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Abstract

This thesis is an extension to the previous work done at Department of EIT in
investigating the complexity reduction of LDPC decoding using the stochastic
approximation method to improve the energy efficiency of energy-limited applica-
tions, such as in mobile phones.

The research carried out in this thesis investigates the complexity and conver-
gence results of adaptive performance control algorithm (PCAA) that changes the
forced convergence threshold in OMS LDPC FC decoding algorithm. The simula-
tions are performed on IEEE802.11n OFDM communication system for Additive
White Gaussian Noise (AWGN), indoor Rayleigh time varying frequency flat and
Rayleigh frequency selective fading channels. Performance results are obtained
by running various combinations of LDPC decoding parameters and results are
documented for parameter profiles that meet the specified BLER target criteria.

In order to visualize the results, simulations are performed by implementing
OFDM, PCAA and relevant channel models in MATLAB c© and LDPC forced
convergence decoder in C. By doing that it was possible to shorten the simulation
time as LDPC decoder takes longer in MATLAB c© compared to C. Performance
metrics such BLER against Eb/N0, complexity and convergence for various mod-
ulation and coding (MCSs) schemes are produced via this setup.

The aim of the thesis is accomplished and results obtained indicate signifi-
cant convergence time reduction compared to previous methodology [1]. It is also
concluded that optimum complexity and convergence trade-off is obtained when
Δθd is set to Block Error Rate target (BLERt) in AWGN channel set-up. By
applying this optimum configuration to both time varying frequency flat fading
and frequency selective fading channel encouraging results are observed. PCAA
tracks the channel changes in both fading cases while meeting specified BLERt

and with significant complexity savings relative to non-forced convergence LDPC
decoding.
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Chapter 1
Introduction

Wireless communication technologies are getting more complex due to the require-
ments of delivering a high data rate while maintaining reliable communication.
Reliable communication across a wireless medium requires proper channel encod-
ing and decoding. That is, to add enough redundancy to the information while
keeping the information rate as high as possible. A common approach is to select
combinations of modulation schemes and coding rate adaptively according to the
channel conditions and the received Signal to Noise Ratio (SNR). Poor chan-
nel conditions result in lower coding rate (high number of redundant bits) thus,
resulting in higher complexity at the receiver side. Higher complexity computa-
tion comes at the cost of more power consumption, which is a limited resource
especially at Uplink (UL).

An attempt to reduce the complexity of such systems is discussed in [1]. In that
paper, an IEEE802.11n Orthogonal Frequency-Division Multiplexing (OFDM)
communication framework with Low-density Parity-check (LDPC) as Forward Er-
ror Correction (FEC) was employed to study the impact of the receiver complexity
reduction on the system performance. A Forced Convergence (FC) algorithm is
used to reduce the complexity of LDPC decoder. LDPC decoder works in an
iterative manner on a received block, and it provides improved estimates of the
codeword bits in a block. As the iterations increases, the improvement will also
increase, which will increase the complexity as well. The idea of the FC algorithm
is to stop the improvement of such codeword bit that has achieved a predefined
quality threshold (θ). As a result, the complexity of the LDPC decoder will de-
crease.

Determining an optimum θ is a challenging task due to the fact that the op-
timum θ changes depending on the SNR. Setting θ to a lower value than the
optimum one will result in a poor system performance. The system performance
criteria used in [1] is measured in Block Error Rate (BLER), which should in aver-
age meet a Block Error Rate target (BLERt) of 10−2. A significant improvement
in complexity savings was observed. However, the optimization approach of the
stochastic approximation method that determines the optimum θ of the FC algo-
rithm results in slow convergence. Slow convergence means that the system will
take a long time to find an optimum θ. The slow convergence impacts the tracking
capability of the optimization algorithm on time varying channels. While the sys-
tem is trying to find this optimum θ, the channel will change and the optimum θ
determined on the previous channel state will not be useful any more. Due to this
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2 Introduction

the system will not converge to an optimum state, leading to a higher complexity
than the possible optimum one.

In this project, we focus on reducing the complexity of an LDPC decoding
block of the receiver. The aim is to find the value of θ in the FC algorithm that
will minimize the decoding complexity of the LDPC in a IEEE802.11n system,
while keeping the BLER at a minimum BLERt. Most importantly, the conver-
gence time of finding the optimum θ should be as short as possible, compared with
the convergence time in [1]. To find the optimum θ in this project, an adaptive
optimization approach of Performance Control Adaptation Algorithm (PCAA) is
used. PCAA is a technique used in LTE power control algorithm for adjusting
SNR offsets. The appeal of this algorithm is its ability to meet the minimum per-
formance criteria of BLER along with faster system convergence. The PCAA will
change the value of θ of the FC LDPC decoder according to the block decoding
success or failure. Lastly, an extensive analysis of decoding optimization parame-
ters under AWGN and frequency flat/selective fading channels, is performed and
documented.

The work uses the same communication framework as used in [1], IEEE 802.11n
standard. The communication system implements an OFDM access method and
an LDPC FEC. Simulations are performed on an AWGN channel during the first
stage of the project. This is the stage where the optimization parameters have been
tested over a wide range of values. By trying different values and combinations
for these parameters, a better trade-off between complexity and convergence is
investigated. Performance and complexity calculations are shown in section 3.2.1.
The average complexity savings, convergence, and θ behaviour are presented as a
result of the simulations.

After testing the system in an AWGN channel, simulations are performed using
an indoor environment of Rayleigh flat fading, time varying channel and finally
for a frequency selective, time varying channel. These set-ups use the optimum
decoding parameters obtained from the first stage of the project. The equalization
in figure 1.1 is performed in time domain for the frequency flat fading, whereas it
is performed in frequency domain for the frequency selective fading.

Figure 1.1: Block Diagram of Communication System
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1.1 Outline of the Thesis

The thesis report firstly covers the concepts of parity-check constraint, Tanner
graph representation of a parity-check matrix H, log likelihood algebra, and chan-
nel values LLR calculation. Finally, the major LDPC decoding algorithm is cov-
ered in detail with a pseudo code and an example in chapter 2. Chapter 3 provides
a detailed overview of the FC OMS and PCAA algorithms that are used to solve
the described problem and the development of the analytical model in complexity
calculation of LDPC decoding. Pseudo code and numerical example are provided
for a better understanding of these algorithms as well.

In chapter 4, the basics of OFDM communication transmission and its main
limitations are discussed. Later, the chapter covers the signal power and SNR
calculation formulae. Simulation parameters for the OFDM system, LDPC, PCAA
and various channel configurations with simulation methodology are introduced in
chapter 5.

In chapter 6, we present simulation results of LDPC coded OFDM signal
transmission over an AWGN, frequency flat and frequency selective fading channel
for various configurations of simulation parameters. This chapter also concludes
the best configuration that provides a reasonable complexity reduction with the
fastest convergence on AWGN and performance of this configuration in frequency
flat and frequency selective channels. Finally, in chapter 7 concluding remarks
with discussion on future works are presented.
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Chapter 2
Theoretical Background of LDPC

Low-density parity-check (LDPC) codes are a class of forward error correction
(FEC) codes that were first proposed by R. G. Gallager [2] in his PhD thesis in
1960’s. The code remains neglected due to high computational effort in implemen-
tation until they were recovered by Mackay and Neal [3] in 1990’s.

Significant changes has happened in the error control coding (ECC) field with
the invention of turbo codes, the class of Shannon capacity approaching codes, by
Berrou, Glavioux and Thitimajshima in 1993 replacing the widely used algebraic
approach for successful error correction codes. Turbo codes feature iterative decod-
ing, focus on average rather than worst case performance and use soft information
(probability) of channel with manageable implementation complexity.

While research on turbo codes was active in 1990’s, two researchers, McKay
and Neal introduced a new class of block codes that were similar to turbo codes.
It was later proved that the algorithm used to decode turbo code is a special case
of LDPC decoding algorithm presented by Gallager in 1960’s.

The availability of hardware that accommodates high computational complex-
ity of LDPC decoding in 1990’s initiated a huge research in LDPC codes leading to
new generalization, irregular LDPC codes for instance, of LDPC codes presented
by Gallager. Irregular LDPC codes outperform the best turbo codes and offer
practical advantages in terms of implementation.

2.1 Error Correcting Codes

In this project, binary data messages are considered and hence the information
sequence is strings of 0’s and 1’s. Error correcting codes in Galois field (GF(2))
map a sequence of binary data bits u into a longer codeword sequence v. ECC
has the capability to correct the transmission errors in v over a noisy channel and
recover the data bits u given that the number of errors does not exceed the error
correction capability.

The encoding of binary data sequence can be performed by using the following
two different methods,

1. Block coding

2. Stream coding

5



6 LDPC

In block coding, the data sequence is divided into blocks of K bits and coding
is applied to each block. This application produces a codeword of N bits for each
information bits block. In stream coding the data sequence is fed to a finite state
machine (FSM) that can be represented by a trellis. FSM then produces one or
more code bits for each data bit.

2.1.1 Error Correction using parity-checks

The essential idea of FEC coding is to add redundancy to the information bits
in the form of check bits to produce a codeword for the message. The simplest
coding scheme is to add a single parity bit check (SPC) to the message bits. In an
even SPC code, the additional bit is added to the message bits in a way to make
an even number of 1’s in the codeword. For instance, for a 3 bits long message
with even SPC we define a codeword v to have the following structure

v = [C1 C2 C3 C4],

where each Ci can be 0 or 1 and all codewords satisfies the condition

C1 ⊕ C2 ⊕ C3 ⊕ C4 = 0. (2.1)

Equation (2.1) is called parity-check equation and the symbol ⊕ represents modulo-
2 addition.

The SPC codeword is not powerful enough to detect more than one error in
the transmitted bits sequence correctly. Furthermore, if there are even number of
errors then the parity-check will fail to detect the error. In order to detect more
than a single bit error, more redundancy in terms of parity-check bits is needed.

Example 1 A codeword structure is as follows

v = [c1 c2 c3 c4 c5 c6],

and in order to be a valid codeword it is required for it to satisfy the
following parity-check equations

C1 ⊕ C2 ⊕ C4 = 0

C2 ⊕ C3 ⊕ C5 = 0

C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0.

(2.2)

The codeword constraints are usually written in a matrix form and therefore
constraints defined in equation (2.2) become

H =

⎡
⎣1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 1 0 1

⎤
⎦ .

The matrix H is called a parity-check matrix. Each row corresponds to a
parity-check equation and each column of H represents a codeword bit. A code-
word v = [c1 c2 c3 c4 c5 c6] is a valid codeword if and only if it satisfies the
following constraint equation
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vHT = 0, (2.3)

where H is an ((N −K)×N) order matrix with K as the number of message bits
and N as the number of codeword bits. To generate the codeword for information
bits the code constraints can be written in a systematic generator form

C4 = C1 ⊕ C2

C5 = C2 ⊕ C3

C6 = C1 ⊕ C3 ⊕ C4 ,

(2.4)

and a systematic generator matrix can be written as follows

G =

⎡
⎣1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

⎤
⎦ .

Given a 3 bit information message u = [c1 c2 c3 ], a codeword v can be obtained
by using the following equation

v = uG. (2.5)

2.2 Description of LDPC Codes

LDPC codes are linear block codes characterized by a sparse parity-check matrix
H. H is a low density matrix with a majority of zero entries. An (dv, dc) LDPC
code determines that every codeword bit involves dv parity-check equations and
every parity-check equation involves dc codeword bits. In irregular LDPC codes
dv and dc vary for variable and check node and in regular LDPC codes dv and dc
degree of each node remains the same for all the variable and check nodes. An
example of regular (2,4) LDPC code ensemble is as follows

H =

⎡
⎣1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1

⎤
⎦ . (2.6)

An error correction code can be described by more than one parity-check
matrix as long as equation (2.3) holds for all the codewords in a code. Two
parity-check matrices for a same code are not necessarily required to have the
same number of rows; what necessary is that the rank of GF(2) for both matrices
should be the same and thus making it possible to have more than one ensemble
of H matrix for the same code. The number of information bits, k, in a binary
code is

n− k = rank(H), (2.7)

where the rank of H matrix is the linearly independent rows of H over GF(2).
Each parity-check equation typically reduces the number of degrees of freedom by
one, the design rate of the (dv, dc) regular LDPC code is
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R(dv, dc) ≥ N −K

N
= 1− dv

dc
, (2.8)

where equality holds when H is a full rank matrix.

2.2.1 Graphical Representation of LDPC Codes

A Tanner graph is an effective way to describe LDPC codes graphically [4]. It
may be used to describe the constraints that a codeword must fulfil in order to
belong to a particular linear code block. Furthermore, it is convenient to use a
Tanner graph to describe the iterative message passing decoding. In a bipartite
Tanner graph, there are two sets of nodes: variable nodes (v-nodes) for codeword
bits and check nodes (c-nodes) for parity-check equations. An edge connects a
variable node to a check node if that codeword bit is included in a parity-check
equation. A node has a degree i if i branches leave from that node and connect to
i different nodes of other kind. Figure 2.1 shows a Tanner graph which is related
to a parity-check described matrix H in section 2.2.

Figure 2.1: Tanner graph representation of regular (2,4) LDPC code

2.3 Decoding Algorithms for LDPC Codes

Decoding of LDPC code is performed by using the message passing algorithms
since their operation can be explained by sending the message along the edges of a
Tanner graph. These algorithms are also known as iterative decoding algorithms
as the message passes back and forth in between parity and check nodes. The
most common type of algorithms, such as belief propagation (BP), use probabili-
ties as messages to exchange in between variable and check nodes. V-node sends
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an estimated a priori message to its connected c-node. The c-node, after receiv-
ing a priori messages from its connected v-node, performs the parity constraints
computation and returns the extrinsic information. This processing of variable
and check node constitutes one iteration. It is often easier to use log likelihood
ratio to represent estimated probabilities, in that case BP decoding is often called
sum-product (SP) decoding.

Before describing these algorithms in detail, an overview of Log Likelihood
Ratios (LLR) calculations of probability distributions is described in section 2.3.1.
In this project, low-complexity approximation of sum-product (SP) algorithm is
used. This low complexity version of SP algorithm is known as the offset min-sum
(OMS) algorithm [7]. Layered scheduling [8], [9] is used for block decoding. In
layered scheduling, the decoder begins with first layer, corresponding to the first
row of parity-check matrix, and exchange the LLR messages within v-nodes and
c-node of a layer. Decoding follows the same procedure on all layers in a sequential
manner. At the end of the last layer decoding, the LDPC decoder is said to have
completed one iteration with updated a posteriori LLR at its v-nodes.

2.3.1 Channel Model and Log-Likelihood (LLR) Calculations

We here consider the following system model

y = hx+ n, (2.9)

where x = {1,−1}, y, n ∈ � represents the channel input, output and noise re-
spectively. � denotes the set of real numbers and h ≥ 0 is the fading channel gain
with Rayleigh distribution by its probability distribution. In this study n is white
Gaussian noise with zero mean and variance σ2

n and channel knowledge is assumed
to be known at the receiver.

For binary codes we use soft values for a priori probabilities of received sym-
bols. These soft values are also termed as a priori Log Likelihood Ratio (LLR
) of bit x. A log likelihood ratio for the bit x with an a priori probability p(x)
is defined in equation (2.10), it is to be noted that 0 is mapped to +1 and 1 is
mapped to -1

L(x) = ln
p(x = 0)

p(x = 1)
. (2.10)

If p(x = 0) > p(x = 1) then L(x) will be positive and negative otherwise. If
L(x) = 0 then we have p(x = 0) = p(x = 1). The sign of L(x) provides hard
decision on bit x and the magnitude |L(x)| indicates reliability of the decision.

Similarly the LLR value of an a posteriori probability p(x|y) for each codeword
bit can be computed by using

L(x|y) = ln
p(x = 0|y)
p(x = 1|y) , (2.11)

and for the channel transition probability p(y|x) by using

L(y|x) = ln
p(y|x = 0)

p(y|x = 1)
. (2.12)
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By using Bayes’ theorem

L(x|y) = L(y|x) + L(x), (2.13)

where L(x) is a priori information of a codeword bit or v-node. The check node
will perform the box-plus � operation to retrieve extrinsic or refined a priori
information for a particular v-node from the incoming messages of connected v-
nodes. � expresses the reliability of a modulo-2 sum of bits in terms of individual
bits LLRs. L(x) is initialized to zero assuming equally likely bits in the first
iteration. However, the estimate of L(x) will be refined with successive iterations.

L(x1)� L(x2) = L(x1 ⊕ x2),

LLR value for the � operation is

L(x1)� L(x2) = ln
p(x1 ⊕ x2 = 0)

p(x1 ⊕ x2 = 1)
,

L(x1)� L(x2) = ln
p(x1 = 0)p(x2 = 0) + p(x1 = 1)p(x2 = 1)

p(x1 = 1)p(x2 = 0) + p(x1 = 0)p(x2 = 1)
. (2.14)

The individual bit probabilities can be obtained from equation (2.10) and the
fact that p(x = 0) + p(x = 1) = 1. The expression for bit probability, given that
the LLR of that bit is available, is given in equations (2.15) and (2.16)

p(x = 0) =
eL(x)

1 + eL(x)
, (2.15)

and

p(x = 1) =
e−L(x)

1 + e−L(x)
. (2.16)

Using equations (2.14), (2.15) and (2.16), an expression to compute extrinsic mes-
sage is as follows

L(x1)� L(x2) = ln
1 + eL(x1)eL(x2)

1 + eL(x1)eL(x2)
= ln

1 + tanh(L(x1)/2) tanh(L(x2)/2)

1− tanh(L(x1)/2) tanh(L(x2)/2)
,

(2.17)
where tangent hyperbolic function is

tanh(x) =
ex − e−x

ex + e−x
.

Since L(x) is initialized as zero, for the first iteration the a posteriori LLR L(x|y)
in equation (2.13) yields to a channel transition probability Lch = L(y|x). For an
AWGN channel, the channel LLR is obtained by using the following relation

Lch = ln
p(y|x = +1, h)

p(u|x = −1, h)
, (2.18)
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p(y|x, h) = 1√
2πσ2

n

e
− (y−hx)2

2σ2
n . (2.19)

By using Gaussian distribution (equation (2.19)) in equation (2.18), the expression
of the channel LLR for BPSK modulation is

Lch =
2αy

σ2
n

, (2.20)

where α = E[|h|2] is the gain of channel h that a block experienced.

2.3.2 Sum-Product (SP) Algorithm

Sum-product LDPC decoding algorithm is an iterative technique that takes a
priori and channel transition probabilities of the received symbols. For the SP
algorithm these probabilities are expressed in terms of LLR. The method to cal-
culate the LLR is described in section 2.3.1. The decoder returns the a posteriori
LLRs of codeword bits at each iteration. Binary hard decision is performed on the
a posteriori LLRs at the end of each iteration followed by the parity-check equa-
tion (2.3) to see if the parity constrained is satisfied or not. In case the equation
(2.3) is valid for the decoded bits, the decoder will terminate the iterations.

SP algorithms compute a maximum a posteriori probability (MAP) LLR for
each codeword bit i, Pi = P (vi = 1|N) which is the probability that the ith
bit is 1 (in this project binary 0 is mapped to 1) conditioned on the event that
all parity-check constraints are satisfied. The MAP LLR of each codeword bit
will increase with each decoding iteration and thus improving the reliability of
hard decision. The major reason of this improvement is because of the messages
exchange within a layer decoding. After performing parity-checking constraints
using equation (2.17), the c-node in a layer sends an extra information, also known
as extrinsic information, of the codeword bit i to its v-node i which improves
the MAP estimates. Figure 2.2 shows the c-node update process of the edge j
using l and dc edges. The method for calculating the edges messages update and
the a posteriori LLRs update is described in "Algorithm Sum-Product Decoding"
subsection.

Figure 2.2: Check node update and extrinsic information transmis-
sion

An important point worth highlighting is that the sum-product algorithm is
optimal only when the graph of the code is cycle free. It means that the estimates
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of the MAP are exact only for the cycle free code. As LDPC codes involves cycles,
their decoding by SP algorithm leads to self-confirmation of bit which degrades
the convergence and make the algorithm sub-optimal.

The following section describes briefly the SP algorithm assuming that the
received signal y. Channel LLR (Lch) is calculated using equation (2.20) for BPSK,
AWGN non fading channel.

Algorithm SP Decoding

Terminologies used in the SP algorithm description and their meaning are

• C and V stands for check nodes and variable nodes respectively.

• C-node j connecting to v-node i is denoted by eij=k and c-node update is
represented by Lcv(ek).

• Lvc(ek) stands for a v-node edge message and Lv(v) represents an a poste-
riori probability of v-node v.

• dc(C) represents the number of edges connecting c-node to its associated
v-nodes.

1. Initialization: Compute Lch(v) using equation (2.20), set iteration (itr) =
1, Lv(v) = Lch(v), L0

vc(eij) = Lv(v) and L0
cv(eij) = 0, where eij represents

edge connecting v-node i to c-node j.

2. Variable node edges update: For all v-nodes v and edges ek

L(itr)
vc (ek) = L(itr−1)

v (v)− L(itr−1)
cv (ek).

3. Check node edges update: For all c-nodes c and edges e(ij=k).

L
(itr)
cv (ek) = �

k′ �=k
L
(itr)
vc (ek′)

= tanh−1(
∏

k′ �=k

tanh( 12L
(itr)
vc (ek′))).

(2.21)

4. Variable node updates:

L(itr)
v (v) = Litr

vc (ek) + Litr
cv (ek).

2.3.3 Min Sum Decoding

The min Sum algorithm is a reduced complexity version of SP decoding. This
is the main algorithm used in this project for LDPC decoding and to study the
impact of PCAA on overall complexity reduction of decoding.

Simplification to SP algorithm [6] is achieved by replacing equation (2.21) with

L(itr)
c (ek) = sign(

∏
k′ �=k

L(itr)
v (ek′)) · min

k′ �=k
|L(itr)

v (ek′)| ≈ �
k′ �=k

L(itr)
v (ek′). (2.22)
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Derivation of equation (2.22) can be seen in [5]. This reduces the extrinsic message
calculation operation in equation (2.22) with finding the absolute minimum and
product of signs of incoming messages at the check nodes. A brief description of
the Min Sum algorithm is given in algorithm 1.

Algorithm 1 Min Sum Layered LDPC Decoding
1: procedure Decoding(r) � r is channel values Lch(v) of received bits
2: itr = 0
3: for C ← 1, layers do � Initialization
4: for k ← 1, dc(C) do
5: L

(itr)
cv (ek) = 0 � Initialize check node edges to zero

6: end for
7: end for
8: for v ← 1, N do
9: L

(itr)
v (v) = Lch(v) � Initialize variable nodes

10: end for
11: for itr ← 1,MaxIterations do � LDPC decoding iterations
12: for C ← 1, layers do
13: for k ← 1, dc(C) do � variable node edges update
14: L

(itr)
vc (k) = L

(itr−1)
v (v)− L

(itr−1)
cv (k)

15: end for
16: for k ← 1, dc(C) do � Check node edges update
17: L

(itr)
cv (k) = sign(

∏
k′ �=k

L
(itr)
vc (ek′)) · min

k′ �=k
|L(itr)

vc (ek′)|
18: end for
19: for k ← 1, dc(C) do � variable node update
20: L

(itr)
v (v) = Litr

vc (ek) + Litr
cv (ek)

21: end for
22: end for

z = Hard decision decoding on Lv

23: if zHT = 0 then � parity-check constraint
24: Exit LDPC Decoding Program
25: end if
26: end for
27: end procedure

Simplification of c-node edges update in the Min Sum algorithm introduces
performance loss compared to SP algorithm. To account for this loss, an additive
correction factor ω is applied to c-node edges update. In this project, the Offset
Min Sum (OMS) algorithm is applied, which introduces an additive factor of ω = .3
to the c-node edges update. The OMS algorithm is described in section 3.1.
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Min Sum Algorithm Example

Example 2 Consider a system with BPSK mapping of 0 to 1 and
1 to -1 through an AWGN channel. A parity-check matrix (H) and
received channel values for transmitted codeword sequence are

H =

⎡
⎢⎢⎣
1 1 1 0 0 0 0 0
1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

Lch = [1.0 0.5 0.5 2.0 1.0 − 1.5 1.5 − 1.0]

corresponding to the transmitted codeword bits of

v = [0 0 0 0 1 1 0 1]

Initialization: Before LDPC decoder starts decoding iterations, all
v-nodes and c-nodes edges are initialized.

L
(0)
vc (ek) = Lch(v) for all v = v1, ...v8 and L

(0)
cv (ek) = 0 for all c-nodes

edges

Figure 2.3: Example 2 Tanner graph of H and variable nodes ini-
tialization

Iteration 1: After initialization, decoder performs its first iteration
and updates the v-nodes and c-nodes in a manner as described in al-
gorithm 1.
Variable node edges update layer 1

Lv
(1)
11 (1) = 1− 0 = 1

Lv
(1)
21 (2) = .5− 0 = .5

Lv
(1)
31 (3) = .5− 0 = .5

Check node edges update layer 1
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Lc
(1)
11 (1) = .5

Lc
(1)
12 (2) = .5

Lc
(1)
13 (3) = .5

Variable nodes update layer 1

Lv(1)(1) = 1.5
Lv(1)(2) = 1
Lv(1)(3) = 1

Variable node edges update layer 2

Lv
(1)
12 (1) = 1.5

Lv
(1)
42 (2) = 2

Lv
(1)
72 (3) = 1.5

Check node edges update layer 2

Lc
(1)
21 (1) = 1.5

Lc
(1)
24 (2) = 1.5

Lc
(1)
27 (3) = 1.5

Variable nodes update layer 2

Lv(1)(1) = 3
Lv(1)(4) = 3.5
Lv(1)(7) = 3

Following the same procedure, updates for layer 3 and layer 4 are

Layer 3 decoding results
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Lv
(1)
43 (1) = 3.5

Lv
(1)
53 (2) = 1

Lv
(1)
63 (3) = −1.5

Lc
(1)
34 (1) = 1.5

Lc
(1)
35 (2) = 1.5

Lc
(1)
36 (3) = 1.5

Lv(1)(4) = 2.5
Lv(1)(5) = −.5
Lv(1)(6) = −.5

Layer 4 decoding results

Lv
(1)
24 (1) = 1

Lv
(1)
54 (2) = −.5

Lv
(1)
84 (3) = −1.0

Lc
(1)
42 (1) = .5

Lc
(1)
45 (2) = −1

Lc
(1)
48 (3) = −.5

Lv(1)(2) = 1.5
Lv(1)(5) = −1.5
Lv(1)(8) = −1.5

At the end of 4th layer decoding, decoder will have following a poste-
riori LLRs

Lout = [3.0 1.5 1.0 2.5 − 1.5 − 0.5 3.0 − 1.5].

Hard decision decoding of Lout yields to the correct transmitted code-
word sequence after the first iteration. In case of an invalid parity
constraint check (equation (2.3)), the decoder will keep iterating un-
til the validity of parity constraint check or the number of iterations
become equal to the maximum permissible iterations.

2.4 A posteriori LLRs evolution with decoding iterations

With each decoding iteration reliability of a posteriori probabilities (LLRs) will in-
crease. It is possible that the reliability of some bits grows at faster rate compared
to others in a block. Furthermore, the LLRs growth with iterations at higher SNR
increases at a much faster rate compared to the LLRs growth with iteration at
lower SNRs. Comparison of decoding iteration 1, 7 and 15 for the average LLRs of
all the codeword bits and the individual bits of BPSK, N = 648, R = 1/2 LDPC
encoded codeword is depicted in figure 2.4 and 2.5.
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Figure 2.4: Average LLR of variable nodes with iteration



LDPC 17

Variable Nodes with Negative LLRs
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Variable Nodes with Positive LLRs
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Chapter 3
Forced Convergence and PCAA

As described in the previous section, each v-node has an a posteriori LLR Lv(v)
that grows as the iteration increases. As a result of this process the reliability
of a hard decision decoding on these LLRs will increase as well. For SNR ≥
SNRoperating, where SNRoperating is the range of SNRs on which plain OMS
(non FC LDPC decoding) achieves BLER ≤ BLERt = 10−2, the average LLR
values of v-nodes increases as the iteration progresses. However, further updates
on highly reliable nodes will increase the computation cost with less benefits in
terms of performance gain. The idea of FC is to stop updating the v-node (v)
a posteriori LLR once it achieves a certain LLR threshold, termed as θ in this
project, to reduce the complexity of decoding while maintaining a desired system
performance BLERt. This θ is the same quality threshold as mentioned in the
introduction.

The choice of BLERt impacts the quality of the system. Since the reliability
of a certain v-node impacts the reliability calculation of the associated v-nodes in a
layer, freezing the v-node to a very low value of θ may result in performance degra-
dation. Controlling θ adaptively, given a minimum performance criterion, ensures
that the required performance is achieved while keeping decoding complexity as
minimum as possible.

This chapter covers the technical details of the solution that is proposed to
reduce the complexity of the receiver as well as to make the FC LDPC decoder
convergence faster to achieve the optimum θ. FC LDPC decoding algorithm,
complexity computations and adaptive θ control algorithm are discussed in brief
in later sections.

3.1 Forced Convergence

For this project, a modified layered scheduling MS algorithm, Offset Min Sum
(OMS), is used with FC. Layered Min Sum algorithm is covered in detail in section
2.3.3 and in example 2. An important observation of equation (2.22) is that the
c-node edges update is influenced by the minimum value of Lvc, which makes it
possible to freeze a v-node to a large enough θ value [1]. The OMS FC algorithm
can be realized by applying the following modifications to the Min Sum algorithm

1. Variable node edges Lvc calculation:

19



20 Forced Convergence and PCAA

L(itr)
vc (k) =

{
Lv,frozen, if v is frozen
L
(itr−1)
v (v)− L

(itr−1)
cv (k), otherwise.

2. Check node edges Lcv calculation:

L(itr)
cv (k) = sign(

∏
k′ �=k

L(itr)
vc (ek′)) · max{min

k′ �=k
|L(itr)

vc (ek′)| − ω, 0},

where ω is the offset, k is the edge in update and k′ are set of remaining
edges in the layer connecting the check node to the variable nodes. The
most commonly used offset, ω = .3, is applied for correcting the check node
estimates in this project. However, it is discussed in [14] that an adaptive
offset application yields to better performance than a constant offset term.
The application of the Adaptive Offset Min Sum (AOMS) is out of scope of
this project and it can be used as a future extension.

3. Variable nodes Lv calculation:
If a variable node (v) is frozen then the variable node update will not be
performed for that particular v-node, however, if the v-node is still active
then the following procedure is applied

L(itr)
v (v) = L(itr)

vc (ek) + L(itr)
cv (ek),

if |L(itr)
v (v)| ≥ θ then node will be frozen with an updated value

of (sign(L(itr)
v (v)) · θ).

The pseudo code formulation of the modified algorithm is described in algo-
rithm 2. The algorithm uses the same notations as given in algorithm 1. Additional
terminologies used in the algorithm are as follows,

• Lvc(min1) and Lvc(min2) represents the two least valued v-nodes edges in
a layer. Edge1 terminates at v-node vmin1 and Edge2 terminates at vmin2.

• ω is the offset applied in the OMS algorithm. For the current project, ω = .3
is used.

• z is the hard decision vector obtained after processing the Lv a posteriori
LLRs.

Algorithm 2 Offset Min Sum with FC and extrinsic message simplification
1: procedure Decoding(r) � r is channel values Lch(v) of received bits
2: itr = 0
3: for C ← 1, layers do � Initialization
4: for k ← 1, dc(C) do
5: L

(itr)
cv (ek) = 0 � Initialize check node edges to zero

6: end for
7: end for
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Algorithm 3 Offset Min Sum with FC and extrinsic message simplification
(continued)
8: for v ← 1, N do
9: L

(itr)
v (v) = Lch(v) � Initialize variable nodes

10: end for
11: for itr ← 1,MaxIterations do � LDPC decoding iterations
12: for C ← 1, layers do
13: for k ← 1, dc(C) do � variable node edges update
14: if v ∈ Inact then
15: L

(itr)
vc (k) ← Lv(v)

16: else
17: L

(itr)
vc (k) ← L

(itr−1)
v (v)− L

(itr−1)
cv (k)

18: end if
19: end for
20: Lvc(min1) ← min

v∈dc(C)
{|Lvc(v)|} � Check node edges update

21: Lvc(min2) ← min
v∈dc(C),v �=vmin1

{|Lvc(v)|}
22: Lvc(min1) ← max{Lvc(min1)− ω, 0}
23: Lvc(min2) ← max{Lvc(min2)− ω, 0}
24: S =

∏
v∈dc(C)

sign(Lvc(v))

25: for v ← 1, dc(C) do
26: if v /∈ Inact then
27: if v = vmin1 then
28: Lcv(v) ← sign(Lvc(v)) · S · Lvc(min2)
29: else
30: Lcv(v) ← sign(Lvc(v)) · S · Lvc(min1)
31: end if
32: end if
33: end for
34: for k ← 1, dc(C) do � variable node update
35: if v /∈ Inact then
36: L

(itr)
v (v) = L

(itr)
vc (ek) + L

(itr)
cv (ek)

37: if |L(itr)
v (v)| > θ then

38: |L(itr)
v (v)| ← θ

39: v :∈ Inact
40: end if
41: end if
42: end for
43: end for
44: if zHT = 0 then � parity-check constraint
45: Exit LDPC Decoding Program
46: end if
47: end for
48: end procedure
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3.1.1 Example FC

Example 3
Consider example 2 but this time instead of Min Sum decoding, OMS-
FC decoding with θ = 2 is performed.
Initialization: Decoder first initializes the variable nodes and check
nodes before starting iterations.

L
(0)
vc (ek) = Lch(v) for all v = v1, ...v8, and L

(0)
cv (ek) = 0 for all check

nodes edges.

Iteration 1
Variable node edges update layer 1

Lv
(1)
11 (1) = 1− 0 = 1

Lv
(1)
21 (2) = .5− 0 = .5

Lv
(1)
31 (3) = .5− 0 = .5

Check node edges update layer 1

Lc
(1)
11 (1) = .5

Lc
(1)
12 (2) = .5

Lc
(1)
13 (3) = .5

Variable nodes update layer 1

Lv(1)(1) = 1.5
Lv(1)(2) = 1
Lv(1)(3) = 1

Variable node edges update layer 2

Lv
(1)
12 (1) = 1.5

Lv
(1)
42 (2) = 2

Lv
(1)
72 (3) = 1.5
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Check node edges update layer 2

Lc
(1)
21 (1) = 1.5

Lc
(1)
24 (2) = 1.5

Lc
(1)
27 (3) = 1.5

Variable nodes update layer 2

Lv(1)(1) = 3 > θ = 2(Frozen)
Lv(1)(4) = 3.5 > θ = 2(Frozen)
Lv(1)(7) = 3 > θ = 2(Frozen)

Variable node edges update layer 3

Lv
(1)
43 (1) = 2(Frozen)

Lv
(1)
53 (2) = 1− 0 = 1

Lv
(1)
63 (3) = −1.5− 0 = −1.5

Check node edges update layer 3

Lc
(1)
34 (1) = NA(Frozen)

Lc
(1)
35 (2) = −1.5

Lc
(1)
36 (3) = 1

Variable nodes update layer 3

Lv(1)(4) = NA(Frozen)
Lv(1)(5) = −0.5
Lv(1)(6) = −0.5

For the 4th layer there is no frozen node involved and its decoding
results are,
Layer 4 decoding results
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Lv
(1)
24 (1) = 1

Lv
(1)
54 (2) = −.5

Lv
(1)
84 (3) = −1.0

Lc
(1)
42 (1) = .5

Lc
(1)
45 (2) = −1

Lc
(1)
48 (3) = −.5

Lv(1)(2) = 1.5
Lv(1)(5) = −1.5
Lv(1)(8) = −1.5

Finally, at the end of the 4th layer decoding, the decoder will have
the following aposteriori LLRs

Lout = [2.0 1.5 1.0 2 − 1.5 − 0.5 2.0 − 1.5].

In case of an invalid parity constraint check equation (2.3) on the hard
decoded output of a posteriori LLRs, the decoder will keep iterating
until the validity of equation (2.3) or the number of iterations become
equal to the maximum permissible iterations.

3.2 LDPC Decoder Parameters Optimization

In [10], the θ for a general vector ρ of environment settings (such as SNR or fading
properties) was adapted to the channel conditions by applying stochastic approx-
imation methods to the complexity function C(θ, ρ) subjected to BLER(θ, ρ) ≤
BLERt. In this project, the optimization algorithm PCAA is used to adaptively
compute θ for the given channel conditions. It is of interest to see that how fast the
LDPC decoder can converge to the optimum θ using PCAA and how much com-
plexity savings can be achieved relative to a plain OMS decoding. The optimum
θ will be referred as E[θcritical] and further details on E[θcritical] are discussed in
the PCAA section.

3.2.1 Analytical Model of Complexity Computation

The OMS-FC algorithm 2 is the basis of developing an analytical model of com-
plexity computation. In [10], the complexity is given in a number of additions
(assumed equivalent in complexity as comparison) performed per decoded block.
IEEE 802.11n employs irregular LDPC codes [13], therefore, the complexity of the
layers may differ depending on the parity-check matrix dc degree. For all layers
with the same dc, complexity of each layer will be the same. For performance
comparison among IEEE 802.11n suggested MCSs [13], the complexity calculation
algorithm described below [1] provides the complexity of decoding on the number
of operations per bit resolution.

• Complexity of Lvc edges update in one layer is

∼
C

(b,i,l)

Lvc
=

∼
n
(b,i,l)

a ,

where ∼ denotes a random variable and b, i, l represent decoded blocks, in
iteration i and layer l respectively.

∼
n
(b,i,l)

a indicates the number of active
v-nodes in layer l, iteration i and block b.
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• Lcv edges update in one layer, first find the two minimum values, using an
unsorted array method, in the set of |Lvc| of the subjected layer. Lcv edge
update will not be performed for frozen v-node, therefore, complexity of Lcv

update on active nodes is

∼
n
(b,i,l)

x = min{∼n(b,i,l)

a + 1, n(l)},

and total complexity of this section is

∼
C

(b,i,l)

Lcv
=

∼
n
(b,i,l)

x + �log2
∼
n
(b,i,l)

x �+ 2. (3.1)

The second term in equation (3.1) is the complexity of finding the two
minimum elements in an unsorted array and the third term of equation is
the four additions on line 22 and 23 of algorithm 2.
n(l) represents the number of associated v-nodes to c-node in a layer.

• Lastly the complexity of Lv update is

∼
C

(b,i,l)

Lv
= 2

∼
n
(b,i,l)

a .

Total complexity of decoding one layer is

∼
C

(b,i,l)

= 3
∼
n
(b,i,l)

a +
∼
n
(b,i,l)

x + �log2
∼
n
(b,i,l)

x �+ 2,

and the complexity of decoding one block for all iterations is

∼
C

(b)

=

∼
I
(b)∑

i=1

|c|∑
l=1

∼
C

(b,i,l)

. (3.2)

∼
I
(b)

in equation (3.2) is the number of iterations it takes to complete one
block decoding and |c| is the number of check nodes or layers.

3.2.2 Performance Control Adaptation Algorithm (PCAA)

PCAA, a terminology that is defined for this project, is a technique used in the
Outer Loop Link Adaptation (OLLA) in LTE. This technique adjusts the SNR
offsets used when choosing an appropriate modulation and coding scheme [11].
PCAA ensures that on average BLERt is met. The analytical expression for
PCAA θ is

Δθup =

(
1

BLERt
− 1

)
Δθdown. (3.3)

Δθup and Δθdown in equation (3.3) are upward and downward jumps in θ. For
successful block decoding, θ will be decremented by Δθdown and for block decoding
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failure, θ will be increased by Δθup. This will ensure that BLERt has been met
on an average block level.

Algorithm 4 PCAA
1: procedure Adaptation(BlockError) � PCAA after LDPC decoding

of each block
2: if BlockError = False then � PCAA execution
3: θ = θ −Δθdown

4: else
5: θ = θ +Δθup
6: end if
7: end procedure

PCAA Modelling and Behaviour Analysis

To understand the underlying mechanism of PCAA and how it ensures meeting
BLERt, a development of the probabilistic model is required that takes into ac-
count the LDPC optimization parameters and estimates the probability of system
being into a state Sm at time t. The state represents the θ value calculated by
PCAA for a certain block. Since the determination of transitions probabilities
among states satisfies the Markov property, PCAA behaviour can be modelled by
a discrete time Markov process, a technique used in analysis of OLLA as well [11].

In order to develop the model, the following is performed

1. Identification of possible states.

2. Identification of possible transition among states.

3. Transition probabilities from state m to state j calculation.

4. Stationary probabilities distribution (πm) calculation of each state in steady
state.

The Markov chain model with the states of the adaptive system is shown in
figure 3.1.

Figure 3.1: Markov Chain Model of PCAA
Let Pn be the probability of frame error in state n. It is also the probability

of upward transition to state n + K and the transition probability from state n
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to (n − 1) is (1 − Pn). To compute the block error rate in state n we need the
expression of BER in state n for modulation scheme in study. However, in this
system BER is influenced by the received SNR as well as θ of state n. These
dependencies requires deriving an expression for BER which are hard to compute
and are beyond the scope of this project. Having these model terminologies in
hand, we will look into an intuitive explanation of the PCAA behaviour in the
following section

Intuitive Explanation

Consider X to be the random variable that represents θerror and Xθerror to be the
value of θ at which decoding failure occurred. LDPC decoding process begins at
predefined initial state θinit. Setting θinit to a very high value will result in high
complexity and long convergence time and to a very low value can result into severe
performance degradation before PCAA determines optimum θ. At incorrect block
decoding, the system experiences an upward jump of (KΔθd) from its present
state. K = (1/BLERt − 1) indicates that on average there will be one error out
of (K + 1) blocks in steady state. Let E[X] = θcritical denote the expected value
of θerror. With these definitions two approximations are made for the analysis of
PCAA

1. There will be no decoding failure and hence no upward jump will happen
above θcritical.

2. The probability of reaching a state after θcritical is almost zero.

The basic intuition behind the approximation is that the system operation
is based on jump-up behaviour i.e., on Xθerror and it is mostly restricted to
(E(X) +KΔθd,E(X)). If a block failure is considered to be only happening at
θcritical, then the upward jump of (KΔθd) value at θcritical state ensures that the
system operates at BLERt. One may argue that if θcritical achieves a fixed value
in a system then upon achieving steady state the optimum solution is to fix the
θ value slightly above the θcritical to avoid the decoding failure. In that case, the
system will enter into recurrent state in the Markov chain and will stay in that
state after entering it. However, it is observed from simulations that due to the
random nature of θerror, θcritical do not achieve a constant value and wanders
around E[θcritical] in steady state. Fixing the system at θcritical state may lead
to performance loss. Furthermore, as we will see in the simulation results section,
θcritical varies with SNR and fixing the system state can significantly degrade the
system performance in presence of fading. Equation (3.4) is the update equation
of θcritical at each decoding failure.

E[X] = E[Xθerror (old) +Xθerror (new)], (3.4)

where Xθerror (old) in equation (3.4) is the set of all the past θerror values since
the decoding begins and Xθerror (new) is the most recent value at which decoding
failure occurred.
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Numerical Example

In this example the PCAA behaviour for Δθd = [1 0.1 0.01] is explained for
a BLERt = 10−2. It is also assumed that a block error only occurred when
θ ≤ θcritical and θinit = 30 for the sake of the algorithm explanation only. Plug-
ging in these values in equation (3.3), we obtain Δθup = [99 9.9 .99] for the
corresponding Δθd. The behaviour of the algorithm for this example is shown in
figure 3.2, where it can be observed that the algorithm was able to meet BLERt

for all cases of Δθd.
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Figure 3.2: PCAA for Δθd = [.1 .01] (left) and for Δθd = [1]
(right)

It can also be observed that with the lower Δθd, the system operates very close
to θcritical. In other words, the variance of θcritical distribution varies according
to the Δθd. This observation has an important significance to the complexity ver-
sus convergence problem of LDPC decoder, which we are aiming to solve using
PCAA. The closer the system operates to θcritical, the higher the complexity sav-
ings of LDPC decoder will be. Furthermore, steady state for Δθd = [1 .1 .01]
is achieved at block number 6, 51 and 501 respectively. It can be inferred that
for higher Δθd, the system will enter into the steady state quickly but it will not
operate close to the θcritical state.



Chapter 4
Theoretical Background OFDM

4.1 OFDM Modulation Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier
modulation format specially suited to achieve a high-data-rate transmission. The
data stream is divided into a number of several low-data-rate subcarriers N. In this
fashion, the serial block of N data symbols is transformed into N parallel blocks.
Finally, each block is modulated using different orthogonal frequency subcarriers,
creating an OFDM symbol.
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Figure 4.1: Frequency domain individual subcarriers (left) and sum-
mation (right)

4.2 OFDM DFT/IDFT

Due to the structure of the OFDM system, where the subcarrier spacing is Δf,
i.e. 1/Ts, the OFDM symbol modulation relies on a mathematical tool, the Fast
Fourier Transform (FFT). In the digital approach the Inverse Fast Fourier Trans-
form (IFFT) is applied to each data symbol block before transmission. Con-
sider the transmit signal in the nth subcarrier, time instant=0, and sampling at
tk = kTs/N

sk = s(tk) =
1√
Ts

N−1∑
n=0

cn,0 exp

(
j2πn

k

N

)
. (4.1)

Equation (4.1) corresponds to the inverse Discrete Fourier Transform (DFT).
In most cases N is a power of 2 and the transmitter implements the DFT as an
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Inverse Fast Fourier Transform (IFFT) with an N elements output. The nature of
this output is in the time domain, and so a conversion parallel to serial is needed
to send the signal. The receiver follows a procedure to reverse the steps made in
the transmitter. In this manner the signal sampled is packed into a block of N
samples, which are later converted from serial to parallel, ready to be subjected
by an FFT.

Figure 4.2: OFDM Block Diagram

4.3 OFDM main limitations

There are many advantages of using OFDM, some have been pointed out in the
previous section. However, OFDM systems have limitations as well and it is im-
portant to mention some of them.

OFDM system relies on the orthogonality of subcarriers and in essentially every
wireless communication system, the possibility of a frequency offset is palpable.
Local oscillators are not one hundred percent accurate and small errors result from
time to time; even with state-of-the-art oscillators, frequency offset still appears.
These errors shift carrier frequency, thus risking to eliminate the orthogonality of
the system and causing ICI.

One more limitation is the high peak-to-average-power ratio (PAPR). When
using the IFFT operation for all subcarriers, a large peak value in the time domain
can happen. The power of the OFDM symbol, having N independently modu-
lated subcarriers, is N multiplied by the average power of each of the subcarriers.
Therefore, the PAPR is larger in comparison to that in single carrier systems.
This is problematic mainly in the uplink, where battery efficiency is important.
To reduce the value, clipping is a solution often use.

4.4 Cyclic Prefix

OFDM has been used since the 1960s, followed by the addition of the Cyclic Prefix
(CP) few years later. The scheme is still widely used because it is robust against
multipath, frequency selective fading and narrowband interference, as they will
only affect a certain percentage of the subcarriers.
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The inherent orthogonality of the modulation waveforms makes it possible for
subcarriers to overlap without interfering with each other, achieving a spectral effi-
ciency higher than other multicarrier communication schemes. This gives place to
high-data-rate transmission due to the fact that the channel time delay is probably
smaller than the OFDM symbol period.

Moreover, OFDM uses CP as a way of a guard interval to fight multipath, in-
tersymbol interference (ISI) and inter channel interference (ICI), as the CP main-
tains the orthogonality in the subcarriers. The CP is a copy of the end of the
symbol after the IFFT (with a certain period TFFT ) added into the guard interval
(with duration of TGI). By doing this the linear convolution with the channel
impulse response is transformed into a cyclic convolution and the total duration
of transmitted OFDM symbol is then TS .

Figure 4.3: CP Representation

4.5 OFDM Simulation

To start the simulation, a random number of bits is encoded and then mapped to
a specific modulation. The sequence of bits might not match an integer number
of mapped symbols, therefore, bit padding is added. For the whole signal to
maintain E[P ] = 1 (after scaling it with the normalization factor KMOD) the
added bits have a uniform distribution of 0 and 1. For any M -ary QAM, M can
be written as M=L2 for some L being power of two; and the real and imaginary
parts αI and αQ of the symbol can be selected from the real L-ary PAM alphabet
( ±KMOD,±3KMOD, ...± (L− 1)KMOD ). The n-th element of the alphabet is
KMOD(-L+1+2n) for n ∈ 0, ..., L− 1. E[P ] can then be calculated as:

E[P ] = E[|α|2]
= E[α2

I ] + E[α2
Q]

= 2E[α2
I ]

= 2

L−1∑
m=0

K2
MOD(−L+ 1 + 2m)2

=
2

3
K2

MOD(L2 − 1)

=
2

3
K2

MOD(M − 1).

(4.2)
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Another key parameter is the SNR. In the simulations performed, the signal SNR
before the channel is calculated using equation (4.3)

SNR = Eb/N0 + 10 · log10

(
Ndata

NSC

)
+ 10 · log10(NBS) + 10 · log10(R), (4.3)

where Ndata is the number of data subcarriers, NSC is the number of OFDM total
subcarriers, NBS equals the number of bits per mapped symbol, and R is the
coding rate.

Finally, to define the performance at the receiver side, the concept Bit Error
Rate (BER) must be presented. The bit error rate is the number of errors at the
receiver divided by the number of bits transmitted. It is a dimensionless ratio,
which for an infinite amount of transmitted bits, becomes a probability. The bit
error probability is often described in the literature as BER [16]. The performance
of OFDM system was compared against the theoretical performance, where the
simulated and the theoretical BER against SNR for modulation schemes QPSK,
16-QAM and 64-QAM over AWGN channel matched. After that the LDPC en-
coder and decoder was implemented on this OFDM system.



Chapter 5
Simulation Parameters and Methodology

This chapter covers an introduction of the IEEE 802.11n standard, the channel
models, parameters, and methodology selected in this project. The aforementioned
standard is an amendment published after 802.11a and 802.11g. Part 11 of the
standard focuses on two layers of Wireless LAN: the Medium Access Control and
the Physical Layer (PHY) specifications.

The parameters used were chosen accordingly to the PHY specifications. The
standard supports, naturally, the OFDM technique and the application of LDPC
code. The amendment gives the opportunity to achieve higher throughputs and
transmission rate compared to previous versions. The maximum data rate be-
ing 600 Mbit/s [13]. The frequency bands assigned are 2.4GHz and 5GHz with
bandwidths of 20MHz and 40MHz. The standard allows former amendments like
802.11g, 802.11b and 802.11a to be set in the transmission frame, thus assuring
coexistence among them.

The IEEE 802.11n PHY make use of 64 OFDM subcarriers, 48 of them are
used to carry data and 4 are pilot subcarriers. Pilot subcarriers contain signals
to trace the frequency offset and phase noise, and there are spread across the 64
subcarriers. Based on the data rate, modulation and coding rates are selected.
Table 5.1 shows the main characteristics of the standard PHY layer.

Table 5.1: IEEE 802.11n Main Parameters

Parameter Name Parameter Value

Carrier Frequency 2.4GHz, 5GHz
Modulation BPSK, QPSK, 16QAM, 64QAM
Coding Rate (20MHz) 1/2, 2/3, 3/4, 5/6
Bandwidth 20MHz, 40MHz
Number of data subcarriers 48
Number of pilot subcarriers 4
OFDM Symbol Duration TS (20MHz) 4.0 μs (TGI+TFFT )
Guard Duration TGI (20MHz) 0.8μs (TFFT /4)
FFT Duration TFFT (20MHz) 3.2μ s (1/ΔF )
Coding Technique Convolutional Code, LDPC Code

33
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5.1 Definition of Parameters

A High Throughput (HT) OFDM system is simulated with a 20 MHz channel
width and a carrier frequency of 2.4 GHz. The channel is divided into 64 subcar-
riers, where 48 of them carry data.

Following the standard, three different MCSs were chosen, all of them have 1
spatial stream, as it is a Single Input Single Output (SISO) approach.

Table 5.2: Chosen modulation parameters

MCS Modulation NBPSCS R N

2 QPSK 2 3/4 1296
3 16QAM 4 1/2 1296
5 64QAM 6 2/3 648

In table 5.2, R represents the coding rate, N refers to the codeword length for
the LDPC decoder, and NBPSCS is the number of coded bits per single carrier.
Although the standard mentions that each OFDM subcarriers can have a different
constellation size, in the project the same constellation size is kept during each
simulation. The mapping constellations are implemented using Gray rectangular
coding.

Gray code is a manner of coding bits in a binary system in such a way that two
neighbouring constellation points have only one different bit. Due to the nature of
the coding, the maximum error found in Gray-encoded data is much less than the
one occurring using weight binary encoding. Figure 5.1 shows the constellation for
each modulation mapping applied in the simulations. The data is later multiplied
by a normalization factor KMOD specified in table 5.3 to produce an E[P ] = 1 in
every mapping (see equation (4.2)).

Table 5.3: Normalization factor for different modulations

Modulation KMOD

BPSK 1
QPSK 1/

√
2

16-QAM 1/
√
10

64-QAM 1/
√
42
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Figure 5.1: Constellation Mapping

5.2 Channel Models

The effects of a propagation channel are an attenuation of the signal, delay and
frequency dispersion, in conjunction with addition of AWGN and co-channel in-
terference.

5.2.1 AWGN Channel

The first stage of this work was implemented using an AWGN Channel. The stated
channel mitigates the transmitted signal and incorporates Gaussian distributed
noise, which accurately models the main sort of noise. The characteristic of being
"white" comes from light properties due to white light having same quantity of all
frequencies contained in the visible band of the electromagnetic spectrum. More-
over, the WGN properties state that two given samples are uncorrelated, in spite
of being near each other in the time domain.

Noise is present in every wireless communication system. The main sorts being
thermal noise, electrical noise from active electronics, and inter-cellular interfer-
ence. The impact is seen in a degradation of the SNR, degrading the spectral
efficiency of the communication system.
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Figure 5.2: White Gaussian Noise probability density function (pdf)

5.2.2 Rayleigh Flat Fading, Time Varying Channel with AWGN

The second stage of the project was to simulate a time varying channel. This
approach takes into account the natural environment of a wireless system, where
multipath appears due to the signal propagation through different paths. This
causes the signal to bounce off several surfaces before being received.

Figure 5.3: Non Line-of-Sight (NLOS) Representation

The behaviour of travelling paths changes unpredictably, however, it can be
described using statistical models. When there exists a large amount of reflected
paths, and these comes from a NLOS environment, the central limit theorem is
properly used to state that the channel has statistical characteristics of a Rayleigh
distribution.
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Figure 5.4: Rayleigh pdf

Besides paths reflection, Doppler shift is also considered in the second stage. Due
to this, the Rayleigh-distributed channel gain fluctuates with time. Doppler shift is
the name of the effect in the signal when the transmitter is moving in relation to the
receiver, the relative speed between them is directly proportional to the Doppler
shift. In the same manner, Doppler shift is proportional to Doppler spread (Ds),
and TC ≈ 1/Ds, where TC represents the coherence time (time domain dual of
Ds).

Ds and TC help describe the time varying nature of the channel, how fast it
varies. For a slow fading: TC > TS , where TS represents the symbol period [17].

The type of fading selected for the second part is flat fading. Based on the com-
parison between multipath RMS delay spread στ and the OFDM symbol length,
either flat fading or frequency selective fading can take place. This effect appears
when the transmitted signal is affected in the whole spectrum by the same path
gains and phase shifts. Hence, the following stands for flat fading, where BC is
the coherence bandwidth and B represents the bandwidth of signal:

Frequency Domain Time Domain

BC > B TS > στ

Implementation Note

SNR of the fading signal continuously varies due to slowly varying nature of fad-
ing channel. In simulation, blocks that experiences deep fading dips result in
E[SNRfaded] much lower than E[SNRnonfaded]. Blocks with E[SNRfaded] lower
than SNRoperating are discarded from the analysis for Rayleigh flat fading case.

5.2.3 Rayleigh Frequency Selective Channel with AWGN

In the third and final stage, performance of the the system is evaluated on fre-
quency selective channel in an indoor environment.

Compared to second stage of the project, in this stage along with amplitude
fluctuations in time domain, channel will be frequency selective as well. Frequency
selective fading occurs when
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• BW of signal > BW of channel

• Delay spread > Symbol period

Frequency selective channel Model

Tapped delay line (TDL) is a popular model for discrete multipath frequency selec-
tive channel. The model uses multiple number of frequency flat fading generators
corresponding to Multi path Components (MPC), where MPC are independent
from each other with the expected power of one per MPC. In TDL model, low-
pass impulse response of the channel is modelled as [18]:

∼
c(τ(t), t) =

K(t)∑
k=1

∼
ak(τk(t), t)δ(τ − τk(t)). (5.1)

In equation (5.1), K(t) is the time varying number of MPC,
∼
ak(τk(t), t) are the low

pass time-varying complex channel coefficients that includes both amplitude and
phase effects, τk(t) are the time-varying time delays, τ represents delay axis and
τ(t) in

∼
c(τ(t), t) represents that resultant MPCs are different at any observation

time t.
For IEEE802.11n given channel models [13], the PDP delays τk are not an

integer multiple of channel sampling period Ts of the system. Before implement-
ing the TDL FIR filter for discrete time channel simulator, given channel taps
must be adjusted to the integer multiple of Ts by oversampling. This process will
make the number of taps too large for the equivalent FIR filter for TDL model.
Band limited discrete multipath channel model with tap adjustment by FIR filter
implementation is briefly discussed in [18].

In this project, indoor exponential model of 2.4GHz indoor channel, used by
the IEEE802.11b task group [19], is used in simulation due to its implementation
simplicity. The major advantage of this channel model is its ability to produce
channel taps at integer multiple of Ts. Each channel tap is modelled by an inde-
pendent complex Gaussian random variable with its average power that follows
exponential PDP [20].

First step in exponential model is to determine the maximum number of paths
given RMS delay spread στ and channel sampling period Ts by using

kmax = �10στ/Ts�. (5.2)

The power of the kth tap is zero mean and σ2
k/2 distributed. kth channel tap

samples are generated by using equation (5.3)

hk = Z1 + jZ2, k = 0, ..., kmax. (5.3)

The power of each channel tap is calculated in terms of first tap power by using

σ2
k = σ2

0e
−kTs/στ , (5.4)

σ2
0 is the power of first tap which is calculated in a way to make the average

received power of 1, which is as follows
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σ2
0 =

1− e−Ts/στ

1− e−kmax+1Ts/στ
. (5.5)

Implementation Note

For simulation, the frequency response of the channel is constant for all OFDM
symbols in one block, however, frequency response changes from block to block.
Block length determines the number of samples for a channel which are created
using equation 5.3. After transmission through this channel the received data
symbols on the i-th sub-carrier of the j-th OFDM symbol Rij can be expressed as

Rij = SijHij + nij . (5.6)

In equation (5.6), Sij is the transmitted symbol, Hij is channel fading in frequency
domain and nij is the AWGN noise where E[nij ] = σ2, SNRij is obtained by using
equation (5.7).

SNRij =
|SijHij |2

σ2
. (5.7)

Since equalization is performed in frequency domain before LDPC decoding, it
will change the noise per subcarrier. In order to accommodate the equalization,
the modified noise variance , σ2/|Hij |2, for each individual subcarrier in OFDM
symbol is used to calculate the channel LLRs for LDPC decoder.



40 Simulation Parameters and Methodology



Chapter 6
Simulation and Results

This chapter provides detailed analysis on the BLER, Mean Complexity and
Convergence performance of simulations performed for different configurations of
MCSs, Δθd, and BLERt as described in tables 6.1, 6.2, and 6.3. OFDM sys-
tem implementation and results analysis were carried out in MATLAB c© while
LDPC decoder was implemented in C to take advantage of its faster computa-
tions compared to MATLAB c©. The simulations are performed over AWGN, time
varying and frequency selective channels and performance results of each channel
configuration is discussed in subsequent sections.

6.1 Simulation Results AWGN Channel

The following parameters were defined for this first stage:

Table 6.1: Parameters for AWGN Channel

Stage MCS Δθd BLERt θinit

1 2,3,5 .1,.01,.001 .1,.01,.001 20

6.1.1 BLER vs Eb/N0 performance

• BLER vs Eb/N0 simulation performed on BLERt = 10−2 and θinit = 20.

• For Lower Δθd lower BLER was obtained while keeping BLERt fixed.

• BLER for Δθd = .1 and Δθd = .01 meets BLERt = 10−2. However, for
Δθd = .001 BLER was slightly below the BLERt.

This first section of results shows that desired BLERt is achieved for the
parameters specified in table 6.1, which validates the expected behaviour of PCAA
mentioned in section 3.2.2. The performance is below or equal to the BLERt when
Δθd is selected at or above BLERt for all MCSs.
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Figure 6.1: MCS2, MCS3 and MCS5 BLER vs Eb/N0 for Δθd =
0.001, Δθd = 0.01 and Δθd = 0.1

6.1.2 Convergence at extreme SNRs

Convergence is achieved once the system operates in E[θcritical] region. In or-
der to study the convergence, simulations are performed over 100 realizations for
4000 blocks each per test configuration. Mean complexity is calculated by taking
ensemble average across all realizations.

• MCS2 Eb/N0 = 3.5dB and 9.5dB for Δθd = .1 converges within 5-10 ms
and 10-15 ms, for Δθd = .01 MCS2 converges within 60-70 ms and 100 ms
respectively for stated SNRs. For Δθd = .001 it doesn’t converge in 200 ms.

• MCS3, on both Eb/N0 = 4.5dB and Eb/N0 = 7.5dB, for Δθd = .1 converges
within 2-5 ms, for Δθd = .01 it converges within 35-45 ms and for Δθd = .001
it doesn’t converge in 100 ms.

• MCS5 Eb/N0 = 9.5dB for Δθd = .1 converges within 2-5 ms, for Δθd = .01
it converges within 20-23 ms and Δθd = .001 doesn’t converge in 50 ms. The
convergence time for Eb/N0 = 10.5dB is same as Eb/N0 = 9.5dB except for
Δθd = .01 in which system converges in 16-19 ms.
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Convergence rate is proportional to Δθd. Time to reach convergence or steady
state will be lower at lower SNRs and higher at higher SNRs. Low SNRs have high
E[θcritical] resulting in small time to achieve steady state. Similarly high SNR has
low E[θcritical] and therefore it will take more time to reach steady state.
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Figure 6.2: MCS2 Convergence at Eb/N0=3.5dB (left) and
Eb/N0=9.5dB (right)
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Figure 6.3: MCS3 Convergence at Eb/N0=4.5dB (left) and
Eb/N0=7.5dB (right)
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Figure 6.4: MCS5 Convergence at Eb/N0=9.5dB (left) and
Eb/N0=10.5dB (right)

In MCS3 at Eb/N0 = 4.5dB and in MCS5 at Eb/N0 = 9.5dB, E[θcritical] is
around 8.5. However, convergence time of MCS3 is approximately 40ms, whereas,
for MCS5, it is half as much. Major reason for this observation is differences
in codeword length and modulation order of MCS5 and MCS3 that influences the
block duration and hence convergence time for similar θcritical. The block duration
is proportional to the constellation size, and the codeword length. For higher-order
modulation, blocks of length N will have less OFDM symbols compared to the
number of OFDM symbols with lower order modulation.

6.1.3 Steady State Mean Complexity

Steady state consists of all the blocks following the block n at which PCAA brings
down θ of FC from θinit to E[θcritical], region where decoding failure is highly
probable.

Mean complexity in steady state for subjected MCSs was obtained at BLERt =
10−2, θinit = 20 and for each of the Δθd = 0.001, Δθd = 0.01, Δθd = 0.1 sep-
arately. Results were then plotted for each MCS individually including mean
complexity of Non-FC LDPC decoding. For very small values of Δθd the system
spends more time in transient state leading to high complexity. Transient state
duration has significant impact on the overall complexity performance. However,
once the system is in steady state, lower Δθd makes the system oscillates around
E[θcritical] with small variance and hence it will results in improved system per-
formance and lesser complexity.

• For all MCSs, mean complexity in steady state reduces with reduction in
Δθd.

• MCS3 has the highest mean complexity followed by MCS5 and MCS2.

Lowest step size results in lowest complexity because in steady state, the system
with lowest step Δθd operates around E[θcritical] with smaller jumps compared to
higher values of Δθd.
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Figure 6.5: MCS2 Complexity Comparison
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Figure 6.6: MCS3 Complexity Comparison
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Figure 6.7: MCS5 Complexity Comparison

Δθd is a good parameter to measure the tradeoff between convergence rate
and complexity reduction. As Δθd increases, convergence time decreases and vice
versa. However, the reduction in convergence time comes at the cost of increased
complexity due to the high upward jump in θ.
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6.1.4 E[θcritical] Results

It is the expected value of all the θerror values at which LDPC decoding failed
and PCAA increases θ to a higher value of θ + Δθup. Higher value of system
E[θcritical] indicate that system is operating at higher complexity. It is observed
that E[θcritical] is high at low SNR and vice versa for all MCSs.

Since each MCS operates at different Eb/N0 therefore E[θcritical] comparison
among various MCS is not a suitable choice. For all MCS, as the SNR decreases
PCAA increases the θ value to meet the BLERt. Because at lower SNR, with
lower θ, the system performance will be worse than the desired BLERt. LDPC
decoder can not produce reliable enough decision for low θ in this case. In order
to meet the desired performance at low SNR, higher values of θ are required at
FC algorithm subjected to SNR ≥ SNRoperating. Because of this reason, LDPC
decoder reported high θcritical for each MCS at low SNR.
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Figure 6.8: E[θcritical] at Δθd = .1 (left) and E[θcritical] at Δθd =
.01 (right)
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6.1.5 Complexity for all MCSs together

A general conclusion can be made for all MCSs tested: Complexity of the
system implemented using LDPC decoding with FC, with parameters of
FC tuned by PCAA, is lower than the case where no FC is used. Also,
Δθd = BLERt gives a good trade-off between convergence time and complexity
reduction.
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Figure 6.10: MCSs Complexity Comparison

6.1.6 Mean Complexity for different BLERt

In figure 6.11 it is easy to see how complexity of the MCSs increases as BLERt

decreases. This is because it takes higher effort to achieve lower BLERt (better
performance of the system). It is important to state that Δθd remains 0.01 for the
9 graphs.
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Figure 6.11: Mean Complexity of MCSs for different BLERt

6.2 Results Rayleigh Flat Fading, Time Varying Channel

For this second stage, simulations only take place under SNRoperating in order for
the system to achieve BLERt. The blocks where the SNR is below SNRoperating
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are not taken into account for the analysis. The PCAA performance is noticeable
in the graphs, as θ adapts to the environment.

The following parameters are defined:

Table 6.2: Parameters Rayleigh Flat Fading Time Varying Channel

Stage MCS Δθd BLERt θinit Doppler Shift

2 2,3 0.01 0.01 20 20

From section 6.1 Convergence time for MCS3, Δθd=0.01 is between 35∼40 ms.The
coherence time TC can be obtained by:

TC =
9

16πfd
, (6.1)

where fd is the maximum Doppler shift. For the implemented channel, TC = 9ms.

From results it can be observed that for Δθd = .1 PCAA makes the system
converge faster before the channel properties changes. For Δθd = .01, .001 system
takes longer time to converge than TC .

6.2.1 BLER vs Eb/N0 performance

During the second stage, both MCSs chosen are able to stay below the BLERt.
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6.2.2 Steady State Mean Complexity Time Varying Channel

The same procedure performed in part one is used to calculate mean complexity
in a time varying channel. Mean complexity seen in figure 6.13 (left) for the case
of MCS2 PCAA FC LDPC decoding shows to be higher at low SNR in comparison
with the Non-FC LDPC decoding. This could take place if the channel experiences
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deep fading for the first case. However, at higher SNRs, mean complexity drops
and complexity savings of above 30% are accomplished at Eb/N0=9.5. Likewise,
MCS3 shows high complexity savings.

EbNo [dB]

3 4 5 6 7 8 9 10

M
ea

n 
C

om
pl

ex
ity

 / 
(B

lo
ck

 *
 I

te
ra

tio
n)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Mean complexity MCS2 Time Varying Channel

NoFC
PCAA

E
b
/N

o
 (dB)

3 4 5 6 7 8 9 10

C
om

pl
ex

ity
 S

av
in

gs
 (

%
)

-20

-10

0

10

20

30

40
Complexity Savings at Steady State MCS2

Figure 6.13: Mean Complexity of MCS2 Time Varying Channel
(left) and Complexity Savings (right)
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Figure 6.14: Mean Complexity of MCS3 Time Varying Channel
(left) and Complexity Savings (right)

6.2.3 PCAA Tracking capability for Flat Fading, Time Varying Channel

An important part of the project is to present the behaviour of θ. In the following
plots, it is easy to see how the channel affects the signal and how θ changes as
well. When the channel is fading the PCAA increases θ. On the contrary, if the
channel does not degrade the system, PCAA decreases θ.

This clearly shows that for given parameter in table 6.2 PCAA is capable of
tracking the slowly time varying frequency flat channel.
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6.3 Results Part 3 Frequency Selective Channel

The main parameters for the last stage are presented below:

Table 6.3: Parameters Frequency Selective Channel

Stage MCS Δθd BLERt θinit Ts στ MPC

3 2 0.01 0.01 20 50ns 25ns 6

During the third stage of the project, only one MCS is chosen, at Eb/N0=20
dB. It is important to mention that the channel, while being frequency selective,
each OFDM sub-carrier experiences flat fading channel with independent Rayleigh
fading. Also, from table 5.2 and 6.3, it can be seen that

στ < TGI . (6.2)
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The equation (6.2) ensures that no ISI is experienced. The system is able to deliver
BLERt for this last stage as can be the seen from the simulation result given in
table 6.4.

Table 6.4: MCS2 BLER vs Eb/N0 Frequency Selective Channel

MCS Eb/N0 BLER

2 20dB .001

6.3.1 Steady State Mean Complexity Frequency Selective Channel

The same channel for both case (PCAA FC LDPC decoding and Non-FC LDPC
decoding) is introduced. For the first case, Mean complexity shows to be less than
for the second case, giving a high complexity savings of 66.69%, simulation results
are given in table 6.5.

Table 6.5: Mean Complexity (C) of MCS2 Frequency Selective
Channel

MCS Eb/N0 CFC CNOFC

2 20dB .46 1.6

6.3.2 PCAA Tracking capability for Frequency Selective Channel

In the following graphs, the behaviour of θ is presented. Two different observations
from figure 6.17 (left), are selected. At the first observation, t=.9587s, the system
experiences a decoding failure and at the second observation, t=.9833s, the block
was successfully decoded. The next step is to investigate the channel frequency
response at these two observation times.
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Figure 6.18 shows the two different channel frequency response for the blocks
mentioned above. It is easy to see that at the first block, the overall channel power
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is much lower than the channel power at the second block. Thus explaining why
the PCAA increases θ. On the other hand, when the system experiences a better
channel, PCAA keeps decreasing θ. By this manner, the tracking capability of
PCAA is demonstrated for a frequency selective channel.
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Chapter 7
Conclusion

In this project, the performance of reduced complexity version of the LDPC decod-
ing is investigated using OMS FC algorithm and PCAA algorithm for dynamically
adjusting the FC θ threshold. Convergence and complexity performance metrics
for various MCSs has been simulated under IEEE802.11n OFDM communication
system. The results obtained from this research project are important in achieving
more energy efficient communication system. It is observed that Δθd = BLERt

yields best performance in terms of both complexity savings and convergence time.
Firstly, simulations are performed on AWGN channel. A large number of

LDPC decoding parameters combinations were tested using three different MCSs,
Δθd’s and BLERt in order to determine the most optimum configuration. In all
test configurations system meets the desired BLERt indicating that PCAA adjust
θ of LDPC FC decoding effectively. It is found that as Δθd increases convergence
time decreases but it leads to increased complexity. Moreover, the constellation
size and the codeword length play important roles in improving the convergence
time of system given that E[θcritical] is same among different configurations.

Secondly, system simulations performed on Rayleigh flat fading slow time vary-
ing channel with optimum configuration found from first stage of the project. Even
though the channel coherence time was smaller than the convergence time of cho-
sen configuration, PCAA was able to track the channel changes with complexity
savings relative to non-forced convergence LDPC decoding.

Lastly, the system undergoes a frequency selective channel. The result section
shows how PCAA still delivers good tracking capabilities and significant complex-
ity savings of 66.69% relative to LDPC Non-FC decoding case.

7.1 Future Work

This work uses irregular LDPC codes for encoding/decoding purposes and next
stage would be to research the behaviour of how regular LDPC codes influences
the system performance. Current work uses limited test configurations due to long
simulation time, and future simulations can be run on wider range of decoding
parameters to validate the results developed in current thesis project.

Performance of frequency selective fading channel implementation by TDL
model and Doppler filters is another area to be explored. Additionally impact of

53
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frequency selective channel with RMS delay spread greater than CP duration on
system performance is another open area for investigation.

Markov model of a PCAA algorithm in section 3.2.2 requires determining exact
analytical expression of BLER(θ) function. Determining BLER(θ) and C(θ)
analytic expression in estimating the system state and performance of system as
function of time will lead to more efficient system design.
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