
B
yp

assin
g

 m
o

d
ern

 san
d

b
o

x tech
n

o
lo

g
ies —

 A
n

 exp
erim

en
t o

n
 san

d
b

o
x evasio

n
 tech

n
iq

u
es

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Bypassing modern sandbox
technologies
An experiment on sandbox evasion techniques

Gustav Lundsgård
Victor Nedström

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-517

http://www.eit.lth.se

G
u

stav Lu
n

d
sg

å
rd

 &
 V

icto
r N

e
d

strö
m

Master’s Thesis

Bypassing modern sandbox technologies

An experiment on sandbox evasion techniques

Gustav Lundsgård
Victor Nedström

Department of Electrical and Information Technology
Lund University

Advisor: Paul Stankovski

June 21, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

Malware (malicious software) is becoming an increasing problem, as it continu-
ously grows both in numbers and complexity. Traditional, signature based anti-
virus systems are often incapable of detecting new, sophisticated malware, which
calls for more advanced tools. So called sandboxes are tools which automate the
process of analyzing malware by actually running them in isolated environments
and observing their behavior. Although this approach works very well in theory,
some malware have recently begun deploying sandbox detection techniques. With
the help of these techniques, malware may detect when they are being analyzed
and manage to evade the sandbox by hiding their malicious behavior.

The authors of this Master’s Thesis have developed and compared differ-
ent types of sandbox detection techniques on five market leading products. It
was shown that an average of roughly 43% of the detection techniques devel-
oped were capable of both detecting and bypassing the sandboxes, and that the
best performing sandbox caught as much as 40% more of the techniques than the
worst. Patterns of weaknesses were noticed in the sandboxes, affecting primar-
ily the limited hardware and lack of user interaction - both of which are typical
sandbox characteristics. Surprisingly, the time for which the sandbox vendors
had been developing their sandboxing technology seemed to have no positive
impact on the result of their product, but rather the other way around. Further-
more, some detection techniques proved very efficient while being trivial to de-
velop. The test results have been communicated to the sandbox vendors, and the
authors are of the belief that the sandboxes could be quite significantly improved
with these results as a guideline.

i

ii

Acknowledgements

This Master’s Thesis is a result not only of our own work but also of the efforts
of people we have had the privilege to work with. Without you, this Master’s
Thesis would not be what it is today.

First and foremost, we would like to warmly thank our supervisor at the de-
partment of Electrical and Information Technology, Paul Stankovski, for his com-
mitment and care throughout the entire process.

Secondly, we want to express our sincere gratitude towards Coresec Systems
AB for giving us the opportunity to write our Master’s Thesis on a topic close
to our hearts. We would especially like to thank our two supervisors, Stefan
Lager and David Olander, for their continuous support, technical advisory and
encouragement. Furthermore, both Philip Jönsson and Holger Yström deserve
many thanks for their efforts in helping and sharing their technical expertise. We
are very grateful to all of you for everything we have learnt during the process
and are looking forward to working with you in the future.

Lastly, we would like to thank The Swedish National Board of Student Aid,
Centrala Studiestödsnämnden (CSN), for their investment in our studies.

iii

iv

Acronyms

A
API - Application Programming Interface

C
C&C - Command and Control (server)
CPU - Central Processing Unit

D
DLL - Dynamic Link Library
DMZ - Demilitarized Zone
DNS - Domain Name Server

G
GPU - Graphics Processing Unit
GUI - Graphical User Interface

H
HTTP - Hypertext Transfer Protocol

I
IAT - Import Address Table
ICMP - Internet Control Message Protocol
IRC - Internet Relay Chat

M
MAC - Media Access Control

P
PE - Portable Executable

R
RDP - Remote Desktop Protocol

V

v

VLAN - Virtual Local Area Network
VM - Virtual Machine
VMM - Virtual Machine Monitor
VPN - Virtual Private Network

vi

Glossary

C
Command and Control (C&C) server: a server to which malware, after infecting
a target host, connects to download files or receive additional instructions.

D
Debugger: enables a program to be examined during execution. Most debuggers
can run programs step by step.

F
False positive: a benign file causing a "false alarm" in an anti-malware system,
commonly because its behavior resembles that of malicious files.

G
Golden image: an operating system image configured according to best effort.

H
Hypervisor: software that enables virtualization by creating and running virtual
machines.

M
Malware sample: a single copy of malware being subject to analysis.

R
Ransomware: a type of malware that encrypts files on a file system and demands
a ransom to be paid in exchange for the decryption key.

S
Snapshot: a preserved state in a virtual machine.

Z
Zero-day threat: a previously unseen threat.

vii

viii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 1
1.3 Purpose . 2
1.4 Method . 2
1.5 Scope . 3
1.6 Report Layout . 4

2 Theory 5
2.1 Malware . 5

2.1.1 Origin and purpose 5
2.1.2 Types of malware 6

2.2 Malware analysis . 7
2.2.1 Static Analysis 7
2.2.2 Dynamic Analysis 8

2.3 Malware analysis detection . 8
2.4 The Portable Executable file format 9
2.5 Running executable files . 11
2.6 Virtual machines . 11
2.7 Sandboxes . 12

2.7.1 Detection of virtual machines and sandboxes 13
2.8 DLL injection and API hooking . 14
2.9 Sandbox analysis procedure . 15
2.10 Related work . 17

3 System Description 19
3.1 Introduction . 19
3.2 Vendors and sandboxes . 19

3.2.1 Vendor A 19
3.2.2 Vendor B 20
3.2.3 Vendor C 21
3.2.4 Vendor D 22
3.2.5 Vendor E 22
3.2.6 Sandbox specification summary 22

ix

4 Experiments 25
4.1 Introduction . 25
4.2 Test case design . 25
4.3 Test method, environment and configuration 27

4.3.1 Inline deployment 29
4.3.2 Upload deployment 30

4.4 Test cases . 31
4.4.1 Timing 32
4.4.2 Process 33
4.4.3 File 33
4.4.4 Environment 34
4.4.5 Hardware 35
4.4.6 Network 35
4.4.7 Interactive 36

4.5 Test criteria . 37
4.6 Choice of malware . 37

5 Results 39
5.1 Introduction . 39
5.2 Results per category . 39

5.2.1 Timing 40
5.2.2 Process 42
5.2.3 File 44
5.2.4 Environment 46
5.2.5 Hardware 48
5.2.6 Network 50
5.2.7 Interactive 52

5.3 Result of golden image configuration 54
5.4 Result summary . 55

6 Discussion 57
6.1 Sandbox technologies and result patterns 57
6.2 Weakness patterns based on detection technique 60
6.3 Simplicity contra efficiency in detection techniques 61
6.4 System lifetime in relation to test results 62
6.5 General discussion and sources of error 63

7 Conclusions 67
7.1 Future work . 68

References 69

A Test case simplicity-efficiency score 73

x

List of Figures

2.1 Flow chart of an inline API hook. 14
2.2 Communication between user mode and kernel mode components. . . 15

3.1 Relative vendor size measured in number of employees 20
3.2 Relative vendor age . 21

4.1 Test case components overview . 26
4.2 Test case flow chart . 26
4.3 A simplified overview of the test environment. 28
4.4 Detailed view of the test environment including network interfaces. . 30
4.5 A detailed view of how the malware is hidden as a resource in the test

case [1]. 32

5.1 Timing - detected malware per vendor. 41
5.2 Process - detected malware per vendor. 43
5.3 Files - detected malware per vendor. 45
5.4 Environment - detected malware per vendor. 47
5.5 Hardware - detected malware per vendor. 49
5.6 Network - detected malware per vendor. 51
5.7 Interactive category - detected malware per vendor. 53
5.8 Malware detection rate per vendor. 55
5.9 Average malware detection rate per category and coefficient of variation. 56

6.1 Sandbox detection rate per vendor where the test cases detected the
sandbox . 59

6.2 Simplicity contra efficiency score per category. 62

xi

xii

List of Tables

3.1 Sandbox specifications and features 23

5.1 Timing results statistics. 40
5.2 Timing category results per vendor. 40
5.3 Process results statistics. 42
5.4 Process category results per vendor. 42
5.5 Files results statistics. 44
5.6 File category results per vendor. 44
5.7 Environment results statistics. 46
5.8 Environment category result per vendor. 46
5.9 Hardware result statistics. 48
5.10 Hardware category result per vendor. 48
5.11 Network result statistics. 50
5.12 Network category results per vendor. 50
5.13 Interactive result statistics. 52
5.14 Interactive category results per vendor. 52
5.15 Result between golden and original images. 54
5.16 Overall result statistics . 55

A.1 Timing category . 73
A.2 Process category . 73
A.3 Files category . 74
A.4 Environment category . 74
A.5 Hardware category . 75
A.6 Network category . 75
A.7 Interactive category . 76

xiii

xiv

Chapter 1
Introduction

1.1 Background

Coresec Systems ("Coresec"), is a European cyber security and networking solu-
tions company represented in Sweden, Denmark, Norway and the Netherlands.
The headquarters are located in Malmö, where around 100 of Coresec’s 250 em-
ployees are stationed. Coresec consists of several departments, the Security Op-
erations Center being one of them. The Security Operations Center provides 24/7
coverage and consists of security analysts who are primarily concerned with han-
dling security issues or potential issues of Coresec’s customers. On a daily basis,
these analysts face the task of dealing with and analyzing malware.

Malware is a general term used to describe malicious computer software.
Both malware and cyber security as a whole are rapidly growing and changing
areas, and leading cyber security companies publish annual reports indicating
current trends [2]. According to statistics focusing on "E-crime and malware" in
particular, almost 320 million new malware variants were detected only in 2014,
which was a 25% increase compared to 2013 [3]. Furthermore, the number of ran-
somware - a certain type of malware - more than doubled, and a total of 28% of all
malware was virtual machine aware according to the same source.

1.2 Problem Description

Due to the sheer amount of both new and existing malware that appear on the
web and the fact that analyzing malware is (very) time consuming, it is infea-
sible for malware analysts to manually analyze all suspicious files to conclude
whether they may or may not be malicious [4]. Instead, analysts must rely on
automatic anti-malware tools to take care of the majority of these suspicious files,
and carefully investigate only a fraction of these.

Fighting malware is a difficult task as malware continuously becomes more
and more sophisticated. The situation is an arms race between malware develop-
ers and malware analysts, where malware developers keep developing methods
to obstruct analysis techniques deployed by their counterpart. Traditional auto-
mated anti-malware solutions, such as anti-virus software, used to focus mainly
on studying so called file signatures, which are "identifiable pieces of known ma-

1

2 Introduction

licious code" [5] [6]. However, this type of analysis turned out less and less suc-
cessful over time, as the usage of different obfuscation techniques grew more
popular among malware developers. For instance, by encrypting pieces of mal-
ware or simply creating different variants, malware could stay under the radar.
As a consequence, instead of only studying signatures, some anti-malware soft-
ware began to implement functionality to be able to execute the suspicious files in
isolated environments and study their behavior. By closely monitoring processes
and changes to the file system on the machine in the isolated environment, the
tools could determine whether or not the behavior of the suspicious files were
indeed malicious. However, as malware developers became aware of this, they
started developing so called virtual machine or sandbox aware malware: mal-
ware that deploy techniques to determine whether they are being executed in an
isolated environment or on a real host. Detecting an isolated environment would
result in the malware not disclosing its malicious behavior, as it knows it is prob-
ably being closely monitored.

1.3 Purpose

Vendors of dynamic analysis systems claim to have good detection rates and low
amounts of false positives for obvious reasons. However, exactly how their sys-
tems work is rarely disclosed, as this information could potentially be exploited
by malware developers. On the contrary, this secrecy also makes it hard for end-
users of the systems to actually know how well the products manage to identify
and hinder threats. The purpose of this Master’s Thesis was to develop test cases
to examine top-of-the-line dynamic analysis systems and to evaluate how simple
it is for malware to avoid detection using different detection techniques.

The aims were to answer the following questions:

• Are there any patterns in the test results based on the type of technology
used in the different systems?

• Are there any patterns of weaknesses in the systems based on the type of
detection technique?

• How is simplicity weighted against efficiency in the detection techniques?

• Is any type of technique significantly more efficient than the others?

• Does the lifetime of a system have a significant impact on its ability to with-
stand the detection techniques?

1.4 Method

As a first step, a comprehensive literature study and information research was
performed to gain necessary background knowledge on the area as a whole; the
PE file format, sandboxes and virtual machine theory and various malware as-
pects are three of the areas that were studied. Thereafter, more in-depth research

Introduction 3

targeting existing sandbox detection techniques was made. These techniques
were divided into categories to form a base to develop test cases on.

A suitable malware to use in the tests was chosen based on recommendations
from an experienced malware analyst on Coresec. Verification was made that
this malware was indeed recognized as malicious by all sandboxes to be tested.
Furthermore, a decision on how to bundle the malware with a detection tech-
nique, to form a test case, was made based on information research and practical
experiments.

The next big step in the process was implementing the test cases, each based
on one detection technique. New detection techniques were added to the already
existing ones as new ideas emerged during development. All test cases were
tested, trimmed and tuned on local machines in order to ensure their functional-
ity prior to the actual test phase. Some of the test cases were also run on an open
source sandbox (not to be included in the tests) [7].

Prior to running the tests, the test environment was designed and set up.
First, a number of Virtual Local Area Networks (VLAN) were created, each with a
certain "trust level" depending on what type of traffic would pass through the net-
work. Second, two ESXi hypervisor servers were installed and a number of vir-
tual machines on them in turn, including virtual sandboxes, a web server and two
Microsoft Windows ("Windows") clients to be used in the experiments. There-
after the physical sandbox appliances were installed in the lab, and finally all
sandboxes both virtual and physical were configured and prepared for testing.

The last step in the experiment process was running all test cases on each
sandbox and carefully documenting the results. The results were analyzed and
conclusions drawn to answer the project aims.

1.5 Scope

Because of the limited time frame and resources dedicated to the project, some
limitations had to be made to the scope accordingly. This mainly affected the
detection techniques developed, which only focus on evading sandbox based so-
lutions, i.e. automated tools performing dynamic analysis. These tools typically
reside in gateways and not in endpoints, i.e. on dedicated machines in networks
rather than hosts. In a real scenario, where an executable like the one used in
project was to be delivered to a target host, dynamic analysis tools would typi-
cally be complemented by automated, static analysis tools such as firewalls and
antivirus software. In such a scenario, the malware would preferably have to
contain some self modifying code or similar to avoid signature detection. In this
Master’s Thesis, only the effort required was made in order not to get considered
malicious in the static analysis.

Furthermore, in a real scenario, it would be of great interest what activities
the actual malware performed on the host after successful delivery. Malware
would typically attempt to communicate to a (C&C) server using the network of
the infected host, to download additional files or instructions. However, from the
perspective of this project, this is completely ignored.

4 Introduction

1.6 Report Layout

This report is organized as follows:

• Chapter 1 contains an introduction, briefly presenting some background
information about malware in general. The problem area is then presented,
which is followed by the goals, the selected method to satisfy these goals
and the scope of the project.

• Chapter 2 presents relevant theory to the reader, which includes malware
and malware analysis, the PE file format, executable files in Windows, vir-
tual machines and sandboxes, sandbox detection, API hooking and lastly
the sandbox analysis procedure. The related work in the area is also pre-
sented.

• in Chapter 3 a system description is given, where the sandbox vendors are
individually (but anonymously) presented together with their respective
sandbox.

• Chapter 4 presents all practical details related to the experiments except for
the outcome. This includes information about e.g. the test environment,
the malware used, the different techniques for sandbox detection, the test
cases and how the tests were executed.

• in Chapter 5 the test results of the tests are given as tables and diagrams.

• Chapter 6 contains a discussion about the results, both in the light of the
project aims and on a more general level. Furthermore, some potential
sources of error are discussed.

• lastly, in Chapter 7, conclusions related to the previous discussion and
project aims are drawn based on the test results. Additionally, some sug-
gestions for future work are given.

Chapter 2
Theory

2.1 Malware

Malware is an abbreviation for malicious software and there are numerous defi-
nitions of what exactly malware is: some sources describe malware simply as
software which "runs much like other software" [8], while others include the ef-
fects of malware in the definition and describe it as "any software that [...] causes
harm to a user, computer or network" [5]. Some even include details about the
behavior in the definition [9]. Examples of such behavior could be "stealing user
data, replicating, disabling certain security features, serving as a backdoor, or ex-
ecuting commands not intended by the user" [8]. Malware typically only satisfy
one or a few of these "requirements", and are commonly divided into categories
based on their type of behavior.

2.1.1 Origin and purpose

There are different categories of people who develop malware, each having their
own methods and reasons for doing so. These categories include everything from
people who do it out of curiosity without evil intentions to those for whom de-
veloping malware is serious business and something to make a living on [10].
While the former used to be the more commonly seen one, today the situation is
the opposite and the majority of malware developers have criminal purposes.

There are huge sums up for grabs for cybercriminals capable of developing
potent malware. For instance, they could target the systems of a specific organi-
sation or company and develop malware which aim to extract secret information,
which could then be sold to competitors or used for blackmailing [11]. Further-
more, malware developers could target random systems and attempt to gain con-
trol over as many of them as possible, and from there on take a number of various
approaches depending on what type of malware they prefer. The number of in-
fected hosts are often critical to a malware developer: the more systems he or she
is able to infect, the more money he or she can make [12]. Since Windows is ex-
tremely dominant on the operating system market today (having more than 90%
of the market shares) an overwhelming majority of all existing malware target
Windows x86 operating systems (since x86 executables run on x64 systems but
not vice versa) to maximize the probability of infecting a random system (where

5

6 Theory

the operating system is unknown to the malware developer) [13].

2.1.2 Types of malware

The facts that widely used malware categories partly overlap each other and that
malware often span multiple categories means that there exists no single, correct
categorization of malware. The following categorization will be used as a refer-
ence in this Master’s Thesis [5]:

• Backdoors allow attackers to easily get access to infected systems by open-
ing up a way to connect while avoiding authentication. Backdoors grant
attackers potentially "full control of a victim’s system without his/her con-
sent" [14]. Once connected, the attacker can execute commands on the sys-
tem to e.g. install additional malware or attack other hosts on the network.

• Botnets resemble backdoors, but the infected hosts are not controlled in-
dividually but collectively using an Internet Relay Chat (IRC) channel or
similar for instructions [15]. Instead of a single system being of interest to
the attacker, it is the amount of infected hosts that is of value. Hosts that
have become part of botnets - sometimes called zombies - are commonly
used in Distributed Denial of Service (DDoS) attacks or cryptocurrency min-
ing, where an attacker relies on a big number of hosts to send big amounts
of data or perform resource consuming calculations.

• Downloaders are used to download additional malware, as indicated by
the name. When successfully infecting a system, a downloader fetches mal-
ware of other types to exploit the infected system [16].

• Information-stealing malware, also referred to as spyware or simply steal-
ers, come in a number of different flavors. Their common feature is that
they aim to steal user account credentials for e.g. e-mail or bank accounts,
which are sent to the attacker. Keyloggers and sniffers are two examples of
such malware which log keyboard input and network traffic respectively.

• Launchers are simply used, as the name implies, to launch other malware.
Although this could seem pointless, something launchers could potentially
achieve is stealth, which will be utilized in this Master’s Thesis.

• Ransomware or lockers, which have increased in popularity lately, encrypt
parts of a system and demand a ransom to be paid in exchange for the
decryption key [3]. Ransomware is especially problematic since nothing
but the decryption key will be able to recover the encrypted data (assuming
brute-force is infeasible).

• Rootkits are malware that focus on hiding not only their own existence
and behavior but also that of other, bundled malware such as backdoors.
This is done using "stealth techniques which [...] prevent itself from being
discovered by system administrators" [17].

• Scareware disrupt the user of an infected system by continuously notify-
ing him or her that the system has been infected by malware. However,

Theory 7

scareware also offers to remove themselves from the infected system in ex-
change for a fee.

• Spam-sending malware use infected machines to spread spam to others,
typically via e-mail.

• Worms or viruses are malware that focus on spreading and infecting other
systems. Worms or viruses could be spread using e.g. local networks or
physical storage media.

2.2 Malware analysis

The ultimate goal of malware analysis is if to conclude whether or not a file is
malicious. In addition to this, it is often of interest to gain more information
about the file and aim to answer the following three questions [5]:

• How does the malware work, i.e. what does it do and how?

• How can the malware be identified to avoid future infections?

• How can the malware be eliminated?

Prior to these three steps of the analysis process, it is assumed to have been
confirmed that the malware being subject to analysis is indeed malware and not
a false positive. False positives are "normal data being falsely judged as alerts",
which in this case means benign files whose behavior might be similar to that of
malicious files [18].

Two basic approaches exist for analyzing malware: static and dynamic analy-
sis [5]. Both approaches apply not only to automatic but also to manual analysis.
Typically, when analyzing malware, a quick static analysis is performed initially
which is followed by a more thorough, dynamic analysis [5].

2.2.1 Static Analysis

During static analysis, malware samples are examined without being executed.
Essentially this means that an analyst or a tool attempts to extract as much infor-
mation as possible about a file to conclude whether or not it is malicious. Au-
tomated static analysis, carried out by anti-malware software, focus mainly on
the signatures of files, i.e. on finding presence of malicious code that is present
in databases containing known malicious data [19]. Both automated and manual
static analysis could for instance also include studying strings in the source code
(searching for e.g. URL:s or suspicious names), exported and imported functions
or resources used by the file to draw conclusions about its behavior. Manual static
analysis is significantly more time consuming than automated analysis, but can
be done more carefully with greater attention to details [5].

Whether or not a static analysis turns out successful depends to a large extent
on if the malware is encrypted or not. Many malware developers nowadays ob-
fuscate code by encrypting ("packing") it, which means that little information can
be extracted from encrypted files compared to those in plain text [1]. Encrypting

8 Theory

the code also has the advantage - from a malware developer’s perspective - that
signatures for which there would be a match if the malware was not encrypted
may be avoided [20].

Static analysis is quick and straightforward, but unfortunately has some in-
evitable drawbacks [5]. First of all, the instructions of the malicious file are ig-
nored, since they are never loaded into memory (this happens first when the file
is executed, see section 2.5). Second, static analysis struggles with packed files.
Furthermore, since the malware is never executed, its actual effects on the system
cannot be observed. As a consequence, static analysis alone is insufficient most
of the time and has proven ineffective to fight sophisticated malware [21].

2.2.2 Dynamic Analysis

In a dynamic analysis the purpose is to execute the malware and observe its be-
havior and effects on the system during runtime. Dynamic analysis, just like
static analysis, can be performed both automatically and manually. When done
automatically, the file system, processes and registry of the operating system are
being closely monitored during the execution of the malware, and any malicious
operations that are detected may indicate that the file being executed is mali-
cious [5]. Manual dynamic analysis typically involves debugging, which is "the
process of identifying the root cause of an error in a computer program" by sys-
tematically stepping through the program [22].

Dynamic analysis has the possibility of revealing lots of information that
static analysis simply simple is not capable of. First of all, dynamic analysis can
observe the behavior of malware during runtime, which static analysis can not.
Furthermore, since malware that is encrypted or packed decrypts itself when ex-
ecuted, the malware will be laying in plain text in the memory during most of
the execution [5]. This means that a malware analyst - by debugging the malware
properly - will be able to dump a plain text version of the malware to disk to e.g.
make a static analysis. Perhaps most importantly though, dynamic analysis is -
in contrast to static analysis - capable of detecting so called "zero-day threats",
which are previously unseen malware for which no signatures exist [23].

A dynamic analysis takes more time than a static analysis to perform, and a
thorough, manual dynamic analysis is also far more difficult than a manual static
one. However, due to its obvious advantages, dynamic analysis has grown more
and more important over the years to cope with the latest and most advanced
malware threats.

2.3 Malware analysis detection

It has already been mentioned that malware is commonly packed to obstruct the
task of malware analysis. However, this obstructs mainly static analysis; dynamic
analysis could still, with some effort, get around packed malware. What counter-
measure could malware use to obstruct dynamic analysis as well?

A thorough, manual dynamic analysis is hard to counter; skilled malware an-
alysts will likely find ways around even the most ambitious obstruction attempts

Theory 9

eventually. Normally though, a manual analysis takes place first when an auto-
mated anti-malware solution has indicated a need for this on a certain file that
seems suspicious. Malware that manage to evade automated anti-malware tools
may stay under the radar for quite a long time, and may not be detected until a
host starts showing signs of infection. Furthermore, well thought-out obstruction
techniques, such as code obfuscation, might fool less experienced malware ana-
lysts, who fail to successfully debug malware and mistakenly takes them for be-
ing harmless. At the very least, the process of analysing malware will be slowed
down if the malware developers have utilized obstruction techniques.

Since malware is never executed during static analysis, this type of analysis
cannot be detected by the malware themselves. On the contrary, since malware
is being executed during dynamic analysis, it has the opportunity to detect the
ongoing analysis and take actions accordingly [24]. For instance, the malware
could investigate the environment it is being executed in by looking at hardware
or running processes, and if it matches certain criteria, the malware could assume
that it is being analyzed and choose not to do anything malicious. If no signs of
an ongoing analysis are found, the malware will instead assume that it is being
executed on an unsuspecting host and execute as intended.

2.4 The Portable Executable file format

The Portable Executable (PE) file format is used in modern versions (x86 and x64)
of Windows operating systems. It defines the structure for a set of different file
types, among which executables and Dynamic Link Libraries (DLL) are two of the
most commonly seen. Files that follow this structure can be loaded and executed
by the Program loader (also called PE loader) in Windows.

Executable files can be dissected into two high-level components: a header
part containing meta-data, and a sections part containing the actual data [25]. In
order to avoid confusion - since naming conventions regarding the PE file format
are somewhat inconsistent - these high-level components will be referred to as
executable’s header and executable’s sections respectively in this Master’s Thesis.

The executable’s header, in turn, consists of the following five sections:

• the DOS header, which is static and informs the operating system that the
file cannot be run in DOS environments. The DOS header always begins
with two bytes that are equal to "MZ", which is followed by the DOS stub.
The DOS stub contains bytes that translate to "This program cannot be run
in DOS mode". The fact that these two signatures are static makes the DOS
header very easy to identify when inspecting the binaries of an executable
file.

• the PE header, sometimes referred to as NT Header or COFF Header,
which also begins with a static signature, "PE". Furthermore, it contains
information about which processor architecture the program will run on,
the number of sections in the executable (see Sections table below), a file
creation timestamp and a few other fields indicating sizes and addresses
of other fields in the file. Inconsistencies between these fields and the ac-
tual values they refer to are often detected and flagged as malicious by

10 Theory

anti-malware software, since these inconsistencies could typically by intro-
duced by someone trying to tamper with the file.

• the Optional header, which contains general information about the file and
states for instance whether it is a 32 or 64-bit binary, which version of Win-
dows is required to run the file and the amount of memory required. More
importantly, like the PE header, the Optional header also contains lots of
size and pointer fields related to data in the file, such as where execu-
tion starts (called Address of Entry Point) and where different parts of the
file should be placed in memory when loaded by the Windows program
loader. In other words, the information in the Optional header is essential
for Windows to be able to run the file, and as with the PE header, there are
numerous fields where an incorrect value will cause the program to crash
and/or raise flags in anti-malware software analyzing the file.

• the Data directories, which contain addresses to different parts of the data
in the executable’s sections that primarily concern imports of data from ex-
ternal libraries (typically DLL:s) but also exported functions to be used by
other executables. The Import Address Table (IAT), which contains addresses
of DLL:s to load, is important in this context and will be further explained
in section 2.8.

• the Sections table, which describes the executable’s sections and defines
how they are loaded into memory. For each section listed in the sections
table, a pointer to the corresponding data in the executable’s sections is
defined together with the size of that data block, to inform the Windows
program loader where in the memory to load that section and exactly how
much memory needs to be allocated for it. The sections table is of special
interest in this Master’s Thesis, and therefore deserves to be described in
slightly greater detail than the other parts of the executable’s header. In
general, the Windows program loader does not bother about the contents
of the different sections; it simply loads them into the specified location
in memory. However, there are 24 section names which are reserved for
sections with special purposes [26]. Out of these reserved names, a handful
are common and exist in most applications. Since the section names are
decided by the compiler they may differ slightly, but typically the following
naming conventions are used:

– the .text section, sometimes referred to as .code, references the exe-
cutable program code.

– the .rdata section references read-only, compiler generated meta-data
such as debugging information.

– the .data section references static source code data such as strings.

– the .reloc section references data used by the Windows program loader
to be able to relocate executables in memory.

– the .rsrc section references resources used by the executable. Resources
must be of certain types; examples of commonly seen resources are
icons and version information, but it could also be components from

Theory 11

other executables such as dialog boxes [27]. One specific type allows
for "application-defined resources", i.e. raw data [27]. As will be
demonstrated later in this Master’s Thesis, this resource type could
be used for instance to include an executable file as a resource within
another executable file.

2.5 Running executable files

To build an executable file, the source code must be compiled by a compiler. Sim-
ply put, a compiler transforms the source code into machine code that the operat-
ing system can understand. During compilation, the compiler is also responsible
for linking the contents of other files, such as functions available in external li-
braries, to the executable which it may be dependent of to be able to run [28].
This linking can be either static or dynamic, which means that library functions
will be either directly put into the executable - i.e. as a part of the executable it-
self - or linked to the executable via a DLL on the operating system respectively.
DLL files are essentially libraries of functions, which can be used by other pro-
grams [29]. One such example is the Windows Application Programming Inter-
face (API), which is made up of a set of DLL:s.

When running an executable file in Windows, initially the Windows program
loader loads the program into memory. When this process is finished, the op-
erating system can start parsing the PE header. When parsing the PE header,
the operating system identifies all imported DLL:s required by the program and
loads them into memory, so that the executable can use them during execution.

After the DLL:s are loaded into memory, the program loader finds the source
code at the entry point. The entry point is the relative address of the "starting
point" of the source code, i.e. where the execution of the program starts [26].
During executing, each line of code - which has been translated to machine code
- is executed and the system performs the instructions of the program.

2.6 Virtual machines

The concept of virtualization is to "map the interface and visible resources [of a
system] onto the interface and resources of an underlying, possibly different, real
system" [30]. In other words, virtualizing a system means to create a virtual ver-
sion of it which does not run directly on hardware but on the software of another
system. This virtual version is called a Virtual Machine (VM) and is commonly di-
vided into two types: process virtual machines and system virtual machines [30].
The former is used to create an environment to run certain programs, e.g the Java
Virtual Machine, while the latter aims to imitate an entire operating system. The
system that runs inside the virtual machine is called a guest and the platform
where the virtual machine runs is called a host. The software on the host that
enables the actual virtualization is called a hypervisor or Virtual Machine Monitor
(VMM).

There are several benefits of using virtual machines in different scenarios.

12 Theory

One issue it solves is that of having dependencies on defined interfaces of dif-
ferent operating systems, making it possible to have several different systems on
the same hardware. This is used in e.g. cloud computing, were one powerful
server hosts several virtual servers which share hardware, ultimately reducing
both hardware and energy costs [31]. Virtual machines and their hypervisors also
enable the use of snapshots. A snapshot is used to "preserve the state and data
of a virtual machine at the time you take the snapshot", enabling the possibility
of going back to an earlier state of the system [32]. This functionality has many
upsides and is fundamental for testing malware, as being able to revert potential
changes made to the system by the malware is necessary.

Virtual machines also provide the vital ability to control malware and their
environment more conveniently than a physical computer. A guest can be to-
tally isolated from the host and also runs with reduced privileges in comparison,
allowing the hypervisor to monitor or even intercept actions and events taking
place on the guest. The guest system is also unaware of the fact that it resides
inside a virtual environment and not directly on hardware, since the hypervisor
virtualizes the hardware and fools the guest into believing that it has a machine
for itself and direct access to the hardware [30].

When speaking about virtual machines, a common term is image or system
image. An image is very similar to a snapshot and the terms are sometimes used
interchangeably, but images do not preserve the exact state of a (running) ma-
chine; instead, images have to be booted.

2.7 Sandboxes

In the context of computer security, the term sandbox or sandboxing is used to
describe systems which utilize virtualization technology to realize the isolation
of a host. The purpose of a sandbox is to provide an isolated and monitored
environment for a program to be executed in, to be able to distinguish whether
or not the program is malicious.

Sandboxes may operate in slightly different manners and can be either system
virtual machines (see section 2.6) or programs which enable other executables to
be run in a sandboxed mode, such as Sandboxie [33]. In the context of dynamic
malware analysis, sandboxes utilize system virtual machines since this gives the
malware sample being executed the impression of being on a "real" system al-
though it is completely isolated. Running active malware can have severe con-
sequences if not controlled properly, as they could e.g. spread to other hosts on
the same network. Sandboxes are typically deployed somewhere in the network
whose endpoints it aims to protect. These endpoints could be clients, servers or
other resources on a local network, which are referred to as hosts hereinafter in
this Master’s Thesis. The purpose of a sandbox is to analyze files bound for hosts
on the network, to conclude whether the files are malicious or not. Malicious files
are blocked, while benign file are passed on to the hosts.

System virtual machine sandboxes can use either images or snapshots when
starting a virtual machine. Both images and snapshots can be configured accord-
ing to preferences, and furthermore, snapshots can be in any desired state. Either

Theory 13

way, it is desirable that the virtual machine in the sandbox resembles the hosts on
the network it protects to the greatest extent possible. For instance, assume that
malware bound for a host on a network first reaches the sandbox, which begins
to analyze the file. However, since the sandbox is poorly configured and does
not resemble the hosts on the network enough, the malware manages to distin-
guish the sandbox from the hosts and hides its malicious behavior. The sandbox
reports the file as benign in good faith, forwards the file to the host on the net-
work it was intended to, which gets infected since the malware detects that it is
no longer being executed on a sandbox. In a scenario like this, the more the vir-
tual machine image inside the sandbox resembles the systems on the network,
the harder it is for malware to distinguish between the two. Images that are "best
effort configured" to protect an environment are often referred to as golden images.

There are typically two ways to analyse whats happens to a system when a
program is run, which apply to sandboxes as well. In the first approach, a system
snapshot is taken before and after a program is run, analysing what difference
there is between them and what changes have been made to the system. The
second approach is to study the program during execution with hooking and de-
bugging, which generates a more detailed result than the snapshot approach [34].
Hooking means intercepting function calls (to external libraries, such as DLL:s)
and reroute them to customized code called hooks. By utilizing hooks, sandboxes
can control function calls commonly made by malware, such as those to the Win-
dows API.

As sandbox products gained popularity a couple of years back, malware de-
velopers started implementing countermeasures in the form of anti-analysis tech-
niques. For instance, many malware use anti-virtualization and anti-debugging
techniques to detect if they are being analysed, and although the sandboxing
technology continuously evolves, so does the anti-analysis techniques [24]. Since
sandboxes make use of virtual machines and an average host does not, it is cru-
cial for the sandbox to be able to disguise itself as a "normal" host, i.e. hiding all
signs of a virtual machine to the malware being analyzed. As stated in section
1.1, 28 percent of all malware in 2014 was virtual machine aware [3].

2.7.1 Detection of virtual machines and sandboxes

Machines that run hypervisors can dedicate only a limited part of their hardware
resources to each guest, since they need the majority of their resources for them-
selves or for other guests; most times, machines that run hypervisors intend to
have more than one guest, since there is little point in having a machine hosting
only one guest. Instead, multiple guests often reside on a common host, which
means that these guests must share the hardware resources of the host. Since
hardware resources are limited, each guest only gets its fair share of disk size,
memory and processing power [30]. As a consequence, the resources of guests
are generally low - even in comparison to mediocre desktop systems.

Limited hardware is not the only common characteristic among virtual ma-
chines; in the guest operating system - which is installed by the hypervisor -
there may be numerous traces left by the hypervisor. For instance, the names of
hardware or hardware interfaces are often set in such a way that it indicates the

14 Theory

presence of a hypervisor. Furthermore, there may be "helper" processes running
in the guest to facilitate e.g. user interaction, and if the guest is a Windows system
there is often an abundance of traces left in the Windows registry as well [35].

Sandboxes, just like virtual machines, have characteristics on their end as
well. Since an analysis in a sandbox has to be finished within a reasonable amount
of time, sandboxes have an upper time limit defining how long a file should be
analyzed at most. This time limit is typically only a few minutes.

From a malware developer’s perspective, the time out means that simply
making malware wait or "sleep" for a duration during execution could possibly
make the sandbox time out before detecting any malicious behavior. Such waits
or sleeps could easily be introduced in malware by calling functions available in
the Windows’ API, making it trivial for malware developers to bypass sandboxes
and because of this, many sandboxes contain hooking functionality.

2.8 DLL injection and API hooking

The technique of intercepting calls to an API is called API hooking. API calls
can be used for many different purposes, and practically every program that is
intended to run on Windows interacts with the Windows API; this is also true
for malware. A hook intercepts such a function call, and either monitors or ma-
nipulates the result of it. There are several ways to implement hooking, but a
common way is to use DLL injection. A DLL injection forces the target process
to load a DLL which overrides the original functions that the program uses with
hooked versions of the functions [34]. In order to inject a DLL, the sandbox must
manipulate the memory of the running program. This can be done by altering the
Import Address Table (IAT), which is a table of pointers to addresses of imported
functions. It could be functions in a loaded DLL, which makes it possible to im-
plement a hook by changing the pointers to addresses elsewhere. They could
either point to a defined code stub that logs the API call and then forwards the
program to the original API, or simply call another function. Another way of
implementing hooks is called inline hooking, where the the sandbox modifies the
entry point of an API call by rewriting the first bytes in the API, making it possible
to go to a "detour function" or "trampoline function" as demonstrated in Figure
2.1 [36].

Figure 2.1: Flow chart of an inline API hook.

An essential feature of hooking is that the target process should never be

Theory 15

aware that its function calls are being hooked. Because of this, it is preferable
to place hooks as close to the kernel of the operating system as possible, as it
becomes more concealed and harder to detect for the target process. The kernel
is the core of an operating systems, meaning it has control over everything that
happens in the system [37]. A Central Processing Unit (CPU) can operate in two
modes: kernel mode or user mode. The main difference between the two is that
the code being run in kernel mode shares the same address space, while the code
run in user mode does not, see Figure 2.2. This means that in kernel mode, a
driver is not isolated and could be used and manipulated freely - with the risk of
crashing the entire operating system [37] [38].

Figure 2.2: Communication between user mode and kernel mode
components.

2.9 Sandbox analysis procedure

Security by obscurity, i.e. providing security by keeping a design or an imple-
mentation secret, is generally considered bad practice. Despite this fact, most
sandbox vendors disclose very little details about their products in order to ob-
struct the task of performing sandbox detection. Although much of this informa-
tion could be extracted using test cases similar to the ones in this Master’s Thesis,
there is still some functionality which remains unknown. Furthermore, since this
Master’s Thesis neither focuses on confirming the exact functionality of the sand-
boxes nor aims to do the sandbox vendors a disservice by disclosing details about
their products, the exact functionality of the sandboxes is not discussed in great
detail. Besides, the behavior and functionality of the different sandboxes differ,
and digging into details about each and every one of them is out of the scope of

16 Theory

this Master’s Thesis. However, the core functionality of the sandboxes is based
on the same basic idea.

Sandboxes may get access to files to analyze in several ways: for instance,
files could be manually submitted to the sandbox by a user, or the sandbox could
be configured to intercept network traffic and analyze certain files according to
defined policies. The procedure that takes place when a sandbox is about to ana-
lyze a file may also differ between different sandboxes, but share a common con-
cept [34]. The sandbox runs an operating system in the bottom which, in turn,
runs a number of services: a hypervisor to handle virtual machines, a "main" ser-
vice controlling the hypervisor and potentially monitoring services for network-
ing or screen capturing. Furthermore, there may be a set of additional services
such as a web server handling file submissions, a database for storing samples
and analysis results etc.

When the sandbox gets access to a file to analyze, the main service delivers
the file to the hypervisor which starts a virtual machine either by booting an im-
age or restoring a snapshot. If the virtual machine has DLL:s containing hooked
functions, these DLL:s are loaded into memory. Furthermore, if there are moni-
toring services running inside the virtual machine, these are started. Thereafter
the file to be analyzed is executed, and lastly the virtual machine is closed either
when execution finishes or when the sandbox times out [34].

The monitoring services, i.e. the services that monitor the behavior of the
analyzed file, may run on the host operating system of the sandbox or inside
the virtual machine or possibly both. Their purpose is to observe the behavior
of the file: what changes it makes to the file system, what processes it creates,
what network traffic it generates and so forth. As an example, changes made to
the file system could be checked either by the main service in the host operating
system by comparing the virtual machine states before and after execution of the
file has finished and the virtual machine is shut down, or by a process running
inside the virtual machine during execution. The two approaches come with both
advantages and disadvantages: although comparing the virtual machines after
execution has finished never could be detected by the analyzed file, assuming it
uses some sandbox detection technique(s), it lacks the possibility to e.g. detect
created files which are deleted before execution finishes [34].

After the monitoring services have finished, their results are put together to
form a common score based on a set of criteria. This score is the final result of
the analysis, and its value determines the judgement of the sandbox regarding
whether or not the analyzed file is malicious. The criteria on which the score
is based is not disclosed by different sandboxes and likely differs a bit between
them. However the score of each action taken by the analyzed file, is based on
how malicious the sandbox deem the action. Typically there are some actions that
are a very clear sign of malicious behavior, e.g. changing a Windows Registry,
modifying the Windows Firewall or connecting to a known malicious domain. If
similar actions are taken, the sandbox can with good confidence verdict the file
as malicious. On the other hand there are actions that are not as malicious but a
series of less malicious actions could still be combined to do something evil. This
combination should the sandbox be able to track and verdict the file as malicious.
Many sandboxes typically have the functionality to drop all the files created and

Theory 17

isolate them. They can also monitor newly created processes and keep track of
them as well. If a spawned process or file is malicious the original file should of
course also be considered malicious.

2.10 Related work

This Master’s Thesis is not the first experiment in the area, as there were a few
papers that lead Coresec to the idea of this project. In 2014, Swinnen et al. sug-
gested different, innovative ways of packing code, one of which were adopted by
the authors of this Master’s Thesis and very much inspired them in the design
of their launcher malware [1]. They also presented a handful of detection tech-
niques, some of which were utilized in the experiments of this Master’s Thesis
.

Singh. et al. showed that as early as three years ago, sandbox evasion started
becoming a threat (although sandboxing was quite a new technology by the time)
[39]. The authors present a number of test categories with test cases, which are
similar to the ones developed in this Master’s Thesis.

In 2015, Balazs developed a tool that mines sandboxes for information [40].
His findings served as a source of inspiration to some of the test cases in this
Master’s Thesis.

Lastly, there a few more papers, such as those by Gao et al. and Vasilescu et
al., which are similar to this Master’s Thesis but less comprehensive [41] [42].

18 Theory

Chapter 3
System Description

3.1 Introduction

The vendors that participate in this Master’s Thesis have in common that they
provide a dynamic anti-malware system, i.e. a sandbox. Furthermore, they are
all considered to be the top-of-the-line vendors within the sandboxing industry.
All vendors were guaranteed absolute anonymity in this Master’s Thesis, due
to the fact that publishing details on how to bypass their sandboxes could harm
both the vendor directly and Coresec indirectly, who is a partner to many of the
vendors. Therefore, the vendors are denoted from A - E.

Two different options exist for setting up the sandboxes in the network and
giving them access to the files to be analyzed. The first option is to configure the
sandbox to listen to network traffic, and automatically detect, fetch and analyze
files according to certain criteria such as file type. The other option is to simply
upload files to be analyzed manually using a graphical user interface (GUI). In
this Master’s Thesis, these two setups are referred to as inline and upload respec-
tively, and details on how each sandbox was configured can be found in section
4.3.

3.2 Vendors and sandboxes

3.2.1 Vendor A

Vendor A has a strong background within the firewall industry, and although it
now provides several different systems - a sandbox being one of them - forming
a full platform, the firewall(s) are still regarded as the foundation of the security
platform. Vendor A is one of the three medium-sized vendors in this Master’s
Thesis, see Figure 3.1, and has been in the business for roughly a decade, see
Figure 3.2.

Vendor A’s sandbox

Vendor A has been involved with sandboxing since 2011, which was also the year
when Vendor A released the first version of its current sandbox. The sandbox is

19

20 System Description

Figure 3.1: Relative vendor size measured in number of employees

available both as a virtual machine and as a physical appliance and it supports
images running either Windows XP or Windows 7. However, it does not sup-
port the use of golden images, but Adobe Reader, Adobe Flash and the Microsoft
Office suite are installed by default. The actual sandbox is located on Vendor
A’s servers in the cloud, and the physical appliance or virtual machine that is
installed in the network of a customer is responsible simply for fetching files to
analyze - either in inline mode or by upload - and delivering them to the cloud
servers. Therefore, an Internet connection is required by the appliance in order
for the analysis to take place. When malicious files are detected, signatures are
generated and shared with the threat cloud network of Vendor A within minutes.

3.2.2 Vendor B

Vendor B was founded in the mid 1990s and has therefore been in the business for
twice as long as Vendor A. Despite this, Vendor B is the only small-sized vendor
of this Master’s Thesis with half as many employees as Vendor A. The primary
focus of Vendor B is web security.

Vendor B’s sandbox

Vendor B has been doing sandboxing since the mid 2000s but the current sandbox
of Vendor B was released as late as in 2013. The sandbox is only available as a
physical appliance, and it supports images running Windows XP, 7 or 8. These
images come in a number of variants which differ regarding installed software.
The sandbox should be Internet connected for the purpose of threat intelligence

System Description 21

Figure 3.2: Relative vendor age

sharing with Vendor B’s cloud, but the analysis environment - i.e. the virtual
machine(s) within the sandbox - does not get Internet access during the analysis.

3.2.3 Vendor C

With its roughly 5000 employees and three decades within the business, Vendor
C is both the oldest and the biggest of the vendors. Vendor C has historically
focused primarily on endpoint protection systems (such as traditional antivirus)
targeting both business and private users. Therefore, Vendor C is different from
the other vendors in the sense that it has a less corporate dominated customer
base. However, Vendor C today has a wide spectrum of products, a sandbox
being one of them.

Vendor C’s sandbox

Vendor C’s sandbox was released in 2012 when Vendor C got into the sandbox
business. It can be purchased as a physical appliance or as a virtual image just
like Vendor A’s. In terms of specification and features, the sandbox of Vendor C
resembles Vendor B’s but stands out in the crowd a bit more. Just like Vendor B’s
sandbox, it supports images running Windows XP, 7 or 8. However, in addition
to these desktop operating systems, it also supports the server operating systems
Windows Server 2003 and 2008. Adobe Reader, Adobe Flash and the Microsoft
Office suite are installed by default on all images. In addition to this, the sandbox
supports the usage of golden images, being the only one except Vendor B’s sand-
box to include this feature. The sandbox has the option of choosing whether or

22 System Description

not to allow its virtual machines to have Internet access during the analysis, but
the sandbox itself lacks any kind of cloud intelligence sharing which exists for all
other sandboxes.

3.2.4 Vendor D

Vendor D is the youngest vendor together with Vendor A, having about the same
number of employees as well. Sandboxing is one of the main focus areas of Ven-
dor D, and their sandbox therefore serves as a core component on which many of
their other products rely.

Vendor D’s sandbox

Although Vendor D is young in comparison to the others, it has been doing sand-
boxing since the start in the mid 2000s. What makes Vendor D’s sandbox different
compared to the others is its relatively limited set of features. First of all, Vendor
D’s sandbox only comes as a physical appliance and is not available virtually,
in contrast to all other sandboxes but Vendor B’s. Furthermore, it only supports
images running Windows XP or 7, and it does not support golden images. On
top of this, Vendor D discloses no details about which software is installed on
their images, and the virtual machines inside the sandbox do not get Internet
access when analyzing samples. However, Vendor D’s sandbox supports cloud
synchronization to share threat intelligence data frequently.

3.2.5 Vendor E

Just like Vendor A, Vendor E started out within the firewall business during the
mid 1990s. Today, Vendor E has evolved from being only a firewall vendor into
providing a full set of security systems, including a sandbox which is considered
a key component.

Vendor E’s sandbox

Vendor E got into the sandbox business as late as in 2013. The features of the
sandbox of Vendor E is very similar to those of Vendor A and lie close to what
could be seen as the "common denominator" of the tested sandboxes. It comes
both as an appliance and as a virtual image, it supports Windows XP and 7 and
have Adobe Reader and Microsoft Office installed. It does not give sample files
Internet access during analysis, but shares threat data in the cloud like most other
products do. What differs the most compared to other sandboxes is probably its
age: it was released as late as 2015.

3.2.6 Sandbox specification summary

Table 3.1 shows a specification of all sandboxes used in the experiment.

System Description 23

Table 3.1: Sandbox specifications and features

Vendor A Vendor B Vendor C Vendor D Vendor E

Physical
or virtual

Both Physical Both Physical Both

Supported
Windows
images

XP
7

XP
7
8

XP
7
8
Server 2003
Server 2008

XP
7

XP
7

Golden image
support

No Yes Yes No No

Internet
access

- No Yes No No

Cloud
synchronization

Yes Yes No Yes Yes

24 System Description

Chapter 4
Experiments

4.1 Introduction

The term sandbox detection is a generic name used in this Master’s Thesis to de-
scribe both sandbox detection and virtual machine detection. Although in reality
these are two separate areas with their own characteristics, they are treated as one
in this Master’s Thesis due to the following facts:

• All sandboxes are running on virtual machines.

• Few users run virtual machines.

Effectively, this means that no matter if a sandbox or a virtual machine is
detected, the test case assumes that it is being executed on a sandbox and exits.
In other words, no distinction is made in this Master’s Thesis between sandbox
detection and virtual machine detection; they both go under the name "sandbox
detection".

All of the vendors stress the fact that their sandboxes should not be deployed
as stand-alone systems but as part of a full security suite or platform in order
to reach their full potential. This is due to the fact that sandboxes alone are less
powerful than sandboxes in combination with other tools or systems perform-
ing other types of analyses. Despite this, since this Master’s Thesis focuses on
detection and evasion of sandboxes only and not full security suites, no comple-
mentary security systems are deployed.

4.2 Test case design

The experiment consists of 77 test cases which are made up of two main compo-
nents: a launcher (see section 2.1.2) written by the authors of this Master’s Thesis,
and a well-known malware which has been around since 2013. The launcher in
turn consists of a few components, the most essential ones being a sandbox de-
tection function, a resource loader and a decryption function, see Figure 4.1. The
sandbox detection function utilizes a sandbox detection technique, and the mal-
ware component is executed only if the sandbox detection concludes that the file
is not being executed in a sandbox, see Figure 4.2. All test cases use the same mal-
ware, but the sandbox detection function is unique to each test case. The purpose

25

26 Experiments

of the test cases is to determine which of the sandbox detection techniques that
manage to successfully identify sandboxes while avoiding to reveal themselves
and being classified as malicious by the sandbox.

Figure 4.1: Test case components overview

Figure 4.2: Test case flow chart

For the experiment to be as realistic as possible, it was required that the test
cases developed would actually execute on the majority of average hosts, oth-
erwise the result would be of little value. To clarify, test cases that detect and

Experiments 27

bypass sandboxes are rather meaningless if they do not execute on the systems of
"normal" users; the major challenge in developing good test cases lies in distin-
guishing sandboxes from hosts. An obvious issue related to this is that hosts may
be set up in an infinite number of ways, and it is safe to assume that more or less
every host that exists will have a unique configuration. Therefore, in order for
the test cases to be capable of making this distinction, some assumptions had to
be made regarding a typical host configuration. Since most sandboxes are used
to protect corporate networks, the assumed environment was a typical, average
workstation in a corporate network. The following is a selection of the hardware
criteria assumed to be met by hosts:

• CPU: > 2 (logical) cores, 4-16 MB cache

• Memory: >= 4 GB

• Hard disk: >= 100 GB

• Domain connected with Internet access

• (Network) printer(s) installed

In addition to the hardware specifications, a number of assumptions regard-
ing the software were made as well; these details can be found in section 4.4.
While some of the assumptions are just educated guesses, others are based on
brief studies and random samples from e.g. computers available to the authors
via Coresec.

The amount of information that was possible to extract about the specifica-
tions and features of the sandboxes differed between the vendors. Therefore, in
order to make the tests as fair as possible, the sandboxes were treated as "black
boxes" and the test cases were designed and developed without consideration to
product specific information. Furthermore, to be able to make a direct compari-
son of the test results of the different sandboxes, it was required that identical test
cases were ran on all sandboxes.

A critical aspect of the performance of the sandboxes that may greatly affect
the test results is how they are configured. Since the configuration possibilities
differ between the sandboxes, configuration could be a major source of error if
not done properly.

4.3 Test method, environment and configuration

Four (virtual) machines were installed in the test environment in addition to the
sandboxes:

• the Malware jumpstation, which ran Windows 7 and was accessed via Re-
mote Desktop Protocol (RDP) sessions. The jumpstation was, as the name
implies, only used to be able to access other machines in the test environ-
ment.

28 Experiments

• the Malware client - also a Windows 7 machine - was accessed via the Mal-
ware jumpstation and used to deliver the test cases to the sandboxes, either
via inline download or direct upload. The Malware client had a separate
networking interface for each sandbox, which facilitated testing of different
sandboxes by simply enabling and disabling interfaces.

• the Malware server ran the Linux distribution CentOS and a web server,
which hosted all test cases and made them available for download to the
Malware client.

• the VPN Gateway was a Linux machine running the Remnux distribution.
Its purpose was to provide a VPN connection out from the test environ-
ment to the Internet.

Figure 4.3: A simplified overview of the test environment.

Figure 4.3 shows a simplified overview of the test environment (note that the
Malware jumpstation is not included in this overview). When running the tests,

Experiments 29

the user controls the Malware client which downloads the test cases from the Mal-
ware server. Since all systems could not be deployed in the exact same way, their
actual locations in the test environment differ. However, this does not affect their
capability of detecting or analyzing malware; it merely affects how each sandbox
gets access to the files to analyze.

Due to the facts that potent malware were to be used in the experiments and
that the test environment is located in-house in the headquarters of Coresec, the
requirements on the design of the test environment, and especially its networks,
were very high; malware ending up in the wrong network and infecting hosts
could have very severe consequences. As a precaution, the test environment net-
work was strictly separated into multiple virtual local area networks (VLAN) by
a firewall, and access rules between the different VLANs were set explicitly. Each
VLAN represented a "zone" with a certain purpose and security level as follows:

• in the Management zone, all management interfaces of the sandboxes were
placed. The Malware jumpstation was also placed here which was accessible
via VPN and RDP. This enabled the establishment of a connection to the test
environment without physical access to it, which facilitated configuration
of the sandboxes.

• in the Trust zone, the Malware client was located and connected to the sand-
boxes deployed inline.

• the Mistrust zone was set up to allow connections out from the test envi-
ronment to the Internet and direct this outbound traffic via the VPN gate-
way.

• in the Demilitarized zone (DMZ), the Malware server was placed, which
hosted all test cases to be downloaded by the Malware client.

Figure 4.4 shows the test environment with all zones in greater detail.
To control the Malware client, users first connect to the Management zone via

VPN. Thereafter, the user establishes a remote desktop connection to the Malware
jumpstation in the management zone, and then further on to the Malware client
in the Trust zone.

4.3.1 Inline deployment

The sandboxes of Vendor A, Vendor D and Vendor E were all placed inline, since
they had the ability to monitor traffic. Additionally, Vendor A’s and Vendor E’s
sandboxes had routing functionality and were set up with one interface in each
zone, meaning that the Malware client could connect to the Malware server through
them and enabling the systems to intercept the transmitted files. The sandbox of
Vendor D had no routing functionality, which forced the Malware client to have
an interface physically connected to it which in turn was directly connected to
the DMZ to reach the Malware server.

The sandboxes of Vendor A and Vendor E perform no local analysis; instead,
they forward all suspicious files to a global, cloud based analysis center. Due
to this, the configuration possibilities of these sandboxes were very limited. In

30 Experiments

Figure 4.4: Detailed view of the test environment including network
interfaces.

the case of Vendor D, the actual analysis took place locally on the sandbox itself,
which had three different images all. Despite this, there were not possibilities for
the authors to configure of customize these images.

4.3.2 Upload deployment

Vendor B’s and Vendor C’s sandboxes required files to be manually submitted for
analysis, hence they were placed in the Mistrust zone. The Malware client had an
interface in that zone as well, and could thus access the GUI of the sandboxes of
Vendor B and Vendor C to upload test cases. Both of these sandboxes had more
customization possibilities than the others, as they were the only ones who sup-
ported golden images. Furthermore, both of them had two images: one with the
default settings forced by the vendor and one golden image. The golden images
were configured to have higher screen resolution, several non-default programs
installed, browsing history, Swedish keyboard layout, additional hard drive par-
titions and a custom background image.

On the sandboxes of Vendor B and Vendor C, test cases were run both on the
original image and golden image to be able to study the potential impact on the
results caused by the golden image. However, the result which was considered
the official one of these sandboxes was that of the golden image.

Experiments 31

4.4 Test cases

All test cases were written in C++ and/or x86 assembly in Microsoft Visual Stu-
dio 2015 and compiled into separate, executable files for each test case. A vast
majority of the test cases interact with the Windows API or "WinAPI". In some
cases there are multiple test cases covering the same area using different tech-
niques, in order to potentially detect if different ways of performing the same
task may generate different results due to some functions being hooked by the
sandbox and others not.

Since the test cases were developed and compiled on the desktop systems of
the authors, the malware could not be included in the test case before or dur-
ing compilation as this would have required the malware to be placed on these
machines. Besides, since the test cases were repeatedly test run on these desk-
top systems, having included the malware at this stage would have resulted in
it being executed and infecting the systems thousands of times during the devel-
opment, causing loads of wasted time. Additionally, Coresec expressed a wish of
developing a service for testing purposes in the future where users could dynam-
ically combine any of the test cases with a set of different malware, which meant
that the test cases would have to be separated from the malware. Because of this,
a small application was developed which took two files as parameters and added
one of them as a resource in the other. How this is done is demonstrated in Figure
4.5, where the "inner" PE file (the malware) is placed in the resource (.rsrc) section
of the "outer" PE file (the test case) (see section 2.4 for more details on resources).
There is also a "stub" in the .code section of the outer PE file, which is the piece of
code responsible for loading the malware resource if a sandbox is not detected.

Once all test cases were compiled, they were moved to an isolated, virtual
machine and with the help of the other application they were "loaded" with the
XOR encrypted malware as a resource according to Figure 4.5.

All test cases were loaded with the same malware, which was simply an ex-
ecutable file with confirmed malicious behavior. The reason for XOR encrypting
the malware was the fact that all sandboxes recognized it as malicious, and since
some sandboxes also included tools performing static analysis of the file (which
was impossible to deactivate), there was a risk of the test case getting caught in
the static analysis. Because of this, the XOR encryption was used to give the mal-
ware a new signature that did not already exist in any of the vendors’ signature
databases.

The test cases consist of a main function, which calls a sandbox detection
function representing a test case. If the detection function returns true - indi-
cating the code is being executed in a sandbox - the main function simply exits.
However, if the sandbox detection function does not find any signs of a sandbox,
it continues. First, it loads the resource containing the XOR encrypted malware.
Thereafter, the loaded resource is XOR encrypted again and the original, plain
text malware is retrieved. Lastly, the malware is executed and the main function
exits. An overview of this process is shown in Figure 4.2.

Some of the test cases are based on techniques that are reoccurring in many
articles and have been seen many times before, while others are innovative and
completely based on own ideas and inspiration gained during the working pro-

32 Experiments

Figure 4.5: A detailed view of how the malware is hidden as a
resource in the test case [1].

cess. However, since there is no way for the authors to guarantee that they are
actually utilizing a "new" technique for the purpose of sandbox detection, no dis-
tinction is made between which test cases are "new" ones and which are not. In-
stead, the test cases are divided into categories based on what part of the system
they focus on as follows:

4.4.1 Timing

The timing based test cases aim mainly to exploit the fact that sandboxes only run
the file a limited time, and may have to speed up the program execution in order
to finish the analysis before the time-out. In order to achieve this, the test cases
take one of two approaches: they either try to stall or slow the execution down,
or try to detect that time is being tampered with.

Slowing down the execution is done in two different ways: by sleeping (or
waiting) and by using stalling code. Sleeping is achieved simply by calling the

Experiments 33

Windows API function Sleep(). There are test cases trying both one long, continu-
ous sleep, as well as multiple, shorter sleeps to determine if they generate differ-
ent results. There is also a test case utilizing threads in combination with Sleep()
in an attempt to deceive the operating system. Waiting is accomplished by for in-
stance using the Windows API function SetTimer(). Both sleeping and waiting are
passive approaches that consume minimal system resources. The other approach
of slowing down execution, stalling code, is all but passive: it performs resource-
intensive, time consuming calculations until the sandbox hopefully times out.
There are multiple ways of creating stalling code; the test cases in this Master’s
Thesis do so by for instance calculating prime numbers or calling API functions
that are expected to be hooked (which takes extra time compared to non-hooked
functions for the operating system to handle) such as Sleep() and GetTickCount().

Detecting time manipulation is simply a matter of measuring time between
two events separated by a Sleep() call and comparing the result to the expected
value: if they differ, the system is most likely a sandbox attempting to speed
execution up.

4.4.2 Process

The test cases in this category focus on processes running on the target operating
system and DLL:s loaded by these processes, as they may both disclose a sand-
box. Since there may be monitoring processes running in the sandbox with names
disclosing their behavior, there are test cases to check the names of all processes
and compare each one to lists of predefined, suspicious names. Similarly there
are test cases to check the names of the DLL:s as well, since potentially hooked
functions will reside in DLL:s loaded by the processes.

Windows processes have a "parent process", which will normally be "explorer.exe"
if the process is started in the graphical user interface. However, the parent pro-
cess may differ in sandboxes and could be for instance a monitoring process;
whether this is the case or not is investigated by a test case. Some sandboxes
have also been reported to change the name of the file being analyzed, e.g. to
"sample.exe", which is checked by another test case.

The operating systems ran in sandboxes are often clean installations of Win-
dows, which means that the number of installed programs and running processes
will be less compared to regular clients; therefore, there is also a test case in the
process category checking the number of running processes on the system.

Finally, there are a number of test cases examining studying what happens
when DLL:s are loaded. For instance, a sandbox may try to prevent malware
samples from loading DLL:s while still giving the sample the impression that the
load succeeded. Therefore, there are test cases both to load valid DLL:s to see if
they fail unexpectedly and to load invalid DLL:s to see if they succeed although
they should not.

4.4.3 File

These test cases use the file system to determine whether the system is a sand-
box or a host. This is done using two different approaches: by looking for the

34 Experiments

existence of certain files or by attempting to create files and check for unexpected
behavior.

Since the sandboxes were treated as black boxes during the tests, no research
could be done before or during the test development phase regarding which spe-
cific files potentially existed in the different sandboxes. Instead, the tests had to
take the opposite approach and look for files that, with high probability, only
would exist on a system that had been used by an actual user, meaning that they
would not be present on a sandbox. This could be files related to e.g. commonly
installed programs or Internet browsing. The number of installed programs are
examined by a test case utilizing the Windows registry, as well as the number of
recently modified files - which are expected to be none at a sandbox. As some
sandboxes had been reported to run the malware sample from quite untypical
directories, the execution path of the sample was also covered by a test case.

Lastly, as there were reasons to suspect that the sandboxes somehow tamper
with the file system, a simple test cases exists that creates files in the execution
directory, writes content to it and then closes it, and then verifies this content by
opening and reading the file afterwards.

4.4.4 Environment

The environment category is more general than the others in the sense that it
contains test cases related to the system as a whole rather than specific parts of it.
The majority of the test cases are based on spontaneous ideas that emerged either
during the background research or during development.

For instance, there are two test cases which examine the names of the machine
and the currently logged in user. If any of the names contain certain strings such
as "sandbox" or "sample", the likelihood of being on a sandbox is considered to
be high. There is another test case checking if there is a password set for the cur-
rently logged in user account, as corporate users are expected to have password
protected their accounts while sandboxes most likely have not. Furthermore, real
users are expected to change the background image and increase the screen reso-
lution from the default value; these parameters are also investigated by one test
case each.

The other environment test cases check e.g.:

• The length of the execution path, as execution paths that contain only one
or two slashes (such as "C:/" or "C:/temp/") are not very likely to be used
by "normal" users,

• Suspicious names in the execution path like "C:/Windows/malwaresample/",

• The number of hard disk drive partitions,

• If any well-known hypervisor is present using different entries of the Win-
dows registry,

• If a debugger is present using the IsDebuggerPresent() API function,

• If the system has a battery, since sandboxes will seldom or never be ran on
laptops, and

Experiments 35

• If the reported system time is somewhat correct (checking against a hard
coded date).

4.4.5 Hardware

The hardware test cases inspect various hardware components available to the
sandbox. Since the hardware is given to the sandbox by a hypervisor, the hard-
ware test cases are essentially about virtual machine detection rather than sand-
box detection. However, since all sandboxes are running on virtual machines and
very few users use it in comparison, the number of false positives was expected
to be low.

The CPU is very much a limited resource which cannot be extended as easily
as hard disk size or amount of memory. The type of CPU, its amount of internal
memory (cache) and number of cores are all properties examined by test cases.
The amount of memory available to the system and to the graphics adapter (GPU
memory), as well as the size of the hard disk drive(s), are other artifacts being
tested. All of these are resources expected to be higher on a user client than on a
sandbox running inside a virtual machine.

Traces of a hypervisor may not only be found in the hardware alone but in the
software closest to the hardware as well. As an example, the name of the graphics
adapter interface is assigned by the hypervisor and therefore often contains clues
about the presence of a hypervisor. The same is true also for hardware drivers;
they may disclose either a hypervisor or the sandbox, if named inappropriately.

Another group of hardware that is not located physically inside the machine
is printers. In corporate environments, it is safe to assume that a vast majority
will have at least one printer installed and selected as default, while the average
sandbox can be expected not to have printers configured. Two test cases are based
on this fact.

Finally, there is also a test case to test the presence of a three-button (at least)
mouse.

4.4.6 Network

The network category contains test cases checking either properties of network
related hardware or actual connectivity status and communication possibilities.

The number of network adapters, the names of the adapters and their (phys-
ical) addresses are properties all covered by network test cases. These are based
on the following facts or assumptions:

• Clean Windows installations will most likely only have one network adapter,
while a user - using for instance a VPN (Virtual Private Network) connec-
tion or a wireless network - will have multiple adapters. In other words,
one network adapter would indicate a sandbox.

• As with the graphics adapters, the hypervisor assigns names to the net-
work adapters and may disclose itself.

36 Experiments

• Hypervisors assign certain ranges of MAC addresses to network adapters
by default, which are well-known. Comparing the MAC addresses of the
adapters to these ranges is trivial.

The remaining network related test cases check the actual network connec-
tivity. The theory behind this is that some sandboxes may want to prevent mal-
ware samples from communicating with e.g. C&C-servers, while still giving the
sample the impression of having an Internet connection. Other sandboxes may
choose to completely isolate the malware by disable networking. Furthermore,
assumptions can be made regarding how the network is configured on an aver-
age sandbox compared to how it is done on a typical, corporate user client. There-
fore, there are a number of test cases examining what types of connections can be
made and which responses are received, to determine if a sandbox is tampering
with the network connection. The following is a selection of what is covered by
test cases:

• Check if the system is connected to a domain. Most corporate systems will
be so, while sandboxes probably will not.

• Check if ICMP echo requests (PING) to known hosts receive replies to verify
layer 3 connectivity.

• Check if HTTP GET requests can be made, and if they receive the expected
response.

• Check if DNS queries can be made and verify that the responses are as
expected.

• Check if a proxy is enabled, which it is assumed to be on considerably more
sandboxes than hosts.

• Check how much recent network traffic has been sent and received, which
is expected to be far less on sandboxes than clients.

• Check if a socket can be established on port 445, a port used for Windows
Active Directory and file shares.

• Check the number of established connections to other hosts, which is also
expected to be far higher on user clients than sandboxes.

• Check the presence of other hosts on the same subnet (expected to be none
in a sandbox).

4.4.7 Interactive

These test cases have in common that they try to distinguish human interaction
from simulated or no interaction. This is done mainly by monitoring input de-
vices - mouse and keyboard - and waiting for certain actions or detecting simu-
lated interaction. The complexity of these test cases varies: the simple ones wait
for e.g. a mouse click, mouse movement or a mouse scroll to occur, while the
more advanced ones check things such as the speed of mouse cursor (since sand-
boxes may "teleport" the cursor to click a button or similar), keyboard keystrokes
and certain keystroke patterns.

Experiments 37

4.5 Test criteria

In order for a test case to be considered successful, two criteria need to be met:

1. the test case must detect the sandbox (and hence not execute the malware),
and

2. the sandbox must not classify the test case as malicious.

Although these criteria might give the impression of implying one another,
i.e. "if one then two" and vice versa, there is the possibility that the sandbox de-
tection itself function may be classified as malicious. In other words, although
a certain test case might be able to detect the sandbox and prevent the malware
from being executed, it could still be deemed malicious due to the detection tech-
nique used. First of all, the level of discretion of the detection techniques differ: it
is reasonable to assume that checking Windows registry keys or executing com-
mands in the Windows shell is considered more "noisy" and raise more flags than
checking the screen resolution or disk size. Second, some detection techniques
which commonly occur both in articles and in actual malware are likely to have
been seen by sandbox developers before (and may therefore be flagged as mali-
cious) while others can be assumed to have been seen less frequently or even not
at all. Therefore, a distinction will be made in the result between test cases that
fail due to their inability of detecting sandboxes and test cases that fail despite
being able to detect the sandbox.

4.6 Choice of malware

The only unconditional requirement on the malware that was used as resource in
the test cases was that it was classified as malicious by all sandboxes; otherwise,
unsuccessful test cases that failed to detect that they were being run on a sandbox
and executed the malware would risk not being detected despite this. Therefore,
in order to achieve reliable test results, it had to be assured - before performing
the tests - that the chosen malware was indeed identified by all sandboxes. This
was done simply by making the malware available to the sandboxes for analysis,
either by direct upload or by downloading it through the sandbox depending on
the setup.

To maximize the probability of the malware being recognized by all sand-
boxes, a well-known malware was chosen based on the recommendation of a
malware specialist on Coresec Systems. The choice fell on "Beta bot", due to it
being both well-known and well-documented. Beta bot is a Trojan - a type of
malware which disguises itself as other software [43]. The name Trojan empha-
sizes the appearance rather than the behavior of the malware, and Trojans may
therefore be classified as more or less any of the types defined in section 2.1.2.

When executed, Beta bot attempts to gain administrator-level privileges on
the target system by presenting a fake Windows "User Account Control" prompt
[44]. If the user is fooled and approves the prompt, Beta Bot is able to perform a
number of evil actions: it prevents access to numerous security websites, disables
local anti-virus software and steals user data. Beta Bot was reported by Symantec

38 Experiments

early in 2013, and the severity of Beta bot turned out such that both the Depart-
ment of Homeland Security (DHS) and the Federal Bureau of Investigation (FBI)
to issue warnings regarding Beta Bot [45] [46]. The magnitude of Beta Bot in
combination with the fact that it had been around for three years by the time of
writing this Master’s Thesis made it highly likely that all sandbox vendors would
be able to identify it.

Chapter 5
Results

5.1 Introduction

Due to the sheer amount of data, the test results are first grouped by category
under section 5.2 for better readability. Thereafter, some test data from the golden
image sandboxes is presented in section 5.3. A summary of the complete test
results is given in section 5.4 at the end of this chapter.

5.2 Results per category

Initially, for each category, statistics are given regarding the average, maximum
and minimum malware detection rate (i.e. the rate of unsuccessful test cases). The
coefficient of variation (or relative standard deviation) is given, which is a measure
of dispersion of the results between the different vendors within each category.

The statistics table of each category is followed by a detailed result table. The
cells of the result table contain one of the three values pass, fail and no exec. Pass
means that the test case succeeded in detecting the sandbox while staying unde-
tected, i.e. it succeeded from an "attacker’s" perspective. Passed test cases are
highlighted with a green background color in the tables. Cells that contain either
fail or no exec are unsuccessful test cases, which either failed to detect the sand-
box (fail) or were considered malicious by the sandbox despite not executing the
malware (no exec). The reason for distinguishing these two from one another is
that the no exec test cases are closer to succeeding than the fail ones, since they
managed to detect the presence of the sandbox.

Finally for each category comes a bar chart, displaying the number of de-
tected (i.e. the sum of fail and no exec) test cases per vendor.

39

40 Results

5.2.1 Timing

Table 5.1: Timing results statistics.

Average malware detection rate 46%
Maximum malware detection rate 70%
Minimum malware detection rate 30%
Coefficient of variation 33%

Table 5.2: Timing category results per vendor.

Description A B C D E

1
one long
sleep

fail fail fail fail no exec.

2
multiple short
sleeps

fail pass pass fail no exec.

3
delay using
timer

pass pass pass fail no exec.

4
use two threads to
detect sleep emulation

fail pass fail pass fail

5
create files, verify
time stamps

fail pass pass pass fail

6
open files, verify
time interval

fail fail fail fail fail

7
check emulated sleep
with tickcounts

pass fail pass fail no exec.

8
stalling loop, prime
calculations

pass pass pass pass pass

9
stalling loop,
WinAPI calls

pass pass pass pass pass

10
combine multiple
timing techniques

pass pass pass pass pass

Results 41

Figure 5.1: Timing - detected malware per vendor.

42 Results

5.2.2 Process

Table 5.3: Process results statistics.

Average malware detection rate 74%
Maximum malware detection rate 80%
Minimum malware detection rate 60%
Coefficient of variation 11%

Table 5.4: Process category results per vendor.

Description A B C D E

1
check sandbox
processes

fail fail fail fail fail

2
check client
processes

pass pass fail fail no exec

3
number of
processes

pass pass fail pass no exec

4
name of parent
processes

fail fail pass fail no exec

5
file name for
current file

pass fail fail fail pass

6
load fake
DLL

fail fail fail fail fail

7
load real
DLL

fail fail fail fail fail

8
DLL load
directory

pass pass pass pass pass

9
names of
loaded DLLs

fail fail fail fail fail

10
known sandbox
DLL:s

fail fail fail fail fail

Results 43

Figure 5.2: Process - detected malware per vendor.

44 Results

5.2.3 File

Table 5.5: Files results statistics.

Average malware detection rate 73%
Maximum malware detection rate 100%
Minimum malware detection rate 50%
Coefficient of variation 23%

Table 5.6: File category results per vendor.

Description A B C D E

1
if browsers
exist

fail fail fail fail fail

2
traces left by
browsing

pass fail fail pass fail

3
number of other files
in execution directory

fail fail pass fail fail

4
create files locally
and check their content

fail fail fail fail fail

5
number of installed
programs

fail pass pass fail fail

6
number of recently
created/modified files

pass fail pass pass fail

Results 45

Figure 5.3: Files - detected malware per vendor.

46 Results

5.2.4 Environment

Table 5.7: Environment results statistics.

Average malware detection rate 64%
Maximum malware detection rate 81%
Minimum malware detection rate 56%
Coefficient of variation 16%

Table 5.8: Environment category result per vendor.

Description A B C D E

1
machine
names

fail pass fail fail fail

2
user
name(s)

pass pass pass pass pass

3
screen
resolution

pass pass fail pass pass

4
hard disk / partition
name(s)

pass pass fail pass fail

5
color of background
pixel

fail fail fail fail fail

6
keyboard
layout

pass fail fail pass pass

7
execution
path

pass pass fail fail pass

8
sandbox indications
in path name

fail fail pass pass fail

9
command line
parameters

fail fail fail fail fail

10
if computer is a
laptop

pass pass pass pass no exec

11
VMWare
version

fail fail fail fail fail

12
correct system
time

fail fail fail fail pass

13
if current user has
password set

pass pass fail pass no exec

14
is debugger
present?

fail fail fail fail fail

15
typical sandbox
registry keys

fail fail fail fail fail

16
specific key values,
if they contain sandbox info

fail fail fail fail no exec

Results 47

Figure 5.4: Environment - detected malware per vendor.

48 Results

5.2.5 Hardware

Table 5.9: Hardware result statistics.

Average malware detection rate 49%
Maximum malware detection rate 54%
Minimum malware detection rate 46%
Coefficient of variation 8%

Table 5.10: Hardware category result per vendor.

Description A B C D E

1
number of CPU
cores, assembly

pass pass pass pass no exec

2
number of CPU
cores, WinAPI

fail fail pass pass no exec

3
number of CPU
cores, C++11

pass fail pass pass no exec

4
CPU
type

fail pass pass fail fail

5
CPU
cache size

fail pass pass fail pass

6
amount
of RAM

pass fail fail pass pass

7
size of
disk(s)

fail fail fail fail pass

8
amount of
GPU Memory

fail fail fail fail fail

9
name(s) of GPU
adapter(s)

pass pass pass pass pass

10
names of loaded
drivers

fail fail fail fail fail

11
number of (local)
printers

pass pass fail pass pass

12
name of default
printer

fail pass fail fail fail

13
prescence of
3-button mouse

pass pass pass pass pass

Results 49

Figure 5.5: Hardware - detected malware per vendor.

50 Results

5.2.6 Network

Table 5.11: Network result statistics.

Average malware detection rate 46%
Maximum malware detection rate 62%
Minimum malware detection rate 23%
Coefficient of variation 35%

Table 5.12: Network category results per vendor.

Description A B C D E

1
number of network
interfaces

pass pass pass pass pass

2
name(s) of network
interface(s)

fail fail fail fail fail

3
mac
address(es)

fail pass fail fail fail

4
ICMP
(ping)

fail pass fail pass pass

5
HTTP
(GET)

pass pass fail pass fail

6
correct response from
HTTP request

pass pass fail pass pass

7
DNS
query

fail pass fail pass pass

8
proxy
enabled

fail fail fail fail fail

9
domain
connected

pass pass pass pass no exec

10
open
ports

fail fail fail fail fail

11
network
traffic

pass pass pass pass pass

12
established
connections

no exec pass pass pass pass

13
other hosts in
network

fail pass pass pass fail

Results 51

Figure 5.6: Network - detected malware per vendor.

52 Results

5.2.7 Interactive

Table 5.13: Interactive result statistics.

Average malware detection rate 51%
Maximum malware detection rate 67%
Minimum malware detection rate 33%
Coefficient of variation 22%

Table 5.14: Interactive category results per vendor.

Description A B C D E

1
mouse
clicks

fail fail fail fail fail

2
mouse cursor
position

pass fail fail fail fail

3
mouse
movements

fail fail fail fail no exec

4
high mouse
movement speeds

pass pass pass fail no exec

5
wait for
scroll

pass pass no exec pass pass

6
multi-choice
prompt

pass pass pass pass pass

7
keyboard interaction
(key presses)

pass pass pass pass no exec

8
keyboard typing
patterns

pass pass pass pass pass

9
no open
windows

fail fail fail fail fail

Results 53

Figure 5.7: Interactive category - detected malware per vendor.

54 Results

5.3 Result of golden image configuration

In a total of eight test cases, there are differences between golden images and
original images. Per vendor there are five test cases but only two common test
cases where the golden image has the same outcome, see table 5.15.

Table 5.15: Result between golden and original images.

B Original B Golden C Original C Golden

size of
disk(s)

fail fail pass fail

number of
(local) printers

pass pass pass fail

if browsers
exist

pass fail fail fail

traces left by
browsing

pass fail pass fail

number of
recently created/modified files

pass fail pass pass

screen
resolution

pass pass pass fail

keyboard
layout

pass fail pass fail

no open
windows

pass fail fail fail

Results 55

5.4 Result summary

Figure 5.8: Malware detection rate per vendor.

Table 5.16: Overall result statistics

Average malware detection rate 56.6%
Number of silver bullets 11

56 Results

Figure 5.9: Average malware detection rate per category and coef-
ficient of variation.

Chapter 6
Discussion

6.1 Sandbox technologies and result patterns

Drawing conclusions from the results based on the technologies used in the dif-
ferent sandboxes proved to be harder than expected, as the amount of informa-
tion that was available about the sandboxes was very limited compared to the
expectations at the start of the project. The publicly available information in
datasheets and similar documentation was consistently of very general nature,
and the somewhat detailed information that reached the authors was via people
at Coresec who either "heard from someone" or had their own theories or edu-
cated guesses - both of which unfortunately are of little value in a scientific arti-
cle. Consequently, the opposite approach had to be taken to answer this question:
instead of drawing conclusions about the result based on the technologies used in
the sandboxes, reasonable assumptions were made about the technologies based
on the test results.

Looking at the overall result, the top achiever is Vendor E. Vendor E has the
best result in five of the seven test case categories, and places second in the re-
maining two. It detects more than two thirds of all test cases, and is 13% (or 8
percentage points) better than the next best vendor, Vendor C. Except from the
impressive test results, another thing distinguished Vendor E from all other ven-
dors: in 17 of the 77 test cases, the sandbox of Vendor E classified the test case as
malicious although the test case detected the sandbox and neither decrypted nor
ran the malware resource. This only happened very occasionally for the other
sandboxes - once for Vendor A and Vendor C- which suggested that something
was different with the sandbox of Vendor E compared to the others.

The first theory that emerged as a result of Vendor E’s somewhat odd test
results was that its sandbox simply had stricter rules regarding malicious behav-
ior and that the amount of false positives consequently would be higher on their
sandbox compared to the others. To confirm this theory, the authors tried to gen-
erate false positives by uploading various modified samples (e.g. with an en-
crypted, benign executable file as resource instead of malware) to the sandbox of
Vendor E, but surprisingly, every single attempt of doing so failed although quite
some effort was put into this. The false positives theory was dismissed, and in-
stead some additional research was made regarding the sandbox of Vendor E and
its results. The authors soon came up with another theory, namely that the sand-

57

58 Discussion

box of Vendor E was supported by another tool, containing both static analysis
and something called code emulation, as some parts of the detailed result reports
indicated this. More specifically, there were certain text strings in the reports from
the sandbox which resembled static signatures originating from a certain ven-
dor (not included in the Master’s Thesis) well known for its anti-virus products.
When digging deeper into this, it appeared that there was indeed a collaboration
between this vendor and Vendor E. Unfortunately, presenting these signatures in
this Master’s Thesis would disclose enough information for the reader to be able
to figure out the identities of both of these vendors, but they suggested that a
static analysis had indeed taken place. However, it seemed highly unlikely to the
authors that a static analysis tool alone would be capable of distinguishing the
false positives samples from actual positives with such high success rate (with
respect to the strong encryption of the malware resource), which suggested that
there could be other tools involved as well. When doing more research about
the anti-virus vendor and its products, it appeared that their anti-virus contained
something called code emulation as well, a feature that actually analyzes samples
dynamically by executing them but in an emulated environment instead of a full
scale virtual operating system like a sandbox. This could explain why this addi-
tional tool was capable of detecting test cases while being able to distinguish false
positives from actual positives.

Except for this, Vendor E also claims to have a feature in their sandbox which
monitors activities on a low system level. More specifically, the sandbox monitors
CPU instructions and patterns of instructions, which - if they match certain rules
- are classified as malicious. As a consequence, it is possible that test cases which
manage to detect the sandbox could still be classified as malicious, if they do
it in a way that triggers a certain behavior on an instruction level. Therefore,
the theories that the authors find most likely regarding the mysterious result of
Vendor E are that there is low level monitoring in combination with a powerful
anti-virus software installed on the images that run in the sandbox.

If one would consider test cases successful only on the premise that they de-
tect the sandbox, i.e. independently of whether or not they are classified as ma-
licious by the sandbox, the test result would look significantly different. Figure
6.1 shows this result, where the no exec results are considered successful instead
of unsuccessful, and as previously stated there is a clear difference primarily in
the result of Vendor E compared to the official test result in Figure 5.8. Since
the authors defined the criteria for successful and unsuccessful test cases them-
selves, it is possible that others - doing the same experiment - would consider test
cases successful on different criteria, e.g. those which detected the sandbox inde-
pendently of whether or not they were classified as malicious by the sandbox.
Comparing the two figures raises an awareness regarding the impact of choosing
a certain test success criteria, as well as the impact of the anti-virus of Vendor E
(which was the reason behind the majority of the no exec cases).

What is surprising in the case of Vendor E is that the code emulation tool
works so well in comparison to the sandbox, considering its limited resources.
After all, the code emulation tool does not boot an entire operating system like
the sandbox does, and thus imitates a "real" environment much worse than the
sandbox does. On the other hand, all test cases are designed to detect and bypass

Discussion 59

Figure 6.1: Sandbox detection rate per vendor where the test cases
detected the sandbox

sandboxes and not code emulation tools; it is possible that the authors, if aware
of the fact that code emulation tools were used, could have taken (potentially
simple) measures to detect and avoid emulation tools as well.

Except for the results of Vendor E, there were some other interesting findings
as well. In the environment test category, Vendor C had the best result thanks
to their sandbox supporting the use of golden images. By increasing the screen
resolution and changing the keyboard layout, Vendor C detected two more test
cases than Vendor E in this category; without golden images, the result would
have been a draw between the two.

Speaking of golden images, they were a bit of a disappointment and not as
"golden" as one could hope for. First of all, when configuring the golden image
of Vendor C, many settings turned out not to be configurable since the sandbox
forced a certain value. For instance, in the environment category, the user name
was forced to be one which there was already a test case looking for, meaning
that although a golden image could easily have detected this test case by setting
a "normal" user name, the test case still passed undetected. Furthermore, when
studying the results of Vendor B, it turned out that some test cases had passed
undetected although they should have been detected with respect to how the
golden image was configured. In this case, the sandbox must have forced some of
the settings to certain values after the golden image configuration was deployed
without giving the person doing the configuration any notification about this.
Hence, the way golden images were configured and deployed left quite much to
be desired.

Another interesting aspect is networking and how it is configured on the
sandboxes. While some of the sandboxes are allowed to, at least partially, com-
municate over Internet and send e.g. DNS queries, others are completely isolated

60 Discussion

and get no Internet access what so ever. The test cases in the network category
are designed such that they assume to be on a sandbox if communication fails,
if they for instance do not get responses to DNS queries or HTTP requests. This
means that isolated sandboxes will do worse in comparison to sandboxes that
allow external communication. This fact is the reason for the high coefficient of
variation in the network category (35%), and by studying the test results it is easy
to tell which sandboxes are most probably isolated (Vendor B, Vendor D) and
which ones are not (Vendor A, Vendor C and Vendor E).

6.2 Weakness patterns based on detection technique

Studying the overall result and the malware detection rate per category specif-
ically, it appears that four categories lie slightly below or just around 50% de-
tection rate while the three others are a bit higher and span from 64 to 74%, see
Figure 5.9. The four categories with the lower result all lie within a 5% range, and
due to the somewhat limited statistical data the number of test cases that actually
differ between these categories are very few. Therefore, since the result of these
four are almost the same, it is interesting to look at the coefficient of variation
as this demonstrates how much the results of the different sandboxes differ from
one another.

Where the coefficient of variation is low, there is little variation in the results.
In other words, the categories with low detection rate and low coefficient of vari-
ation are categories where most sandboxes have low results, meaning that these
categories should be seen as the most distinct weakness patterns. Among the four
categories with the lowest result, the hardware category has the lowest coefficient
of variation, being only 8%, followed by the interactive category with 22%.

It also deserves to be mentioned that the categories with low detection rate
and high coefficient of variation will include the real low-water marks. In the
timing and network categories, where the coefficient of variation is between 33
and 35%, the minimum detection rates are 30 and 23% respectively. Although
these results are very low, they do not constitute a pattern in the same way as the
categories with low coefficient of variation.

It might be a bit surprising that the hardware category is where the most
distinct weakness pattern is found, since the hypervisor has full control of what
hardware its guests believe they have access to. For instance, a hypervisor could
easily trick its guests to believe that they have access to more disk than they ac-
tually have, and this would not become an issue until the guests fills the entire
disk space. In the case of sandboxes - which time out after a few minutes - this
disk space would never become a problem in practice, which goes for most other
hardware as well: the guests will rarely be able to detect that the reported hard-
ware is not authentic. Therefore, the authors find it remarkable that the sand-
boxes have not been more successful fooling the virtual machines that they have
other hardware than they actually do, since they have every possibility of doing
so. Presumably, doing so would not require too much of an effort, and could
dramatically improve the result of the hardware category.

The weakness patterns obviously correlate to the efficiency of detection tech-

Discussion 61

niques: the most efficient detection techniques are those where the sandboxes
have lowest detection rates according to above. However, when switching focus
from sandbox weaknesses to test case efficiency, there is another interesting as-
pect to look at as well, namely the test cases that passed all sandboxes: the silver
bullets. There are a total of eleven silver bullet test cases which are distributed
more or less equally between all but the files category, which has none. Again,
due to the limited statistical data, no conclusions will be drawn regarding which
categories contain more or less silver bullets than the others. Furthermore, there
seems to be no clear pattern among the silver bullets since the they are so spread
across the different categories.

6.3 Simplicity contra efficiency in detection techniques

Analyzing all test cases on the same premise might be misleading, since some
may be more sophisticated than others. Because of this, the authors found it
necessary to assess all test cases and rate them based not only on their sandbox
detection rate but on their (relative) complexity to implement as well. All test
cases were given a simplicity score between one and three, one being harder to
implement (time consumption up to one work day) and three being easier (time
consumption no more than two hours).

Except for the simplicity to implement, the efficiency of the test case (i.e. its
result) was considered as well. The test cases were given two points for each
sandbox evaded, resulting in anything between 0 - 10 points, and the total score
for each test case was given by multiplying the implementation simplicity score
with the efficiency score as follows:

Score = (2× α)× β, α = Number of sandboxes evaded, β = Implementation simplicity
(6.1)

Using this formula, test cases were given a score ranging from 0 to 30, see
Appendix A. A high score means an efficient test case (in terms of detection rate)
with low implementation difficulty.

Lastly, for each test case category, the average value of the simplicity-efficiency
score was calculated. The scores are shown in Figure 6.2.

The results are surprisingly even across the categories, as it appears that all
but one category score between 10-12.1 On a scale from 0 - 30, the differences
between 10 and 12 are negligible which means that all but the files category have
very similar relations between simplicity to implement and sandbox detection
efficiency. In other words, no specific category is preferable to someone who
aims to develop sandbox detection techniques as efficiently as possible.

What might be worth emphasizing in this context is that all test cases consist
of only one detection technique each, for the purpose of being able to comparing

1The files category - which scores just below four - barely contains six test cases, which
is roughly half as many test cases as the other categories. This partly undermines its result,
as six test cases is somewhat statistically insignificant.

62 Discussion

Figure 6.2: Simplicity contra efficiency score per category.

them to each other. In other words, there is no combination of detection tech-
niques, in contrast to what is common in real malware. Combining techniques
gives malware greater confidence in concluding whether or not it is executed on
a sandbox. If this approach was to be applied on a set of test cases developed in
this Master’s Thesis, malware with very strong sandbox evasion potential could
be developed.

6.4 System lifetime in relation to test results

When attempting to answer the question regarding whether or not the lifetime
of the systems (sandboxes) had an impact on the test results, it became obvious
that the question was too vaguely defined. First of all, finding the exact age of
the products turned out to be significantly harder than expected; although press
releases, articles and documentation from all vendors were carefully examined,
only indications of the products’ lifetimes were found. Second, many of the ven-
dors had bought other vendors over the years, some of which had already been
involved in sandboxing for various amounts of time; what would then be the
most fair measure of the lifetime of a sandbox? Would it refer to the current prod-
uct, which was tested in this Master’s Thesis, or their very first sandbox? It was
decided that the most disambiguous meaning would be the lifetime of the sand-
boxing technology for that vendor or any other vendor acquired by that vendor,
since this would indicate how much time the vendor had have to develop their
sandboxing technology to what it is today. This definition also made it easier to
determine an approximate lifetime for each vendor. These lifetimes are stated in

Discussion 63

sections 3.2.1 - 3.2.5.
Three of the vendors - Vendor A, Vendor C and Vendor E- are quite new

within the sandboxing business compared to the two others - Vendor B and Ven-
dor D- who have been doing sandboxing for roughly three times as long or more.
However, when studying this data in connection to the overall test results, there
seems to be no correlation between a long lifetime within sandboxing and good
test results, but rather the other way around: Vendor B and Vendor D, both hav-
ing long experience of sandboxing, are the vendors with the lowest overall test
results. Due to the limited statistical data, which includes only five vendors, the
authors will not attempt to judge whether this is simply a coincidence or an ac-
tual pattern. However, regarding the question of this Master’s Thesis concerning
whether or not the lifetime of a system has a significant impact on its ability to
withstand test cases, the answer is "no".

6.5 General discussion and sources of error

As the results have shown, there are categories where there are small differences
in the results of the different vendors while there are others where the differences
are more significant. The average detection rate of all sandboxes is 56.6%, but
only 14% of all test cases are silver bullets. In other words, 86% of all test cases
were detected by at least one of the sandboxes - a quite remarkable difference in
comparison to the average result of the vendors. This means that by combining
several sandboxes, one could achieve a considerably better result than by having
only one.

One of the main purposes of this Master’s Thesis was to provide Coresec
with a decision basis for choosing the most appropriate sandbox on behalf of
their customers. While this still holds true, there turned out to be several other
aspects to take into consideration as work progressed, which may be considered
just as important as the ability of withstanding sandbox detection techniques.
This includes:

• the rate of false positives among analyzed files. High amounts of false pos-
itives will cause frustration as it requires interaction with the configuration
of the sandbox, which requires both time and the adequate competence.

• the ease of setup, which ranges from minutes to days between the different
vendors and might be a priority to less technically oriented customers.

• the ease of configuration and maintenance, similar to above.

• the pricing, which differs substantially between the different sandboxes
but despite this does not necessarily seem to be directly related to the de-
tection rate.

The importance of complementing the test results with an investigation of
the aspects above could be illustrated with an over explicit example regarding
false positives. In the experiment carried out in this Master’s Thesis, a sandbox
which classified every file as malicious would be the top achiever since it would

64 Discussion

"detect" all malware. Although this was not the case (since all sandboxes failed
on a number of test cases), it illustrates the importance of complementing the
sandbox detection rate results with experiments concerning other aspects, such
as those above.

During the process, Coresec expressed their interest in knowing what rate of
"normal" hosts that each test case would execute on in average. Similar to the
simplicity score, e.g. an impact score could be given each test case based on how
many hosts the test case would actually execute on. This impact score would be
very interesting, since test cases that manage to detect and bypass sandboxes are
of practically no value if they do not also execute on a vast majority of the average
hosts; creating test cases that executes on neither of them is trivial. Although the
impact score would be highly relevant, a major issue with this approach - which
was also the reason why it was never taken - is that it becomes either purely
speculative or very time consuming. Making educated guesses regarding how
many hosts the test case would execute on and make a scoring accordingly would
be of little scientific value. The alternative, quantitative approach of distributing
the test cases (without the malware resource, obviously) and analyze the results
would be far too time consuming. Consequently, no impact score was given.
However, as mentioned in section 1.4, all test cases were tested thoroughly on
numerous computers and virtual machines with different configurations.

The detection techniques could be further improved if they were to target the
sandbox of a specific vendor. In this case, information about the sandbox could
be utilized to customize test cases, something that was never done in this Mas-
ter’s Thesis for the purpose of treating all vendors equally. In reality, it is plau-
sible that a malware developer may focus on just one of the vendors, and may
therefore know what defense mechanisms that the target has. Furthermore, some
sandbox vendors list their customers publicly on their web pages, and malware
developers attacking these customers would have a good idea about the security
systems protecting them.

The single biggest source of error in the experiment was, for several reasons,
the configuration of the sandboxes. The configuration is critical as it has direct
effect on the test result. For instance, some sandboxes had the opportunity of ei-
ther enabling or disabling Internet access for the virtual machines, while others
had support for golden images. Basically, it all came down to a trade-off between
equity and utilizing the full potential of the sandboxes: since only some of the
sandboxes supported different features, disabling a certain feature for all sand-
boxes would make the sandboxes as similar to each other as possible. On the
other hand, this would also mean that the sandboxes would not reach their full
potential, and the test result would become somewhat misleading as the configu-
rations would differ significantly from how the sandboxes were used in practice,
where all features can be assumed to be activated. The authors decided to stick
to the latter as the guiding principle when configuring the sandboxes, i.e. al-
lowing all sandboxes to be configured according to best effort to utilize their full
potential, although this meant that their configurations were quite different from
one another. The only exception to this principle was how additional tools were
handled: more or less all sandboxes are normally part of a "tool suite" where e.g.
firewalls and other tools are also present, and if the sandbox could be configured

Discussion 65

to "forward" its samples to other tools in the suite this feature was, if possible,
disabled in order to isolate the sandbox and not analyze any other tools.

What is noteworthy, from a user perspective, is that sandbox detection - at
least the techniques used in this Master’s Thesis - partly is based on virtual ma-
chine detection. The hardware category is more or less entirely targeted at de-
tecting virtual machines, and both the process and environment categories in-
clude virtual machine detection as well. This means that users running virtual
machines would be immune to a substantial amount of the detection techniques
used in this Master’s Thesis, which very well could be used in real malware as
well.

The systems from which the test cases should distinguish sandboxes, referred
to as "hosts", are user clients, i.e. the workstations of regular users. Although less
common, malware exists which target servers instead of clients. Since servers
typically have different configurations compared to clients, regarding both hard-
ware and software, the result of some test cases might be misleading since they
have not taken this fact into consideration. For instance, sandboxes may choose
not to disguise their server-like hardware, as they aim to resemble both a client
and a server at the same time. When running a test case which e.g. looks for
server hardware on such a sandbox, the test case will "detect" the sandbox based
on something that was actually intended by the vendor of the sandbox and not a
misconfiguration. This was pointed out by one of the vendors, whose result was
partly affected by this. Although the approach of solving two problems at once by
creating a "hybrid" sandbox image might be somewhat problematic, it explains
the result of at least one of the vendors. However, one could argue that a bet-
ter way of solving the problem would be running the analyses in the sandboxes
on multiple images with different configurations, e.g. one client and one server
image, which was also suggested to the vendor by the authors. The essence of
all this is basically that sandboxes should be configured to resemble the environ-
ment they protect to the greatest extent possible; if there are a substantial amount
of servers in the network protected by the sandbox, having a server-like sandbox
image is recommended.

Another interesting aspect, mainly from a vendor perspective, is the level of
difficulty of improving the result of the different test case categories. While some
categories are difficult and require actions to be taken by the sandbox during the
execution of the malware, others are very simple in comparison and could be
significantly improved in a matter of minutes. The timing and interactive cate-
gories belong to the former of these two, where the sandbox must either some-
how speed up execution or simulate user interaction in a realistic way without
disclosing this behavior to the file being analyzed, something that is everything
but trivial and would require quite an effort both to figure out a solution to and
then to implement. In the file and environment categories on the other hand,
several of the sandboxes could improve their results significantly simply by con-
figuring the image used. For instance, by doing a couple of minutes of Internet
browsing, installing a couple of programs, changing the user name, increasing
the screen resolution, adding a hard disk partition and setting a password for the
user account, the majority of the sandboxes could raise their detection rate by
several per cent without too much effort.

66 Discussion

Chapter 7
Conclusions

Although extracting information about the sandboxes was difficult, some pat-
terns could be observed in the results based on the technologies used in the tested
systems. The sandbox of Vendor E, which has an advanced low level monitoring
technique and possibly also a potent anti-virus software installed on its virtual
machine images, achieved the best overall results thanks to this. Furthermore,
the systems that supported the use of so called golden images could prevent de-
tection techniques that otherwise would have been successful. Lastly, whether
the sandboxes allowed its virtual machines Internet access or not had a signifi-
cant impact on the outcome of the test cases related to this.

The hardware and interactive test case categories were particularly weak in
comparison the the others, in the sense that their detection rates were consistently
low. In other words, test cases utilizing detection techniques bases on either of
these two categories had a high rate of success on most sandboxes. Although the
real low-water marks were found in the network and timing categories, some of
the sandboxes also did well in these categories, why they are not to be regarded
as patterns in the same way as hardware and interactive.

By grading all test cases on a scale from one to three and correlating this score
to the test results, there turned out to exist test cases that were both simple to
develop and very efficient at detecting sandboxes.

The most efficient sandbox detection techniques are directly related to the
patterns of weaknesses in the sandboxes, which means that the hardware and
interactive based test cases are to be seen as most efficient. Whether this efficiency
is significantly higher than that of the other categories is left to the reader to judge,
see Figure 5.9. The "silver bullet" test cases, i.e. the test cases that succeeded and
passed undetected on all sandboxes, were somewhat evenly distributed across
all categories and did not constitute a clear pattern.

The lifetime of a system, which was defined as the amount of time for which
the vendor of each system had been involved in the sandboxing industry, did not
have a significant impact on the systems’ ability to withstand attacks. Surpris-
ingly, it was rather the other way around: the test results suggested that vendors
who got into the sandboxing business more recently actually achieved better re-
sults in general.

The authors find it surprising that sandbox detection proved not to be harder
than it turned out, as many of the test cases which were trivial to develop actually
succeeded on several of the sandboxes. They are therefore convinced that all

67

68 Conclusions

vendors could improve their test results significantly without too much effort,
simply by configuring the image(s) of the sandboxes properly. The authors have
provided all vendors with the test results and the test cases, in order to help them
fighting malware which deploy sandbox detection techniques.

This Master’s Thesis has proven that bypassing sandboxes can be done in a
number of ways. However, it should be mentioned that the sandbox is normally
only one component in a suite of other security tools, and that these must be
bypassed as well for a successful infection.

7.1 Future work

This Master’s Thesis has focused solely on sandbox detection techniques using
executable files. Since malware also appear in for example PDF files and Mi-
crosoft Office documents, it would be interesting to do a similar research using
these file types instead; this could possibly open up for new detection techniques.

The sandbox detection techniques developed in this Thesis do not form an
exhaustive list of techniques for this purpose; they are merely a result of the in-
formation gathering and ideas of the authors. An area of techniques that the
authors believe to be very efficient, which unfortunately fell out of scope due to
time constraints, are test cases written in assembly. Because of the way hooking is
implemented in the sandboxes, the authors suspect that assembly test cases could
be considerably more effective.

An interesting aspect is the way the sandboxes get access to files to analyze
when the traffic reaching them is encrypted. Today an increasing amount of traf-
fic is encrypted using HTTPS, and the sandboxes are completely blind to this
traffic unless they are bundled with another tool (a proxy of some kind) which is
capable of performing HTTPS decryption [47]. In other words, for inline sand-
boxes to work well in practice, they depend heavily on a good HTTPS decryption
tool, which is another aspect not taken into consideration in this Master’s Thesis.
Apparently, the different vendors have proxies of very varying quality - some
of them even lack this completely - which would very much affect the result of
the sandboxes when used in practice in a real environment. Again, although this
would be highly interesting to dig deeper into, comparing proxies of the differ-
ent vendors unfortunately fell out of scope of this Master’s Thesis, but could be
subject to future work.

Finally, an area which has gotten a lot of attention recently and continuously
evolves is machine learning. Machine learning is relevant within many IT re-
lated fields, and within the computer security field it has created a new way of
analysing malware. By making machines capable of learning themselves the dif-
ference between benign and malicious files, there is a chance of seeing a dramatic
improvement in malware detection capabilities [48]. The method is still on the
rise and needs further exploration, why experiments on the topic would be highly
interesting.

References

[1] A. Mesbahi and A. Swinnen, “One packer to rule them all: Empirical identi-
fication, comparison and circumvention of current antivirus detection tech-
niques,” in Black Hat, USA, 2014.

[2] AV-TEST Institute, “Malware statistics.” available at: https://www.

av-test.org/en/statistics/malware/. Last accessed: 2015-04-12.

[3] Symantec, “Internet security threat report 20.” https://

www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_

GA-internet-security-threat-report-volume-20-2015-social_v2.

pdf. Last accessed: 2015-02-01.

[4] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and J. M. Pedersen, “An ap-
proach for detection and family classification of malware based on behav-
ioral analysis,” in 2016 International Conference on Computing, Networking and
Communications (ICNC), pp. 1–5, Feb 2016.

[5] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide
to Dissecting Malicious Software. San Francisco, CA: No Starch Press, fifth
printing ed., 2012.

[6] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online
malware detection: Towards efficient real-time protection against malware,”
Information Forensics and Security, IEEE Transactions on, vol. 11, pp. 289–302,
Feb 2016.

[7] Cuckoo Foundation, “Cuckoo sandbox v. 2.0 rc1.” https://www.

cuckoosandbox.org/.

[8] S. Mohd Shaid and M. Maarof, “Malware behavior image for malware vari-
ant identification,” in Biometrics and Security Technologies (ISBAST), 2014 In-
ternational Symposium on, pp. 238–243, Aug 2014.

[9] H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato, “Defining malicious be-
havior,” in Availability, Reliability and Security (ARES), 2014 Ninth Interna-
tional Conference on, pp. 273–278, Sept 2014.

[10] Kaspersky Lab, “Who creates malware?.” available at: https:

//usa.kaspersky.com/internet-security-center/threats/

who-creates-malware. Last accessed: 2015-04-15.

69

70 References

[11] S. Cobb and A. Lee, “Malware is called malicious for a reason: The risks
of weaponizing code,” in Cyber Conflict (CyCon 2014), 2014 6th International
Conference On, pp. 71–84, June 2014.

[12] C. Czosseck, G. Klein, and F. Leder, “On the arms race around botnets -
setting up and taking down botnets,” in 2011 3rd International Conference on
Cyber Conflict, pp. 1–14, June 2011.

[13] Netmarketshare, “Desktop operating system market share.” available at:
https://www.netmarketshare.com/operating-system-market-share.

aspx. Last accessed: 2015-04-15.

[14] A. Javed and M. Akhlaq, “Patterns in malware designed for data espionage
and backdoor creation,” in Applied Sciences and Technology (IBCAST), 2015
12th International Bhurban Conference on, pp. 338–342, Jan 2015.

[15] E. Alomari, S. Manickam, B. B. Gupta, P. Singh, and M. Anbar, “Design,
deployment and use of http-based botnet (hbb) testbed,” in 16th International
Conference on Advanced Communication Technology, pp. 1265–1269, Feb 2014.

[16] W. Peng, G. Qingping, S. Huijuan, and T. Xiaoyi, “A guess to detect the
downloader-like programs,” in Distributed Computing and Applications to
Business Engineering and Science (DCABES), 2010 Ninth International Sympo-
sium on, pp. 458–461, Aug 2010.

[17] W. Tsaur, “Strengthening digital rights management using a new driver-
hidden rootkit,” Consumer Electronics, IEEE Transactions on, vol. 58, pp. 479–
483, May 2012.

[18] L. Hu, T. Li, N. Xie, and J. Hu, “False positive elimination in intrusion detec-
tion based on clustering,” in Fuzzy Systems and Knowledge Discovery (FSKD),
2015 12th International Conference on, pp. 519–523, Aug 2015.

[19] M. Ramilli and M. Prandini, “Always the same, never the same,” IEEE Secu-
rity Privacy, vol. 8, pp. 73–75, March 2010.

[20] S. Ravi, N. Balakrishnan, and B. Venkatesh, “Behavior-based malware anal-
ysis using profile hidden markov models,” in Security and Cryptography (SE-
CRYPT), 2013 International Conference on, pp. 1–12, July 2013.

[21] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pp. 421–430, Dec 2007.

[22] B.-D. Yoon and O. N. Garcia, “Cognitive activities and support in debug-
ging,” in Human Interaction with Complex Systems, 1998. Proceedings., Fourth
Annual Symposium on, pp. 160–169, Mar 1998.

[23] M. Zolotukhin and T. Hamalainen, “Detection of zero-day malware based
on the analysis of opcode sequences,” in Consumer Communications and Net-
working Conference (CCNC), 2014 IEEE 11th, pp. 386–391, Jan 2014.

References 71

[24] K. Yoshioka, Y. Hosobuchi, T. Orii, and T. Matsumoto, “Vulnerability in
public malware sandbox analysis systems,” in Applications and the Internet
(SAINT), 2010 10th IEEE/IPSJ International Symposium on, pp. 265–268, July
2010.

[25] A. Albertini, “Portable executable 101, version 1.” http://corkami.

googlecode.com/files/PE101-v1.pdf. Last accessed: 2015-01-28.

[26] Microsoft, “Microsoft portable executable and common ob-
ject file format specification, revision 8.3. 2013.” avail-
able at: http://download.microsoft.com/download/9/c/5/

9c5b2167-8017-4bae-9fde-d599bac8184a/pecoff_v83.docx. Last ac-
cessed: 2015-02-15.

[27] Microsoft, “Resource types.” available at: msdn.microsoft.com/en-us/

library/windows/desktop/ms648009(v=vs.85).aspx. Last accessed: 2015-
02-15.

[28] M. Franz, “Dynamic linking of software components,” Computer, vol. 30,
pp. 74–81, Mar 1997.

[29] Microsoft, “Dynamic-link libraries.” available at: https://msdn.

microsoft.com/en-us/library/windows/desktop/ms682589(v=vs.

85).aspx. Last accessed: 2015-03-31.

[30] J. Smith and R. Nair, “The architecture of virtual machines,” Computer,
vol. 38, pp. 32–38, May 2005.

[31] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual
machines for cloud computing environment,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 24, pp. 1107–1117, June 2013.

[32] WMware, “Using snapshots to manage virtual machines.” available at:
http://pubs.vmware.com/vsphere-60/topic/com.vmware.vsphere.vm_

admin.doc/GUID-CA948C69-7F58-4519-AEB1-739545EA94E5.html. Last
accessed: 2015-02-16.

[33] Sandboxie Holdings, “How it works.” available at: http://www.sandboxie.
com/index.php?HowItWorks. Last accessed: 2015-02-16.

[34] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using cwsandbox,” Security Privacy, IEEE, vol. 5, pp. 32–39, March
2007.

[35] WMware, “Vmware tools components.” available at: https:

//pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?topic=/com.

vmware.vsphere.vmadmin.doc_41/vsp_vm_guide/installing_and_

upgrading_vmware_tools/c_vmware_tools_components.html. Last
accessed: 2015-05-17.

[36] B. Mariani, “Inline hooking in windows.” available at: https://www.

htbridge.com/blog/inline_hooking_in_windows.html. Last accessed:
2015-03-29.

72 References

[37] B. Bill, The Rootkit Arsenal. Burlington, VT: Jones & Bartlett learning, 2 ed.,
2013.

[38] Microsoft, “User mode and kernel mode.” available at: https:

//msdn.microsoft.com/en-us/library/windows/hardware/ff554836(v=

vs.85).aspx. Last accessed: 2015-03-29.

[39] A. Singh and Z. Bu, “Hot knives through butter: Evading file-based sand-
boxes,” in Black Hat, USA, 2013.

[40] Z. Balazs, “Malware analysis sandbox testing methodology,” in Botconf,
France, 2015.

[41] Y. Gao, Z. Lu, and Y. Luo, “Survey on malware anti-analysis,” in Intelligent
Control and Information Processing (ICICIP), 2014 Fifth International Conference
on, pp. 270–275, Aug 2014.

[42] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis based
on sandboxing,” in 2014 RoEduNet Conference 13th Edition: Networking in Ed-
ucation and Research Joint Event RENAM 8th Conference, pp. 1–6, Sept 2014.

[43] Kaspersky Lab, “What is a trojan virus? - definition.” available at: https://
usa.kaspersky.com/internet-security-center/threats/trojans. Last
accessed: 2015-04-19.

[44] Kaspersky Lab, “What is beta bot? - definition.” available at: http://usa.
kaspersky.com/internet-security-center/definitions/beta-bot.
Last accessed: 2015-02-23.

[45] Symantec, “Trojan.betabot.” available at: https://www.symantec.com/

security_response/writeup.jsp?docid=2013-022516-2352-99. Last ac-
cessed: 2015-02-23.

[46] Department of Homeland Security, “Daily open source infrastructure
report 23 september 2013.” https://www.dhs.gov/sites/default/files/

publications/nppd/ip/daily-report/dhs-daily-report-2013-09-23.

pdf. Last accessed: 2015-02-23.

[47] J. M. Butler, “Finding hidden threats by decrypting ssl,” in SANS Analyst
Whitepaper, 2013.

[48] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho, “Analysis of machine learn-
ing techniques used in behavior-based malware detection,” in Advances in
Computing, Control and Telecommunication Technologies (ACT), 2010 Second In-
ternational Conference on, pp. 201–203, Dec 2010.

AppendixA
Test case simplicity-efficiency score

Table A.1: Timing category

Simplicity Efficiency Total score

1 3 0 0
2 3 4 12
3 2 6 12
4 2 4 8
5 2 6 12
6 2 0 0
7 3 4 12
8 2 10 20
9 3 10 30
10 2 10 20

Table A.2: Process category

Simplicity Efficiency Total score

1 2 0 0
2 2 4 8
3 2 6 12
4 1 2 2
5 3 4 12
6 3 0 0
7 3 0 0
8 2 10 20
9 2 0 0
10 3 0 0

73

74 Test case simplicity-efficiency score

Table A.3: Files category

Simplicity Efficiency Total score

1 2 0 0
2 1 4 4
3 2 2 4
4 3 0 0
5 2 4 8
6 1 6 6

Table A.4: Environment category

Simplicity Efficiency Total score

1 3 2 6
2 3 10 30
3 3 8 24
4 3 6 18
5 3 0 0
6 2 6 12
7 2 6 12
8 2 4 8
9 3 0 0
10 3 8 24
11 1 0 0
12 3 2 6
13 2 6 12
14 2 0 0
15 2 0 0
16 2 0 0

Test case simplicity-efficiency score 75

Table A.5: Hardware category

Simplicity Efficiency Total score

1 2 8 16
2 3 4 12
3 3 6 18
4 1 4 4
5 1 6 6
6 3 6 18
7 2 2 4
8 2 0 0
9 2 10 20
10 2 0 0
11 3 8 24
12 3 2 6
13 3 10 30

Table A.6: Network category

Simplicity Efficiency Total score

1 2 10 20
2 2 0 0
3 1 2 2
4 2 6 12
5 1 6 6
6 1 8 8
7 2 6 12
8 3 0 0
9 3 8 24
10 1 0 0
11 2 10 20
12 2 8 16
13 1 6 6

76 Test case simplicity-efficiency score

Table A.7: Interactive category

Simplicity Efficiency Total score

1 3 0 0
2 3 2 6
3 2 0 0
4 2 6 12
5 1 8 8
6 3 10 30
7 3 8 24
8 1 10 10
9 3 0 0

B
yp

assin
g

 m
o

d
ern

 san
d

b
o

x tech
n

o
lo

g
ies —

 A
n

 exp
erim

en
t o

n
 san

d
b

o
x evasio

n
 tech

n
iq

u
es

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Bypassing modern sandbox
technologies
An experiment on sandbox evasion techniques

Gustav Lundsgård
Victor Nedström

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-517

http://www.eit.lth.se

G
u

stav Lu
n

d
sg

å
rd

 &
 V

icto
r N

e
d

strö
m

Master’s Thesis

