-param1 80
RLWE-TTS-param3 128

Table 6.1: Bits of security for different cipher suites. [2][3]

The durations for the key exchanges with RLWE-TTS and RLWE-RAINBOW
with param3 are a lot longer than the duration for the classical ones. We therefore
think that they are too slow for today’s IoT devices, maybe even for a relatively
high performance platform as a Raspberry Pi, where it take over 3 seconds to
perform the key exchange. For many applications that is too long and it would
create a bad experience for the user of the system. Small hardware platforms like
IoT devices are however continuously increasing in performance and in a couple of
years they might have sufficient performance to run these algorithms in reasonable
time. If not, one can hope for faster post-quantum algorithms or better optimiza-
tion of existing post-quantum algorithms. Hopefully this will happen before large
quantum computers exist.
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6.4 Optimization

The RLWE key exchange method has not been optimized in the same way as the
algorithms used today have been. Many other key exchange methods have been
used for many years and these implementations have continuously been optimized
to be as efficient as possible, yet retaining their security. RLWE is a rather new
technique compared with for example DH and optimization of the implementation
could probably bring up the speed a lot. RLWE-TTS-param1 could possibly be
optimized down to a figure as low or lower than ECDH-ECDSA. This project did
not have the time to do a correct security analysis and we did therefore not try to
do any optimization of our own because of the risk of destroying the security of
the algorithm.

The modified version of PolarSSL that was used had been developed on a pow-
erful Linux machine. It was therefore not suitable for this kind of low performance
hardware platform and little or no attention had been paid to how much RAM
the applications needed.

6.5 Problems

As mentioned in Section 4.1, many problems were encountered when trying to
implement the modified version of PolarSSL on the evaluation board. This section
will go through the problems and solutions more thoroughly.

6.5.1 Development environment

One of the most frequent problems during the thesis project was the development
environment. Instead of using Linux machines and make files, we used Windows
and an Eclipse-based development tool. This tool was easy to start using and
getting a project working quickly, but every time one wanted to change a file or
update something in the project we ran into trouble, due to linking problems and
other limitations in the development tool. Changing a file or updating a library in
a project is a very common task and should be easy to have a good workflow. We
realize now that using make and GNU tools would have been much easier in the
long run, even if it had meant a learning curve in the beginning. At the point we
realized that we had made a mistake in the choice of development environment it
was too late to change. We had already invested a lot of time in to it and changing
environment would only mean more setbacks. Therefore we stuck with the Eclipse
based environment throughout the length of the project.

6.5.2 Upgrading to post-quantum algorithms

The first challenge was to include the new version of PolarSSL into the existing
workspace. Even if the architecture was the same, the modified version had a fair
amount of changes made to it. The modified version was also considerably larger
in size compared with the first lightweight version. We changed the configuration
file to optimize for low RAM and ROM and optimized the code by decreasing
unnecessarily large allocations. We realized quite fast that more RAM memory
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was needed to be able to run the modified version of PolarSSL and especially to
be able to run the post quantum algorithms. After all one of the polynomials
required up to 100KB of RAM and the certificates ranged from 70KB to 250KB
depending on algorithms. Running that on an evaluation board with 192KB of
RAM would be very hard or even impossible.

The implementation of the external RAM was very troublesome. It proved to
be very hard to use the combination of FreeRTOS and external RAM because when
using FreeRTOS with its own memory allocator the stack is placed in the heap.
This meant that the system had multiple heaps and stacks growing in different
directions. After a lot of debugging and different setups for how memory was
allocated and located in RAM the system worked.

After the external RAM was correctly configured with FreeRTOS the first step
was to run classical cryptography, which we now got working. When switching to
RLWE as key exchange method everything seemed to work until the server was
going to generate its public key. After many more hours of debugging we figured
out why. At one point in time during the key exchange the server had some
overflow issues where the memory allocator had very strange values for a variable
that tracked how much memory the system had left. Just before the variable got
corrupt values it had approximately 1MB of RAM left. We spent a tremendous
amount of time to try and fix this issue, with help from our supervisor, but nothing
seemed to help.

We found a bug in FreeRTOS update history that displayed similar behavior
as our application and decided to update our operating system to a newer version.
According to their update history the bug should have been corrected in the version
we where running but this was a safety precaution. Unfortunately the update did
not help, not even after changing the memory allocator. Due to lack of time we
decided to run the measurements on a more powerful platform. The company had
a Raspberry Pi at their disposal and even if it is not very low performance we
decided to use it instead of using the evaluation board.

After evaluating the server and client application on the Raspberry Pi, with
Valgrind, it is however evident that it would not be possible to run the applications
on the evaluation board without modifying it further. According to the memory
profiling tool massif, with information about stack enabled, the server application
uses 2858 kilobyte of RAM at its peak and the client uses 2872 kilobyte of RAM at
its peak, as can be seen in Table 5.3 and Table 5.4. In order to run the applications
on the evaluation board one would have to rework the whole code and that was
not possible in this 20 week long project.

6.6 Conclusions

Security is very important, not only for IoT devices. In the future when RSA,
elliptic curve and Diffie-Hellman will be broken we suggest to use one of the post-
quantum secure key exchange methods that were evaluated in this project. How-
ever if better suited algorithms have been invented in the future they should be
used instead. In other words we think that at the time of the project, lattice
based key exchange methods offer good qualities in terms of footprint, memory
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usage, speed and security. Furthermore we think that multivariate signing algo-
rithms such as Rainbow and TTS also are promising candidates for the future.
The day large quantum computers are produced the performance of regular com-
puters and embedded systems may be significantly higher, meaning that a more
time consuming algorithm today may have reasonable speed in the future.

We see no need to change the key exchange methods used today if speed for
the key exchange is important, because it is hard to justify halved speed for equal
security level. If security is very important and the system has higher performance
than an IoT device then maybe it could be worth it. Again it is very dependent
on the application. If time was invested in the algorithms and it was possible to
achieve performance equal to today’s public key cryptography then it would be
wise to change algorithms and be protected before the current standards have been
broken.

TTS has been claimed to be broken at different points in time and several
versions of TTS have been developed to cope with the vulnerabilities. For that
reason we suggest that Rainbow should be used instead as a signing algorithm
because it is not vulnerable to known attacks.

If large quantum computers are produced earlier than expected and IoT devices
have not yet caught up in performance then we think that the price of one or two
extra seconds during the key exchange is low compared to the security gain it offers.
We would gladly wait that time, and start using post-quantum secure algorithms
like RLWE, TTS, Rainbow and double key size for symmetric encryption provided
that the devices have enough RAM to run the algorithms.

Below are the main conclusions listed:

e [t is possible to set up a secure TLS connection on the evaluation board
using classical cryptography

e It is hard to implement post-quantum secure TLS on the evaluation board
due to memory constraints

e [t is not possible to run the modified version of PolarSSL being used in this
project on the evaluation board without major rework.

e The RLWE key exchange method with small parameters can be used on a
Raspberry Pi for key agreement with reasonable time, it however provides
only 80 bits of security.

e The RLWE key exchange method with large parameters can be used on a
Raspberry Pi to provide 128 bits of security, it takes however over three
seconds for the key exchange. In the future when the performance of IoT
devices has been increased, this configuration may after all be a good solu-
tion.

e Lattice-based cryptography seems like a good candidate for key exchange in
the future, at the time of the project.

e Multivariate-based cryptography seems like a good candidate for signing in
the future, at the time of the project
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Future work

If time allowed it would be very interesting to further develop the platform and add
more support for several different key exchange methods that are post-quantum
secure. During the project some ideas have come up that would be fun to elaborate
further, that we did not have time to do or was out of the scope of this project.
As we said before there is only so much that one can do in 20 weeks.

Because we struggled a lot with the development environment we would like to
migrate the whole project to Linux instead so that for example GNU tools could
be used instead and compilation could be done with make. This would also be
valuable knowledge to have for the future.

Examples of algorithms that would be interesting to implement and evaluate
further are NTRU, SIDH and possibly some McEliece algorithms. In this project
we only had time for one key exchange algorithm and therefore it is hard to
conclude if that is the best suited algorithm for our application. It is also hard to
say if it is a candidate at all when no measurements have been made in between
different post-quantum algorithms. For that reason it would be very interesting
to see how the other algorithms perform, and how much memory they require
to run. We would be especially interested in seeing how NTRU would perform
compared to for example RSA, Diffie-Hellman, but also to other post-quantum
algorithms. It would be interesting for the simple reason that according to the
companies performance figures, NTRU is supposed to be superior compared to
other algorithms. Doing some measurements on all the algorithms would reveal if
NTRU is fast in general or only in specific circumstances.

Instead of running everything on a Raspberry Pi it would be fun to run it on
one of Axis platforms and see how it performed there. To take it even further it
would be interesting to try and integrate our platform with several of the companies
products, and make it work well with their platforms. Another hardware related
idea that we would like to explore further is exactly how small hardware platform
one can use for this project? What is the least amount of ROM and RAM that
the system can have? Could we potentially rewrite some parts of the code to save
some extra memory?

An interesting project would be to optimize the RLWE algorithm so that
RAM and ROM were used in the most efficient way. All constant variables could
be stored in flash and loaded piece by piece so that RAM memory was saved, after
all flash memory is much cheaper then SRAM. But that would require a lot of
time and in the end the algorithm would have to be analyzed to see if it still was
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secure.

Lastly, but not least we would like to figure out a good way to debug our
memory bugs and shed some light on what actually went wrong. It is still an
unanswered question why we could not use all of the external RAM, after all some
of the post-quantum secure algorithms used less then 2MB of RAM and should
have been able to run in external memory on the evaluation board.
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Appendix A

Appendix

Listing A.1: Pseudo code describing the steps for encryption in the

AES/Rijndael algorithm. Nr denotes the number of rounds and
the expanded key is derived from the cipher key.

rijndael (state , cipher key)

{

}

key expansion (cipher key, expanded key);
add round key(state, expanded key[0]);
for(i = 1; i < Nr ; i++)

round (state , expanded key|[i]);
final round (state, expanded key|[Nr]);

round (state , expanded key[i])

{

}

sub_bytes(state);

shift _rows(state);

mix_columns(state);

add round key(state, expanded key[i]);

final round(state, expanded key[Nr])

{

sub_bytes(state );
shift rows(state);
add _round key(state , expanded key|[Nr]);
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