Master’s Thesis

Memory Energy Optimizations
for loT Processors

Ricardo Gémez

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Memory Energy Optimizations for IoT Processors

Ricardo Gémez
Department of Electrical and Information Technology
Lund University
Advisor: Liang Liu
Flavius Gruian

June 27, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

The main memory is often the principal culprit when it comes to energy consump-
tion in embedded processors. This Master Thesis explores techniques to reduce
the memory’s contribution to the overall energy consumption. In this work, two
different approaches are proposed.

The first approach explores different code compression techniques with the aim
of reducing the memory size.

The second approach explores partitioning the heap into smaller memory banks
to power gate blocks which are not being used by the processor.

These techniques have been successfully implemented in a Java processor and
its functionality has been verified in a Xilinx FPGA. A 65 nm ASIC including the
aforementioned optimizations has been designed and evaluated.

ii

Acknowledgments

First of all, I would like to thank my advisors Liang Liu and Flavius Gruian for their
continuous advice and guidance through this Master Thesis. They are responsible
not only for making this thesis possible, but also for the valuable knowledge and
experience that I have acquired during this year.

I want to express my gratitude towards all the people at the EIT department
and my professors from Spain for helping me to become the engineer I am today.
I would like to give special thanks to Oskar Andersson from EIT department for
sharing his knowledge and helping me with the countless problems that I have
faced during these years.

Thank you Inés for the warmth and love you have given to me. Although
separated by thousands of kilometers, you have made me feel like home, and you
have always given me the strength and courage to face new challenges.

I want to thank my parents and my brother for being always there supporting
me and bringing the best out of myself.

Last but not least, I want to thank Luis, Claudio, Jorge, Daniel, and all my
friends from Spain for the incredible moments we have enjoyed together.

iii

iv

Table of Contents

1 Background
The Internet of Things
JOP: A Java Optimized Processor

1.1
1.2

1.3
1.4

2.1

2.2

2.3

2.4

25

Code Compression

1.2.1 Introduction

1.2.2 Java and the JVM
1.2.3 Architecture

124 Memory units in JOP
125 JOP Garbage Collection
1.2.6 Power Profiling

CMOS Power and Energy
Thesis Contributions

1.4.1 Code Compression
1.4.2 Heap Partitioning and Power Gating

Theory
21.1 Paper Review

2.1.2 Compression Technique selection

2.1.3 Conclusion

Implementation L

2.2.1 Code Compression System Overview
222 Offline Compression

223 Hardware Decompressor

224 Integration with JOP Toolchain

Verification
231 FPGA

2.3.2 ASIC

Results
2.4.1 Power

2.4.2 Delay

243 Area

Porting Code Compression to other architectures

= 00 00 N O A~ W W =

17
17
17
18
25
25
25
28
30
33
38
38
39

42
42
42
42

42

3 Heap Partitioning and Power Gating
Theory
Implementationo oL

3.1
3.2

3.3
3.4

35

4 Conclusion

5 Further Work

References

321 Dynamic Memory Power Gating Protocol

3.2.2 Integration with JOP toolchain

3.2.3 Hardware integration

Verification
Results
3.4.1 Energy

3.4.2 Delay

3.4.3 Area

Porting Heap Partition to other architectures

vi

45
45
47
47
48
49
51
51
51
53
53
53

55

57

59

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

31
3.2
3.3
3.4

Internet of Things Technologies 2
JOP architecture overview, as depicted in [13] 5
Java bytecode translation, as depicted in [13] 6
Cheney's Garbage Collection 8
JOP on-chip power consumption by power group 10
JOP memory power consumption by memory block 11
Code Compression proposal view 13
Heap Partitioning and Power Gating Explanation 14
Per-Byte Huffman Encoding 19
Per-N Bytes Huffman Encoding 19
Isomorphic Huffman Encoding 20
Isomorphic Huffman Decompression 21
Hybrid Huffman Encoding 21
Huffman Encoding Compression Code and Dictionary Sizes 22
Huffman Encoding Compression Ratio Results 23
Single Dictionary vs. Lumped Dictionary Results 24
Code Compression System Overview 26
Instruction Padding Process 30
Huffman Decompressor Architecture 32
Huffman Decompressor Behavior 32
Simplified FSM of the Huffman Decoder 33
Huffman decompressor integration 34
Asymmetrical FIFO's FSM 36
X-Propagation issue during system initialization 40
X-Propagation solution during system initialization 41
Code Compression Results 43
JVM and RISC compression blocks 44
Memory Fragmentation and Object Compaction 46
HW/SW Communication protocol in JOP 49
Second Proposal Hardware Integration. 50
Heap Partitioning Energy profile 52

vii

viii

List of Tables

1.1 JOP on-chip power consumption by power group 9
1.2 JOP on-chip power consumption by source 10

ix

Abbreviations

CISC
CMOS
CPU
CR

FF
FIFO
FPGA
FSM
GC
IoT
ISA
JOP
PC
RAM
RISC
RTL
ROM
SoC
VHDL

Complex Instruction Set Computer
Complementary Metal-Oxide-Semiconductor
Central Processing Unit

Compression Ratio

Flip Flop

First In First Out

Field-Programmable Gate Array

Finite State Machine

Garbage Collector

Internet of Things

Instruction Set Architecture

Java Optimized Processor

Program Counter

Random Access Memory

Reduced Instruction Set Computer
Register-Transfer Language

Read-Only Memory

System-on-Chip

VHSIC Hardware Description Language

Xi

Chapter].

Background

In this section, the background of the project is presented. Firstly, a general
discussion on IoT and the necessity of low power processors will be carried out.
Secondly, the base processor (JOP) will be presented and its power will be profiled.
Thirdly, a theoretical analysis of power consumption in CMOS circuits will be
performed. Finally, two energy optimizations will be proposed.

1.1 The Internet of Things

The Internet of Things (IoT) is a broad concept that encompasses any dynamic
infrastructure where different objects are interconnected, forming a global network
of smart devices. This network allows objects to exchange and process information
to interact between them and with the environment. This way, a response can be
delivered without the need of an user as input. This concept can be applied to
many different use cases, where IoT can improve the way different systems interact
with the users and the environment. Smart Homes, Smart Lighting, Smart Energy,
Smart Health or Smart Cars are examples of how IoT can make things "smarter".
The key point is the ability of the nodes of the network to interact and process
the data that is being gathered.

A common classification of node technologies is shown in Figure 1.1, as pre-
sented in [7]. The figure is divided into different areas, representing different
layers of the IoT system. The leftmost area of the figure represents the IoT sensor
and/or smart devices. This group can encompass any kind of device that senses
and gathers information from the environment. As depicted in the figure, these
devices usually contain local embedded processing. The complexity of this local
processing may range from simple signal conditioning to more complex algorithms
to process data. Sensing and smart devices can be connected to other devices
locally, or to other layers of the system through Connectivity nodes. The group
Connectivity nodes contains the wired or wireless technologies that communicate
different layers of the system. Layers of embedded processing nodes encompasses a
variable number of processing layers connected through connectivity nodes. Lastly,
a cloud-based processing layer may be included, in case the specific application
requires it.

Several challenges have arisen regarding the variety of technologies involved
in the IoT development: security and privacy, consistent standards, technologi-

2 Background

O n

©
O 06 0 0
©

Sensing and/or Connectivity Layers of Comnectivity Remote
Smart Devices nodes embedded nodes cloud-based
processing processing

nodes IR

h o "_ %) 5
O Sensing o Embedded processing o Communications

Figure 1.1: Internet of Things Technologies

cal issues, etc. Focusing on the technological challenges, it has been shown that
the most crucial technological innovations for IoT is low power consumption and
battery lifetime [8].

Energy optimizations can be performed at different levels of the network. This
master thesis focuses the attention on the processing devices. [7] presents a list of
requirements that make an MCU ideal for use in IoT. Again, low-power appears
to be the crucial characteristic. However, a broad portfolio that enables different
levels of performance is also mentioned. The reason for this is the large diversity
of use cases and applications in the IoT. Some applications need ultra-low-power
devices with simple local processing and long battery lifetime. An energy harvest-
ing system [9] is also needed when the location of the sensor requires it. However,
some other use cases require high performance embedded processing, while main-
taining the energy consumption under reasonable levels. Examples of such devices
are cell phones controlled by users to give input to the IoT network, or distributed
computing systems in IoT [10].

[10] presents an IoT video sensor network for surveillance. In this applica-
tion, the target is to store the fragments of video when important events occur.
For this purpose, video processing is performed on the input stimuli, i.e. the
video sequences recorded by the cameras. In a traditional non IoT setup, sensors
(the cameras) stream the data to a centralized server, which performs the entire
processing to detect critical events. This centralized approach presents some in-
conveniences: on the one hand, a high communication bandwidth is needed, as
a result of all cameras streaming video back to the server. This fact contradicts
the requirements on low power consumption, as wireless communication modules
are usually power hungry and plays an important role in the overall power con-

Background 3

sumption. On the other hand, a high processing load may overcome the server
performance, limiting the amount of cameras that can be controlled. In order to
overcome these limitations, an IoT distributed computing network is presented.
In the distributed approach, video processing is embedded in the cameras, which
perform the event detection without the need of the server. This effectively re-
duces transmission bandwidth up to 91.3% over the centralized system. In order
to embed video processing to the devices, a SoC solution is developed and fabri-
cated. The power consumption of this SoC and other related works [10] ranges
between 50-400 mW at frequencies of 100-400 MHz. These numbers highlight the
large variety in performance requirements along the different use cases in the IoT.

As it is presented in section 1.2, a Java optimized processor has been selected
as a base processor to investigate the effectiveness of the proposals described in
section 1.4.

It can be deduced from previous references that there are several trade-offs
when discussing the features and characteristics of the ideal processor for IoT.
When investigating the features of a processor for IoT, the entire ecosystem has
to be considered. This includes not only the low power consumption requirement
(which is probably the main issue nowadays), but also other features such as
functionality and programmability.

As shown in Figure 1.1, there are many layers in an IoT network. FEven inside
a single layer, there might be the necessity of a broad range of processors with
different profiles. In some applications the sensing and smart devices are designed
to be as low power as possible. For example, some biomedical applications require
simple sensors that are able to be powered by harvesting energy. However, in
some other applications, such as the one shown in [10], the embedded processing is
translated from higher layers to the smart devices. By embedding local processing
on these devices, the energy efficiency can be increased, although these devices
will consume more power.

There are several discussions on CISC vs RISC architectures for the IoT [14]
and the feasibility of Java as the development language for IoT applications. [14]
covers this topic, together with the advantage of reconfigurable hardware to cover
the broad range of IoT applications. It chooses CISC architecture as a competitive
solution for IoT application, and implements C and Java ISAs with microcode.
Furthermore, it suggests instruction-specific accelerators for higher performance
and efficiency. This comes in the necessity of other feature mentioned in [7]: a
broad portfolio covering different levels of performance. For this reason, several
IoT processors with reconfigurable architecture have been proposed.

For the reasons commented, the election of an IoT processor requires making
a decision where many trade-offs are involved. Thus, a deep investigation of this
trade-offs is needed and it is not covered in this Master Thesis.

1.2 JOP: A Java Optimized Processor

1.2.1 Introduction

JOP: A Java Optimized Processor [11] is an open core processor originally devel-
oped by Martin Schoberl at the Technischen Universitdt Wien. Since its creation,

4 Background

many users have contributed to the design of the system and the tool chain, in-
cluding Flavius Gruian, supervisor of this Master Thesis.

JOP optimizes Java execution by implementing the Java Virtual Machine
(JVM) in hardware. Among its contributions, JOP is intended to serve as em-
bedded processor for hard real-time systems. For this reason, it exhibits a time-
predictable execution of Java code integrating a real-time scheduler with the pro-
Cessor.

This processor has been used as a base processor for this Master Thesis, and
the proposed optimizations have been implemented an evaluated in this platform.

1.2.2 Java and the JVM

In this section, a short introduction to Java and the Java Virtual Machine will be
carried out. An extensive and updated description of Java and the JVM specifi-
cations can be found in [15].

Java is a general-purpose object-oriented concurrent programming language.
It was originally developed by James Gosling at Sun Microsystems. Although
proprietary licensed originally, since 2007 most of Java technologies are licensed
under the GNU Public License. This technology consists of the Java language
and standard library definition together with an intermediate ISA and execution
environment.

The key point of the portability that Java offers, often referred as write once,
run anywhere, is the JVM instruction set called Java bytecode set. The Java com-
piler generates bytecode, a neutral intermediate format that is independent to the
device architecture. These bytecodes are interpreted by the Java Virtual Machine.
The JVM can be implemented in the target device in several ways. Among them,
the Just-In-Time (JIT) compilation approach is a common choice. This implemen-
tation compiles Java bytecodes to native instructions during runtime. In JOP, the
JVM is implemented in hardware, where Java bytecodes form the instruction set
of the processor.

The JVM defines three memory areas:

e Method area: The method area contains the bytecode implementation of the
Java methods and the constant pool (containing literals and references to
fields and methods of Java objects). In JOP, this memory section is located
in the lowest addresses of the external memory.

e Heap: The heap is the memory area that contains the allocated objects and
arrays. It also includes the handler area, where the pointers to objects in
the heap are located. In JOP, the heap starts at the last address of the
method area. Like the method area, it is located in the external memory

e Stack: The stack contains the operand stack, where the operations are per-
formed; the local variable area, and the return frame. In JOP, the stack
memory is implemented on-chip.

Unlike other programming languages, such as C or C++, where heap memory
has to be deallocated explicitly, Java performs deallocation in an automatic manner
with the Garbage Collector (GC). The GC is a process that automatically identifies

Background

which objects are used and which not, and deletes the unused objects. An object
is said to be used if the program can reach that object. There are several GC
implementation strategies that differ on how the garbage is collected: whether
moving the live objects to a new area or not, whether the GC should be triggered
concurrently to the main program or not, etc.

1.2.3 Architecture

Overview

Figure 1.2 shows the high-level architecture of JOP. The main units are the core
pipeline, the memory controller, the extension module, the memory interface, the
I/0O interface and the scratchpad memory.

-

Core pipeline -~ Busy |
BC Addr
Bytecode BC Data
fetch B
Fetch
e TOS
NOS
Decode - Comr_‘?' o
Stack

=

=

Memory
controller SimpCon Memory
i | interface
c c
o o
2 | |g
E £
y 0 5]
Data Control
Extension Scratchpad
memory 110
S £ interface
Multiplier
Int t
o Imterrupt
CPU
JOP

Figure 1.2: JOP architecture overview, as depicted in [13]

JOP main modules can be described as follows:

e Core pipeline: The core pipeline is composed of three pipeline stages:
bytecode fetch stage, microcode fetch stage, and decode and execution stage.
In this block, bytecodes are fetched, translated and executed. The decode
and execution stage (represented as stack in the figure) are merged into a
single stage. To avoid write-back stage, data is read from the stack memory
on the rising edge of the clock, and written on the falling edge. This block
also contains the method cache. When a new method is invoked, the entire
code is loaded into the cache, and the bytecode instructions are fetched from
the method cache.

Background

Memory controller: This block controls the external memory reads/writes
from/to the external memory. There is no direct connection between the
core and the external memory. When a new method is requested, it per-
forms the method read from the external memory and the method write
into the method cache at the core pipeline. During this time, a busy signal
is generated. This busy signal stalls the entire pipeline.

Extension module: This block holds the multiplier hardware accelerator
and interfaces the memory controller to the core pipeline. For example, a
constant value read from the external memory is pushed into the stack by
the extension module.

Memory interface: The memory interface isolates the device-specific char-
acteristics of the external memory from the rest of the system. It contains
the logic needed to read and write from the external memory and offers a
consistent interface to the internal bus (SimpCon).

I/0 interface: It controls the peripheral devices, such as external devices,
and system timer and interrupts.

Scratchpad memory: It holds temporary calculations and data. In this
Master Thesis the Scratchpad memory is removed, as it leads to extra power
consumption.

The data from the memory interface, the I/O interface and the Scratchpad memory
are multiplexed to the memory controller. SimpCon, a system bus specifically
developed by Martin Schéeberl [16]

Bytecode translation

The common processor architectures contain a single instruction fetch stage. How-
ever, in order to efficiently execute Java bytecodes, the JOP pipeline contains two
different instruction fetch stages. Figure 1.3 represents how Java ISA is translated
into microcode instructions.

Java PC

Java Jump
bytecode table JOP microcode
iiéad_1 siadd O T T,
iload 2 &isub e
» imul P &imul > o isub: sub nxt
istore_ 3 &idiv @)
&irem - imul: stmul
o
ldmul nxt
Java instruction Start address of imul
in JVM ROM B

Figure 1.3: Java bytecode translation, as depicted in [13]

Background 7

The Java PC holds the pointer to the Java bytecode instruction to be exe-
cuted. The java bytecode is fetched from the bytecode memory and acts as an
index for the jump table. The jump table, implemented as a LUT, contains point-
ers to the starting addresses of the microcode implementations of each bytecode.
Some very simple bytecodes can be implemented with a single microinstruction,
and some others need more microinstructions. When a bytecode is fetched, the
starting address of the implementation of the bytecode is generated and held in the
JOP PC. This PC, located in the microcode fetch stage, holds the address of the
microcode instruction to be executed. The JVM ROM is the memory containing
the microcode implementations of each bytecode. Every time a new bytecode is
fetched from the bytecode memory, the system will execute all the microcodes that
implement that specific bytecode. Thus, several microinstructions will be executed
before a new bytecode is fetched. When a special microcode (nzt) is fetched, JOP
increments the Java PC to fetch the next bytecode.

Most Java bytecodes are implemented as described before. However, some
more complex bytecodes, such as new, are implemented as Java methods, although
still executed as microcode.

1.2.4 Memory units in JOP

There are several memory units in JOP. These units are: method cache, microcode
memory, object cache, stack memory, and main memory. Scratchpad memory is
omitted as it has been removed for this Master Thesis.

e Method cache: the method cache stores the bytecode implementation of
the current method. It is located at the bytecode fetch stage of the core
block. It is implemented as a dual-port common-clock synchronous memory.
Read and write data sizes are asymmetrical: input data is 32-bit width and
output data is 8-bit width. Input data size is 32-bit due to the main memory
data size, which is 32 bits. Output data size is 8-bit, as bytecodes range
from 0 to 255. The total method cache size for this configuration is 2KB.

e Microcode memory: this unit stores the microcode implementation of
every implemented Java bytecode. This unit is located at the microcode
fetch stage of the core block. It is implemented as a single port ROM with
a data width of 12 bits. The memory size is 24KB

e Object cache: this method caches the Java objects recently accessed. It is
located at the extension unit. It is a dual-port common-clock synchronous
memory with 32-bit data width. Its total size for this configuration is 512B.

e Stack memory: in this unit the core operations are performed. Thus, it
is located at the stack stage of the core block. It is implemented as a true
dual-port non-common clock memory. Its data width is 32 bit, and its total
size is 1KB.

e Main Memory: this memory contains the Java code, the constant pool,
and the heap. It is a single-port RAM, and it is external to the top entity
of the processor. Data width can be either 16-bit and 32-bit, as the mem-
ory interface isolates the specific details of the implementation to the rest

8 Background

EEsEmEmEmEm EEEEEEEEES SEEENEEEEEQ SEEEEEEEEN SEEEEEEEEQE

: Semil 5 : Semi2 { % Semil 3% Semi2 . i Semil 5% Semi2 &
I 1 T n T § T 1 T— ¢ g
: ¥ i ¥ s d - .
] P P ~ . - . -
1 ko= " 1 b : " : " : .
| & P N oo :e :
| B § : N .] :
| & P : T : !
! bo: P > Lo " I
T ETTTETY b ;I'l'llh'll'-'ill; "ll"ll"l: I'I'I'I'I'I: ".'.'.'l'.': I'I'I'I'I'I:
a) b) c)

Figure 1.4: Cheney’'s Garbage Collection

of the system. The memory size is automatically detected by the startup
software routine, which checks the physical size of the unit. However, re-
quired size can be hardcoded at the initialization routine. Depending on the
application, the main memory size requirements can range from 100 KB to
2 MB.

1.2.5 JOP Garbage Collection

There are several implementations of the garbage collection task. JOP imple-
ments the Cheney’s algorithm for Garbage Collection [27]. This algorithm can be
explained as shown in Figure 1.4.

In Cheney’s GC, the heap space is divided into two equally sized spaces: Semi
1 and Semi 2 in the figure. When an object is created, it is allocated in one of
the semispaces (which receives the name of tospace). In Figure 1.4 a), the objects
are allocated in the first semispace. When there is not enough space to allocate
more objects, the garbage collection is triggered. Then, the GC starts scanning
the objects to detect which are alive and which not. Finally, it copies the live
objects to the second semispace, compacting them. This process is shown in b),
where two live objects are being copied from the semispace 1 to the semispace 2.
Then, the semispace where the objects are copied is now the tospace, and every
time a new object is created it will be allocated there. This approach needs a
larger heap space, as two identical heap regions are needed. This has an impact
on both the area and the power consumption: while only one of the heap spaces
is being used, the other one is leaking and consuming energy.

However, because of object compaction, this GC algorithm allows the integra-
tion of the second proposal, as it will be described in section 3

1.2.6 Power Profiling

The scope of this section is the power profiling of the base processor, JOP. Al-
though this profiling is specific to this processor, some trends can be extended to
similar designs. This profiling is intended to justify the optimization proposals in

Background 9

Table 1.1: JOP on-chip power consumption by power group

Internal Switching Leakage Total

Power Group Power (W) Power (W) Power (W) Power (W)

(%)

Clock Network 2.193e-03 1.050e-03 5.555e-09 3.243e-03 18.95%

Register 9.377e-05 7.473e-05 1.625e-07 1.687e-04 0.99%

Combinational 1.494e-04 3.260e-04 1.237e-07 4.755e-04 2.78%

Memory 0.0132 1.630e-05 2.280e-06 0.132 77.29%
section 1.4.

The original processor is expected to be implemented in FPGAs. Several
versions targeting different FPGA vendors are available at JOP main project.
These versions often utilize vendor specific primitives, which are not compatible
with Synopsis tools. For this reason, migrating JOP to the ASIC flow has carried
out several difficulties. This issues are addressed in section 2.3.2, where the full
ASIC design flow is described in detail.

The processor has been synthesized using 65-nm high-Vt low-power libraries
from ST Microelectronics. The system clock has been set to 100 MHz at 1.2V,
and it has been constrained for minimum power. A post-layout simulation of a
benchmark that includes basic software tasks, such as arithmetic operations and
array and object creation has been performed. Lastly, a PrimeTime time-based
power analysis has been carried out. The output activity file from the simulation
and the parasitic extraction information has been used to increase accuracy of the
results.

Table 1.2 shows the on-chip power consumption of JOP classified by power
source. It can be observed that the internal power is dominant, followed by the
net switching power. Cell leakage is negligible with a contribution of 0.02% to
the total power consumption. This results are consistent with the frequency and
operating conditions of the ASIC (100 MHz at 1.2V). At this voltage the main
source of power consumption is the dynamic power consumption. This is due to
the squared relation of the dynamic power consumption to the voltage, as stated
in Equation (1.1).

Table 1.1 shows the on-chip power consumption of the processor classified by
power group. It can be observed that the main source of power consumption in
JOP are the memories. This trend is highlighted in Figure 1.5. As described in
section 1.2.4, JOP contains many different memory units. For this reason, both
area (as it is shown in section 2.3.2) and power consumption are mainly dominated
by the memory. Figure 1.6 shows a bar chart containing the power consumption
of the different memory units, including the estimated external memory power
consumption. This estimation has been performed by assuming a linear relation
between the memory size and the power consumption. Based on this assumption,
the power numbers from the available ST memories have been extrapolated to
the external memory size. In this estimation, the power consumption due to the
system bus has not been included.

Regarding the presented results, several points can be remarked:

10

Background

Clock Network
19%

Register
1%

Combinational
3%

Memory
77%

Figure 1.5: JOP on-chip power consumption by power group

e The main power consumption source in JOP are the memories. This issue

is not characteristic of JOP, but a common issue in similar processors.

The external memory dominates the system power consumption. This fact
has been shown in Figure 1.6. Furthermore, it is known that roughly, on-chip
memory accesses can represent even 1% of power consumption compared to
off-chip memory [17].

Dynamic power consumption has shown to be dominant on the previous
simulations. However, this Master Thesis targets processors with different
operating conditions. More concretely, IoT processors will operate at lower
voltages and possibly lower frequencies. At these operating conditions, the
static power consumption becomes non-negligible and can become dominant.
This fact has been considered when proposing optimizations to reduce the
energy consumption.

Table 1.2: JOP on-chip power consumption by source

Power Source Power (W) (%)

Net Switching 1.467¢-03 8.57%
Cell Internal ~ 0.0156 91.42%
Cell Leakage 2.572e-06 0.02%
Total 0.0171 100%

Background 11

Power (W)
0.14

0.12

0.1

0.08

Bytecode Microcode Stack Object Heap Code
cache ROM Memory Cache

Figure 1.6: JOP memory power consumption by memory block

1.3 CMOS Power and Energy

CMOS power consumption is stated in the well-known formula (1.1).

P = Pstatic + denamic = (IlkgVDD)static + (CLV[%chlka + ISCVDD)dynamic (11)

where Pgyqiic stands for static power consumption, Pyynamic for dynamic power
consumption, Ij, for leakage current, Vpp for the supply voltage of the circuit,
Cy, for the total capacitance being (dis)charged, fq for clock frequency, « for the
number of transitions per clock cycle, and I, for direct path current.

Given the average power, FPy,4, over a certain period of time, T, the energy
consumption of the circuit can be calculated as Equation (1.2):

E = TPy, (1.2)

Until recently, dynamic power consumption has been the main contribution
to the overall power consumption in circuits. For this reason, power optimization
techniques have mainly targeted the dynamic power consumption. However, tech-
nology trends have provoked an increasing attention to static power dissipation
in circuit s[1]. The reason for this is an increase of the magnitude of the static
contribution over the overall power consumption. Die shrinking and smaller gate
length suffer from higher leakage current [1]. Also, the decrease in the threshold
voltage related to supply voltage scaling has also increased leakage currents [2].

This increasing attention has brought importance to the investigation of tech-
niques that aim to reduce the leakage in CMOS circuits [3]. While traditionally
the focus has been mostly on reducing dynamic power consumption, in newer
technologies the static power consumption may even offset the savings on the

12 Background

overall consumption [1]. One particular example is the unfolding of filters. This
technique can be applied to reduce the dynamic power consumption: unfolding a
circuit allows the designer to reduce the supply voltage and still meet throughput
requirements [4]. However, unfolding the circuit also implies doubling the amount
of elements that are leaking. This increase on the static power consumption may
overcome the savings on dynamic consumption.

Among different techniques targeting static power reduction, the following
approaches can be mentioned:

e Minimizing the amount of logic present in a circuit might be the most
straightforward approach to reduce the leakage. In Equation (1.1) the static
power consumption is proportional to Ijx4. This factor represents the addi-
tion of all the leakage currents existing in a circuit. Each block of the circuit
will contribute to the overall leakage current number. Thus, commonly a
larger amount of logic will lead to a higher static power consumption, as
there will be more leaking blocks. In this case, reducing the amount of logic
present in a circuit by reutilization of digital blocks will reduce the static
contribution.

e Gating the power supply of digital blocks which are not being used is another
technique to reduce the leakage power consumption [5]. This technique,
usually referred as power gating or MTCMOS, is based on the placement of
High-Vr transistors between the power supplies and the circuits. By turning
off the power gating transistors, the leakage drawn by the inactive circuit
can be effectively reduced.

e Increasing the threshold voltage of the transistors by means of bulk voltage
modulation also reduces the leakage power [6]. In this approach, often
referred as Variable Threshold CMOS (VICMOS), a reverse bias is applied
to the substrate. As a consequence, the threshold voltage of the transistor
is incremented and the leakage current diminished.

1.4 Thesis Contributions

In this section, two proposals to reduce the energy consumption in processors
are presented. The thesis proposals are based on the premise that static energy
consumption will dominate the overall energy consumption. This is a common fact
in low-power processors that run under low voltage and low frequency operating
conditions.

1.4.1 Code Compression

The first proposal is to reduce the energy consumption of processors by compress-
ing the code which is stored in the main memory. Figure 1.7 shows the main view
of the proposed architecture. It can be observed that a hardware decompressor
has been placed between the external memory and the core unit.

The compiled code is compressed offline and stored in the external memory.
When an instruction needs to be fetched, it is read in compressed mode from

Background 13

the memory. The instruction is on-chip decompressed on-the-fly. Finally, the
decompressed instruction is issued to the core unit.

This reduces system energy consumption by two ways. On the one hand, by
means of reducing the size of the code portion of the memory, smaller memories
can be used. This reduces the energy consumption of the processor, as large
memories’ main source of energy consumption is commonly static. On the other
hand, off-chip communications consume a significant portion of dynamic power
consumption. The reason for this is the large off-chip wire capacitance of the
system bus. Loading compressed methods imply lower amount of read cycles.
This reduces the off-chip communications and thus the (dis)charging of large off-
chip capacitances.

mmm=——- 1
: Target i
: Application |
_____ Fm———
|
[
_________ Y

Processor Top Module

WE

_________ Pe———————
Core :
i
:
Decompressed {‘fumpre‘ssed External Memory
Decompressor
EX Compressed Code

Figure 1.7: Code Compression proposal view

1.4.2 Heap Partitioning and Power Gating

The second proposal is to partition the commonly unified heap memory into
smaller physical memory blocks and power gate those which are not being used.
Figure 1.8 describes the proposed optimization.

In Figure 1.8 a), the initial setting of the system is shown. Three main blocks
appear: the processor top module, the heap memory and the instruction memory.
Inside the processor, the core block and the virtual memory are depicted. The
virtual memory represents the main memory as seen from the processor: as a
unified memory area. The lowest addresses belong to the code section. The
rest of the virtual memory is the heap. Under B1, B2, B3, and B/, the regions
corresponding to the physical blocks of the heap are marked only for explanation
purposes. Although the memory unit is seen as a unified block, out of the processor

14

Background

a)
Processor Top Module
Coia i Virtual
: Memory

B4

B3

i Bl

Heap Memory

B1

B2

B3

Instruction
Memory

Processor Top Module

Core

Heap Memory

Bl

B2

B3

Instruction
Memory

Heap Memory

B1 B2
B3 B4
Instruction
Memory

b)
Processor Top Module
Core || Virtual i
: Memory
---------------- :
: B4
LB
e
i i B
MEM | | ooy
d)
Processor Top Module
Core Virtual
i B4
i B3
i B2
i Bl

Heap Memory

B1 B2
B3 B4
Instruction
Memory

Figure 1.8: Heap Partitioning and Power Gating Explanation

it is implemented in different hardware blocks: the Instruction Memory (containing
the code) and the Heap Memory. The Heap Memory is also divided into different
physical blocks, namely BI, B2, B3, and B4. At the virtual memory block, the
memory regions belonging to the different physical blocks are marked only for
illustration purposes. In this figure, powered on blocks are colored in green (BI
in the first subfigure) and powered off blocks in red (B2, B3, and Bj).

The behavior of the proposed system can be explained as shown in Figure 1.8:

e a): In this case, a small portion of the heap memory is being used, as the
entire memory that has been allocated can fit in a single block, BI. For
this reason, blocks B2, B3 and B4 are powered off. This way, the leakage
energy consumption of these blocks is eliminated.

e b): At a certain moment, more memory needs to be allocated. This heap
memory cannot fit in a single block anymore, so en extra heap block is

Background 15

needed. Thus, the system waits until the power on of B2 is performed. B3
and Bj are still powered off.

e ¢): It shows a case where most of the memory is being used. At this point,
all blocks are powered on, and thus there are no savings from a case where
a single heap memory is being used.

e d): Last figure shows the case where a portion of the virtual memory is
freed. Again, some memory blocks can be powered off, as they are no longer
needed.

Many applications have irregular memory usage over time. This system adapts
the memory energy consumption to the memory requirements of the processor.
Partitioning the memory into smaller blocks and powering off those not being
used will dramatically reduce the leakage energy consumption.

16

Background

Chapter 2

Code Compression

In this chapter, the first proposal is investigated and implemented. Firstly, a
theoretical study is carried out to select the compression algorithm implemented
in the system. Secondly, the system implementation is detailed. Thirdly, the
verification steps of the system are described. Finally, the results are presented
and the feasibility of porting code compression to other architectures is studied.

2.1 Theory

The process of reducing the size (measured in bits) of a certain amount of data
is called data compression. This technique can be applied to any source of data:
audio, video, etc. In this Master Thesis, data compression is applied to code.
Thus, by means of compression, a reduction of the code size is intended. The
effectiveness of the compression technique is measured by the Compression Ratio
(CR) as stated in Equation (2.1),

CR - size(compressed)

2.1
size(original) (2.1)

2.1.1 Paper Review

Code compression for compressors have been widely studied. In this section some
of them are presented. They are classified into two groups: dictionary-based
approaches and statistical-based approaches

Dictionary-based Compression Approaches

This approach is based on the fact that, in programs, many sequences of instruc-
tions are repeated. For example, it may be the case that a certain instruction
A is usually followed by instructions B and C. If that is the case, the code size
can be reduced by substituting this sequence of instructions by a single codeword.
Then, during instruction fetching, the special codeword is decompressed and the
original instructions are inflated. Thus, dictionary-based compression techniques
are based on discovering patterns of data and substituting them with smaller code-
words that are kept in a dictionary. During decompression, this dictionary is used

17

18 Code Compression

to decompress the original sequence. Lempel and Ziv compression algorithms are
a common family of dictionary-based approaches. Examples of algorithms of this
family are the LZ77 [18] and LZW [19] In [20], a thorough study of the state of
the art of several dictionary based compression approaches is performed. Some of
them are mentioned next. It is important to mention that in most of the presented
papers, the dictionary size is not taken into account when reporting compression
ratios.

In [21], the authors propose a method based on the fact that only a certain
amount of distinct instructions are generated by compilers. Thus, the compres-
sor searches all the different instructions of a certain program and re-encodes the
instructions with a new binary word. This new binary word will be loga N bits
long, being N the number of distinct instructions of the code. Compression ra-
tios between 22.7% and 54% were achieved. [22] studies the variation on the CR
by considering identical whole instructions and isomorphic instructions. Isomor-
phic instructions are instructions that have either the same opcode with different
operands, or different opcode over the same operands. Results showed that using
isomorphic compression increased the CR by at least 17%.

In [24], agglomerative clustering heuristic approaches are proposed for pattern
discovery in Java code. Bytecode size reduction ranged from 15% to 25%.

Statistical-based Compression Approaches

Another family of data compression techniques is the statistical-based. These
approaches are based on the entropy encoding algorithm originally proposed by
David A. Huffman [23]. In Huffman’s compression algorithm, the original symbols
are substituted with codes of varying length. The more frequent symbols are
mapped to the shorter codes, and the less frequent symbols to the longer ones.
This way, the total size of the symbol string is reduced.

The way codes are built is through the construction of the Huffman tree.
This step is performed offline. During online decompression, a variable length
decoder detects the codewords and substitutes them with the original symbols.
Thus, a dictionary has to be kept to perform the decompression, as the case of the
dictionary-based approaches.

Several examples of statistical-based code compression implementations can
be found in [20].

2.1.2 Compression Technique selection

Huffman compression has been chosen as the algorithm for code compression of
this master thesis. The first reason is the fact that among statistical compression
algorithms, Huffman compression usually achieves the highest CR [25]. The second
reason is the prefix free characteristic of Huffman codes. This means that no code-
word is the prefix of other codeword, which simplifies the hardware decompression
process.

Huffman code compression can be performed in several ways. Each one dif-
fering in the size of the symbol to be re-encoded: it can be applied to groups of 4
bits, 8 bits, or even to symbols of variable size. In order to decide the details and

Code Compression 19

parameters of the Huffman algorithm, several experiments have been performed.
In the following sections, the different candidates considered are presented.

Per-Byte Huffman Encoding

The most straightforward application of Huffman encoding is in a per-byte fashion.
In this approach, the code memory is seen as a single byte stream. This byte
stream is then Huffman-encoded, so that each byte is substituted by a variable
length codeword. Figure 2.1 shows the process. As it can be seen, the memory
is reorganized as a byte stream. The rectangle with intermittent line at the top
represents the real decimal content of each byte. The Huffman encoding process
is applied byte-per-byte. As a result, the two compressed instructions, add and
sub will occupy less space in the compressed memory.

add 1] 1113 e e e T e e e B
sub |rl |12 [r4 :.1.1.‘.:..1-J'..“.:.%J'.ll%:._l_}.:_:.i.:-‘.".-.' | ‘
—pl add |rl |r1 12 sublrl 12 r4| Huffm.an
Encoding
Uncompressed Compressed
Memory Memory

Figure 2.1: Per-Byte Huffman Encoding

Per-N Bytes Huffman Encoding

This approach tries to enhance the single byte Huffman encoding CR by consid-
ering groups of 2 or more bytes. This way, the memory contents are packed into
groups of N bytes, and then the Huffman tree is built. As a result, the symbols
to be encoded consist of the binary concatenation of two bytes. Figure 2.2 depicts
the process.

add [rl| 1l |13 [FEpiEne e e e T H | ‘
2 5
D Pl 1243 1898 1ot g B

m—— | | Huffiman
- _ Encoding

sub rl

—pladd rl |rl 2

Uncompressed Compressed
Memory Memory

Figure 2.2: Per-N Bytes Huffman Encoding

20 Code Compression

Per-Instruction Huffman Encoding

The previous approaches are common in data compression, where no data struc-
ture exists and the memory content is seen as a single byte stream. However,
to exploit redundancy on the instruction generation by the compiler, the whole
instruction (including opcond and operands) can be taken as symbol to be en-
coded. Depending on the ISA of the processor, symbols will contain 4 or more
bytes concatenated.

The main difference of this method over the per-N Bytes Huffman encoding
is the case of variable length instructions. Java ISA is not fixed length, which
means that depending of the opcond, a variable length of operands will exist.
Furthermore, certain Java bytecodes’ lengths are not defined, as the number of
operands is determined on a byte after the opcond. For this reason, symbol size
is not fixed on per-instruction Huffman encoding for variable length instructions.
The hardware implications of this issue are discussed at the end of this section.

Isomorphic Huffman Encoding

As presented in [22], considering the opcond and the operands as different sym-
bol groups has the advantage of a higher CR. Figure 2.3 shows how encoding is
performed. The code memory is processed and instructions are separated into op-
conds and operands. Then, Huffman encoding is applied to each group separately.
Finally, the compressed memory is generated by substituting opcond symbols with
opcond codewords, and the same with the operands.

Figure 2.4 shows the isomorphic decompression process. Instead of having
one single dictionary, two dictionaries are used: opcond dictionary and operand
dictionary. These dictionaries are activated alternatively to decompress the full
instruction.

— Huffman ‘ ‘
P i Encoding \ |
Huffman "
—~ Operands — S
Encoding
Uncompressed Compressed
Memory Memory

Figure 2.3: Isomorphic Huffman Encoding

Code Compression 21

‘ Opcond i

S Dict. D

X

MEM

Operand
Dict. Wi

ol =] =
m

Compressed Core
Memory

Figure 2.4: Isomorphic Huffman Decompression

Hybrid Huffman Encoding

A hybrid Huffman compression technique has been proposed in this Master The-
sis for Java Compression. As stated before, Java bytecodes are variable length.
Variable length codes’ redundancy is not properly exploited by the isomorphic ap-
proach. It has been found that some large-size operands are highly repeating over
the code. However, encoded codewords for these operands are not consequently
short when being coded together with other operands’ sizes. In order to overcome
this issue, the Huffman encoder of Figure 2.5 is proposed.

In this approach, a hybrid between isomorphic and per-size Huffman encoding
is presented. First, instructions are first divided into opconds and operands. Then,
the operands are classified by size. After this, Huffman Encoding is applied to each
group separately, and the compressed code is generated.

Huffman
Opconds ™ Encoding
Huffman ‘ ‘
/l 1-Byte Operands |_’ Encoding \ |
Huffman
-—..>| 2-Byte Operands |—’ Encoding
\ Huffman /
| 3-Byte Operands |—’ Encoding

Uncompressed Compressed
Memory Huffiman Memory
Encoding

—

Variable-Byte Oper.

Figure 2.5: Hybrid Huffman Encoding

During decompression, 5 different dictionaries are held, one for each group.
The first byte to be decoded is the opcond. A LUT contains which bytecode
opconds require 1-Byte operands, which require 2-Byte operands, etc. Thus, the

22 Code Compression

50
J_ +15%

) -14%
N I—2 7% l l -28% -32% -36%

v,

— 30
]
g
w2

20

10

0

Original a) b.1) b.2) c) d) e)
Code
Code Size Dictionary Size

Figure 2.6: Huffman Encoding Compression Code and Dictionary
Sizes

needed dictionary can be activated at each instant to decode the operand sec-
tion. The rest of the dictionaries can be powered off to reduce leakage energy
consumption.

Discussion

In order to select the best algorithm for the purpose of this Master Thesis, the
mentioned candidates have been implemented in Python. To measure their perfor-
mance, different Java programs included in the JOP project have been compiled
for testing: benchmark, dsp, lego, libcsp, sms and tal. Then, this source code has
been compressed and decompressed to verify the correct behavior.

Many related works do not include the dictionary size when reporting the CR
of the compression algorithm. This measure is unrealistic, as dictionary size cannot
be negligible [20]. For this work, the size of the dictionary has been included in
the compressed size, as it gives a more realistic perspective of the CR. Figure 2.6
shows the compressed code size and dictionary size for the algorithms listed. In this
figure, the libcsp benchmark has been used. a) represents per-byte compression,
b.1) per-two bytes compression,b.2) per-two bytes compression,c) per-instruction
compression, d) isomorphic compression, and e) hybrid compression. As it can be
seen from the figure, original code size is 44 KB. 1-Byte Huffman compresses the
size to near 31 KB, with a negligible dictionary size of only 255 entries. Above
1-Byte Huffman, the effect of dictionary size can be observed. Although achieving
higher code compression than the 1-Byte Huffman, the dictionary size offsets the
final result. For 3-Bytes Huffman, the dictionary size even causes a CR higher than
1. Instruction encoding achieves similar code compression as 2-Bytes Huffman, but
with a significant smaller dictionary size. Isomorphic encoding performs slightly

Code Compression 23

14
1.35
13
1.25
12
115
11
1.05

i

0.95
0.9
0.85

0.8

0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
03
0.25
0.2
0.15
0.1
0.05
o]

Average BenchMark dsp lego libcsp oebb

CR

B 3-Byte Compression B 2-Byte Compression
B 1-Byte Compression Instruction Compression

B Isomorphic Compression B Hybrid Encoding

Figure 2.7: Huffman Encoding Compression Ratio Results

better, together with the proposed hybrid approach, which obtains the best results.
Figure 2.7 shows the compression ratio of the listed approaches when compressing
the test applications. As it can be seen, 1-Byte compression achieves similar CR
as the instruction compression. As predicted by [22], isomorphic compression
obtains better CR than the full instruction compression. Lastly, the proposed
hybrid compression algorithms achieves the highest CR results, with an average
CR of 0.64.

An important characteristic of the compression algorithm to be implemented
is the simplicity of the hardware implementation. Having a complete compression-
decompression flow integrated on the processor is one of the goals of this Master
Thesis. For this reason, although more complex approaches achieve higher CR,
simple hardware implementation is a crucial feature of the selected algorithm.

Among the presented algorithms, the simplest hardware implementation cor-
responds to the 1-Byte Compression. The proposed hybrid approach achieved the
highest CR, however it needs an extra decoding stage to select the dictionary. The
same issue is present the isomorphic compression implementation.

As an addition, an important goal of this Master Thesis is to investigate and

24 Code Compression

0.83

0.82

0.81

0.8

0.79

0.78

0.77

0.76

0.75

CR

~
]

0.74
0
Q
0

Q.
0.
0.
0.
0.
0.65

Average BenchMark dsp lego libcsp oebb

~
fiary

~

[=x]
=]

[=)]
=]

[=2]
~

[=2]
(=2}

[=2]

M Individual Dictionary CR ® Lumped Dictionary CR

Figure 2.8: Single Dictionary vs. Lumped Dictionary Results

implement energy reduction techniques independently of the base processor. As
shown before, the hybrid compression technique exploits redundancy in variable
length ISAs, such as the JVM bytecode set. However, the fact that 1-Byte com-
pression is independent to the ISA (it treats the memory as a simple byte stream)
is a big advantage.

For these reasons, the technique chosen to be implemented in this Master
Thesis is the per-Byte Huffman compression.

Single Dictionary vs. Lumped Dictionary

When decompressing instructions, a dictionary containing the codeword-symbol
pairs is needed. This dictionary is, in principle, specific for each application: during
compression phase, the number of occurrences of each symbol is annotated. After
this, codewords are generated in such way that the most frequent symbol receives
the shortest codeword and so on.

The aim of this Master Thesis is to develop a solution that can be integrated
in any processor and to reduce the energy consumption caused by the memory.
However, this conflicts with the previous point, as the hardware decompressor
cannot be modified once it has been manufactured. This issue would lead to a

Code Compression 25

situation where a hardware decompressor with its own dictionary would have to
be manufactured for each application.

For this reason, the feasibility of generating a lumped dictionary, in a sense
of a dictionary with the average occurrences of bytes across several applications,
has been studied. In order to investigate this solution, different applications were
compiled, and a dictionary was generated gathering byte occurrences in all of them.
Then, the test applications were compressed with the lumped dictionary, and the
results were compared to the CR achieved with an individual dictionary for each
application. Figure 2.8 shows the results. As it can be seen, the worsening of
the lumped dictionary CR is negligible, being lower than 0.3% of the compression
ratio.

Regarding these results, it has been concluded that the generation of a sin-
gle dictionary that covers all applications is feasible, and has a negligible impact
over the CR. This allows the manufacture of a single processor with a hardware
decompressor integrated, without any need of reconfiguration.

2.1.3 Conclusion

In this section, the theory behind code compression has been presented. After
presenting a brief study of the state-of-art code compression techniques, statistical
code compression has been chosen.

Huffman code compression can be implemented in several ways. Some of them
have been presented, including a hybrid technique, which has been proposed to
compress Java code. These approaches have been compared in terms of perfor-
mance, complexity and ISA dependency. The big dependency of the final CR
on the dictionary size has been shown. While the proposed hybrid solution has
achieved the best CR results, per-Byte Huffman compression has been chosen as
the technique to be implemented in this Master Thesis. The reason for this has
been the good CR results and low complexity of the hardware implementation.

2.2 Implementation

In this section, the code compression technique is implemented. Firstly, a system
overview containing the code compression flow is presented. Second, the offline
compression process is described. Thirdly, the hardware decompressor implemen-
tation is detailed. Lastly, the integration with JOP tool chain and the issues
related to it are described.

2.2.1 Code Compression System Overview

Figure 2.9 depicts the high level view of the code compression process. Green col-
ored blocks represent software processes, blocks surrounded by a red line represent
output files to the system and the remaining blocks are intermediate products.
As described in section 2.1.2, a single Huffman tree is generated from a code
profiling process of several applications. For this purpose, source applications, de-
picted as Source App, are compiled and the respective native codes are generated.

26

Code Compression

These native codes are composed of the native opconds, operands, and ISA specific
features, such as symbol tables, static references, etc.

II1

Source Source
App 1 ese | AppN
Target l l
Source Compiler Compiler
Compiler Native Native
l Code 1 esse | Code N
Native \/
Target
e Huffman Tree
Generation
Huffman Dictionary
Compressor Generation
Compressed II
Instructions
l LUT HW
Generation Decompressor
A Generation
Patching
Memory ’
Tnit files Hardware Decompressor

Figure 2.9: Code Compression System Overview

A Huffman Tree Generation Block generates the Huffman tree based on the
occurrences of the different symbols across N applications’ compiled code. This
tree is then used by the Dictionary Generation block. The resulting Huffman

dictionary is use in three different processes:

e Huffman Compressor. This block performs the compressed code gener-

Code Compression 27

ation of the target application. It receives the native target code, which
has been compiled from the target source. Then, this native target code is
compressed by using the generated lumped dictionary

e LUT Generation. During decompression, the dictionary must be held in
order to detect codewords and substitute them with the original symbols.
This dictionary is implemented as a LUT, which is automatically generated
from the dictionary. As a result, a LUT VHDL File can be incorporated to
the targeted processor.

¢ HW Decompressor Generation. Some parameters dependent on the
resulting dictionary are needed for the hardware decompressor, as shown in
section 2.2.3.

As detailed in section 2.2.2, a process called Address Patching is needed in
order to update the static reference information of the jump addresses, method
invocations, etc. This block combines the new compressed instructions with the
static references and symbols from the Native Target Code. As a result, the
main memory contents are generated, and an initialization file for the memory is
generated.

The code compression flow has been specifically designed to be able to com-
press any application without modifying the underlying hardware. For this reason,
the complete flow is not intended to be run every time a new application needs
to be compressed. Instead, the dictionary is generated only once based on the
profiling of different test applications. With this information, the hardware can be
generated, integrated and manufactured. Then, the code compression generation
flow (which corresponds to the leftmost branch of Figure 2.9) can be run whenever
the target application needs to be recompiled. This allows the manufacture of a
general purpose low-power processor and the integration of the compression flow
software with the compilation toolchain.

Hardware Implementation Selection

Huffman coding is a well-known compression technique. For this reason, there
are several hardware implementations. Depending on the system constraints, they
may aim for higher throughput, or higher logic utilization.

As a first approach, Huffman decoders or, more generally VL.C decoders can
be classified into two groups: serial decoders and parallel decoders.

Serial decoders are based on the traversing of the Huffman tree, taking the
right hand child node when decoding a ’1’ in the bitstream, and the left hand
child node when decoding a ’0’. When a tree leaf is reached, the decoding process
of the codeword has finished. This approach has the following disadvantages:

e It requires storing the entire Huffman tree. This can suppose a significant
memory overhead as the number of encoded symbols increases.

e It needs several clock cycles to decode a single symbol: as decoding requires
traversing the whole tree, in worst case decoding a symbol will take the
same amount of clock cycles as number of levels the tree has.

28 Code Compression

As an advantage, storing the tree in a memory allows the Huffman tree to be
reconfigured if it is needed. However, as shown in section 2.1.2, using a single
dictionary avoids this problem with insignificant worsening on the compression
ratio.

Parallel decoders are based on shifting the bitstream serially and a table look-
up operation. Thus, a LUT containing the codeword-symbol pairs will generate
an output when a match between the input codeword and a coded symbol occurs.
This approach requires more logic, as a LUT has to be implemented to perform
the decompression process. However, as it is shown in 2.4, the overhead of this
table for the 1-Byte compression is negligible. As an advantage over the serial
approach, parallel decoders can offer a much faster decompression rate, up to one
symbol per clock cycle.

Instructions are decompressed when required by the core block, which means
that the whole system will wait for the code to be decompressed. This fact makes
the decompression process’ throughput an important parameter. Significantly
increasing the clock cycles required for a processor to perform a certain task will
increase the energy consumption. On the other hand, the parallel decoder has a
larger power consumption.

However, as it is shown in 2.4, the power consumption overhead of the pro-
cessor is negligible. This makes parallel decoder a more energy efficient approach,
as stalling the processor every time a new instruction needs to be decoded has a
larger impact on the energy consumption of the system.

2.2.2 Offline Compression

In this section, the offline compression stage of the system is covered. Python
language has been used to implement the software blocks.

Huffman Tree Generation

This block generates the Huffman Tree as a previous step to generate the code-
words. In order to do so, the following steps are followed:

1. The source files are read and a list is created with symbols from 0 to 255.
2. The occurrences of each symbol in the source files are annotated.

3. The list of symbols is ordered, starting with the symbols with lower fre-
quency.

4. The two nodes at the top (the ones with lower frequency) are combined to
form a parent node, with a frequency that equals the addition of the two
nodes’ frequencies. The two original nodes are removed from the list, and
the new parent node is added to it.

5. Steps 3 and 4 are repeated until only one node remains, which becomes the
top node of the tree

Code Compression 29

Dictionary Generation

The Dictionary Generation block receives the Huffman tree and generates a dic-
tionary based on it. In order to do this, the tree is traversed until a leaf (an ending
node) is reached. Everytime a right hand branch is taken, a logical ’1’ is added to
the codeword, and a logical 0’ everytime a left hand branch is taken.

As a result, a dictionary containing symbol-codeword pairs is generated.

Huffman Compressor

This block substitutes the symbols of the target file with the codewords from the
dictionary. This generates a continuous compressed bitstream. In order to fit the
stream into the memory width, it is partitioned into 32-bit words.

Due to the fact that Huffman encoding is a variable length encoding, the start-
ing positions of the compressed instructions is unknown. Furthermore, they do not
necessarily start at word boundaries. However, certain instructions’ locations must
be at word boundaries and its addresses have to be known by the program, allow-
ing branches and function invocation. For this reason, the resulting stream has to
be formatted. This introduces an offset, as certain locations contain bit padding
in order to locate desired instructions at word boundaries. Figure 2.10 illustrates
this process.

In Figure 2.10, Branch-targeted instructions are instructions which need to
be fetched from any other section of the code (for example, because they are the
branch destinations or the starting instruction of a function). In order to locate
these instructions at addressable boundaries (word boundaries in this implemen-
tation), these instructions have to be detected first. Then, a padding consisting of
'0’s is introduced in the bitstream.

This padding introduces an overhead that worsens the compression ratio. How-
ever, this overhead is negligible, adding less than 0.3% to the overall compressed
size.

Address Patching

In almost every programming language, instructions that modify the program flow
exist. These instructions are branches, function calls, method invocations, etc. In
order to compute the branch destination, symbol tables containing destination
addresses are implemented in different manners.

As introduced before, code compression modifies the addresses of the instruc-
tions, making an update of these references across the program necessary. In 2.2.4,
the address patching process for JOP and Java programs is described.

LUT Generation

Hardware decompression requires a translation from codewords to the original
symbols. This hardware dictionary can be implemented in several forms. In this
Master Thesis, it has been implemented as a LUT. For this reason, a Python
script has been developed to automatically generate the VHDL file for the LUT
depending on the generated dictionary. This LUT contains the codeword-symbol

30 Code Compression

Compressed Memory Compressed Memory
without Padding with Padding
0x00 0x00
0x04 0x04
0x08 0x08
0x0B 0x0B
0x0F

Branch-targeted instructions

Non branch-targeted instructions

Padding instructions

Figure 2.10: Instruction Padding Process

pairs, plus the codeword length for each pair, as this information is needed for the
hardware decompressor.

2.2.3 Hardware Decompressor

In this section, the hardware decompressor implementation is detailed. This pro-
cessor is automatically generated in the flow described in section 2.2.1. The inte-
gration of this decompressor in the JOP processor is described in section 2.2.4.

First, the high level architecture is shown. Then, blocks of the system that
require further explanation are detailed.

Architecture Overview

Figure 2.11 shows the high level architecture of the Huffman decompressor. It is
composed of the input registers Dy and Dy, a barrel shifter, a LUT, an accumu-
lator, a modulo operator, a simple aggregator and the FSM. FFs are represented
as D in the picture. The input to the system, data_ in, is stored at the input reg-
ister Dy. The width of this signal equals the maximum codeword length, namely
mazxCodeword. D1, a register of the same size, is connected to the output of Dy.

Code Compression 31

The concatenation of both D; and Dy outputs are the input to a barrel shifter,
which selects mazxCodeword bits from the input. The output of the barrel shifter
is connected to the LUT, which contains the codeword-symbol pairs. The LUT
has two outputs, one outputs the decoded symbol (lut_out, which in our system
is 8 bits wide) and the other outputs the length of the detected codeword. This
length, namely len_out, is accumulated and used as selector at the barrel shifter.
The data__out width is 4 bytes, as the system works over 32 bits data. However,
the symbols being decompressed are 1 byte long. For this reason, 4 FFs at the
output register the LUT output in order to form a system word.

Figure 2.12 shows 6 decompression cycles as an example to describe the system
behavior. In this figure, D; and Dy contents are represented. In this particular
case, the maximum codeword length is 17 bits. Thus, both D; and Dy are 17
bits-wide registers. The blue square selecting bits at the register represent the
barrel shifter output.

During the first cycle, the entire D, register is selected as an input to the LUT.
As indicated in the right hand side of the figure, symbol 00 is detected. Thus, the
LUT will output the corresponding symbol, and the accumulator will increase by
a value of 2. This moves the barrel shifter 2 positions to the right. During clock
cycle number 2, the same procedure is repeated: this time the codeword 01’ is
detected and the barrel shifter changes the selected bits.

The same behavior occurs until the 5th clock cycle. This time, the amount of
accumulated shifts (12 positions) plus the shifts of the new detected codeword (7
positions) exceeds the register length. At this point, new data is loaded into Dy,
and the data in Dy is transferred to D;. In order to properly account for the last
accumulated shift, a modulo operation is performed over the required translation.

FSM

In this section, the FSM of the Huffman decompressor is explained. Figure 2.13
depicts a simplified state machine of the system. The different states are explained
as follows:

e idle: During this state, the system waits for the enDecoding signal to start
decompressing.

e preRead: The system reads the first fragment of data from the bitstream.
For this reason, it generates a memory read request, and waits until the
data is ready. This status is controlled by the signal mem__ valid.

e read: During this state, the second fragment of data is requested. The
previous stored data in Dy is transferred to Di;. When the data for the
register array Dy is ready, the system starts decoding.

e decode: During this state, the decoding blocks are enabled, and the data
available in D; and Dy is decompressed. When the barrel shifter exceeds
the maximum codeword length, it returns to the read state, as new data
needs to be fetched. In case no more decoding is needed, it returns to idle
state.

32

Code Compression

data_in
I k.
D, Dy
g Barrel Shifter P Modulo
[4
+ D
LUT
| len_out
lut_out
. ' N
D D D D
Aggregator
data_out

Figure 2.11: Huffman Decompressor Architecture

D,

Dy

|00011101010110010|§

11001010110101010

00011101010110010

i 11/001010110101010

0001]1101010110010

1100/1010110101010

00011101010110010

1100101011/0101010

000111010101(10010

11001010110101010

11001010110101010

:01011011100010100

Figure 2.12: Huffman Decompressor Behavior

[SS]

S = W

Clock Cycle : Codeword
1:
101
: 110101
101
11001011
: 00

00

Code Compression 33

The FSM also generates the signals to control the word forming stage which
appears at the bottom part of figure 2.12. When the full word is composed (4 bytes
are decompressed) a signal is asserted, which informs that a new 32-bit word is
ready to be read.

enDecoding="1’

enDecoding="0’ @

preRead mem__valid=’0’

enDecoding = (0’ .
mem_ valid="1’

shift >= maxCodeword

@ mem_ valid="0’

decode

mem_valid="1’

shift < maxCodeword and enDecoding = ’1’

Figure 2.13: Simplified FSM of the Huffman Decoder

2.2.4 Integration with JOP Toolchain

JOP processor has been used as the base processor to verify the proposals of
this Master Thesis. However, integrating a complete new system into an existing
processor entails some issues that require modifications on the ideal flow.

Both the integration process and the issues related are described in this section.
First, the hardware integration of the hardware Huffman decompressor is detailed.
Then, the issues and modifications in order to integrate the system are presented.

Hardware Integration

Figure 2.14 shows the high level view of the integrated decompressor. The decom-
pressor top (including an FSM, the huffman decoder, and an asymmetrical FIFO)
has been integrated between the memory controller and the memory interface.
JOP main memory is composed of the static references and method pool sec-
tion, the code section, and the heap. However, only the code section is compressed.
For this reason, it is necessary to integrate the decompression engine without mod-
ifying the normal behavior of the processor: reads and writes to other sections of

34 Code Compression

Decompressor Top

addr_out
rd_addr
FSM
Mem Mem
Controller Interface
FIFOin
huff out " Asymm
validln FIFO
data_out B
P I mem_out

Figure 2.14: Huffman decompressor integration

the main memory need to be bypassed. For this purpose, two multiplexers bypass
the read address signal rd_addr from the memory controller (plus some other
control signals) and the output data mem_ out from the memory interface.

Before the integration of the decompressor, the read protocol between the
memory controller and the memory interface can be described using the following
example:

1. When a single data read or write is requested from the core block, the
memory controller outputs the address in rd__addr, plus a flag to indicate a
word transaction request.

2. The memory interface receives the request and the address and then pro-
ceeds to read the requested word from the memory.

3. An internal counter in the memory controller is started, as the clock cycles
required to read from the external memory (which is device dependent) is
known. When the time expires, the data is read from the mem_ out signal.

When more than a single word is required, for instance at a method invocation,
the proceeding is similar. In this case, the memory controller holds the starting
address and the size of the method invoked. Then, the memory controller generates
single word requests to the memory interface (with incrementing address) until the
full method is loaded.

The memory controller has been left unmodified when integrating the decom-
pressor. Thus, during method invocation, the uncompressed size and the starting

Code Compression 35

address of the methods are held in the memory controller. The following steps
describe the system behavior when a method is requested:

1. In idle state (no code is requested), the read address and control signals
that are generated by the memory controller are bypassed to the memory
interface. In the same way, the output signals from the memory interface
(including the data signal coming from the memory) are bypassed to the
memory controller.

2. When a Java method invocation is performed, the decompressor is acti-
vated. The method invocation is detected by reading the internal state of
the memory controller when a cache miss occurs. At this moment, the mem-
ory outputs the starting address of the method in rd_addr. This signal is
registered and will be used as a base address to read the entire method.

3. The compressed size of the requested word in the main memory is not known
beforehand. For this reason, the read requests to the memory interface are
controlled by the FSM of the decompressor. The decompressor will gener-
ate as amount of read requests as are needed in order to fulfill the word
request by the memory controller. These read request are generated at the
asymmetrical FIFO, as explained in the assymetrical FIFO subsection. Con-
secutive word reads from the memory are performed with the accumulator
en__acc, that increments the base address registered during the first read.

4. When the first word is issued to the memory controller, the system waits
for another request. If the request occurs, the rd_addr is not registered
anymore, as the correct read address is held internally. In case there is no
request (as the full method has been loaded), the decompressor engine is
turned off.

Asymmetrical FIFO

The data input to the Dy register has a specific width, maxCodeword, which is
calculated during hardware generation, as shown in Figure 2.9. However, memory
data widths are commonly 16-bit or 32-bit wide. For this reason, an asymmetrical
FIFO with different input and output widths has been implemented.

Figure 2.15 shows the FSM that describes the behavior of the FIFO. The
asymmetrical FIFO stays on idle state until a read request from the Huffman
decoder occurs. As shown before, this request is performed when new data has
to be issued to the Dy register. This FIFO is internally implemented as an array
of registers and a barrel shifter. rSize represents the amount of bits that have
been requested, and wSize the amount of bits that are stored in the FIFO. If a
request occurs and there are not enough bits to fulfill the requirement (as signaled
by rSize>=wSize) a word read request is generated at the FIFO.

This word request increments the accumulator at the top module, and a read
request is sent to the memory interface. When the data is read, as represented by
a logic '1” at mem__wvalid, the FIFO outputs the requested fragment of the stream
and it is written into Dy, as described before.

In the implemented system, mazCodeword is 16 bits. For this reason, for every
word that is read from the main memory, the Dy register can be loaded twice.

36 Code Compression

rSize>=wSize

rEn="0’ @

)

readMem mem_ valid=’0

mem_ valid="1’
rSize<wSize

writeReg mem_ valid="0’

Figure 2.15: Asymmetrical FIFO's FSM

Clocked vs Handshaking memory protocol

The communication protocol between the memory controller and the memory
interface is originally based on timing: as the memory read delay is known, the
memory controller internally activates a timer when performing a read request.
After timeout, the data is read at the input data port of the controller.

This fact supposes an issue when integrating the hardware decompressor. As
the length of the words in compressed memory is unknown, a variable delay is
introduced in the communication path between the memory controller and the
memory interface. For this reason, it has been necessary to rewrite the communi-
cation protocol between the mentioned blocks. In order to allow a variable delay
during read request, a handshaking protocol has been implemented. This hand-
shaking protocol can be held in wait state during decompression until the required
word has been decompressed.

File processing in JOP

In order to perform the whole code compression flow, the native code has to be
obtained in a byte-per-byte format. JOP code compilation flow results in a .jop
file which is loaded in the processor during initialization. The .jop file consists of:

e Application size and code size
e Static and reference fields
e Code section

e Special pointers

Code Compression 37

e Variable-length string table

e (Class information and method table including: code start, code length,
constant pool pointer and arguments’ size for every method.

A Python script has been developed to process this file format and perform the
following tasks:

1. Extract code section.
. Transform 32-bit data into 8-bit data.
. Generate the Huffman tree and dictionary.

. Compress the code.

. Detect branch addresses and perform bit padding.

2

3

4

5. Transform 8-bit compressed stream into 32-bit data.

6

7. Update application size, pointers and static references.
8

. Regenerate the .jop file format to integrate it into the JOP software toolchain.

JOP startup modification

In order to obtain the size of the external memory, JOP has a startup method
that performs native reads and writes across the external memory. However, this
startup method conflicts one of the assumptions taken during system integration:
the processor only performs read operations inside the code area, never write op-
erations. For this reason, while performing reads to the compressed area, the data
was being corrupted. In order to solve this problem, the Java startup procedure
has been rewritten.

Java-implemented bytecodes

Although JVM bytecodes are mostly implemented in microcode (as described in
section "Bytecode translation"), the most complex ones are implemented in Java.
However, this feature causes an issue when integrating the decompressor. As
Huffman compression consists of variable length encoding, the location of non
branch-targeted instructions on the memory is unknown. This fact should not
suppose a problem, as only branch-targeted instructions are accessed in branches
and method invocations. However, the commented specific feature of JOP contra-
dicts this principle. The issue can be described as follows:

1. When the system reaches one of these bytecodes, for instance multinewarray,
a special flag is generated at the microcode fetch stage that informs the
system that the bytecode is implemented in software.

2. The system checks if the method implementing the bytecode is located in
the method cache. If there is a cache miss, a cache refill is requested.

3. The method is decompressed, and placed into the method cache.

38 Code Compression

4. Inside the method implementation, there is a native read back to where the
method invocation was performed. The goal of this native read is to load
the operands of the multinewarray instruction. However, as the bytecode is
located inside a method (and thus, it is not a branch addreasable instruction)
the original instruction cannot be found and the system crashes.

For this reason, the feasibility of having uncompressed methods has been stud-
ied. For this reason, the methods containing these problematic bytecodes were left
uncompressed on the first section of the code region. Results has shown that the
usage of these bytecodes is rare and thus, the amount of methods left uncompressed
is negligible.

As a result, two different code sections exists. During method invocation, a
register containing the uncompressed region boundary is checked. Depending on
whether the required method falls into the compressed area or not, the decom-
pressor will be activated or not.

2.3 Verification

In this section, the verification process of the proposed system is described. First,
a formal verification has been realized in an FPGA. Then, in order to obtain power
consumption and area results, the ASIC flow has been performed.

231 FPGA

The full processor has been implemented in a Xilinx Nexys-2 FPGA. First, the base
processor has been tested. Then, the code compression engine has been integrated
into the base processor. Implementing the full processor in an FPGA has carried
out some modifications on the system that are described in this section.

16-bit external memory

The external memory’s data width is 16 bit in Nexys-2 FPGAs, which makes the
addressing mode of the memory different from the 32-bit system. Furthermore,
the internal state machine of the memory interface is different from the one used
for the behavioral system integration.

Several modifications have taken place in order to adapt the memory width
from 32-bit to 16-bit. In order to debug these modifications on the final processor,
Chipscope has been used.

External memory initialization

The external memory is initialized through a serial port. This process is integrated
into the JOP toolchain: once the main memory has been loaded, the processor
is booted and the system starts. The standard output from the processor is the
serial port, which is connected to a software client in the computer.

However, due to modifications to the .jop file during code compression, the
software client crashes after the memory initialization. In order to overcome this
issue, the serial downloader program has been modified and recompiled.

Code Compression 39

Testbench

A testbench has been written to verify the correct functionality of the code com-
pressed processor. For this reason, an application containing object initialization,
floating point operations and standard out print instructions have been developed.
In order to check the full integration of the decompressor with other features of
JOP, the Java garbage collector has been triggered intentionally.

2.3.2 ASIC

In order to estimate the power and area overhead of the code compression engine,
the full ASIC flow has been performed. ST Microelectronics Low Power 65nm
HVT libraries have been used.

The original system is intended to be implemented in an FPGA, as several
vendor specific primitives are used in the hardware description. For this reason,
porting JOP to the ASIC flow has carried out some issues described in this section.

On-Chip Memories

On-chip memories are implemented in JOP by using vendor specific primitives.
In order to design the ASIC, these memories have been substituted by the ST
memories available. For this purpose, a profiling of the required memories has
been performed first. Then, available memories at the department have been used
to obtain the required size and behavior of the Xilinx memories. This has involved
the design of wrappers that combine several memories in different manners to
match the width, depth and timing of the required memories.

In some cases, larger memories than the required ones have been used. This
has lead to unused memory cells, which however contribute to the power consump-
tion. For this reason, the power profiling performed in 1.2.6 can be considered as
pessimistic.

System Internal Reset

Initializing the system to a known state after reset is an important task to ensure
proper functionality. In JOP, this is achieved by generating an internal reset after
FPGA’s programming process. By using Xilinx’s register initialization primitives,
an internal reset is asserted during a certain amount of clock cycles.

However, this functionality is not supported by the ASIC design flow, as there
is no support for register initialization as common FPGA vendors do. For this
reason, the processor has been modified to be initialized with an external reset,
which is properly generated at the testbench.

On-Chip Memory Initialization

Another important issue when porting the design from the FPGA to the ASIC
flow appears when the original system contains on-chip memory initialization prim-
itives. This sort of instructions allows the memories to hold an specific value at
the output during the FPGA programming process, regardless the input signals.

40 Code Compression

g 4

Mem Block 1 Mem Block 2

rdAddr dout rdAddr dout

Figure 2.16: X-Propagation issue during system initialization

This allows initializing the system at a known state, even when the input address
signals to the memory are not stable.

However, these primitives are not supported by the ASIC design flow. ST
memories have conservative behavioral models which generate 'X’ values when,
for example, a non-initialized address of the memory is accessed. This "X’ value is
then propagated across the circuit. When the circuit contains feedback paths, the
"X’ propagation issue impedes circuit initialization.

Figure 2.16 describes the problem. In this figure, two memory blocks, namely
Mem Block 1 and Mem Block 2 are connected via some combinational processes.
After system initialization, the first memory block holds an X’ at the data output,
as the read address is not stable. Comb. 1 is a combinational process which has as
an input dout plus other signals. However, after synthesis, the generated netlist’s
simulation will propagate the "X’ from the input to its outputs, for instance the
read address of the memory block 2. For this reason, Mem Block 2 will output an
invalid data signal, which is is fed back to Mem Block 1.

In order to overcome this issue, a memory initialization primitive’s behavior is
implemented as shown in Figure 2.17. In order to avoid X-propagation during ini-
tialization, multiplexers have been implemented in every memory’s output. These
multiplexers hold a stable and known value during one clock cycle after system’s
general reset.

Memory corruption during cache miss

Another issue regarding ST memories’ behavioral modeling occurs when a memory
address which has not been initialized is accessed. In JOP, this occurs when an a

Code Compression 41

Mem Block 1 Mem Block 2

rdAddr

rdAddr dout dout

Figure 2.17: X-Propagation solution during system initialization

cache miss happens. During the method load, there are several clock cycles where
the read address points to the starting cache address of the new method. Due to
the fact that this method is not loaded yet, the memory will display ’X’. This "X’
does not represent an unstable signal, but an unknown output. However, as shown
in Figure 2.16, the data output is usually connected to the read address of any
other memory block. ST memories’ content are deleted under the circumstances
of an ’X’ value at the address during the rising edge of the system clock. This
behavior is pessimistic, as X’ in this case does not mean unstable signal but
unknown value. This fact would not have to cause any issue in the system as the
output value of the second memory is not being used. Yet, the memory contents
under these circumstances are deleted, crashing the system.

In order to overcome this issue, extra logic has been added to the system to
detect these situations (for example, during cache miss) and multiplexers are used
to hold valid signals to prevent memory corruption.

Multi-clock design constraints

The specific implementation of the pipeline stages is not presented in this Master
Thesis, as it is not part of the scope. However, it is important to mention that
the execution stage, namely Stack in Figure 1.2 is based on a multi-clock circuit.
To avoid the need of a write back stage (with the overhead and data hazards that
it implies) a true dual port RAM is implemented as stack memory. In this block,
data is read on the rising edge of the clock, and it is written back on the falling
edge of the clock. This fact implies generating a negated clock, issue that has to
be constrained during the ASIC flow to ensure proper timing analysis. For this
reason, specific instructions to generate the clock and analyze the timing have
been added to the design flow.

42 Code Compression

2.4 Results

Figure 2.18 shows an overview of the results achieved in this work. As it is de-
scribed in the following sections, the memory size and codeword transactions have
been reduced, while a small and negligible power, area, and delay overhead have
been introduced.

241 Power

An average size reduction of 28% of the instruction memory has been achieved,
which represents an average size reduction of 54 KB for the tested applications.
This average saving doubles the amount of memory integrated on-chip, which is
around 27KB.

Furthermore, the amount of instruction read cycles to the external memory
has been discovered to be reduced in almost the same amount as the CR (24%).
For this reason, power savings will also come from dynamic power reduction due
to a lower external bus activity.

The power overhead of the decompression engine has been discovered to be
negligible. It has supposed a power overhead of 1.6% over the entire processor,
excluding the external memory power consumption. Thus, considering the con-
tribution of the external memory, the overhead of the decompression engine will
become even smaller.

2.4.2 Delay

A negligible overhead on the system delay has been observed when running the
test applications. The reason for this is the usage of a method cache, which
enables reading the same method several times without activating the Huffman
decompressor the same amount of times. Even without cache, the extra cycles
added for decompression are negligible, and it is offset by the lower amount of
words that need to be read from the external memory.

2.4.3 Area

The integration of the decompression engine has added an on-chip area overhead
of 3.2%.

2.5 Porting Code Compression to other architectures

In order to port the code compression technique presented to other architecture,
some modifications have to be performed:

e Depending on the targeted architecture and ISA, the code block to be com-
pressed will be different. In Java, all the branches are produced locally inside
a method. Only during method invocations the program jumps to other lo-
cation out of the method. For this reason, the blocks to be compressed are
the Java methods. However, in RISC microcode branches are performed in

Code Compression 43

Target !
]
]

Processor Top Module

Decompressed Compressed
instructions. instructions

/ -28% Size
Decompressor
B Compressed Code

Ef

External Memory

(o]
=]
S
z
Fl|g||® 5

-24% Codeword Transactions

+1.6% Power

+3.2% Area
+0.2% Delay

Figure 2.18: Code Compression Results

a different fashion. Thus, in order to compress the code, the memory has
to be processed and all the branching destinations have to be considered as
delimiters of the compression blocks. Figure 2.19 describes this difference.
In this figure, a JVM code memory and a RISC code memory are shown. As
it can be seen, in the JVM memory the compressing blocks are the meth-
ods on themselves, as the branch addresses are the first instructions of the
methods. In RISC, code is processed to obtain the branch addresses. Then,
this addresses act as delimiters of the compression blocks.

e Address patching is performed in a different fashion depending on the code
structure. In JOP, addresses that have to be patched are static references,
parameters in the constant pool and method tables. This process differs from
RISC’ compiled code, where branch targets’ addresses have to be patched
after padding.

44

Code Compression

JVM code memory

RISC code memory

—methodl: ________
10x00: instr]1 i
10x01: instr12 i
10x02: instrl3 |
10x03: invoke method2 |

]

]

10x03: instr21 i
10x06: instr22 i
10x07: instr23 i

1

iOXOlZ mstr2
10x02: instr3

10x04: instrl4
0X05: instr2l
EUEUE:'EFST:FZT """"
10x07: mnstr23

[]
[]
1
[]
]
[]
10x03: jmp 0x06 |
[]
1
1
[]

Figure 2.19: JVM and RISC compression blocks

Chapter 3

Heap Partitioning and Power Gating

In this chapter, the second proposal is investigated and implemented in JOP.
Firstly, a short theoretical study of power gating is performed. Secondly, the
implementation process is detailed. Thirdly, the verification process is described.
Lastly, the results are shown and a short discussion on porting heap partitioning
to other architectures is performed.

3.1 Theory

One of the most efficient approaches to reduce the static energy consumption
in circuits is power gating [3]. As shown in (1.1), static energy consumption is
produced by the leakage currents. By turning off the power supply to an unused
circuit, a significant portion of the energy consumption can be removed.

Power on and off circuits is usually performed by using high-V7 transistors.
As these transistors present a higher threshold voltage, the leakage currents across
them are smaller in comparison to standard-Vr and low-Vp transistors. For this
reason, these power gating transistors are placed in between the circuit and the
power supply (or in between the circuit and the ground net), dramatically reducing
the leakage consumption.

The placement of these transistors carries some disadvantages. The main issue
regarding power gating is the additional energy overhead spent when waking up
the circuit. For this reason, power gating should only be used when a certain
block is expected to be on sleep state during a significantly large period of time.
Otherwise, continuously turning on and off a block can increase the overall energy
consumption. Furthermore, the extra clock cycles needed for the power supply to
be restored can also increase the energy consumption. Thus, a proper profiling of
the block utilization prior to implementing power gating techniques is needed.

One of the most leaking blocks in common processors are the memories. The
reason for this is the fact that, in a memory, only one word is accessed at most,
while the rest of the memory locations are leaking. For this reason, many tech-
niques aim to reduce leakage current in memories. This leakage energy consump-
tion is dependent on, among other other factors, the memory size. The larger the
memory size is, the higher the leakage consumption is.

In this master thesis, partitioning the heap portion of the memory into smaller
blocks and power gating unused memory blocks is proposed. Figure 1.8 shows

45

46 Heap Partitioning and Power Gating

© Virtwal | Virtual © Virtual | Virtual

Memory : Memory : Memory Memory :

: Code : i Code : : Code : i Code :
a) b) c) d)

Figure 3.1: Memory Fragmentation and Object Compaction

the proposed optimization. The idea is to turn on and off memory blocks as
there are live (reachable) objects stored in them. This figure, however, does not
show an important feature of the processor to make power gating feasible: object
compaction.

Figure 3.1 shows the object compaction issue. In this figure, the virtual mem-
ory of the processor in four different time instants is shown. This virtual memory
is divided into two sections: the code section and the heap section. A dotted line
dividing the heap section marks the boundary between the two physical blocks
that implement the memory.

In Figure 3.1 a), a small object is allocated in the heap (for example, an array).
Then, in b), more objects are allocated in the virtual memory. The allocation is
performed so that the ending address of this object is the starting address of
the following object (as marked by an allocation pointer). This way, empty spaces
between allocated objects are avoided. Figure ¢) shows the memory fragmentation
issue. After some portions of the memory are freed, unused regions of memory
appear between live objects. This issue is often referred as memory fragmentation.
As shown in the figure, memory fragmentation impedes power gating half of the
heap memory, although the total size of live objects can fit into a single block.

In order to overcome this issue, an object compaction process is needed. This
process eliminates fragmentation by compacting the live objects (or used regions
of the memory). Figure 3.1 d) shows the virtual memory layout after object
compaction. As it can be seen in the figure, this allows power gating half of the
heap memory, thus saving leakage energy of the unused region.

As mentioned in the beginning of this section, in order to achieve an en-
ergy consumption improvement, a careful usage profiling has to be performed. In

Heap Partitioning and Power Gating 47

[26], an investigation and profile of the heap footprints in several applications for
embedded processors is performed. [26] shows several results that support the
assumptions made in this proposal.

First, it is shown that heap energy constitutes 39.5% of the overall energy on
the average for the selected applications. From that number, 75.6% of the heap
energy is due to leakage. Thus, powering down unused regions of the heap will
have a large impact on the overall energy consumption.

Second, a heap memory footprint study of several applications shows an ir-
regular memory usage profile. This is, there are time intervals where most of the
heap memory is used and intervals where only a small region of the heap memory
contains live objects. For this reason, partitioning the memory into blocks and
dynamically power gating them may be a effective energy reduction approach.

Third, it shows that the energy overhead due to the power gating logic and
the power restoration delay of the heap memory blocks are negligible, being lower
than 0.1% of the overall energy consumption.

For these reasons, memory partitioning and power gating seems to be an effi-
cient approach to reduce the energy consumption in processors.

3.2 Implementation

In this section, the implementation of the memory partitioning and power gating
and its integration to the JOP flow is shown.

3.2.1 Dynamic Memory Power Gating Protocol

The information of live/dead objects, its sizes and locations is held at a software
level. However, power gating of blocks is performed at a RTL level, through the
assertion/de-assertion of control signals. In order to link the high-level knowledge
of the current memory layout and the low-level power control of the blocks, a
system protocol has been developed. This protocol can be described as follows:

1. A variable is held at software level containing the amount of memory allo-
cated, the heap size, and the block size.

2. During object allocation, the amount of memory available is calculated. If
the object fits in the available memory, it is allocated. If it does not fit, a
request to power on a memory block is requested.

3. The request is detected at RTL level, which proceeds to power on an extra
block. During this time, the pipeline of the processor is stalled. After the
memory has been powered on, the pipeline stall is removed.

4. The object is allocated normally.

The previous protocol describes the process of memory growth, when an object
needs to be allocated and powering on a memory block is needed. However, it may
happen that all the blocks are already powered on, and still extra space is needed.
If that is the case, the garbage collector, which empties the memory by deleting
unused objects is triggered as follows:

48 Heap Partitioning and Power Gating

1. A new object needs to be allocated. If there is not enough memory to
allocate it, the garbage collector is called.

2. During garbage collection, all the blocks are powered on. The GC collects
the dead objects as normally.

3. When the garbage collection finishes, and the live objects are compacted,
the unused memory blocks are powered off.

4. Lastly, the object is allocated normally. In case there is not enough available
memory, a memory grow is requested.

3.2.2 Integration with JOP toolchain

The integration of the previous protocol in the JOP toolchain has carried out both
software and hardware modifications.

Power Gating Protocol

Figure 3.2 depicts the communication protocol implementation in JOP. On the
left hand side of the figure, two pseudocode descriptions of the allocation method
(memAlloc) and the garbage collection (G Ctrig) are shown. Methods that generate
hardware flags (which can be detected at RTL level) are presented in bold letters.
allocPtr stands for the pointer to the memory when the object is going to be
allocated. obj is the object to be allocated. obj.size is the size of the object to be
allocated. memOn is the amount of memory which is powered on. heapSize is the
total heap size of a single semispace.
The memory allocation method can be explained as follows:

1. In case there is enough memory, the object is allocated.

2. If there is not enough heap size, the GC is called. Then, the object is
allocated.

3. If there is enough heap space to allocate the object, but there is not enough
powered on memory, a mem grow flag is generated until there is enough
powered on memory. Then, the object is normally allocated.

The Garbage Collection method can be explained as follows:

1. A GC flag is generated to inform the hardware system that the garbage
collection has been triggered.

2. The live objects are obtained.

3. The objects are allocated on the new tospace one by one. In case there is
not enough powered blocks in the new tospace, a mem grow flag is generated
until the object can be allocated. Then, the object is allocated.

4. A GC flag is generated again to inform the hardware system that the garbage
collection process has finished.

Heap Partitioning and Power Gating 49

SW HW

memAlloc(obj)

If(allocPtr+obj.size>memOn)
allocate(obj);
else
if(allocPtr+obj.size > heapSize)
GCtrig()
memAlloc(obj)
else
while(allocPtr+obj.size<memOn)
memGrowfFlag()
allocate(obj)

memGrowFlag

ts fs ts fs

ISt gcFlag

GCtrig()

gcFlag()
liveObjects = obtainLiveObjects() ts fs fs ts
for(obj in liveObjects)
If(allocPtr+size>memOn)
allocate(obj);
else
while(allocPtr+obj.size<memOn) 2 geFlag
memGrowFlag()
allocate(obj)
gcFlag()

fs ts fs ts

Figure 3.2: HW/SW Communication protocol in JOP

On the right hand side of the figure, the memory system behavior when the
software flags are detected is shown. ts stands for tospace, and fs stands for
fromspace. This figure can be explained as follows:

e When a memGrowFlag is detected, a memory block on the tospace is pow-
ered on.

e When the first gcFlag is detected, the fromspace and tospace are switched.
A single memory block is powered on the new tospace in order to start the
object allocation.

e When the second gcFlag is detected, the fromspace is powered off.

3.2.3 Hardware integration

Figure 3.3 depicts the hardware integration of the proposed system. As it can
be observed, it has been integrated out of the core pipeline, but on-chip. The

50

Heap Partitioning and Power Gating

Core Pipeline
_____________________________________ I
BC cache Microcode ROM Decode & Ex. |
Jump Table :
|
new(): I
. |
memReq : 4 :
1
1
1
1
1
1
_____________________________________ I
wait
Heap Memory
PG module
Bl B2
Power Gating
el Control Signals
B3 B4

Figure 3.3: Second Proposal Hardware Integration

behavior of the system can be explained as follows:

1.

The new method is invoked and loaded from the external memory to the
BC cache

. If there is not enough powered-on memory, the memReq bytecode is fetched

from the BC' cache memory and detected by the Power Gating (PG) mod-
ule. The Jump Table generates the microcode ROM starting address of the
bytecode implementation. Due to the fact that the Jump Table is a combi-
national LUT, the correct address is outputted in the same clock cycle.

The PG module generates a wait signal that impedes the fetching of the
nzt microinstruction of the Microcode ROM, which would make the system
fetch the next bytecode.

The block power on/off is performed by the PG module. This is achieved
by a signal that contains the number of blocks to be powered on and off.
This signal goes off-chip and controls the power gating transistors of the
memories.

Once the memory has been powered on/off (the amount of cycles depend
on the system and the technology) the wait signal is released and the nxt
signal is fetched from the Microcode ROM.

Heap Partitioning and Power Gating 51

6. the next bytecode from the BC cache is fetched, and the processor continues
normally.

As described before, the power gating process has been designed to be trans-
parent to the program. The bytecode flag is detected and the system is stalled
while the memories are being powered on. After the process has taken place, the
stall is released and the system continues with the next bytecode.

3.3 Verification

The system has been verified in a post-layout simulation in order to check the
proper functionality of the proposed optimization. For this reason, the following
steps have been performed:

1. An external partitioned memory behavioral model has been developed. In
this model, the unified original memory has been divided into two different
blocks: the code and static references section, and the heap. Then, the heap
has been divided into 8 blocks and the logic simulating the powering on/off
delays has been implemented.

2. A testbench that verifies the functionality has been developed. In this test-
bench, arrays are created in an iterative fashion. In every iteration, three
new arrays are allocated and the three previous arrays references are deleted.
This way, the previously allocated arrays become dead objects and will be
deleted by the GC.

The expected behavior has been verified: the processor requests the powering
on of a new block every time it is needed, and the whole system is stalled until the
block is waken up. Then, it allocates the object correctly. When the processor runs
out of heap memory, the garbage collector is triggered. The GC only reallocates
the live objects (the three last arrays) and the unused memory blocks are powered
off. Various testbenches with different sizes and behaviors have been developed to
verify the functionality in different corner cases.

3.4 Results
3.4.1 Energy

Powering off the fromspace between GC tasks reduces the static energy consump-
tion by 50%. In addition to this number, a variable energy saving is achieved
depending on the memory footprint of the application. Figure 3.4 depicts an
example.

In this figure, three different plots are shown. First, the virtual memory rep-
resents the actual amount of memory being currently used by the processor (as
seen from the software side). Unified-Heap memory represents the amount of
powered-on memory in the case no heap partitioning and power gating technique
is applied. Finally, powered-on memory shows the current amount of memory
which is powered considering a memory partitioned in 5 banks.

52 Heap Partitioning and Power Gating

Memory (B)
60000

50000 ======mm-mm—e———————ee e - - - B B TP

40000

30000

20000

10000

Virtual Memory [JJ] Powered-on Memory [} Unified-Heap Memory

Figure 3.4: Heap Partitioning Energy profile

In this particular application, only a small amount of virtual memory is being
used most of the time, while the rest of the memory is being unused, but leaking.
By power gating the unused regions of the memory, around 80% of the static
energy consumption is saved. When, at certain points, more memory is required
by the processor, more blocks are powered-on by the system. Once the GC has
been triggered, live objects are compacted and the unused regions of memory are
turned off.

For this reason, the proposed optimization reduces the static energy consump-
tion due to the memory by at least 50% because of the fromspace power gating,
plus variable savings dependent on the specific application targeted.

[26] gives optimistic results when applying the same concept in a similar envi-
ronment. However, the overhead and the dependency on the specific system cannot
be neglected. For this reason, further work needs to be performed in order to eval-
uate the energy savings that can be achieved when considering system-specific
overheads.

First, a proper application profiling has to be performed. Although the embed-
ded processing applications in [26] suggest that only a certain portion of the heap
memory is used at a time, further study has to be done to verify this assumption.

Second, the dependency of the energy consumption on the whole system has to
be incorporated. This includes a profiling of the system bus energy consumption,
the external memory parameters, etc.

Third, the power gating logic overhead cannot be neglected. As mentioned in
the introduction, powering on a block consumes a significant portion of energy.
This portion can even overhead the savings of the whole proposal if the frequency
of the powering on/off exceeds a limit.

Heap Partitioning and Power Gating 53

3.4.2 Delay

Delays are introduced when integrating the power gating system on the processor.
These delays are produced by the fact that some clock cycles have to be waited
for the supply power to be restored in a digital block. However, as suggested in
[26], this overhead is negligible.

The integration flow that has been proposed has achieved satisfactory results,
as the delay overhead has been mainly due to the powering on of the memory. The
combined process of generating the flag and stalling the pipeline has not added
almost any overhead to the system in comparison to the amount of clock cycles to
wait for the power restoration.

3.4.3 Area

As the control system is simple, the area overhead introduced is negligible, sup-
posing less than 0.1% of the area of the processor.

3.5 Porting Heap Partition to other architectures

In order to port the heap partition and power gating flow to other architecture,
some modifications have to be performed.

On the one hand implementing a compacting garbage collector in the targeted
processor is needed. As it has been shown, in order to efficiently power-off regions
of the memory, fragmentation has to be avoided. Although the Garbage Collec-
tor is commonly included in Java environments, not all the Garbage Collectors
compact the memory. For this reason, a compacting Garbage Collector has to be
implemented first in order to utilize the proposed technique.

On the other hand, a new flow to generate the flags has to be developed by
taking into account the specific characteristics of the targeted architecture. In this
case, native instructions in Java are compiled into microinstructions detected by a
hardware Power Gating block. However, specific architecture features may require
to modify the flow, for instance in case there is no free user-defined microinstruc-
tions available.

54

Heap Partitioning and Power Gating

Chapter 4

Conclusion

In this work, two optimizations that aim to reduce the energy consumption due
to the memory in processors have been proposed and evaluated.

Firstly, a code compression approach has been implemented. A fully working
flow which receives Java compiled code and compresses it has been designed. Fur-
thermore, it automatically generates the required hardware to decompress it on
the fly. As a result, an automatic tool that allows the user to reduce the memory
size and energy consumption of the desired Java application has been obtained.
The results achieved can be replicated by simply rerunning the tool having as an
input the desired application.

This flow has been verified in an FPGA. In an automatic fashion, the tool has
successfully compiled the Java code, the code has been compressed, the hardware
has been generated and synthesized on the FPGA, and the memory has been
loaded with the compressed code. After this, the processor has been booted up,
and has shown correct behavior, being able to perform the same tasks as the
processor without code compression. Finally, a 65nm ASIC has been designed in
order to measure the area and power overheads of the decompression hardware,
which have been discovered to be negligible.

As a result, around 28% code size reduction and 24% bus codeword transac-
tion reduction at almost no cost have been achieved. For this reason, the code
compression approach has been discovered to be promising in reducing the power
consumption in processors.

Secondly, a heap partitioning and dynamic power gating protocol has been im-
plemented. As a result, a method that successfully follows the memory utilization
profile in powering on and off banks has been obtained. This technique has been
capable of a 50% leakage power reduction, plus variable savings depending on the
memory footprint profile of the application. The area and power overheads have
been measured on a 65nm ASIC and discovered to be negligible.

95

56

Conclusion

Chapter 5

Further Work

In this chapter, different suggestions for further work are described.

e A ToT program profiling needs to be performed. As it has been seen in
this work, the program specific features can have a large impact on the
energy savings, as some parameters such as the optimal memory bank size
are dependent on the program profiling.

e In order to increase the compression ratio achieved by the code compression
approach, a different hardware decompressor can be implemented. The
hybrid compression approach proposed in this work achieved higher CR
than the per-byte Huffman, although hasn’t been selected to implement due
to the limited time available. For this reason, implementing more complex
decompressor engines will increase the energy savings and it is suggested as
future work.

e In order to obtain exact JOP power consumption numbers, the external
memory has to be implemented in hardware. In this work, external memory
power consumption has been estimated assuming a linear relation between
memory size and power consumption. However, exact power numbers have
to be obtained.

e The power gating circuits have to be implemented in order to measure the
real overhead introduced by this scheme. Dynamic power consumption due
to high frequency powering on and off can overhead the savings proposed.
For this reason, the power overhead introduced by the gating circuits has to
be studied.

o7

58

Further Work

References

1]

Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztidn Flaut-
ner, Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir, Vijaykrishan Narayanan,
"Leakage Current: Moore’s Law Meets Static Power," IEEE Computer, vol
36, pp. 68-75, 2003

Siva G. Narendra, Anatha Chandrakasan,
"Leakage in Nanometer CMOS Technologies," Springer US, pp 7-8, 2006

Nikhil Jayakumar, Suganth Paul, Rajesh Garg, Kanupriya Gulati, Sunil P.
Khatri ,
"Minimizing and exploiting leakage in VLSI design," Springer US, 2010

Anatha P. Chandrakasan, Robert W. Brodersen,
"Minimizing Power Consumption in Difital CMOS Circuits," Proceedings of
the IEEE, vol 83, no 4, April 1995

Kao, J.T., Chandrakasan, A.P.,
"Dual-Threshold Voltage Techniques for Low-Power Digital Circuits," IEEE
Journal of Solid-State Circuits, vol 35, pp 1009-1018, 2000

A. Keshavarzi et al.,

"Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS
ICs," Low Power Electronics and Design, International Symposium on, pp
207-212, 2001

A. Kaivan Karimi, Gary Atkinson,
"What the Internet of Things (IoT)) Needs To Become a Reality," Freescale
and ARM White Paper, June 2013

Harad Bauer, Mark Patel, Jan Veira,
"Internet of Things: Opportunities and challenges for semiconductor compa-
nies," McKinseyésCompany article, October 2015

Xiaosen Liu, Edgar Sanchez-Sinencio,

"An 86% Efficiency 12 muW Self-Sustaining PV Energy Harvesting System
With Hysteresis Resulation and Time-Domani MPPT for IOT Smart Nodes,"
IEEE Journal of Solid-State Clircuits, vol 50, no 6, June 2015

99

60

References

[10]

[13]

[14]

[17]

[18]

[19]

Shao-Yi Chien, Wei Kai Chan, Yu-Hsiang Tseng, Chia-Han Lee, V.Srinivasa
Somayazulu, Yen-Kuang Chen,

"Distributed Computing in IoT: Systen-on-a-Chip for Smart Cameras as an
Example," The 20th Asia and South Pacific Design Automation Conference,
pp 130-135, January 2015

JOP - Java Optimized Processor Webpage,
http://wuw.jopdesign.com
May 2016

Martin Schoberl,
"JOP: A Java Optimized Processor for Embedded Real-Time Systems," Tech-
nischen Universitdt Wien, PhD Thesis January 2005

Martin Schoberl,
"JOP Reference Handbook," 2009

Ning Ma, Zhuo Zou, Zhonghai Lu, Lirong Zheng, Stefan Blixt,

"A Hierarchical Reconfigurable Micro-coded Multi-core Processor for
IoT Applications," 9th International Symposium on Reconfigurable and
Communication-Centric Systems-On-Chip, 2014

"The Java Language and Virtual Machine Specifications,"
http://docs.oracle.com/javase/specs/#237601

Martin Schoberl,
"SimpCon - a simple and efficient SoC interconnect," Proceedings of the 15th
Austrian Workhop on Microelectronics (Austrochip) 2007

Ralph Wittig,
"Power-Efficient Machine Learning on Power systems using FPGA Accelera-
tion," OpenPOWER Summit 2016

Jacob Ziv, Abraham Lempel
"A universal algorithm for sequential data compression," IEEE Transactions
of Information Theory, vol 23, no 3, pp 337-343, 1977

T. Welch
"A technique for high-performance data compression," IEEE Computer, pp
8-19, 1984

Talal Bonny
"Huffman-based Code Compression Techniques for Embedded Systems," PhD
Thests, 2009

Y. Yoshida, B. Song, H. Okuhata, T. Onoye, I. Shirakawa
"An object code compression approach to embedded processors," International
Symposium on Low Power Electronics and Design, pp 265-268, 1997

S.J. Nam, I. C. Park, C. M. Kyung,

"Improving dictionary-based code compression in VLIW architectures," IF-
ICE TRansaction on Fundamentals of Electronics, Communications and
Computer Sciences, pp 2318-2324, 199

References 61

[23]

[26]

David A. Huffman,
"A Method for the Construction of Minimum-Redundancy Codes," Proceed-
ings of the IRFE, vol 40, issue 9, pp 1098-1101, 1952

Dimitris Saougkos, George Manis, Konstantinos Blekas, Apostolos V. Zarras,
"Revisiting Java Bytecode Compression for Embedded and Mobile Computing
Environments," IEEE Transactions On Software Engineering, 2007

X. Kavousianos, E. Kalligeros, D. Nikolos,

"Multilevel Huffman Coding: An Efficient Test-Data Compression Method
for IP Cores," IEEE Transaction on Computer-Aided Design of Integrated
Clircuits and Systems, vol 26, no 6, pp 1070-1083, June 2007

G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, M.Wolczko,
"Tuning Garbage Collection for Reducing Memory System Energy in an Em-
bedded Java Environment," ACM Transactions on Embedded Computing Sys-
tems, vol 1, no 1, pp 27-55, November 2002

C.J Cheney,
"A Nonrecursive List Compacting Algorithm," Communications of the ACM,
vol 3, pp 677-678, November 1970

LUN

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2016-526
http://www.eit.Ith.se

