
Frequency Tracking Using Digital Cavities

FREDRIK ZETTERBLOM
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

FR
ED

R
IK

 ZETTER
B

LO
M

Frequency Tracking U
sing D

igital C
avities

LU
N

D
 2017

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-558

http://www.eit.lth.se

Frequency Tracking Using Digital Cavities

Fredrik Zetterblom
mat12fze@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Fredrik Edman

Khadga Jung Karki
Liang Liu

Examiner: Erik Larsson

February 13, 2017

© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Digital cavities are efficient algorithms for comb filters with very low computa-
tional costs. They have been used to precisely measure the amplitude and phase
of high frequency signals (few giga samples per second) from data acquired by
high speed digitizers (80GS s−1). However, the previous measurements were done
offline as the serial processors used in the analysis could not cope with the large
data acquisition rate. In this project, we have implemented digital cavities in
an FPGA architecture to measure amplitude and phase of signals in real time.
Moreover, we have implemented multiple digital cavities that are tuned to slightly
different frequencies, that process data in parallel. Based on the interpolation of
the responses from each digital cavity, we have also developed algorithms which
allows for tracking the change in frequency of the signal. These new advances are
expected to be very useful in measuring the drifts in radio and microwave frequen-
cies that are commonly used in FM broadcasting, frequency-shift keying, power
systems, laser spectroscopy, synchrotrons, particle accelerators, etc.

i

ii

Popular Science Summary

New method for detecting frequency shifts in a dig-
itized signal

A new method for detecting frequency shifts in digitized signals
has been investigated and developed during a bachelor thesis at Lund
University. A real-time version of the method has been designed and
implemented on a FPGA-platform with a high-speed digitizer.

Standing waves has long been used in different applications such as in instru-
ments. The strings on a guitar or the air passing through cavities and holes in a
flute causing sounds with different frequencies, are typical examples of this. The
same principle is used in radio applications where cavities of different shapes and
sizes give rise to different resonance frequencies based on constructive or destruc-
tive interference. In this bachelor thesis, this principle, and its applications, has
been investigated for usage in the digital domain. This has been done by sampling
the signal of interest signal with a fast digitizer and then folding it back onto itself
with a delay, as shown in Figure 0.1, and thereby mimicking the behaviour of a
cavity. If the frequency of the sampled signal corresponds to the length of the
digital cavity (number of slots used by the cavity) constructive interference will
form (shown in figure 1a). By investigating the values of the resulting signal in
the cavity after a pre-determined number of fold backs, it is possible to determine
the frequency of the sampled signal based on how well it fits the cavity. By mixing

Figure 0.1: A visual representation of a cavity length of n = 10.
The fold back in (a) forms a constructive interference, (b) forms
destructive interference.

the sampled signal with different mix signals, and then feed them in to different

iii

digital cavities of the same length and resonance frequency, it is possible, by look-
ing at which of the mixed signals that fits the best in the cavity, to determine
the sampled signal with even greater accuracy. This is done by calculating the
root mean square value of each cavity after the fold back, resulting in a cavity
response. The larger response, the better fit. The frequency estimation is done by
interpolating responses, knowing the corresponding resonance frequency for each
response, resulting in a polynomial with a specific local max. The local max of the
polynomial corresponds to the sampled signals frequency. The concept of using
a digital cavity to determine a frequency with very high precision was confirmed
by making measurements on signals generated by function generators and a laser
that produced pulses at a rate of about 70MHz.

By making further development, this new method could have substantial ben-
efits as a new way of determining the frequency, phase and amplitude of a sampled
signal with high precision.

iv

Nomenclature

λ Wavelength m

f Frequency Hz

L Length m

T Wave period s

t Time t

v Speed m/s

v

vi

Table of Contents

1 Introduction 1

2 Background 3

3 Theory 5

4 Implementation 17
4.1 Hardware & Software . 17
4.2 MicroBlaze and GPIO . 18
4.3 Generate LUTs . 19
4.4 Data acquistion . 21
4.5 Digital cavity . 22
4.6 Running the system . 25

5 Measured results 27
5.1 Frequency measurement using three cavities 27
5.2 Frequency measurement using five cavities 29
5.3 Measurement of a pulsed laser . 30

6 Conclusions 31

7 Possible improvements 33

8 References 35

vii

viii

List of Figures

0.1 A visual representation of a cavity length of n = 10. The fold back in
(a) forms a constructive interference, (b) forms destructive interference. iii

3.1 The three first modes of a standing wave 6
3.2 A rectangular cavity . 6
3.3 A visual representation of a cavity length of n = 10. The fold back in

(a) forms a constructive interference, (b) forms destructive interference. 7
3.4 Graphic representation of finding the frequency 9
3.5 The response from three cavities using different mix signals 10
3.6 The response from 400 cavities using different mix signals 11
3.7 Shifted signal, the green dot marks the max of the interpolated poly-

nomial . 12
3.8 Five digital cavities and interpolation. The cavities are centered at

80MHz, the actual signal is 80.02MHz. 14
3.9 Error caused by estimation by interpolation 15

4.1 4DSP FMC125 . 17
4.2 Xilinx Kintex-7 FPGA KC705 evaluation board 17
4.3 Setup of LUTs . 20
4.4 64-bit vector from FMC125 . 21
4.5 Setup of FMC125 . 21
4.6 Setup of cavities . 22
4.7 Simplified work flow of a digital cavity 24
4.8 Work flow of soft core . 25
4.9 Final block design in Vivado . 26

5.1 KSG4100 generating a 80MHz signal 27
5.2 Result shown in MatLab . 28
5.3 New result shown in MatLab . 28
5.4 Responses from cavities centered at 50MHz 29
5.5 FTT of captured data . 30
5.6 100 points calculated from interpolation of cavity responses 30

7.1 Visualization of a digital cavity using sliding window 33
7.2 Visualization of a digital cavity using sums 34

ix

x

Chapter 1
Introduction

Measuring the frequency of a signal is an important task in many applications
such as in frequency-shift keying, FM broadcasting and in power systems[1]. In
frequency-shift keying, a faster and more accurate estimations of the signal al-
lows higher throughput of data, while in power systems, frequency estimation and
tracking is used as a reference to how the system is performing. The problem can
be described as [1]:

yt = μ+ ρ cos (ω0(t− ν) + φ) + εt, (1.1)

where μ is the mean value, ρ is the signal amplitude, ω0 is the frequency of the
signal, ν = T−1

2 , φ is the initial phase and εt is some zero-mean random noise
with variance σ2. The problem is to estimate the variables μ, ρ, ω0, φ and σ.
Some proven methods to do this are: Maximum Likelihood Estimator of Fre-
quency, Fourier Coefficients and Sample Covariance Methods. Maximum Likeli-
hood estimation minimizes the error between a sampled signal and an estimated
reference signal. Fourier techniques iterate through all complex coefficients and
find phase and amplitude from the greatest coefficient. Frequency tracking of
signals at radio-frequency is also very important in metrology, mainly in the pre-
cision measurement of frequency of optical signals. Today, it is common to use
frequency combs generated by mode-locked lasers as the rulers for the absolute
measurements of light signals[2]. A frequency comb is characterized by the comb
spacing (fr) and the carrier-envelope phase (φce). Various types of fluctuations
in the cavity of a mode-locked laser affect the fr and φce. Hence, in order to
produce stable frequency combs, both the fr and φce have to be stabilized. fr of
a frequency comb is related to repetition rate of the mode-locked laser, and it is
typically about 100MHz. In the contemporary design of a servo-loop to control
fr one uses analog systems to measure fr. Such a design is fast but error prone
due to the electronic noise. Although, digital measurement of fr can have low
noise, it is still rather slow to be used in a real-time feedback loop. However,
with the development of fast analog-to-digital converters and efficient algorithms
it may be possible to measure fr digitally such that they can be used to track the
changes in radio-frequencies in real-time. This will allow us to implement more
accurate real-time feedback loops to stabilize the comb spacing of the frequency
combs. In general, frequency tracking of the radio-frequencies by digital techniques
can be used in all the systems that require stable source of radio and microwave

1

2 Introduction

radiations, such as in particle accelerators, synchrotrons, etc.
The focus of this thesis is to implement digital cavities, which use one of

the efficient numerical algorithms to measure frequency of a signal, in a field-
programmable gate-array (FPGA) board. The implementation allows us to accu-
rately measure frequency of a signal within few tens of milliseconds, which could
be used in a feed-back control loop. The cavities are designed to measure signals
with frequencies of tens to few hundreds of MHz.

Chapter 2
Background

A paper published in early 2013 named “Digital Cavities and Their Potential Use”
[3] describes the possibility to achieve a high Q-factor for LIA (Locked In Ampli-
fier) applications. Possible applications such as phase-sensitive signal detection,
software defined radio and high resolution spectroscopy are presented.

In April 2014, a master thesis regarding this subject was produced at Lunds
University by Siyuan Fu and Aohan Jin. In their report, they present different
test setups where they analyze signals by using digital cavities. The thesis ascer-
tains the functionality of digital cavities by presenting the result of analyses which
process a high precision (64 bits) computer generated signal. The result showed
that it is possible to achieve a Q-factor of 108 and a precision of 0.1mHz by using
109 wave forms. They proceed by measuring the phase difference between two
channels connected to the same source using an 80GS s−1 digitizer where one of
the transmission lines was cooled with ice. The result clearly corresponds with
the Newton’s Law of Cooling [4]. They were also able to detect the change in re-
sistance caused by heating the transmission line between the source and digitizer
by analyzing the amplitude variations [4]. However, these tests were done offline
using a large amount of captured data (about 4 GBs of sampled data). Real time
processing of such large amount of data is not feasible with a general purpose
serial processor. Hence, in the thesis they also concluded that the method has
to be improved and implemented in a parallelized computing architecture for real
time applications such as radar/sonar systems, remote sensing, etc. Moreover, the
implementation by Siyuan and Aohan lacked the features of frequency tracking
using multiple digital cavities. One of the new concepts that has been developed
since the thesis work is the use of interpolation to accurately determine the fre-
quency of a signal. It is possible to significantly reduce the size of the data and
yet achieve similar accuracy as compared to using a digital cavity on a full data
set. These new concepts of implementing digital cavities in a parallelized compu-
tational architecture and interpolation to calculate the frequency of radio signals
are described in this thesis.

3

4 Background

Chapter 3
Theory

A rigorous description of digital cavity and associated concepts are given in Ref.
3. Here we motivate the functionality of a digital cavity based on the familiar
concept of standing waves in mechanical strings.

Consider a string of length Ls that is attached to a vibrator in one end and to
a fixed point in the other end. As the vibrator starts to move up and down with a
fixed frequency, fv, several waves are created that travels along the string towards
the fixed point at a speed vs. At the fixed point the waves gets reflected (phase
shift by 180◦) back towards the vibrator. If the return time, or the time period Ts,
of the waves corresponds to the period of the vibrator Tv, the reflected waves will
add to the newly produced waves by the vibrator, which then will results in the
doubling of the amplitude. This is usually referred to as constructive interference.
Wherein the vibrations in the string has reached a resonance frequency fs (fun-
damental frequency) with corresponding wavelength λs, resulting in a standing
wave. The standing wave has a maximum and a minimum at the center, as shown
in figure 1 (n=1). If the vibration frequency is increased by a factor of two (mode:
n = 2) of that fundamental frequency, the string forms two maxima and two min-
ima. Continuing the increase of frequency by an integer factor will result in more
maxima and minima. The amplitude is usually limited by damping effects, such
as the loss of energy during the reflection and the air drag from the movement. If
the traveling time and the period of vibration does not correspond, the vibrations
cancel out due to the destructive interference with the reflected vibrations. This
lowers the amplitude. [6]

vs = fsλs (3.1)

λs = 2
Ls

n
, n = 1, 2, 3, ... (3.2)

Ts =
1

fs
, Tv =

1

fv
(3.3)

5

6 Theory

Figure 3.1: The three first modes of a standing wave

The concept of resonance in a string is useful in understanding the function-
ality of microwave cavities that are commonly used in signal processing. A cavity
is used to select a certain frequency and to suppress the others. Unlike the move-
ment of the string in the previous example, it is bouncing back and forth of the
electromagnetic waves in the closed space of the cavity that form constructive or
destructive interference. The dimensions of the cavity determines the resonance
frequency. The resonance frequency for a rectangular cavity is given by [5]:

fmnl =
c

2
√
μrεr

√(m
a

)2
+
(n
b

)2
+

(
l

c

)2

, (3.4)

where c is the speed of light in vacuum, μr is the relative permeability and εr
is the relative permittivity of the cavity filling. m, n and l are the mode numbers.
a, b and c are the dimensions of the cavity.

Figure 3.2: A rectangular cavity

Cavities are used as band pass filters, letting a certain frequency pass and
blocking the others. This can be used to filter out unwanted signals from the
desired ones. The benefit of cavity filters in RF-applications is their high Q-factor.
Q-factor is calculated as the resonant frequency divided with the full width at half
maximum (see Equ.3.5, the bandwidth Δf , where the power is half of the power
at resonance frequency fres). The value gives the bandwidth of a filter at a certain
resonance frequency.

Theory 7

Q =
fres
BW

=
fres
Δf

(3.5)

In this project we implement the principles of analogue cavity filters in the digital
domain. We achieve this by sampling the signal at a certain rate (fs) and folding
back the digitized signal onto itself with a delay given by the length (n) of the
cavity. The response y of the cavity is given by [3]:

y(j ·Δt;n) =

Nc∑
k=0

x · (j ·Δt+ k · T) j = 1, 2, 3, ..., n, (3.6)

where x is the sampled signal,and Nc + 1 is the number of times the cavity
function is applied to the signal, Δt = 1/fs, T = n ·Δt and n is the cavity length.
The resonance frequency for the cavity is given by:

f0 =
1

n ·Δt
=

fs
n

(3.7)

The cavity will be resonant for all integer multiples of f0, including the DC signal.
By considering Equ.3.4 in two dimensions (removing the z-dimension), letting
b → ∞ (b is not bounded to a finite value), consider the a-distance as a time
interval: a = n ·Δt and removing the constants, we get Equ.3.7.

Figure 3.3: A visual representation of a cavity length of n = 10.
The fold back in (a) forms a constructive interference, (b) forms
destructive interference.

8 Theory

In a typical application of the digital cavity, the cavity length and the sampling
rate is fixed, which results in a fixed resonance frequency. In order to make the
signal resonante in the cavity, the the frequency of the signal has to be up-shifted or
down-shifted to the resonance frequency by mixing with an appropriate frequency
mix. If we assume a sinusoidal signal and t ∈ [0, 2π], then

cos (2πfsamplet) · cos (2πfmixt) =

1

2
(cos (2π (fsample + fmix) t) + cos (2π (fsample − fmix) t))

(3.8)

The frequency mixing produces two signals, one at the down-shifted frequency,
fsample − fmix, and the other at the up-shifted frequency, fsample + fmix. Usu-
ally, fmix is chosen such that the up-shifted frequency matches the fundamental
resonance frequency, f0 of the cavity. In this case the down-shifted frequency is
guaranteed to be off-resonance with f0 or its harmonics. In principle, one can
also choose fmix such that the down-shifted frequency matches f0, however this
does not ascertain that the up-shifted is not resonant with any of the harmonics
of f0. The frequency by which the signal should be up-shifted is then calculated
as f0 = fsample + fmix ⇔ fmix = f0 − fsample.

If the mixed signal has a wavelength corresponding to the length of the cavity
(T = n ·Δt), then constructive interference leads to the increase in the amplitude
with the number of folds (Nc). A signal whose wavelength does not match the
length of the cavity interferes destructively, thereby flattening out the response.
The output of the digital cavity is a set of numbers xi, where i ∈ {0, 1, 2, .., n−1}.
We use the standard deviation given by:

sn =
1

n

√√√√ n∑
i=0

(xi − x)
2

(3.9)

as a measure of the amplitude of the cavity response, which also can be used
to quantify how well the signal fits in the cavity. x in Equ.(3.9) is the mean of the
different values of xi, which is given by

x =
1

n
(x1 + x2 + . . .+ xn) . (3.10)

The value of sn increases as |f0 − (fmix + fsample)| → 0. The response of the
digital cavity in the vicinity of the resonant frequency can be approximated by a
sinc2 function (see Figure 3.6). In order to find the exact frequency of the signal,
we vary the frequency, fmix, of the mixing signal and determine the fmix−max for
which the cavity response is maximum. The frequency of the signal is then given
by f0− fmix−max. As the algorithms of digital cavity are highly parallelizable, we
apply separate cavities for each fmix simultaneously, which allows us to determine
the exact frequency of the signal within few milliseconds of data acquistion. In
practice, we use three cavities and three different mix signals, which gives us three
points, (f1, a1), (f2, a2), (f3, a3), where fn is the frequency of the up-shifted signal
that is fed into the digital cavity and an is the corresponding response. We usually
choose f2 close to the resonance frequency of the cavity, f1 slightly below and f2
slightly above. We interpolate the three points to a second degree polynomial and

Theory 9

estimate the frequency from the maxima of the polynomial. The setup for such a
system can be graphically described as in Figure 4.

Figure 3.4: Graphic representation of finding the frequency

Some examples of the raw output of the digital cavity (Fig. 3.5) and the am-
plitude of the response of the digital cavities (Fig.3.6–3.8) are presented below.

To show that the theory in previous part work in practice, four examples will
be presented in the following text. All examples was made ”offline” in MatLab.

10 Theory

Example 1
A signal is sampled at a rate of 1.25GS s−1 (Giga Samples per second). The

signal frequency is estimated to be 80MHz. The three mix-signals are set to
79.95MHz, 80MHz and 80.05MHz. With the use of a cavity of length n = 10, the
resonance frequency is f0 = fs/n = 1.25GS s−1/10 = 125MHz.

The three mix signals are calculated as follows:

fmix0
= f0 − 79.95MHz = 45.05MHz

fmix1
= f0 − 80.00MHz = 45.00MHz

fmix2
= f0 − 80.05MHz = 44.95MHz

The response from the three cavities when applying the digital cavity algorithm
to the signal is plotted in Figure 3.5.

Figure 3.5: The response from three cavities using different mix
signals

Theory 11

The square of the amplitude (the responses) are:

a0(blue) = 268.3959

a1(read) = 595.9486

a2(yellow) = 268.6110

The response for the second response gives the greatest value. This is expected
since the second cavity uses a mix signal that transform the sampled signal to be
resonant with the cavity.

Example 2
An 80 MHz signal is multiplied with 400 different mix-signals making cavi-

ties resonant for frequencies ranging from 79.8MHz to 80.2MHz. The standard
deviation of each cavity response is plotted in figure 3.6.

Figure 3.6: The response from 400 cavities using different mix sig-
nals

Max amplitude is 600 at 80MHz, half the amplitude is there for 300 with cor-
responding frequencies 79.953MHz and 80.047MHz. The Q-factor for this specific
application is Q = 80MHz

(80.047MHz−79.953MHz) ≈ 851.

12 Theory

Next example will show how the frequency of the sampled signal can be esti-
mated by choosing the response of three digital cavities.

Example 3
The frequency of the signal is now shifted to 80.02MHz, all the other param-

eters is the same as previous examples. By choosing the three x-values within the
center peak, a second degree polynomial fits fairly well to the responses of the
cavities as shown on Figure 3.7. The root of the derivative of the polynomial gives
a estimation of the signals frequency. By reducing the number of cavities to three,
the number of calculations is reduced sufficiently.

The three responses corresponds to: f0 = 79.95MHz, f1 = 80.00MHz, f2 =
80.05MHz. The method gives a good estimation if the signal is shifting within
half of the frequency difference between f1 and f0 or f2.

Figure 3.7: Shifted signal, the green dot marks the max of the
interpolated polynomial

The three cavities corresponds to following three points:

(f0, a0) = (79950000, 68.25380)

(f1, a1) = (80000000, 533.8123)

(f2, a2) = (80050000, 461.6987)

The polynomial and its derivative’s root corresponding to the points is calculated

Theory 13

to:
f(x) = −1.0753 · 10−07x2 + 17.209x− 688534379

f ′(x) = −2.1507 · 10−07x+ 17.2094

0 = f ′(x) ⇔ x ≈ 80018294 ≈ 80.02MHz

The green dot in Figure 3.7 correspond to local maxima of the polynomial, i.e the
estimated frequency.

This example show that it is possible to estimate an unknown frequency by
first making an assumption fairly close to the actual frequency and then make the
cavities resonate around this frequency. The estimated frequency from interpola-
tion will have an error that increase with the signals offset from the assumed fre-
quency, showed later in this section. In this case the error is 80020000−80018294 =
1706Hz.

Next example will show how this error can be reduced.

14 Theory

Example 4
In order to get a better estimation of the signals frequency, two additional

cavities are implemented. Five digital cavities produce five responses. By interpo-
lating five points (frequency, response), a fourth degree polynomial is produced.
The frequency is estimated by finding the local max of the polynomial as shown
in the MatLab simulation in Figure 3.8.

Figure 3.8: Five digital cavities and interpolation. The cavities are
centered at 80MHz, the actual signal is 80.02MHz.

The result from this simulation gives an error of 237Hz, which is almost 1/7
of the error in example 3.

Conclusion from examples
Comparing example 3 and 4, using five cavities results in a better estimation.

Using more cavities gives a even better estimation, the downside is the requirement
of more computing power. When implementing on a FPGA, more computing
power corresponds to more use of logic blocks within the chip, which is limited.

Theory 15

Errors
In order to get an understanding of the error caused by interpolation of the

responses from five cavities, a simulation was made in MatLab showing the abso-
lute value of the difference between estimated signal and actual signal frequency,
Figure . The signal varies from 79.97MHz to 80.03MHz, the cavities are fixed to
79.95MHz, 79.975MHz, 80MHz, 80.025MHz and 80.05MHz.

Figure 3.9: Error caused by estimation by interpolation

The error is related to the points used in the interpolation. If the frequency of
the sampled signal is close to resonance frequency of the center or one of the closest
cavities, the error will be small. If the frequency drifts from the estimated center,
the error will increase. This is due to the fact that the points used for interpolation
will not form a polynomial corresponding to the peak of the frequency as showed
in example 2, Figure 3.6.

16 Theory

Chapter 4
Implementation

4.1 Hardware & Software

In order to capture and process data at high speed the 4DSP’s FMC125 and
Xilinx’s KC705 evaluation board featuring the XC7K325T-2FFG900C FPGA was
used.

Figure 4.1: 4DSP FMC125

The FMC125 is a Quad-Channel Multi-Mode A/D FMC. The card provides
four 8-bit ADC channels that enable simultaneous sampling of 4, 2, or 1 chan-
nel with a maximum sample rate of 1.25GS s−1 (4-channel mode), 2.5GS s−1 (2-
channel mode), or 5.0GS s−1 (1-channel mode). In this project the default setup
of 4-channel mode at 1.25GS s−1 rate was used.

Figure 4.2: Xilinx Kintex-7 FPGA KC705 evaluation board

Xilinx’s FPGA programming tool Vivado Design Suite features “Block Design”
with pre-designed blocks and the possibility to design custom blocks. To be able
to use the FMC125 in the Vivado block design, a block was generated from 4DSP’s
software StellarIP. The block supports Xilinx AXI-bus standard, which makes the

17

18 Implementation

FMC125 easy to implement to a design in Vivado. A MicroBlaze soft core was used
to control the system using C++ code that triggers different functions, calculates
a look-up-table (LUT), initiates the FMC125, etc. inside the FPGA.

4.2 MicroBlaze and GPIO

Xilinx Vivado provides a simple implemention of the 32 bit MicroBlaze soft mi-
croprocessor core. By using AXI-GPIO blocks (Advanced eXtensible Interface,
General-Purpose Input/Output) that connects with the soft core processor, it is
possible to control other I/O parts of the system using C++ code. Each AXI-
GPIO block is capable of handling two channels configured to be either outputs,
inputs or both using 1 to 32 bits. After compiling and creating the bit-file used to
program the FPGA, it is possible to export the project and program the soft core
using Xilinx SDK.

Each GPIO is declared in the code which makes reading or writing custom IO
possible:

1 #include "xgpio.h"

2 #include "xgpio_l.h"

3

4 XGpio GPIO_0;

5 XGpio_Config GPIO_0_conf;

6

7 int main(){

8 GPIO_0_conf.BaseAddress = XPAR_AXI_GPIO_0_BASEADDR;

9 GPIO_0_conf.DeviceId = XPAR_AXI_GPIO_0_DEVICE_ID;

10 GPIO_0_conf.InterruptPresent = XPAR_GPIO_0_INTERRUPT_PRESENT;

11 GPIO_0_conf.IsDual = XPAR_GPIO_0_IS_DUAL;

12 XGpio_CfgInitialize(&GPIO_0, &GPIO_0_conf,

13 GPIO_0_conf.BaseAddress);

14

15 int data = 0;

16 XGpio_DiscreteWrite(&GPIO_0, 1, 0x00000001);

17 //write "1" to GPIO_0, channel 1

18 data = XGpio_DiscreteRead(&GPIO_0, 2);

19 //read value from GPIO_0, channel 2 and store to variable "data"

20

21 return 0;

22 }

Using UART (Universal Asynchronous Receiver/Transmitter) to communicate
between the MicroBlaze and a PC, data can be processed and presented using
MatLab (or any other application preferred) running on the PC.

Implementation 19

4.3 Generate LUTs

In order to make the signal resonant with the cavities, it has to be multiplied by
the mix signals that are generated by the soft core using ”math.h” which includes
the cosine-function. The values have to be pre-generated with the same sample
rate as the data acquisition rate used in the FMC125, i.e. 1.25GS s−1 in this
configuration. The values are stored in separate memory blocks.

The cosine-results are multiplied with 127, which result in signed 8-bit cosine-
LUTs. By using pre-generated values, it is possible to read the memories at the
same clock rate as the rest of the system (100MHz). Direct generation of mix-
signals using the soft core does not cope with the high rate of data acquisition
by the FMC card, hence the LUTs are necessary for the design. The following
C++ code generates three LUTs and stores the values at the same address as an
incrementing variable using the GPIO connected to the RAMs.

1 //---Generate LUT

2 XGpio_DiscreteWrite(&GPIO_1, 2, 0x00000001); //WEA = 1

3 for(int i = 0;i<nbr_of_samples;i++){

4 XGpio_DiscreteWrite(&GPIO_0, 1, i); //addr LUT0

5 XGpio_DiscreteWrite(&GPIO_2, 1, i); //addr LUT1

6 XGpio_DiscreteWrite(&GPIO_3, 1, i); //addr LUT2

7 XGpio_DiscreteWrite(&GPIO_0, 2, round(127*cos(m0*i)));

8 XGpio_DiscreteWrite(&GPIO_2, 2, round(127*cos(m1*i)));

9 XGpio_DiscreteWrite(&GPIO_3, 2, round(127*cos(m2*i)));

10 }

11 XGpio_DiscreteWrite(&GPIO_1, 2, 0x00000000);//WEA = 0

The values m0, m1, m2 in the code are generated for the desired resonance
frequency of each cavity. The values are generated in MatLab since MicroBlaze
soft core can not handle divisions by large numbers. The values are then multiplied
with the incrementing values that ranges from zero to the number of samples used
in the configuration.

1 center_f = 80E6;

2 off=.05E6;

3 sample_rate = 1.25E9;

4 cavity_length = 10;

5 dt=1/sample_rate;

6 f0 = ((sample_rate / cavity_length) + (center_f-off));

7 f1 = ((sample_rate / cavity_length) + center_f);

8 f2 = ((sample_rate / cavity_length) + (center_f+off));

9 m0 = 2*pi*f0*dt

10 m1 = 2*pi*f1*dt

11 m2 = 2*pi*f2*dt

20 Implementation

A signal (GPIO 1, channel 2) sets write enable to high during the generation,
when done its turns low. This signal is inverted and connected to read enable,
making it only possible to write to the RAMs during generation of the LUTs.

Figure 4.3: Setup of LUTs

Implementation 21

4.4 Data acquistion

The FMC125 can be reconfigured to capture 1k, 2k, 4k, 8k or 16k samples. The
samples are provided as 64-bit vectors, each vector containing four unsigned 8-bit
samples.

Figure 4.4: 64-bit vector from FMC125

In order to read out each sample one at a time, the 64-bit vector is stored in
a FIFO memory (First In First Out). The FIFO starts sending data when“rd en”
is active, which is controlled by GPIO 4, channel 1. Data is extracted at 1/4 of
the clock frequency (25MHz) into a custom made multiplexer running at the same
clock as the rest of the system (100MHz), extracting one bit at a time from the
vector.

Figure 4.5: Setup of FMC125

22 Implementation

4.5 Digital cavity

When the GPIO signal is set to high and if the FIFO has values stored (it is
not empty), the cavities get enabled and a counter starts incrementing from 0 to
16384. The counter is connected to the address port of the LUT-RAMs, making
the LUT-values available. The LUT-values and the sampled data from the FIFO
are multiplied using a multiplication block. The product from each multiplication
is sent to each corresponding digital cavity. The cavities perform the fold back
loops. The process continues until the number of samples set in the C++ code is
reached.

Figure 4.6: Setup of cavities

Implementation 23

When finished,“RDY” is set to high and each value from the response is active
on “DAO” at the same time as an incrementing index is active on “IND”. Each
response value is stored in the RAMs at the same address as the index. The soft
core then reads the RAMs and the standard deviation is calculated based on each
cavity response.

The cavity block works as a state machine having three “main” states: reset,
fold back and output result. There are two vectors used for the fold back, one is
used for temporary values and the other stores the actual response.

During each clock cycle, the “DAI” is read and the value is stored as an signed
integer. During the fold back-state, another state machine is used to update the
response values. For a 10 slot cavity there are 10 states. Each state updates one
slot per clock cycle. When the last slot is updated, a counter is set to zero and the
fold back starts over from the slot zero. This continues until the counter reaches
the value set in the C++ code, making the cavity go to next main state; output.
During the output state, the values from each slot is active on the “DAO” together
with the slot’s index on “IND”. “RDY” is active during output indicating that
the result is available. When the last slot value has been sent out, the cavity is put
to reset during the last main state. If “rst” is set high, all the vectors are erased
and set to zero. Figure 4.7 shows a visual representation of the digital cavity.

24 Implementation

Figure 4.7: Simplified work flow of a digital cavity

Implementation 25

4.6 Running the system

The setup is controlled from the MicroBlaze soft core. The code initiates the GPIO
blocks and sends instructions to the FMC125’s setup register. The same number
of LUT values as number of samples used in cavities are calculated and sent to the
RAMs. This step takes around two or three seconds to perform (calculating 3 ·
16k values). When done, an infinite while loop is entered. The loop first clears the
cavities and the FIFO, then triggers the FMC125 to capture 16k samples. Cavities
and the FIFO get enabled and the multiplication and fold back operations are
performed by the FPGA logic. The soft core is put to “sleep”, waiting for the
cavities to process all the samples. Responses from each cavity is then read from
RAMs. The standard deviation of each response is calculated and concatenated
to a string that is sent via UART.

Figure 4.8: Work flow of soft core

26 Implementation

The final setup in Vivado block design is shown in Figure 4.9.

Figure 4.9: Final block design in Vivado

Chapter 5
Measured results

5.1 Frequency measurement using three cavities

A test using the KSG4100 signal generator from Kikusui was made in order to
verify the systems functionality. The signal generator was set to output a 80MHz
signal with an amplitude of 250mV. The three values m0, m1, m2 were generated
as described in section 4.3 and inserted to the C++ code running in the MicroBlaze
soft core.

Figure 5.1: KSG4100 generating a 80MHz signal

The frequency determined by the digital cavies was sent to a PC and visualized
in a MatLab plot. The plotted result is the mean value of the last 100 data points
sent from the soft core. The plot changes as new values are calculated from the
data received, sweeping from left to right, updating the plot and values.

27

28 Measured results

As shown in Figure 5.2, the result is fluctuating near 80MHz.

Figure 5.2: Result shown in MatLab

In order to test the device, we changed the frequency of the signal to 80.02MHz.
The change of frequency was clearly seen in MatLab. Values increased from
80MHz to 80.02MHz as the update sweeps over the plot. The results are shown
in Figure 5.3. The last points in the figure show the frequency stablizing to
80.02MHz.

Figure 5.3: New result shown in MatLab

Measured results 29

5.2 Frequency measurement using five cavities

The system was set to detect a frequency centered at 50MHz using five digital
cavities with equidistant spacing of 25 kHz. The responses were captured and
plotted using MatLab as shown in Figure 5.4.

Figure 5.4: Responses from cavities centered at 50MHz

The result clearly show that the digital cavity resonant with 50MHz has the
greatest amplitude.

30 Measured results

5.3 Measurement of a pulsed laser

A femtosecond oscilator, SynergyTM, from Femtolasers was used. The laser pro-
duced pulses with a duration of about 10 fs and at a rate of about 70MHz. The
repetition rate varied slightly because of fluctuations in the temperature and air
turbulence in the laser cavity. A DET10A/M detector from Thorlabs was used to
detect the individual pulses from the laser.

To get an initial value of the pulse rate, a FTT (fast Fourier transform) was
done on the captured data extracted from the ADC (see Figure 5.5).

Figure 5.5: FTT of captured data

The digital cavities were configured to center at 70 165 430MHz. The frequency
of the signal was estimated from the polynomial interpolation of the responses.

Figure 5.6: 100 points calculated from interpolation of cavity re-
sponses

Seen in Figure 5.6, the tracking of the variation of pulse rate without any
averaging seems to vary around 70.16MHz.

Chapter 6
Conclusions

Methods used in this project show that it is possible to estimate the frequency of
a signal using digital cavities in real time.

The Q factor is related to how many samples that are used in the fold back,
more samples gives a higher Q. In example two the Q factor is calculated to 851,
which is fairly low in terms of filters. This is not that bad for this application, if
the signal is drifting a lot, having a low Q-factor allows for more spread cavities
and a wider detection range.

By using an FPGA, it is possible to create tailored solutions that is able
to calculate results much faster than using a program running on a PC. The
multiplications and fold back operations in the digital cavities used in this project
are all processed in parallel.

By using the standard configuration of the ADC (FMC125) it is only possible
to capture a limited amount of samples each time the ADC is triggered. The man-
ufactures, 4DSP, claim that it is possible to do continuous sampling by making a
reconfiguration of the ADC using their provided tools. The system setup described
in this project will miss an amount of data during evaluation of the responses from
the digital cavities, the signal is not sampled during this time. Continuous sam-
pling would benefit to accuracy of the result, all the data would be accounted for
rather than the current setup where only parts of the signal is used for frequency
estimation. If continuous sampling were to be used, the system clock would have
to run at the same rate as the sampling frequency. That is not possible for the
FPGA used in this project.

In Figure 3.6, the response from multiple cavities is shown. The responses look
more like a modification of a sinc2 (x) function. During this project no further
efforts was made to investigate the best interpolation option. Polynomial inter-
polation using five points gave a fairly good estimation of the frequency. Using
higher order polynomial interpolation with more points equally divided around a
center would increase accuracy. Similarly, using a narrower frequency range when
choosing the points increases the accuracy of the estimation, however, this de-
creases the possible detection range. The FPGA’s amount of logic sets a limit to
how many cavities can be implemented in the design.

Figure 5.2 shows fluctuations in the estimated frequency. There are many
things in the setup that could cause this. For example, the signal generator has not
been calibrated since it was bought according to the LTH lab staff. The FMC125
ADC clock is affected by temperature that affects the sampling accuracy.

31

32 Conclusions

During the final weeks of this project, measurement of two channels and cal-
culation of phase difference was implemented. The phase difference was calculated
using the following equations:

ø = tan−1

(
x1 · sin

(
2π
n

)
x2 − x1 · cos

(
2π
n

)
,

)
(6.1)

where xi is the value of slot i in the digital cavity after folding, n is the cavity
length. The phase difference in degrees between the two channels is given by:

|øchannel1 − øchannel2| · 360
2π

(6.2)

The accuracy of real time phase estimation was not fully tested.

Chapter 7
Possible improvements

Calculating the frequency by fitting a sinc2 function to the responses of the cavity
could increase the accuracy, however this method could be slower.

If faster method of generating LUTs could be implemented it would be possible
to “lock” on to the peak of the cavity responses and track the frequency more
accurately.

A faster FPGA (allowing higher clock frequency) would make it possible to
design a faster system.

The use of more data/samples would increase the Q value, making the result
even more accurate, but at the same time reduce the range of possible detection
of frequency.

More effective ways of implementing the digital cavity algorithm is possible. A
sliding window that accepts a continuous stream of samples would increase speed
of the result, rather than as done in this project where samples are captured and
then calculations are made. By using a sliding window, a result would always be
available.

A possible implementation would be that each slot in the cavity contains a
certain amount of samples and the sum of all values in the slot are continuously
calculated and sent to the user, as shown in Figure 7.1.

Figure 7.1: Visualization of a digital cavity using sliding window

33

34 Possible improvements

Yet other approach might be to use only sums. Each sample is added to a sum
in the digital cavity. The sample is then delayed in a FIFO and then subtracted
from the the same sum as it was added. The delay is determined by the amount of
samples desired for the fold back. This would also make it possible to always have
a result available. A suggested implementation is visual represented in Figure 7.2.

Figure 7.2: Visualization of a digital cavity using sums

Chapter 8
References

[1] P.J. Kootsooks
A Review of the Frequency Estimation and Tracking Problems
http://espace.library.uq.edu.au/view/UQ:10626/comparison-t.pdf

[21 Feb 1999]

[2] Y. Jun and S. Cundiff
Femtosecond Optical Frequency Comb: Principle, Operation and Applications
(New York: Springer) 2005.

[3] K. Karki, M. Torbjornsson, J. R. Widom, A. H. Marcus and T. Pullerits
Digital Cavities and Their Potential Applications, J. Instrum. 8, T05005
(2013).

[4] A. Jin, S. Fu, A. Sakurai, L. Liu, F. Edman, T. Pullerits, V. Öwall and K. J.
Karki
Note: High precision measurements using high frequency gigahertz signals, Rev.
Sci. Instrum. 85, 126102 (2014).

[5] D. M. Pozar
Microwave Engineering, 4th Edition
ISBN-13: 978-0470631553, ISBN-10: 0470631554

[6] P. A. Tipler and G. P. Mosca
Physics For Scientists And Engineers Mechanics, Oscillations And Waves,
Thermodynamics, 6th Edition
ISBN-13: 978-1429201322

35

Frequency Tracking Using Digital Cavities

FREDRIK ZETTERBLOM
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

FR
ED

R
IK

 ZETTER
B

LO
M

Frequency Tracking U
sing D

igital C
avities

LU
N

D
 2017

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-558

http://www.eit.lth.se

