
C
o

m
p

act O
b

ject Secu
rity fo

r th
e In

tern
et o

f Th
in

g
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Compact Object Security for the
Internet of Things

Joakim Brorsson
Martin Gunnarsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-532

http://www.eit.lth.se

Jo
a

k
im

 B
ro

rsso
n

 &
 M

a
rtin

 G
u

n
n

a
rsso

n

Master’s Thesis

Compact Object Security for the Internet of
Things

Joakim Brorsson
ada10jbr@student.lu.se

Martin Gunnarsson
dat11mgu@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisors:
Ludwig Seitz
Martin Hell

June 29, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

The Internet of Things is coming. With it comes security challenges not present
on common, more capable, devices such as desktop computers or servers. We
argue that traditional channel security needs to be complemented with object
security to cope with the constrained nature of small devices and Low Power
Lossy Networks. The main reason for a partial transition to object security being
heavy use of asynchronous communication. This thesis explores the feasibility of
OSCoAP, a novel draft for an object security solution for CoAP, on constrained
devices. It also evaluates the performance of OSCoAP compared to the well known
channel security standard DTLS. We find that OSCoAP is indeed implementable
on constrained devices and that it actually outperforms DTLS in some aspects.
Further, we suggest some minor alterations to the proposed draft.

Keywords
Internet of Things, Object Security, Constrained Devices, CoAP, OSCoAP.

i

ii

Acknowledgements

We would like to express our deepest thanks and gratitude to our supervisor
Ludwig Seitz at SICS, for guiding us through this project. He has provided
invaluable guidance and unfailing enthusiasm through the entire process. We
would also like to thank our supervisor Martin Hell at EIT for valuable input.
Further thanks goes to the rest of the employees at SICS and to Francesca Palombini
and Göran Selander at Ericsson for their help with technical matters and for giving
us their insights and feedback.

iii

iv

Table of Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Related work . 3

2 Background 5
2.1 Terminology . 5
2.2 Characteristics of IoT networks . 6
2.3 Problem statement . 7

3 Current technology 11
3.1 CoAP . 12
3.2 Channel Security Protocols . 13
3.3 IPv6, 6LoWPAN and IEEE 802.15.4 14

4 Protocol description 17
4.1 CBOR . 17
4.2 COSE . 18
4.3 The AEAD AES-CCM . 18
4.4 OSCoAP . 19

5 Protocol implementation 25
5.1 Californium, a Java implementation 27
5.2 Erbium CoAP on Contiki OS . 29
5.3 Deviations from the OSCoAP draft 30

6 Quantitative methodology 31
6.1 Earlier tests . 31
6.2 Testing environment . 32
6.3 Methodology . 32

7 Results 35
7.1 Network overhead . 35
7.2 CPU time . 37
7.3 Memory footprint . 38

v

8 Discussion 41
8.1 Network overhead . 41
8.2 CPU-Time . 42
8.3 Memory footprint . 42
8.4 Deviations from OSCoAP draft 4 . 43
8.5 Similar approaches . 44
8.6 Future Work . 44

9 Conclusion 47

References 49

vi

List of Figures

2.1 End-to-end security compared to Hop-by-hop security. 8

3.1 Constrained REST stack (CoAP). 11
3.2 Non constrained REST stack (HTTP). 11
3.3 CoAP message format. 12
3.4 DTLS Handshake . 15

4.1 COSE Object . 19
4.2 OSCoAP and COSE relation . 22
4.3 CoAP token handling . 23

5.1 Logical flow for serializing an OSCoAP message. 25
5.2 Logical flow for parsing an OSCoAP message. 26
5.3 Californium processing stack. 28

7.1 One request, one response scenario 35
7.2 Response network overhead . 37

vii

viii

List of Tables

4.1 Table showing how OSCoAP should protect options 21

7.1 DTLS Handshake sizes. 36
7.2 Sizes for GET requests and responses with 5 byte payload. 36
7.3 Execution time of selected functions. 38
7.4 Execution time for memory functions 38
7.5 Memory footprint comparison . 39
7.6 OSCoAP minimum heap memory allocated at runtime 39
7.7 Code size for different parts of OSCoAP 40

ix

x

Chapter1
Introduction

The Internet of Things is a term used to describe the increasing number of con-
nected embedded systems used in a wide variety of applications. Theses systems
are partly or fully composed out of devices, often called nodes, that have very
restricted resources. For example they often operate on battery power and have
very little memory. Therefore, they are often referred to as constrained nodes. These
constraints affects the operation of the nodes in significant ways.

Network operations are hard on battery consumption. To cope with this,
network operations are bulked up in scheduled sending/receiving time slots. In
between the slots, the network is offline. I.e. battery constraints results in offline
nodes as the default state. This forces constrained nodes to communicate asyn-
chronously to cope with their resource constraints. The Constrained Application
Protocol, CoAP [1], is a application level protocol designed to operate under these
circumstances. It is resource efficient and handles the asynchronous communication
situation by working closely with caching or mirroring proxies. To secure this
communication, DTLS [2] has gained traction since it operates over UDP, a trans-
port protocol suitable for asynchronous communication and used by most CoAP
implementations.

This brings us to the problem. CoAP is a heavy user of proxying functionality.
DTLS encrypts everything in its payload, including CoAP. The use of CoAP will be
severely crippled by securing it using DTLS, or any other channel security protocol.
The situation can be improved by transitioning from channel security to object
security, where the encryption can be limited to include only data, not proxying
information and other functional headers. OSCoAP [3] is a protocol draft aimed at
using object security to protect CoAP. It fully encrypts the payload of the message
while integrity protecting other headers and leaving proxying information be so
that CoAP can function unhindered while still being secure.

1.1 Objectives
This thesis aims to explore the possibility of using object security, as opposed to
channel security, in constrained environments. In this thesis we test the feasibility
and efficiency of a communication security solution proposed by Ericsson1 and

1http://www.ericsson.se

1

2 Introduction

SICS2. This solution, called Object Security for CoAP (OSCoAP), provides commu-
nication security properties for constrained devices operating in the Internet of
Things.

The outcome of the project will be a fully functional reference implementation
of the proposed OSCoAP protocol providing end-to-end security in constrained
environments. This implementation will be coupled with tests comparing it to
the current state of the art solutions such as DTLS/CoAP and plain CoAP in a
quantitative study which aims to measure the performance difference in terms of:

• Network overhead and latency

• Memory footprint

• CPU usage

The results can be used to evaluate the suitability of OSCoAP as a complement to
DTLS in constrained environments.

This will require us to make use of established standards, such as CoAP, and
build security features on top of them. The concrete outputs of the project will be:

• An OSCoAP library written in Java for a desktop OS

• An OSCoAP library written in C for constrained devices running Contiki
OS [4]

• A quantitative study as described above

The required properties of the libraries is as stated in the OSCoAP draft [3]

• End-to-end encryption of payload and selected headers

• Integrity protection of payload and selected headers

• Replay protection

• Secure mapping of request to responses

1.1.1 Research questions
There are situations where object security is a necessity. Our work aims to answer
the questions of whether object security, in the form of OSCoAP, is implementable
in practice and how it compares in terms of efficiency in scenarios where security
can be obtained using either channel security or object security.

1.1.2 Delimitations
The proposed solution will not handle any key infrastructure. It will also not
implement the OSCON version of OSCoAP [3] and it will not implement the
optional sliding window for sequence numbers. The tests will focus on the most
simple scenario of “one-request-one-response”, since this is the main use-case for
OSCoAP. Requests with multiple responses will not not be tested.

2http://www.sics.se

Introduction 3

1.2 Related work
There are numerous approaches for adapting channel security for constrained
devices. Raza et al. have adapted IPSec and DTLS for constrained devices using
header compression extensions for 6LoWPAN [5][6]. Hummen et al. suggests
offloading parts off the DTLS handshake to trusted gateways [7]. An approach
similar to Hummens, but with end to end data integrity, is provided by Sethi et al
[8].

The approach to security most similar to ours is OSCAR by Vucinic et al. This
solution is, like OSCoAP, based on object security [9]. A discussion on how these
related approaches relates to OSCoAP is provided in Section 2.3.2.

1.2.1 Prior work on OSCoAP
Palombini, now co-author of the OSCoAP draft, has written a master thesis in
2015 which implemented the message integrity part of OSCoAP draft 2 on Contiki
OS [4][10][11]. Our work adds to this work and aims to extend it by implementing
draft 4 of OSCoAP which differs significantly from draft 2. This thesis will also
evaluate the performance of message confidentiality on top of message integrity.
The most significant difference between this and prior work is that since draft 4 of
OSCoAP, the message protection is based on COSE. We will clarify the similar and
non similar parts in the technical description.

4 Introduction

Chapter2
Background

2.1 Terminology

2.1.1 Channel Security
Channel security is a term used in communications security which describes
a secure channel used by an application to transmit data [12]. The channel is
negotiated and managed by a protocol at the data, network or transport level in
the protocol stack. The channel handles the data agnostically; it does not know
anything about the payload.

2.1.2 Object Security
Object security is a term used in communications security describing secure com-
munication with no need for a secure channel [12]. Instead of relying on a commu-
nication protocol lower in the stack to handle the encryption, the application that
created the message will handle encryption and decryption of its own communi-
cation.

The difference between channel security and object security may seem subtle,
the key difference is that in object security an application handles its own secure
communication. This has the effect that when using object security, an application
does not need to rely on a secure channel. Rather, it can pick and choose by itself
what to protect and how to protect it. This is a very important aspect, as we shall
see.

2.1.3 Internet of Things and Constrained Nodes
Internet of Things (IoT) is the term used to describe the increasing number of
connected embedded systems used in a wide variety of applications. M2M (Ma-
chine to Machine) and constrained nodes are also common terms. The distinction
between the expressions is somewhat fuzzy but in broad terms both IoT and M2M
are networked systems which are comprised partly or fully out of constrained
nodes.

A constrained node is a constrained device in a network. A constrained device
is defined by RFC7228 [13] as “A node where some of the characteristics that are

5

6 Background

otherwise pretty much taken for granted for Internet nodes at the time of writing
are not attainable, often due to cost constraints and/or physical constraints on
characteristics such as size, weight, and available power and energy.”. The same
document gives some concrete numbers for what can be considered a constrained
device, for example the RAM memory of a constrained device can range from
under 10 KiB to roughly 50 KiB. Common poster children for constrained devices
are the Arduino and ARM Cortex family of devices.

M2M networks are networks that consists out of interconnected nodes. The
node can be constrained, but that is not always the case. These networks are often
thought of as isolated systems with a well defined purpose, for example industrial
control systems.

IoT is the term for the connection between different constrained systems. The
Internet of Things can be thought of as constrained devices and M2M networks
connected to the internet, using it to communicate with each other.

2.1.4 Low-Power Lossy Networks

The network used in a system can also be constrained. If the network is highly
unreliable, has a low throughput or another hindering property, the network can
be considered constrained. These kind of networks are often referred to as Low-
power Lossy Networks (LLNs) [14]. Because of LLNs, systems can be considered
constrained even though no nodes are constrained.

2.2 Characteristics of IoT networks

The characteristics of constrained devices calls for a different set of solutions than
the ones commonly used for non-constrained devices. An interesting area to
explore is how to provide information security on constrained devices commu-
nicating over insecure channels, i.e, how can message integrity, secrecy, replay
protection, message freshness guarantee, and sequence ordering be provided for
the Internet of Things.

There are some properties of constrained networks which have significant
impact on how communication works compared to how it works on traditional
networks. Firstly, communicating parties operating on battery power will naturally
want to save battery. Therefore the network part of a constrained device will be
turned off for as much time as possible. This means that the normal case will be
asynchronous communication and because of this, caching nodes are the norm.

Second, when sending data on the network, you want to send as little data
as possible. This is of course always a good thing but it is extra important for
constrained nodes; power consumption from network hardware is very high com-
pared to cryptographic operations [15]. Another aspect of minimizing transmitted
data is that large data packages will require larger buffers on the recipient node,
something that might not be available on constrained nodes. Sending large pack-
ages also increases the retransmission amount. If a fragment of a large message
is dropped by the network, or there is an error somewhere in a packet, all of

Background 7

the message might need to be retransmitted instead of just a small part. Packet
fragmentation can be a considerable source for network overhead.

2.3 Problem statement

2.3.1 Traditional methods
Secure communication for constrained nodes can certainly be achieved using
traditional methods such as channel security. The security in these traditional
protocols protects the channel, not the data itself, hence the name. Since many
devices operate on battery power it is important to use as little resources as
possible, both in terms of power consumption and memory/CPU usage. The
consequences of this is very often seen in devices designed so that they sleep for as
much time as possible. This is discussed in the OSCAR paper [9] which argues that
the core problems with security in IoT is that Application traffic is asynchronous,
which makes caching a requirement for a well functioning network. To achieve
this, caching proxies are often used.

2.3.2 Consequences of using traditional methods
Herein lies the core problem this thesis will discuss. If a proxy is to be used for
caching data, and channel security is used, the security can follow two patterns.

The first pattern, hop-by-hop security, visualized in Figure 2.1a, is to terminate
the channel security session in the caching node, effectively dividing the security
in two parts. One part from the sender to the caching node and one part from the
caching node to the receiver. This forces the data to be decrypted at the caching
node; the caching node needs to re-encrypt the plaintext for the receiver. The
data integrity and confidentiality will therefore not be end-to-end between the
client and server, but hop-by-hop from client to proxy and from proxy to server.
Hop-by-hop security can only be relied on if all partners are trusted. This is not
a good assumption for a secure and robust system. The possibility of malicious
nodes opens up for both passive eavesdropping attacks and active attacks such as
man-in-the-middle attacks on the communication. These kind of attacks are a very
real threat and there has been countless examples of them. Hop-by-hop security is
sometimes also referred to as point-to-point security.

The second pattern, end-to-end security, visualised in Figure 2.1b, is to not
terminate the session at the proxy but instead keep the channel security enabled
through the proxy. This thwarts the possibility for the proxy to attack the session
in a meaningful way since it prevents it from reading the data or changing it
without detection. True end-to-end security is thereby obtained but important
functionality is also lost. With channel security used for end-to-end encryption, it
is all or nothing; all data originating from above the session layer has to be secured.
The inability for a proxy to change or read anything from the transport layer and
higher layers is not without negative consequences. A proxy often carries a lot
of functionality on higher layers that is broken by end-to-end channel security.
For example, a CoAP caching proxy can not cache any data for connections that

8 Background

tunnels through the proxy using channel security. CoAP is a protocol designed
to work closely with proxies; the protocol will be crippled without the proxying
functionality.

It has been suggested to tunnel a DTLS connection through CoAP messages
for proxy compatibility [16]. This work has however been claimed to be quite
inefficient by the authors themselves, the idea was therefore abandoned.

(a) Hop-by-hop (b) End-to-end

Figure 2.1: End-to-end security compared to Hop-by-hop security

2.3.3 Advantages of transitioning to Object Security
When the end-to-end security is based on object security, the protocol can pick
and choose what part of the data that should be confidential or integrity protected.
For example it would be possible to encrypt the payload, integrity protect static
parts of the header and leave variable header parts be. Protecting certain parts
of the header can be very important. A malicious intermediate tampering with
the header can do considerate damage. For example an attacker could change the
method code from GET to DELETE, thereby deleting a resource instead of fetching
the current value. This is one reason for why encryption of just the payload of the
CoAP message is not sufficient. In conclusion, object security enables end-to-end
security without preventing proxy operations, if done correctly.

Another important aspect when comparing object security and channel secu-
rity for constrained devices is the network overhead produced by the different
technologies. The overhead in a session based security protocol is composed of
both the handshake and the overhead that the protocol produces when encrypting
and integrity protecting data. In an object based security protocol, the encryption
parameters can be pre established, in which case the overhead consists solely of
the overhead produced when encrypting and integrity protecting, no handshake
takes place. We suspect that channel security, DTLS, is more efficient for long
running sessions but that object security can be made more efficient for sending
individual packets. The DTLS handshake is network intensive. This is true even
for the least intensive mode DTLS-PSK, a mode with a Pre Shared Key as a pre-
requisite, allowing for a more lean handshake [17]. A DTLS handshake will also
demand a lot of retransmits on a lossy network. [18] measures the performance of
DTLS-PSK on lossy networks and concludes that the success rate of handshakes
drops rapidly after a 20 packet loss rate on the network, resulting in retransmits.

Background 9

An object security based solution will not have this overhead but might not be as
efficient in the transmission phase since it will carry a bit more overhead that was
not pre-established in a handshake.

2.3.4 Proposed solution
A solution more suited to constrained applications is required and SICS in collabo-
ration with Ericsson have therefore proposed using object security in combination
with CoAP in their draft for the protocol OSCoAP [3]. In this draft, security of the
communication is moved higher up in the protocol stack to provide the needed
data confidentiality and integrity. This solution is compliant with the argument
of not having to replace existing protocols in unconstrained networks, presented
in [19]. However, that paper proposes a solution where end-to-end security is
broken in the gateway. Contrary to this, OSCoAP aims at reducing the overhead
and complexity by adding object security as an option in CoAP packets.

In this thesis we will argue that the inherent asynchronous properties of con-
strained devices calls for a transition from connection oriented security solutions
to object oriented security solutions in certain scenarios and that OSCoAP is a
good way to achieve this.

10 Background

Chapter3
Current technology

A common network stack used for applications on constrained devices is pictured
in Figure 3.1. This stack differs significantly from the standard network stack for
non constrained devices pictured in Figure 3.2. The constrained stack is the one
we use for reference when implementing object security for constrained nodes.
The different layers of the constrained stack are explained in more detail below.

CoAP

DTLS (optional)

}
Application layer

UDP
}

Transport layer

IPv6

6LoWPAN

}
Network layer

IEEE 802.15.4
}

Physical layer

Figure 3.1: Constrained REST stack (CoAP)

HTTP

TLS (optional)

}
Application layer

TCP
}

Transport layer

IPv4/IPv6
}

Network layer

WiFi/Ethernet
}

Physical layer

Figure 3.2: Non constrained REST stack (HTTP)

11

12 Current technology

3.1 CoAP

The IETF application layer protocol Constrained Application Protocol (CoAP) [1]
is a popular REST [20] protocol aimed at network communication in IoT while
closely resembling HTTP [21] for easy integration with web services. It features
an asynchronous transaction model and has native headers for caching.

3.1.1 Message format

The CoAP message is divided into header and payload. The message structure is
designed to suit communications where the network or at least one communication
partner is constrained. The message structure can be seen in Figure 3.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ver T TKL Code Message ID

Token (if any, TKL bytes) . . .

Options (if any) . . .

11111111

Payload (if any) . . .

Figure 3.3: CoAP message format

The different fields are defined as:

• Version (Ver): CoAP version, currently 01.

• Type (T): Keeps track of whether a message is confirmable, non-confirmable
or a confirmation.

• Token Length (TKL): Indicates Length of token field, 0-8 bytes.

• Code: Request/Response code. Analogue to HTTP codes, e.g. GET or POST.

• Message ID: Used for duplication detection and acknowledgement han-
dling.

• Token: Used for Request-Response mapping.

• Options: An ordered list of options related to the message. For example
options specifying how a proxy should handle messages and what resource
that is requested. Options are explained in more detail below.

• Payload: The payload of the message.

Current technology 13

3.1.2 Options
The options are a very important part of CoAP. Since the header is short, almost
all functions in CoAP are done with options. Options can be used for example to
instruct a proxy how to handle the message, set a time frame for how long the
message is valid, or even be used for message fragmentation on the application
layer. The functionality of CoAP options is very versatile and the CoAP standard
is open for adding more options.

The options are transported as part of the CoAP header, where they are stored
as a TLV formatted list. TLV is an acronym for Type-Length-Value, which pretty
much explains how it functions. Every option present in the list has a unique
identifier of fixed length which acts as the Type. The Length field is important
because many options can vary in length, URI-Path is one such example. The
Length field is used to determine the size of the option data, which resides in the
Value field.

3.1.3 Proxies
With the asynchronous messaging model used in CoAP, proxies become vital.
CoAP is designed to work primarily through proxies. The proxying functionality
is implemented though a number of CoAP options. This aspect of CoAP is very
important to keep in mind when designing extensions to CoAP or tunnelling
CoAP through another protocol.

3.2 Channel Security Protocols

3.2.1 TLS
TLS is an IETF standard for channel security for the transport layer [22]. It is
very common on the web and used in many applications. TLS is most commonly
encountered as the S in HTTPS, which is HTTP over TLS. However, it is designed
to work over TCP. This makes it unsuitable for constrained devices, which typically
use UDP [23].

3.2.2 DTLS
DTLS is also an IETF standard for channel based security [1]. It is currently the
standard communication security mechanism for CoAP and often encounters as
the S in CoAPS. The protocol resembles the TLS standard but is adapted for use
with UDP instead of TCP [24]. This is important for constrained nodes since the
connectionless transport protocol UDP is more suited for constrained networks.

In rough terms, DTLS functions by first sending a number of packets between
2 communicating nodes to set up a cryptographic key for use in further commu-
nications. One node acts as client and the other one takes the server role. This
exchange is performed using the Handshake Protocol and the exact behaviour varies
depending on preferred cipher suites etc. The handshake procedure is explained

14 Current technology

in more detail below. When the handshake phase is over, the communication can
commence and be protected using the negotiated key. This protection is carried
out using the Record Protocol.

The Record Protocol

The DTLS record protocol is the workhorse caring for security and reliability of
message transfers. It can be seen as an encapsulating protocol used to transport
data or connection state information. The record layer header contains information
about data type, sequence number, length and offset of the content. This informa-
tion can be used to order and classify incoming content. Other DTLS protocols are
carried as payload in a record protocol frame.

Handshake Protocol

The handshake protocol is responsible for negotiating a shared key for the com-
municating parties to use for message protection. Operating on top of the record
protocol, a two party procedure ensures a valid connection state used in further
communication.

The protocol is initiated by the client sending a client-hello message, to which
the server replies with a hello-verify-request. To prevent replay attacks, DTLS
requires a second client-hello containing a nonce from the the hello-verify-request.
This series of messages are used to assert the security capabilities of the parties.
When this is done, the client sends a client-key-exchange containing parameters for
key negotiation. It also sends a change-cipher-spec and a finished message, asserting
the use of a specific cipher suite. In response to this, the server also sends a change-
cipher-spec and a finished message to acknowledge the start of the protection of
messages. With this, the handshake is done. There are more steps to this protocol
but these are the most essential ones. The full process in pictured in Figure 3.4.

3.3 IPv6, 6LoWPAN and IEEE 802.15.4
IPv6 [25], 6LoWPAN [26] and IEEE 802.15.4 [27] are part of the network stack and
support the DTLS and CoAP parts of the stack. They are vital for functionality but
their inner workings are not relevant to this thesis.

Current technology 15

Client Server
------ ------

ClientHello --------> Flight 1

<------- HelloVerifyRequest Flight 2

ClientHello --------> Flight 3

ServerHello \
Certificate* \

ServerKeyExchange* Flight 4
CertificateRequest* /

<-------- ServerHelloDone /

Certificate* \
ClientKeyExchange \
CertificateVerify* Flight 5
[ChangeCipherSpec] /
Finished --------> /

[ChangeCipherSpec] \ Flight 6
<-------- Finished /

Figure 3.4: Message Flights for Full DTLS Handshake, copied
from Figure 1 in RFC6347 [2]. Optional messages are
marked with *.

16 Current technology

Chapter4
Protocol description

The OSCoAP draft specifies OSCoAP in its entirety. The draft is an individual
contribution to the ACE working group at IETF [28]. This means that it is an un-
finished document aspiring to become a standard once finished. The specification
is dependent on other specifications and drafts described below.

4.1 CBOR
Concise Binary Object Representation, CBOR, [29] is a binary, extensible data
format with a primary focus on very small code size. Message size is also an
important factor in CBOR but secondary to code size. These are very much desired
qualities when designing a protocol for constrained devices and therefore CBOR is
considered more suitable as a data format for OSCoAP than its competitors such
as XML [30] or JSON [31].

The main competitor to CBOR in terms of both code size and message size
is MessagePack. There are no implementations for MessagePack for constrained
nodes, since it is mainly aimed for usage in a Web environment. We measured
the code size of the cn-cbor library [32] (constrained node CBOR) and the cmp
library [33], a small implementation of MessagePack in C. We saw that cn-cbor
needs about 1.4KB of code for an embedded ARM-Cortex-M3 platform and that
cmp needs 8.3KB. This is quite a significant difference in favour of CBOR.

JSON is a well used standard which is quite simple. However it is a text
based protocol. For the purposes of OSCoAP, a binary protocol is more suited. A
combination of JSON and base64 could be used but this would generate network
overhead and require more computational power. JSON is also not extensible.
There are binary versions of JSON, for example BSON, but these are not satisfactory
for various reasons. Some of the more important of these reasons for the strongest
opponents are that neither BSON nor MessagePack are official standards [34][35].
Other important reasons are that BSON is more complex and MessagePack has
an uncertainty about how extensions will be handled. A comparison of these and
other similar protocols can be found in appendix E of the CBOR RFC [29].

XML is also a common standard but it is extremely bloated and, just as JSON,
text based. There exists a minimal version of XML called EXI [36] which is quite
small in terms of code size and message size, though it carries other disadvantages.

17

18 Protocol description

Most importantly, XML/EXI is document oriented while JSON/CBOR is data
oriented. This means that to be able to parse XML/EXI you have to be aware of
the schema description.

Because of the qualities of CBOR compared to it’s competitors, OSCoAP uses
CBOR for data representation.

4.2 COSE

OSCoAP requires the ability to provide integrity and confidentiality for data.
CBOR Object Signing and Encryption, COSE [37] is a well suited data format
for this. It is primarily a specification on how to use CBOR to represent content
and cryptographic operations on that content, just as the name implies. The data
consists of a CBOR object with an array containing entries with the data and
cryptographic content.

• The first entry in the array is called the protected field. This field contains
information that should be protected by cryptographic operations, for ex-
ample a partial IV that is to be used for cryptographic operations. This field
is always present.

• The second entry in the array is called the unprotected field and contains
information that does not need to be protected.

• The third entry is the content of the message. This specifics of the content
will consequently vary on what type of data and protection that is used. For
example, in a message protected by an AEAD (see section 4.3), this field will
contain the ciphertext and the tag.

In Figure 4.1 a COSE-object is shown. This is the COSE object that is sent
as part of a OSCoAP response. The key-value pair in the non-empty map is the
Sequence Number, the key is 6 and the value is 1. The byte string with length 15
is the ciphertext and tag. The ciphertext is a Content-Format option with value
TEXT/PLAIN, the payload delimiter 0xFF and then the payload "hello". Then
comes seven bytes of tag.

4.3 The AEAD AES-CCM

COSE provides several cryptographic functions to protect messages. OSCoAP
only needs to use one of them, namely AES-CCM [38]. AES is the cryptographic
primitive used. CCM is a block cipher mode of encryption which does both
confidentiality and integrity protection. Using this construct, you can choose
which parts that need both confidentiality and integrity protection and which
parts should only have integrity protection. This property makes it an algorithm
for Authenticated Encryption with Associated Data, an AEAD [39]. With AES-
CCM, OSCoAP can use COSE for protecting data in an appropriate way.

Protocol description 19

d9 03e1 # tag(993)
83 # array(3)
44 # bytes(4)
a1 # map(1)

06 # unsigned(6) - Key[Sequence Number]
41 # bytes(1)
01 # bytes(0x01) - Value[1]

a0 # map(0)
4f # bytes(15)
2cd41d5c67003455351a120e5d1069 # Cipertext=

[Content-Format=TEXT/PLAIN,
0xFF,
Payload="hello"]

Figure 4.1: COSE-Object from a OSCoAP response shown in
CBOR diagnostic notation

4.4 OSCoAP
This section will describe the OSCoAP protocol and the components of the system.
OSCoAP is a proposed standard for using COSE to protect CoAP messages.[3] It
offers the functionality of message confidentiality and integrity, replay protection
and guaranteed message ordering through symmetric key cryptography and
sequence numbers. The proposed standard protects both the payload, options and
static parts of the CoAP header.

In broad terms, OSCoAP will take the CoAP options along with a potential
payload and move them in to a new CoAP option called the object security option.
The object security option stores the collected options and payload in a COSE
object. Static parts of the header is used to compose Additional Authenticated
Data (AAD). The COSE object can then be encrypted and together with the AAD
integrity protected using parameters from what is called a security context. A se-
curity context contains initialization vectors, sequence numbers and cryptographic
keys. Every communication pair, i.e. a server and a client, shares a common
security context that is unique for their communication.

4.4.1 Sequence numbers
Sequence numbers are included in OSCoAP to provide protection against replay
attacks and reordering attacks. A replay attack is a scenario where a malicious
user intercepts and saves messages sent between communication partners. The
malicious user can then retransmit the saved message at a later time. Without a
replay attack defence such as sequence numbers, the message will appear valid. A
practical application to this would be that Alice sends a message to her smart door
lock to open the door. If Malicious Mallory then intercepts the message, Mallory
can later resend the message to open the lock.

Sequence numbers are designed to make this kind of attack impossible. Each
communication partner has a pair of numbers, a sending sequence number and a

20 Protocol description

received sequence number. Every time a message is sent, the sending sequence
number is incremented. When a node receives a message it will update its received
sequence number if the received number is higher then the current. If the received
sequence number is lower than or equal to the saved received number, the message
shall immediately be discarded since it is a retransmission of an old message. In
the scenario presented above, the door lock would note that the sequence number
in Mallory’s message is lower than or equal to the saved receiver sequence number.
The lock will discard Mallory’s message and keep the door locked.

This is the most simple case of handling sequence numbers. OSCoAP can
provide a sliding window for sequence numbers and thereby handle messages
arriving out of order. The default size of this window is 64 messages. That means
that up to 64 messages may be received out of order. Duplicate messages and
messages with sequence numbers lower than the lower bound of the sliding
window are rejected.

4.4.2 The Security Context
A node communicating with another node using OSCoAP must have a Security
Context. The Security Context is a group of predetermined elements needed for
cryptographical operations in OSCoAP. The distribution of Security Contexts is
out of scope for this work. We assume that every node has a Security Context. The
Security Context contains the following:

• Context Identifier, a value that lets the node identify the context.

• Algorithm, The algorithm used to encrypt and authenticate the OSCOAP
transaction. AES-128-CCM-8 is the algorithm we use.

• Client Write Sequence Number, used for replay protection.

• Server Write Sequence Number, used for replay protection.

• Client Write Initialization Vector, The IV for the AES-CCM AEAD.

• Server Write Initialization Vector, The IV for the AES-CCM AEAD.

• Client Write Key, The key for the AES-CCM AEAD.

• Server Write Key, The key for the AES-CCM AEAD.

• Replay Window, Specifies how many packets that can arrive out-of-order
for the replay protection mechanism.

The security context is present in an exact copy on both client and server.
The goal is to keep them as exact copies by incrementing the sequence numbers
in the same way on both client and server during a correspondence in order to
prevent replay attacks. If a client wants to send an OSCoAP message to a server,
the client will protect its message with the "Client Write Key" and the "Client
Write Initialization Vector". The server that receives the message will use the same
key and IV to decrypt. The server will then send a response protected with the
"Server Write Key" and the "Server Write Initialization Vector". The Client will
then decrypt the received response with the same keys. The sequence numbers

Protocol description 21

are used in a similar fashion. The client increments the Client Write Sequence
number by one every time it sends a message to the server. The server updates
the Client Write Sequence number every time it receives a message form the client.
This way the Client Write Sequence number on both ends always represents the
most recently sent message. The Server Write Sequence Number works in the
same way.

4.4.3 Message freshness

OSCoAP guarantees message freshness. To account for proxies not aware of
OSCoAP and that such messages shall not be cached, a Max-Age option set to zero
can be included. Max-Age is a directive to a caching proxy indicating how long
(in seconds) the message can be cashed and by setting the value to zero, caching
of OSCoAP messages is forbidden.

Table 4.1: Table showing how OSCoAP should protect options.
E: encrypt, I: integrity protect, D: can occur both protected
and unprotected

No: C U N R Name Format Length E I D
1 x x If-Match opaque 0-8 x x
3 x x - Uri-Host string 1-255
4 x ETag opaque 1-8 x x
5 x If-None-Match empty 0 x x
6 x - Observe uint 0-2 x x x
7 x x - Uri-port uint 0-2
8 Location-Path string 0-255 x x
11 x x - x Uri-Path string 0-255 x x
12 Content-Format uint 0-2 x x
14 x - Max-Age uint 0-4 x x x
15 x x - x Uri-Query string 0-255 x x
17 x Accept uint 0-2 x x
20 x Location-Query string 0-255 x x
35 x x - Proxy-Uri string 1-1034
39 x x - Proxy-Scheme string 1-255
60 x Size1 uint 0-4 x x

4.4.4 The Object Security Option and the COSE object

The object security option is a CoAP option that can be seen as a secure data
container for the payload and other CoAP options. It also stores data related to
the integrity of parts of the header. The object security option uses a COSE-Object
to store the data intended to be encrypted and integrity protected.

22 Protocol description

A visualization of how OSCoAP uses the COSE structure is provided in Figure
4.2. The COSE-Object will hold the options of the CoAP message (specified in
Table 4.1), the sequence number of the message and the payload if present.

Figure 4.2: OSCoAP and COSE relation. All non-transmitted
data is either known beforehand, like the algorithm field, or a
duplicate of a part in the CoAP header, such as the version
or code fields.

If the CoAP message does not have a payload, the COSE-Object will be placed
as option-data in the OSCoAP option. If the CoAP message does have a payload,
the whole COSE-Object will be sent as the payload of the CoAP message. The
COSE object is encrypted and integrity protected with the AES-CCM algorithm
before it is sent. The receiving part will decrypt the message and verify the
message tag before processing the message further.

4.4.5 Authenticated Data
Not all data in the CoAP message can be confidential, some of it needs to be
in plain text. It is however possible to integrity protect that data. An obvious
example of what can not be encrypted is the Version field. This field needs to be
represented in plain text so that the receiver knows how to process an incoming
packet.

The token also needs to be in plain text since it is used for mapping requests
to responses. So, just like the Version field, the Token can not be confidential.
But contrary to the Version field, the Token can not be integrity protected. This

Protocol description 23

Figure 4.3: CoAP allows a proxy to change the token for a request,
providing it sends the response back with the same token.

is because the token is not a static field; it can be modified along the way when
a packet travels across a network, for example by a proxy. In Figure 4.3 we can
see how the CoAP Client sends a request with the token ’ABC’, the CoAP proxy
changes this token to ’123’ and relays the request to the intended CoAP server.
The server processes the request and responds with token ’123’. When the CoAP
proxy receives a response with token ’123’ it maps the token back to ’ABC’ and
relays the response to the CoAP client. The client will receive a response with
token ’ABC’ that correctly will map to the request token of ’ABC’. If we were to
integrity protect the tokens this CoAP functionality would break, therefore the
token must be omitted from the authenticated data.

So, some data in a packet is not protected by cryptographic operations, some
data is encrypted and integrity protected, and some data is just integrity protected.
There is one more data protection concept present. This is called Additional
Authenticated Data (AAD) by the OSCoAP specification. It consists of data that
needs to be integrity protected, but that is not present in the sent data. This is for
example the algorithm used for data protection. The algorithm does not need to be
sent since both parties are aware of it from the Security Context but we still want
to include it in the integrity protected data in order to assure correct behaviour
and detect anomalies.

4.4.6 Unprotected options

Just like some header fields can not be encrypted and integrity protected, some
options can not be calculated into the tag. One example is the Proxy-Uri option
which is used by a forward proxy to determine the final destination. A proxy can
change the Proxy-URI and thereby invalidate the tag even though everything is
working as intended. This shows the need for the possibility to leave out parts
of the message from any encryption and authentication. A list of protected and
unprotected options is provided in Table 4.1.

24 Protocol description

4.4.7 OSCoAPs relation to other Object Security standards
There are a handful of well known object security standards. Most noteworthy
are the JOSE and XML-signature standards used for securing JSON and XML
respectively [40][41]. OSCoAP uses the not yet finished standard COSE, described
in Section 4.2. These standards are frameworks for how to protect data but they
do not say anything about what data needs what protection. This is the job for
OSCoAP. These standards also do not specify how the protected data is integrated
into a specific protocol like e.g. CoAP.

As mentioned before, with object security one can pick and choose what to
protect. OSCoAP does precisely this for CoAP. This is a security critical task. On
first thought, one might think that it is enough to protect the payload of a message.
This is not the case, certain header fields and other protocol related functionality
can be very important to protect. How OSCoAP protects important parts of CoAP
is described in the following chapters.

Chapter5
Protocol implementation

This section will broadly describe the implementation of OSCoAP. We provide a C
implementation for embedded platforms and a Java implementation for desktops
or back-end servers. The implementations are both extensions of existing libraries.
These libraries together with the inherent difference between Java and C for em-
bedded devices makes the implementations differ in details, the general outline
of the implementations are however similar. We will begin with describing the
common structure of the implementations and then focus on the specific differ-
ences between the Java and the C implementation. Focus will be on describing
the functions used to serialize and parse OSCoAP messages, since that is the key
difference from a plain CoAP implementation.

Figure 5.1: Logical flow for serializing an OSCoAP message

25

26 Protocol implementation

The serialize function, as seen in Figure 5.1, is called when an outgoing mes-
sage is sent, It takes a CoAP/OSCoAP message in an internal representation and
converts it into a binary representation that can be passed to lower layers in the
protocol stack and be transmitted over the network. The serialize function will
look whether the message has the object security option set. If it is not set, the
message is an ordinary CoAP message and will be serialized as usual. If the option
is set, a function to prepare the OSCoAP message will be called. The function will
remove the options as specified in Table 4.1 together with an eventual payload. It
then places those options and eventual payload as the contents of a COSE-object.
Then the AAD will be constructed using parameters from the Security Context.
Also retrieved from the Security Context is the key and the nonce that is then
used to encrypt the COSE-object and integrity protect the AAD. The encrypted
COSE-object will then be placed into the OSCoAP message after the protected
options are removed. The preparation of the OSCoAP message is now complete.
The internal representation of the OSCoAP message is passed back to the serialize
function that will serialize the remainder of the OSCoAP message. When the
serialization is completed the binary message is passed down to the underlying
protocol to be transmitted to the destination.

Figure 5.2: Logical flow for parsing an OSCoAP message

The parse function, as seen in Figure 5.2, is called when a message is received.
It receives data from lower layers in the protocol stack and creates an internal rep-

Protocol implementation 27

resentation of the CoAP/OSCoAP message. This internal representation will then
be passed on to the application that handles the CoAP/OSCoAP communication.
As can be seen in Figure 5.1, the serialize function is called when a lower layer has
processed the underlying protocol and placed the packet in a buffer. The packet
will be parsed and the data will be put in its respective place. If no OSCoAP option
is encountered the parsing is complete, the produced internal representation of the
message will be passed on and the parse function is complete. When an OSCoAP
option is encountered, the parser will continue to parse all non encrypted data.
When the parsing is complete, functions specific to OSCoAP will be called. The
first step that will be taken is to retrieve the COSE-object from the message. The
Context ID is then read from the COSE-object if the message is a request. If it is
a response, the correct context ID can be found using the token. The Context ID
is used to fetch the correct Security Context. This Security context is first used
to validate the sequence number from the incoming message. If the sequence
number is invalid, the operation will abort and the message will be dropped. If the
sequence number is valid, the AAD will be constructed according to what type of
message that is received. This AAD will be used with the key and the nonce from
the Security Context to decrypt the contents from the COSE-object. The AEAD
decryption also performs a validation check on the tag. If this tag is found to be
invalid the packet is dropped and the parsing will terminate. If the decryption
and tag validation is a success the now decrypted contents of the COSE-object will
be placed into the internal representation of the OSCoAP message. When that is
complete the parsing of the message is done. The internal representation of the
message can then be sent to the upper layer to be handled.

5.1 Californium, a Java implementation
Californium is a popular Java implementation of CoAP [42]. It is wide spread,
well documented and well structured so it suited us well. We have implemented
the Java client as a patch for Californium. Care has been taken to change as little as
possible of the original Californium library, making for an easier patch to maintain
when Californium is updated. This is achieved through extending the classes that
needs changing.

Californium keeps a stack of classes that processes incoming and outgoing
messages. Outgoing messages from a server or client instance enters the stack at
the top and sequentially travels through the stack in order to let the stack layers
make appropriate changes before finally exiting at the bottom before being fed
to the UDP socket. The OSCoAP protocol is implemented as such a stack layer.
Since encrypting large parts of the message will make other layers operations
impossible, the object security layer is placed at the bottom of the stack to not
interfere. The stack can be seen in Figure 5.3.

The object security layer contains 4 important methods that are triggered when
a message is sent or received:

• Outgoing request: If an object security Option is present in the outgoing
message (it will be an empty option at this stage), the message will be
protected in accordance with OSCoAP. The security context that was used is

28 Protocol implementation

saved so that it can be correlated to the response using the token field, since
the reply will come back with the same token.

• Incoming request: Similarly to outgoing requests, the presence of an object
security option triggers the OSCoAP action. But in this case it is decryption
and integrity checking. The security context is saved here too.

• Outgoing response: When an outgoing response occurs, the response needs
to be correlated to the prior incoming request. When this is done, the correct
security context can be retrieved and the response can be protected using it.

• Incoming response: An incoming response also needs to find the saved
security context so that it can be properly decrypted and integrity checked.

Figure 5.3: Californium processing stack

When a client needs a context, it can get it from the URI. This can be done
since a context is unique for every client and server pair and the client always
initiates the communication. A server can be identified using the URI according to
the CoAP RFC (“The CoAP server is identified via the generic syntax’s authority
component, which includes a host component and optional UDP port number.
The remainder of the URI is considered to be identifying a resource”).

When a server needs a context, the Context ID which can identify the correct
context is available in the received message. The server saves this CID in the
californium provided Exchange.java, which helps mapping requests to responses,
so that the response can use the same CID later. The security context structure
uses the naming convention of sending/receiving sequence numbers instead of
server/client. This differs from OSCoAP draft 4, a discussion on why this was
needed is provided in Section 8.4.

Californium uses the Maven build system, therefore all dependencies are
included using Maven. Extra dependencies for OSCoAP are COSE and therefore
CBOR.

Protocol implementation 29

5.2 Erbium CoAP on Contiki OS
The implementation for an embedded device was characterized by the need of
a small memory footprint. Reducing the utilization of both RAM and Flash
memory was of highest priority. This had large impact on design decisions we
took. The embedded device we used was a fairly capable device. The Texas
Instrument cc2538dk System on Chip development board has an ARM Cortex-M3
CPU clocked at 32 MHz, 32 KB of RAM and 512 KB of Flash. It also features a
IEEE 802.4.15 radio module. This System on Chip was seen as representative of
future embedded devices and would be a suitable target to work against.

5.2.1 The Contiki OS
Contiki is an operating system developed by Adam Dunkels at SICS, which was
designed for connected constrained devices [4]. With a full TCP/IP stack it will
use around 30 KB of Flash memory and 10 KB of RAM. Contiki is also fully open-
source and free to use. This has made it a popular choice for developers of IoT
devices.

The Contiki OS uses Proto-Threads, a type of light-weight threads devel-
oped by Adam Dunkels. The Proto-Threads all share a common stack and are
non-preemptable. This means that cooperative multi-threading has to be used.
Although simple, they provide a solution to multitasking with minimal overhead
in both memory and CPU time.

The operating system is written in C and has support for a multitude of
processor architectures, among them x86, AVR, MSP430 and ARM. The Cooja
network simulator is a part of the Contiki ecosystem. Cooja can simulate hardware
nodes and communication between these nodes. We had hoped to use Cooja to
aid in our development but due to trouble in the compiler chain we were unable
to use it.

5.2.2 The Erbium CoAP Library
The Erbium [43] CoAP library was implemented by Matthias Kovatsch at ETH
Zurich. It includes a REST engine to handle REST-resources, the resources can be
implemented by a developer using predefined functions and are easily connected
to the engine. This makes it easy for a developer to implement an application with
a CoAP interface using the Erbium Library. Having a REST-engine was a good
feature for us since we could test our code in a proper environment. We had to
make some small changes to the REST-engine. We modified the REST-engine to
respond to OSCoAP requests with messages protected by OSCoAP.

5.2.3 Additional libraries used
OSCoAP uses COSE structures to format the encrypted part of the messages.
Instead of writing a COSE implementation from scratch we used COSE-C [44] by
Jim Schaad. That in turn uses the CN-CBOR [32] library for its CBOR structures
and OpenSSL for cryptographic primitives. The CN-CBOR library is written for

30 Protocol implementation

constrained nodes, hence the name. It proved to be very efficient in both RAM
and Flash usage.

We did not think the OpenSSL library would be the best choice for an em-
bedded device and instead used mbedTLS. We figured that OpenSSL would not
work well on an embedded platform, since it is mainly used in desktop or server
applications. Instead we chose a library developed for use in constrained devices.
The mbedTLS [45] library was formerly developed under the name PolarSSL until
ARM took over and changed the name to mbedTLS for their mbed program [46].
We only implemented support for AES-CCM-64-64-128 in COSE, since that is
required by the OSCoAP draft. The mbedTLS library is optimized for embedded
devices, but the AES implementation stores large tables for the S-boxes. These
tables takes up a significant amount of Flash storage, about 9 KB, but doing finite
field calculations on the fly would be too processor intense for a constrained node.

The COSE library, although written in C is not optimized for use on embedded
devices. Several large buffers are statically allocated and used for serialization of
COSE structures. These buffers alone attributed to 40 KB of both RAM and Flash.
This is clearly unacceptable as the devices we used was limited to 32 KB of RAM.
We had to rewrite parts of the COSE library to use a single buffer. We reduced the
size of that buffer to save further space. This resulted in 0.5 KB being used for this
buffering functionality.

5.2.4 The Erbium based OSCoAP Implementation
We wanted to alter as little as possible in the Erbium CoAP library to preserve func-
tionality and minimize work. Therefore, the OSCoAP extension of er-CoAP was
implemented with simplicity in mind. We identified two functions coap_parse_message
and coap_serialize_message that would serve as step in points for our implemen-
tation. The overall structure of parsing a OSCoAP message can be seen in Figure
5.2.

5.3 Deviations from the OSCoAP draft
Our Erbium extension does not implement any client functionality. It is trivial to
extend the functionality for clients as well but it is not necessary for our intended
tests. We also do not fully implement duplication of the Observe-option. This is
however only necessary for application using observe, which our tests do not do.

More important, in our OSCoAP implementations, we found that the function
of sequence numbers to act as server or client sequence numbers imposed some
restrictions on functionality. Therefore, we have changed the convention to sender
and receiver sequence number, regardless of client/server role. This is discussed
further in Section 8.4

We also elected not to implement the sliding window since that feature of the
OSCoAP draft is not of primary interest to our tests.

Chapter6
Quantitative methodology

In this chapter we discuss the methodology of the quantitative analysis. The
performed tests compare OSCoAP with CoAP and CoAP over DTLS. All protocols
are tested when running over UDP/IPv6. We test the C code on a physical
constrained device, specifically Texas Instruments cc2538dk [47], with 802.15.4
and 6LoWPAN carrying the IPv6 packets [27]. The Java code runs on a desktop
OS using standard IPv6 for packet delivery.

6.1 Earlier tests
Earlier work by Palombini, Object Security in the Internet of Things [11], have
measured CPU-time, memory footprint and network activity for integrity protec-
tion of OSCoAP messages. Earlier tests on CoAP over DTLS have been made by
Raza et al. [6].

6.1.1 Similarities
The C part of these tests were performed on the same hardware as Palombini tests.
These tests also use the same protocols in the network stack.

6.1.2 Extensions and differences
The most important difference is that Palombinis results measures the perfor-
mance of an earlier draft of OSCoAP [10]. In the new draft 4, OSCoAP utilizes
COSE and CBOR for message structure and representation instead of defining
a representation itself. Palombinis tests were also carried out using an earlier
version of the Contiki operating system (version 2.7). We have made efforts to
make our tests comparable to these results but with an extended scope.

Our tests measure the performance in a similar way but since our code im-
plements OSCoAP draft 4, the messages will be encrypted as well as integrity
protected. This will likely generate more overhead in memory footprint since we
need additional cryptographic libraries and operations. It will not necessarily gen-
erate more overhead at the network layer, but data representation and encoding is

31

32 Quantitative methodology

very different in this thesis compared to Palombinis. We make use of the COSE
draft, while Palombini was forced to implement her own data representation.

We also want to compare our implementation to the current state of the art
security protocol, DTLS.

6.2 Testing environment

6.2.1 Hardware and simulators
We had hoped to use the Contiki Cooja simulator which can emulate physical
nodes and the communication between nodes. The simulator has support for
AVR and MSP430 architectures. But we had trouble with the build tools for these
architectures. We had to settle for testing network overhead with the Java version
over the local loop-back interface on a PC. Wireshark is a popular program for
dissecting network packets and it has support for CoAP, this suited our needs fine.

For performance tests on the cc2538dk development boards we used the real-
time timer from the Contiki OS. They proved to be easy to use and gave us an
acceptable precision for our measurements.

For communication between Java on a desktop and C on a cc2538dk, we
used what is called a border router (BR). The BR acts as translator between IP
and IP over 6LoWPAN. This way, we could route packets between a desktop
computer running the Java implementation and a cc2538dk board using the C
implementation.

6.2.2 Software dependencies
The software dependencies for these tests are:

• Contiki 3.0[48]

• CN-CBOR[32]

• COSE-C[44]

• mbedTLS[45]

• Californium[42]

• Scandium - now a part of Californium

• tinyDTLS[49]

6.3 Methodology

6.3.1 Scope and scenario
OSCoAP focuses on scenario 3.1 and 3.2 listed in [50]. The first scenario, scenario
3.1, is a critical request possibly routed through a proxy, for example the query
“is the door locked?”. Here you get a single response and the freshness of that

Quantitative methodology 33

response is of the utmost importance. The client needs to be sure the response is
the correct one and that the request and response has not been tampered with.

The second scenario, scenario 3.2, is a publish-subscribe scenario where the
client sends a single request and obtains multiple responses periodically. This
might be security critical for a temperature gauge at a factory.

For simplicity, our tests will focus on the one-request-one-response scenario,
i.e. scenario 3.1. The data for this scenario is the core tests needed to validate the
suitability of OSCoAP compared to other approaches.

It is also sufficient to limit the test to include only GET requests since the
only significant difference to other actions is the amount of payload in the re-
quest/response. The responses of our requests will carry a payload and therefore
that aspect will be covered anyway.

OSCoAP is superior to DTLS in the aspect of not limiting the use of a proxy
to the same extent as DTLS will. However, a proxy would not affect the tests in a
relevant way so one will not be used during the tests.

6.3.2 Tested protocols
The protocols compared in these tests are:

• CoAP

• OSCoAP

• CoAP over DTLS

Tests will be carried out to measure:

• Network overhead.

• Network latency.

• CPU-time for serializing and parsing OSCoAP.

• Memory footprint.

6.3.3 Limitations
In order to make the tests simple, well defined and reproducible, we have intro-
duced the following limitations:

• DTLS will be measured without any performance enhancing add-ons, such
as session resumption

• The communicating parties have pre shared keys both in DTLS and OSCoAP.

• Resource discovery is assumed to already have taken place. This enables
hard coding of addresses in the tests.

• Resource authorization is implicitly granted.

• No CoAP proxies exists in the network.

34 Quantitative methodology

Chapter7
Results

In this chapter we present the tests and the obtained results. All tests compare
OSCoAP to plain CoAP over UDP and CoAP over DTLS. We test and measure
network overhead, CPU-time and memory footprint. Every test is first described
and then the results are presented.

7.1 Network overhead

7.1.1 Tests performed

The network overhead tests are quite simple in nature. Since we are interested in
data from network protocols running on top of UDP, we can simply send packets
over the loopback interface on a desktop computer and use Wireshark to measure
the network traffic. We can use the non constrained standard stack for these tests
since only overhead is of interest, depicted in Figure 3.2. The network traffic
is depicted in Figure 7.1. It consists of a GET request from the client and the
corresponding response from the server including a payload.

Client Server
GET /t

ACK "aaaaa"

Figure 7.1: One request, one response scenario

The setup is very similar for all three protocols. The Uri-Path option is present
in all of the protocols, even if encrypted. OSCoAP additionally includes the Object
Security option and the Max-Age option. The token length is fixed to 2 bytes. In
these tests, the sequence number used by OSCoAP only uses values that can be
represented by a single byte.

35

36 Results

7.1.2 Results

Constant overhead

The constant overhead on the non constrained stack consists of the IP and UDP
overhead. All stated packet sizes are gross sizes and includes this overhead of 32
bytes.

DTLS handshake overhead

The DTLS handshake in our DTLS-PSK setup is of constant size. The handshake
size will vary depending on supported modes, algorithms etc. In our case, it
consists of the messages presented in Table 7.1.

Table 7.1: DTLS Handshake sizes

Client Hello 125 Bytes
Hello Verify Request 92 Bytes
Client Hello 157 Bytes
Server Hello, Server Hello Done 152 Bytes
Client Key Exchange, Change Cipher Spec, Finished 127 Bytes
Change Cipher Spec, Finished 99 bytes

It can be made smaller by allowing fewer extensions and cipher suites but this
gives a rough estimate. There will always be at least 6 flights in a DTLS handshake.

Request overhead

The requests carry no payload in these tests and are therefore of constant size. The
request sizes are listed in Table 7.2.

Table 7.2: Sizes for GET requests and responses with 5 byte
payload

CoAP OSCoAP DTLS/CoAP
Request Size (Bytes) 40 66 69
Response Size (Bytes) 45 68 74

Response overhead

The total packet sizes from different payload sizes in the response is plotted in
Figure 7.2. The correlation between the payload size and the packet size is linear,
as expected. In relation to a plain CoAP packet, an OSCoAP response packet
will carry 23 bytes of overhead and a DTLS/CoAP packet will carry 29 bytes of
overhead.

Results 37

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Payload size (Bytes)

Pa
ck

et
si

ze
(B

yt
es

)
Response size for different payloads

DTLS
OSCoAP

CoAP

Figure 7.2: Response network overhead

The difference in overhead between OSCoAP requests and responses is due to
different use of COSE. An OSCoAP request includes an extra field containing the
key identifier, hence 3 extra bytes is added to the overhead.

7.1.3 Related tests

Lithe [6] is a DTLS integration library for CoAP which compresses DTLS headers
when they are sent over 6LoWPAN [6]. Lithe reduces the number of bits sent both
for the handshake and for every message in the record layer. In the record layer,
which is what is comparable to OSCoAP, the reduction is 8 bytes. This makes the
overhead of Lithe-DTLS 2 bytes lower than for CoAP responses instead of 6 bytes
higher. For CoAP requests Lithe-DTLS will have 5 bytes lower overhead.

7.2 CPU time

7.2.1 Tests performed

Described here are the tests for the CPU-time on the cc2538dk hardware. The test
were conducted with use of Contiki’s real-time clock. We chose to limit our tests to
the relevant critical parts of the execution. The handling of incoming and outgoing
messages are where the protocols will differ. We tested the original Erbium CoAP
implementation against our OSCoAP implementation and CoAP over DTLS by
measuring the time needed by the following functions.

38 Results

parse The function parse takes a incoming message and decodes it into a data
representation of the message. If OSCoAP is used it will handle decryption
and verification of the COSE object. It will then restore the CoAP packet to
the standard data representation.

serialize The function takes a CoAP packet in data-representation form and transform
it to binary that can be sent to lower layers of the communication stack. If
OSCoAP is used it will create a COSE object, encrypt and tag the COSE
object.

We also chose to make tests on the encryption and decryption methods to better
be able to analyse the results. The Contiki real-time clock measure time in system
ticks. One second on the cc2538dk platform is 32768 ticks. This gives us a good
resolution to evaluate our results. We elected to run the tests 20 times and calculate
an average from the tests.

We knew that the OSCoAP implementation uses heap allocated memory. And
that it therefore will suffer from decreased performance. We decided that tests
of the heap allocation functions and some other functions, for example memset,
would yield interesting results. These functions can easily be avoided in a more
optimised implementation of OSCoAP.

7.2.2 Results
Table 7.3 presents the results of the tests. Each test was run 20 times. The average
execution time was calculated and ticks was then converted into milliseconds.
Table 7.4 shows the execution time for the dynamic memory functions for OSCoAP.

Table 7.3: Execution time of selected functions

Parse Serialize Decrypt Encrypt
CoAP 0.0427 ms 0.0412 ms N/A N/A
OSCoAP 2.028 ms 2.668 ms 1.123 ms 1.327 ms
DTLS 0.836 ms 1.285 ms 0.8102 ms 0.8716 ms
DTLS + CoAP 0.879 ms 1.326 ms 0.8102 ms 0.8716 ms

Table 7.4: Execution time for memory functions

OSCoAP Parse Serialize
Execution time 0.275 ms 0.443 ms

7.3 Memory footprint

7.3.1 Tests performed
We measured the memory footprint with the objdump tool [51]. We chose to
compare the Erbium-CoAP server from Contiki with modified versions that uses

Results 39

OSCoAP and CoAP over DTLS. The objdump utility reads the section header of an
ELF-file (Executable Linkable Format) a standard executable file. The elf section
header contains information about the segments of the executable binary file.

.bss Contains uninitialized data, if a program needs a 128 byte buffer and does
not initiate it to a value it will take up 128 bytes of the .bss segment.

.data Contains data initialized to a value. If a program needs the static variable
a = 42 the .data segment will contain this.

.text Contains the actual machine code. This is the instructions that a CPU will
execute.

Since the OSCoAP implementation uses heap allocated memory we had to
manually calculate the run-time memory usage. We did this by reading the code
and sum up all times memory was dynamically allocated. Also of interest was the
code size of the libraries we included. Namely for CBOR, COSE, and mbedTLS.
We were also interested about the code size of the functions for dynamic memory.
We used the nm tool to dump the ELF file and manually summed up the code size
of the functions for these libraries.

7.3.2 Results
Table 7.5 contains the numbers for the server using CoAP and OSCoAP. From
these numbers RAM and ROM (Flash) usage on the actual device can be calculated.
The RAM usage is calculated by: .data + .bss = RAM. ROM usage is calculated by
.data + .text = ROM.

Table 7.5: Memory footprint in bytes for a server using CoAP,
OSCoAP and CoAP over DTLS

Application: Server
Protocol: CoAP OSCoAP CoAP + DTLS
.bss 13799 14031 14899
.data 1772 2788 1922
.text 47070 77895 74498
RAM (.data + .bss) 15571 16819 16821
ROM (.data + .text) 48842 80683 76420

Table 7.6 shows the minimum amount of heap allocated memory needed for
the functions parse and serialize OSCoAP messages. Note that these functions
will never be called at the same time.

Table 7.6: OSCoAP minimum heap memory allocated at runtime

Parse Serialize
Heap allocated Memory 315 Bytes 524 Bytes

40 Results

Table 7.7 shows the breakdown of selected parts of the OSCoAP ELF-file.

Table 7.7: Code size for different parts of OSCoAP

COSE-C CN-CBOR mbedTLS dynamic memory
Code size: 4770 Bytes 1394 Bytes 3734 Bytes 1714 Bytes

Chapter8
Discussion

The main objective of this thesis was to research whether draft 4 of OSCoAP was
functional in a practical scenario. This involves both assessing the functionality
and the performance. For the functionality, it is very clear that the current draft is
functional within our tested scope, except for the sequence number issue discussed
in Section 8.4. The performance is judged by a more continuous scale. We find it
sufficient for most scenarios.

This chapter discusses the suitability of OSCoAP compared to plain CoAP and
DTLS/CoAP in light of the findings in previous chapters. It starts by discussing
the quantitative findings in the tests and than goes on to discuss qualitative aspects
of OSCoAP.

8.1 Network overhead

8.1.1 Performance comparison
In out tests, OSCoAP used more overhead than plain CoAP, which was of no
surprise. A somewhat more surprising result was that OSCoAP had a slightly
lower network overhead than DTLS/CoAP even for the record layer. This means
that OSCoAP is often preferable to standards DTLS when network overhead is an
important aspect.

8.1.2 Lithe or OSCoAP
We have not made any tests on Lithe but Raza et al. provides comparable data in
[6]. In terms of network overhead, Lithe seems to be the strongest competition for
OSCoAP since Lithe has a lower overhead in the record layer. This means that
there is a threshold for when Lithe is suitable compared to OSCoAP. The overhead
for Lithe is the sum of the handshake messages and the overhead produced by the
record layer. For OSCoAP the overhead consists solely of the message overhead.
This gives the equation

x ∗ o < HS + x ∗ r

for when to use OSCoAP, where HS is the total size of the compressed handshake,
r is the record layer overhead, o is the OSCoAP message overhead and x is the

41

42 Discussion

expected number of packets sent for each handshake. Note that the number of
packets is the important measure, not the amount of data.

Lithe is however not suitable in some applications where it would be more
efficient than OSCoAP. The main problem with Lithe is that it uses an extension
of 6LoWPAN to compress the DTLS headers. This has consequences for devices
communicating with devices outside the 6LoWPAN network. In order to do this
using Lithe, the 6LoWPAN border router needs to implement the Lithe 6LoWPAN
extension. This might not be the case for a mobile device using different border
routers. OSCoAP however, is network agnostic; the intermediate nodes need not
be aware of the existence of OSCoAP.

8.1.3 Network Failure rate
Another factor to consider when choosing between object security and channel
security is how network drop rate impacts the success rate and in extension, the
network overhead. A packet that is corrupted or dropped while traversing the
network will need to be retransmitted. For OSCoAP an DTLS record layer, this is
straightforward; the packet needs to be retransmitted.

For an ongoing DTLS handshake though, a lost or corrupted message can
lead to several retransmits depending on how far the handshake has progressed,
as described in Section 2.3.3. This makes a Connection Based security model
unsuitable for situations where new connections occur frequently.

8.2 CPU-Time
Having longer execution time than CoAP could be expected. That encryption
and decryption will take up a lot of the additional execution time was also to
be expected. We expected the CPU time for serialize and parse of DTLS to be
similar to OSCoAP but we found out that DTLS performed significantly better
than OSCoAP. This can in part be explained by the more efficient cryptographic
library that tinyDTLS uses. The encryption and decryption times for DTLS was
quite a bit lower than the times for OSCoAP. Also the usage of dynamic memory
in OSCoAP decreases the performance versus DTLS. DTLS does not use dynamic
memory, instead it uses a block allocator for a few things like session data. This
is clearly a better design decision, using dynamic memory clearly decreases the
performance of our OSCoAP implementation.

The execution time can also be improved by utilizing the crypto co-processor.

8.3 Memory footprint
We used the tests of the Contiki node running a Erbium-COAP server as baseline
to compare the DTLS and OSCoAP implementations. Both libraries use much
more Flash memory for code than the CoAP server. This is as expected because of
the increased functionality and logic needed to process more complex protocols.
Both DTLS and OSCoAP use look-up-tables stored in flash memory for the AES

Discussion 43

crypto. Together with the cryptography libraries this increases the usage of flash
memory. The OSCoAP implementation uses around 4.2 KB more flash memory
than DTLS implementation. The usage of generic libraries for COSE an CBOR
can attribute to some of this. The implementation of OSCoAP is a prototype
implementation. Quality, both in terms of code-quality and performance is lacking.
Regarding the usage of memory two key points can be established.

8.3.1 Dynamic Memory Usage
Using functions from the C standard-library for dynamic memory on embedded
systems is a bad idea in several ways. Firstly estimations of run-time memory
usage are hard to make. If the heap grows out of its expected boundaries for some
reason erroneous behaviour can occur. Secondly the code needed to manage the
dynamic memory is rather large. In fact the code is larger then the amount of
memory we dynamically allocate. This is clearly a waste of memory and can quite
easily be improved in a future implementation of OSCoAP.

8.3.2 Unsuitable libraries
The libraries chosen for the implementations are general implementations of the
COSE and CBOR formats. These libraries contains code that is not used at all
in the OSCoAP implementation. This increases the ROM and RAM usage. The
implementation also duplicates a great deal of code from Erbium CoAP. This is
also a point for further improvement.

8.4 Deviations from OSCoAP draft 4
As mentioned in Section 5.3 we ran in to a problematic situation in the imple-
mentation of draft 4 of OSCoAP. The OSCoAP draft makes a clear separation
between the client and the server role. The security context therefore had the fields
"server sequence number" and "client sequence number". Requests would always
originate from a client and responses would originate from a server. In this model,
the sequence numbers will be easy to manage and consistent with the logic in the
draft.

The problem arose when a single node would act as both a server and a client
for the same security context. This situation can arise in a system where 2 nodes
are both providing each other with information. How should a node handle the
sequence numbers in a scenario like this? The behaviour was not specified by the
draft and the consequences were that the client sequence number was increased
both when sending and receiving requests; the same goes for the server sequence
numbers.

Our solution to this was to remove the explicit role of a node as either a client or
a server. Instead we said that a node is a node, the sequence numbers should really
reflect whether the node sending or receiving data. Hence the new naming, sender
and receiver, in the security context. This way of handling sequence numbers

44 Discussion

is agnostic to the current role of a node, which is very practical when the role
changes over time.

8.5 Similar approaches

As mentioned in Section 1.2, there are numerous adaptations of channel security
for constrained devices. However, to the best of our knowledge, other security
solutions providing the same level of functionality for using object security in
constrained nodes are few and far between. The most similar solution is OSCAR
[9]. OSCAR provides object security for the Internet of Things, but with focus on
access control. More important, the object security format in OSCAR is designed
for protection of publish-subscribe communication rather than end-to-end commu-
nication. OSCAR has a model for many-requests-one-response, while the model in
OSCoAP is adapted for one-request-one-response or one-request-many-responses.

The OSCAR paper itself states that “[. . .] we need to adapt existing or future
standards specifying the object security format such as CMS (Cryptographic
Message Syntax) and JOSE (JSON Object Signing and Encryption) to constrained
devices.”. This is precisely what OSCoAP does. OSCAR should thus not be seen
as a competing protocol but rather as a complement.

8.6 Future Work

8.6.1 OSCoAP Shortcomings

Perfect Forward Secrecy

OSCoAP lacks a security feature that can be obtained in most channel security
protocols, namely Perfect Forward Secrecy (PFS)[52]. PFS is the property of
a security system that if a key is compromised, no previous communication
recorded by a malicious party prior to the compromise should be affected by the
compromise. This means that, you can not decrypt previous communication using
the long term key. This can be important for many applications and more so when
there is physical access to the node in possession of a cryptographic key.

Multicast

There is currently no functionality supporting multicast of encrypted messages in
OSCoAP. All communication is modelled on the one sender, one receiver, scenario.

Application Layer Fragmentation

The latest OSCoAP draft, version 4, does not discuss the support for blockwise
options, a CoAP extension for packet fragmentation on the application layer [53].

Discussion 45

8.6.2 Suggested future research

Perfect Forward Secrecy

Work is on the way to implement this functionality for OSCoAP [54]. This work
uses a handshake to set up ephemeral keys used to obtain PFS, which would
remove some of the advantages OSCoAP has compared to protocols that depends
on handshakes. As a complement to PFS obtained through handshakes, we suggest
looking into the feasibility of obtaining PFS by using pre-keys [55] or puncturable
encryption [56]. These solutions require no handshake.

Multicast

Multicast needs to be further researched if implemented. A multicast scenario
puts new requirements for sequence number handling and forward/backward
secrecy since it is effectively a type of group communication.

Application Layer Fragmentation

For more confidence of the viability of OSCoAP we suggest further tests of applica-
tion layer fragmentation. Testing the Blockwise option, that allows fragmentation
of CoAP packets at the application layer, would give interesting results to compare
with fragmentation on lower layers.

Further Extensions

There is a paper by Castellani et al. that explores using EXI over CoAP for
constrained devices [57]. With XML having a prominent position as a web data
format alongside JSON, it might be worth looking into complementing COSE with
XML signatures over EXI.

8.6.3 Suggested optimizations
Regarding the implementation of OSCoAP for Contiki there are a few improve-
ments that can be done to increase the performance significantly. The first im-
provement is to get rid of any usage of dynamic memory. Contiki provides a block
allocator that can be used for the few cases where dynamic memory is needed.
The second improvement is on the same subject. Both the cn-cbor library and in
extension COSE-C uses dynamic memory. By implementing a limited subset of
COSE and CBOR without dynamic memory, both ROM and RAM can be saved.
The execution time can also be expected to improve. The last improvement would
be to evaluate and incorporate a more efficient crypto library. Judging by the
crypto library used by tinyDTLS this can probably save both ROM and execution
time.

46 Discussion

Chapter9
Conclusion

We have argued that the current situation for constrained nodes calls for a partial
transition to object security due to asynchronous communication. We then set out
to explore the feasibility of such a system, namely OSCoAP. The most important
goal was to obtain proxying properties for intermediate nodes without hindering
end-to-end security. Performance was not the end goal, though it is an important
measure for feasibility in constrained nodes.

An implementation of OSCoAP was presented and tested; the tests show that
object security is not only feasible in terms of functionality, but often preferable to
channel security in terms of network overhead. With the solution leaving room
for improvements in memory footprint and CPU-time, the viability of OSCoAP
can be further increased.

We also suggest a few extensions and changes to the OSCoAP protocol for
increased functionality, among them a more flexible role definition for clients and
servers.

47

48 Conclusion

References

[1] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP).” RFC 7252 (Proposed Standard), June 2014.

[2] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version
1.2.” RFC 6347 (Proposed Standard), Jan. 2012. Updated by RFC 7507.

[3] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object secu-
rity of coap (oscoap),” Internet-Draft draft-selander-ace-object-security-04,
IETF Secretariat, March 2016. http://www.ietf.org/internet-drafts/
draft-selander-ace-object-security-04.txt.

[4] “Contiki Operating System homepage.” https://www.contiki-os.org/.

[5] S. Raza, S. Duquennoy, J. HÃűglund, U. Roedig, and T. Voigt, “Secure com-
munication for the internet of things - a comparison of link-layer security
and ipsec for 6lowpan,” Security and Communication Networks, vol. 7, no. 12,
pp. 2654–2668, 2014.

[6] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure coap for the internet of things,” IEEE Sensors Journal,
vol. 13, pp. 3711–3720, Oct 2013.

[7] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle, “Towards
viable certificate-based authentication for the internet of things,” in Proceed-
ings of the 2Nd ACM Workshop on Hot Topics on Wireless Network Security and
Privacy, HotWiSec ’13, (New York, NY, USA), pp. 37–42, ACM, 2013.

[8] M. Sethi, J. Arkko, and A. KerÃd’nen, “End-to-end security for sleepy smart
object networks,” in Local Computer Networks Workshops (LCN Workshops),
2012 IEEE 37th Conference on, pp. 964–972, Oct 2012.

[9] M. Vucinic, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “OSCAR: Object Security Architecture for the Internet of
Things,” in A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2014 IEEE 15th International Symposium on, (Sydney, Australia), June 2014.
https://hal.inria.fr/hal-00985976.

49

50 References

[10] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object secu-
rity of coap (oscoap),” Internet-Draft draft-selander-ace-object-security-
02, IETF Secretariat, June 2015. http://www.ietf.org/internet-drafts/
draft-selander-ace-object-security-02.txt.

[11] F. Palombini, “Object security in the internet of things,” Master’s thesis, KTH,
School of Information and Communication Technology (ICT), 2015.

[12] E. Rescorla and B. Korver, “Guidelines for Writing RFC Text on Security
Considerations.” RFC 3552 (Best Current Practice), July 2003.

[13] C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-Node
Networks.” RFC 7228 (Informational), May 2014.

[14] J. Vasseur, “Terms Used in Routing for Low-Power and Lossy Networks.”
RFC 7102 (Informational), Jan. 2014.

[15] C. B. Margi, M. A. S. Jr., M. Naslund, B. T. de Oliveira, P. S. L. M. Barreto,
R. Gold, G. T. de Sousa, and T. C. M. B. Carvalho, “Impact of operating
systems on wireless sensor networks (security) applications and testbeds,”
in Computer Communications and Networks (ICCCN), 2010 Proceedings of 19th
International Conference on, pp. 1–6, Aug 2010.

[16] L. Schmertmann, K. Hartke, and C. Bormann, “Codtls: Dtls hand-
shakes over coap,” Internet-Draft draft-schmertmann-dice-codtls-01, IETF
Secretariat, August 2014. http://www.ietf.org/internet-drafts/
draft-schmertmann-dice-codtls-01.txt.

[17] P. Eronen and H. Tschofenig, “Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS).” RFC 4279 (Proposed Standard), Dec. 2005.

[18] O. Garcia-Morchon, S. L. Keoh, S. Kumar, P. Moreno-Sanchez, F. Vidal-Meca,
and J. H. Ziegeldorf, “Securing the ip-based internet of things with hip and
dtls,” in Proceedings of the Sixth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’13, (New York, NY, USA), pp. 119–124,
ACM, 2013.

[19] R. B. et al., “Secure communication for smart iot objects: Protocol stacks, use
cases and practical examples,” tech. rep., IEEE, 2012.

[20] R. T. Fielding, Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000. http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[21] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing.” RFC 7230 (Proposed Standard), June 2014.

[22] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2.” RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685.

[23] J. Postel, “User Datagram Protocol.” RFC 768 (INTERNET STANDARD), Aug.
1980.

References 51

[24] J. Postel, “Transmission Control Protocol.” RFC 793 (INTERNET STAN-
DARD), Sept. 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[25] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.”
RFC 2460 (Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722, 5871,
6437, 6564, 6935, 6946, 7045, 7112.

[26] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks.” RFC 4944 (Proposed Standard), Sept.
2007. Updated by RFCs 6282, 6775.

[27] J. A. Gutierrez, E. H. Callaway, and R. Barrett, IEEE 802.15.4 Low-Rate Wireless
Personal Area Networks: Enabling Wireless Sensor Networks. New York, NY,
USA: IEEE Standards Office, 2003.

[28] “Ace working group ietf.” https://datatracker.ietf.org/wg/ace/
documents.

[29] C. Bormann and P. Hoffman, “Concise Binary Object Representation (CBOR).”
RFC 7049 (Proposed Standard), Oct. 2013.

[30] T. Bray, F. Yergeau, E. Maler, J. Paoli, and M. Sperberg-McQueen, “Extensible
markup language (XML) 1.0 (fifth edition),” W3C recommendation, W3C,
Nov. 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[31] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format.”
RFC 7159 (Proposed Standard), Mar. 2014.

[32] “cn-cbor, constrained node cbor implementation.” https://github.com/
cabo/cn-cbor.

[33] “cmp, messagepack library witten in c.” https://github.com/camgunz/cmp.

[34] “Bson, binary json specification version 1.0.” http://bsonspec.org/spec.
html.

[35] “Messagepack.” https://github.com/msgpack/msgpack/blob/master/
spec.md.

[36] R. Kyusakov, J. Schneider, T. Kamiya, and D. Peintner, “Efficient XML inter-
change (EXI) format 1.0 (second edition),” W3C recommendation, W3C, Feb.
2014. http://www.w3.org/TR/2014/REC-exi-20140211/.

[37] J. Schaad, “Cbor encoded message syntax,” Internet-Draft draft-ietf-cose-msg-
12, IETF Secretariat, May 2016. http://www.ietf.org/internet-drafts/
draft-ietf-cose-msg-12.txt.

[38] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC (CCM).”
RFC 3610 (Informational), Sept. 2003.

[39] D. McGrew, “An Interface and Algorithms for Authenticated Encryption.”
RFC 5116 (Proposed Standard), Jan. 2008.

[40] M. Miller, “Examples of Protecting Content Using JSON Object Signing and
Encryption (JOSE).” RFC 7520 (Informational), May 2015.

52 References

[41] J. Reagle, T. Roessler, F. Hirsch, D. Solo, and D. Eastlake, “XML signature
syntax and processing (second edition),” W3C recommendation, W3C, June
2008. http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/.

[42] “Californium, coap in java.” http://www.eclipse.org/californium/.

[43] J. Schaad, “Erbium (er) rest engine and coap implementation for contiki.”
http://people.inf.ethz.ch/mkovatsc/erbium.php.

[44] “Cose-c, cose implementation in c, using cn-cbor.” https://github.com/
cose-wg/COSE-C.

[45] “mbedtls, arm.” https://tls.mbed.org/.

[46] “Arm mbed iot platform.” https://www.mbed.com/en/.

[47] “Texas instruments cc2538dk.” www.ti.com/tool/cc2538dk.

[48] “Contiki os official source code.” https://github.com/contiki-os/
contiki.

[49] “tinydtls, eclipse project for dtls in c.” https://projects.eclipse.org/
projects/iot.tinydtls.

[50] G. Selander, F. Palombini, K. Hartke, and L. Seitz, “Requirements for coap
end-to-end security,” Internet-Draft draft-hartke-core-e2e-security-reqs-00,
IETF Secretariat, March 2016. http://www.ietf.org/internet-drafts/
draft-hartke-core-e2e-security-reqs-00.txt.

[51] objdump(1), Linux manual page.

[52] H. Krawczyk, Perfect Forward Secrecy, pp. 457–458. Boston, MA: Springer US,
2005.

[53] C. Bormann and Z. Shelby, “Block-wise transfers in coap,” Internet-Draft
draft-ietf-core-block-20, IETF Secretariat, April 2016. http://www.ietf.org/
internet-drafts/draft-ietf-core-block-20.txt.

[54] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral diffie-hellman
over cose (edhoc),” Internet-Draft draft-selander-ace-cose-ecdhe-01,
IETF Secretariat, April 2016. http://www.ietf.org/internet-drafts/
draft-selander-ace-cose-ecdhe-01.txt.

[55] M. Marlinspike, “Forward secrecy for asynchronous message.” https://
whispersystems.org/blog/asynchronous-security/. Accessed: 2016-06-
01.

[56] M. D. Green and I. Miers, “Forward secure asynchronous messaging from
puncturable encryption,” in 2015 IEEE Symposium on Security and Privacy,
pp. 305–320, May 2015.

[57] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web services
for the internet of things through coap and exi,” in 2011 IEEE International
Conference on Communications Workshops (ICC), pp. 1–6, June 2011.

C
o

m
p

act O
b

ject Secu
rity fo

r th
e In

tern
et o

f Th
in

g
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Compact Object Security for the
Internet of Things

Joakim Brorsson
Martin Gunnarsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-532

http://www.eit.lth.se

Jo
a

k
im

 B
ro

rsso
n

 &
 M

a
rtin

 G
u

n
n

a
rsso

n

Master’s Thesis

