Master’s Thesis

Efficient IPv6 Neighbor Discovery in
Wireless Environment

Dragos Neagoe
Antonios Pateas

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

“main” — 2016/11/20 — 14:43 — page 1 — #1

\ /

LUND ERICSSON

UNIVERSITY

Efficient IPv6 Neighbor Discovery in Wireless
Environment

Dragos Neagoe & Antonios Pateas
wirl4dne@student.lu.se & wirl4apa@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisors:
Jens A Andersson (EIT LTH)
Stefan Host (EIT LTH)
Samita Chakrabarti (Ericsson AB, San Jose)
Jaume Rius I Riu (Ericsson AB, Stockholm)

Examiner:

Maria Kihl (EIT LTH)

November 20, 2016

“main” — 2016/11/20 — 14:43 — page 2 — #2

Printed in Sweden
E-huset, Lund, 2016

“main” — 2016/11/20 — 14:43 — page i — #3

Abstract

As the address space of IPv4 is being depleted with the development of ToT (Inter-
net Of Things), there is an increasing need for permanent transition to the IPv6
protocol as soon as possible. Nowadays, many 3GPP (3rd Generation Partnership
Project) Networks have implemented or will implement IPv6 in the near future
for Internet access. These networks will also use NDP (Neighbor Discovery Pro-
tocol), which is the IPv6 tailored version of ARP (Address Resolution Protocol).
The protocol is responsible for address auto-configuration, maintaining lists of all
neighbors connected to a network, verifying if they are still reachable, managing
prefixes and duplicate address detection.

The protocol is defined in RFC 4861 and although it works fine for wired connected
devices, it has been proven highly inefficient in terms of battery lifetime saving,
when wireless networks came to the market and its use increased tremendously.
This thesis work is a continuation of a previous master thesis and complements
the work done previously by showing how the solutions suggested in the new draft
can be implemented at the router and host side and practically confirms the pre-
vious results of the theoretical analysis through simulation scenarios of sleep and
wake-up of the nodes, performed in OMNeT++. Subsequently, the scalability of
the system as a whole was analyzed with a simulation model containing a range of
hosts from 1 to 100, and shows it can operate efficiently on a larger scale, reducing
multicast messaging by almost 100%, presumably saving their battery power.

“main” — 2016/11/20 — 14:43 — page ii — #4

ii

“main” — 2016/11/20 — 14:43 — page iii — #5

Acknowledgments

We would like to express our deepest gratitude to our two supervisors from LTH,
Jens A. Andersson and Stefan Host, for their excellent advice, enthusiasm and
organization throughout the period of this thesis. Although there were periods of
time when the work didn’t seem to be able to progress, their encouraging comments
made it possible to successfully overcome the situation, by always pointing us in
the right direction. We would also like to thank all the staff of LTH for sharing
their excellent knowledge over the past 2 years, making Lund University one of
the most prestigious universities in the world.

We would also like to thank our two supervisors from Ericsson AB, Jaume Rius 1
Riu and Samita Chakrabarti, for their support, excellent collaboration and insight-
ful comments, and moreover the whole team involved, for giving us the opportunity
to conduct this research at Ericsson AB.

I (Dragos Neagoe) would like to thank my parents and relatives for their extensive
support throughout my 2 years Master’s Program in Sweden, both morally and
financially. It has been quite a ride, filled with both difficulties and joys, and it
brings me great pleasure to say that no matter the situation, I can always count
on them. Last but not least, I thank my colleague, Antonios Pateas, my friends
from Romania, as well as from Sweden, for expressing their thoughts and for being
very supportive period of this thesis.

I (Antonios Pateas) would like to thank first of all my colleague Dragoss Neagoe
for the collaboration in completing this thesis. I would also like to thank my
friends in LTH, back home in Greece and especially my brother George and Irene
for their moral support. Special thanks to my parents, Christos and Evangelia for
their never ending patience and support for all these years, morally and financially.
Without them, it would have been even harder to complete this thesis.

iii

“main” — 2016/11/20 — 14:43 — page iv — #6

iv

“main” — 2016/11/20 — 14:43 — page v — #T7

Popular Science Report

The introduction and rise of Internet of Things (IoT), and the use of more and more
wireless devices in the communication between users, has depleted the available
addresses of IPv4. The introduction of the new IPv6 protocol solves the address
depletion problem, but on the other hand, many of the existing protocols have to
be redesigned.

This thesis is based on RFC 4861’s NDP (Neighbor Discovery Protocol for IPv6
Networks, the equivalent protocol of ARP (Address Resolution Protocol) for TPv4
Networks. Like ARP, NDP is used in all Networks, wired or wireless, and it’s main
feature is to check and update periodically the state of the Network, provide L2
addresses to hosts in the same Network and verify their reachability.

While wired devices experience no issues regarding power supply, as they are con-
stantly hooked to a power source and rarely experience network failures, wireless
devices have limited power, as they rely on battery lifetime. This is also the case
of machines running NDP - the protocol relies on periodic exchange of multicast
ICMPv6 (Internet Control Message Protocol version 6) control messages, creating
unnecessary traffic overhead in the Network, as all hosts in a Network would re-
ceive those messages, regardless if they are meant for them or not. As a general
working mode of a battery operated device, one enters predefined sleeping cycles
(stand-by), which are designed by each manufacturer in different ways. There-
fore, multicast signaling inside Networks disrupt those sleeping cycles, causing
increased battery consumption, as a result of more required processing power and
more consumed bandwidth.

RFC 6775, together with [3], propose updates to NDP, which would solve the
problems mentioned above. The major update is that each host can update the
router about its state, by sending unicast messages, without involving the other
hosts in the Network. The router, instead of sending periodic control messages

“main” — 2016/11/20 — 14:43 — page vi — #8

to every host, it sends control messages to each host separately in specific time
intervals. Only when a major change occurs in the Network, for instance an
addition of a new host, or when a host leaves the Network, multicast messages
are sent to every host to update their state. Together with the establishment
of unicast signaling, a new method of address registration is introduced in the
documents cited above, called Address Registration Option. This registration
method is fully compatible with the two standard mechanism which provide the L3
addresses to hosts - Stateless Address Autoconfiguration (SLAAC) and Dynamic
Host Configuration Protocol (DHCP).

The previous thesis work took the first steps in implementing the proposed protocol
changes, by investigating functions inside RADVD - the Router Advertisement
Daemon, run on all routers and responsible for sending the multicast periodic
control messages to the hosts (Router Advertisements). A full implementation of
the proposed changes require covering both sides of the Network, i.e Host and
Router. While RADVD is handling the Router side, the implementation at the
Host side needs to be done inside the Linux Kernel. In this thesis work, the
RADVD implementation was completed and possible implementation methods
were shown inside the Linux Kernel. Due to the overall complexity of the Linux
Kernel, while the proposed code could cover most aspects from RFC 6775, it wasn’t
possible to test it, in order to conclude how much workload is left.

Simulations took place to compare the two protocols and verify, in what extend
these proposed changes can potentially improve battery lifetime. So, sleep and
wake up scenario was tested in same time intervals in order to observe Network
traffic. The goal was to have a decrease in control messages in the case where
the suggested changes were applied. Different number of hosts were selected to
see if these changes can be applied to larger network. In both cases, the best
case scenario was tested and parameters which would normally hinder network
performance were neglected. This decision was made to reduce the complexity
of the Network as well. The results of the simulations indicated that there could
be a decrease in control messages and the Network seems stable and scalable as
number of host increases.

vi

“main” — 2016/11/20 — 14:43 — page vii — #9

Contents

List of Acronyms

List of Figures

List of Tables

1 Introduction

1.1 Background
1.2 Problem definition L
1.3 Previouswork
1.4 Approach
1.5 Organization of thesis

2 Neighbor Discovery Protocol

2.1 RFC 4861 Review - Legacy NDP

2.1.1 Overview

2.1.2 Neighbor Discovery Protocol

213 Addresses

214 DAD (Duplicate Address Detection)
2.1.5 Neighbor Unreachability Detection

2.2 Optimization on RFC 4861 - Efficient NDP

2.2.1 Goals and Requirements

222 Proposed protocol changes

223 Host and Router initialization

224 Address Registration and ARO

225 Registration refresh and sleepy hosts
2.2.6 Router epoch and RAO

3 Code Implementation

3.1 Router Advertisement Daemon RADVD Overview . . .

3.2 Router Advertisement Daemon RADVD Implementation
3.21 The E Flag - RADVD Implementation
3.2.2 Unicast RA/RS messages

vii

S O1 O W N =

© oo N N~

10
12
12
12
13
13
14
15
16

17
18
21
22
24

“main” — 2016/11/20 — 14:43 — page viii — #10

3.3 Linux Kernel Overview
3.4 Linux Kernel Implementation
3.4.1 The E Flag - Kernel Implementation
3.4.2 Address Registration Option

4 Simulation model

4.1 Simulator description oL
411 OMNeT++

4.1.2 INET
4.2 Sleep and wake up Scenario
4.2.1 Simulation parameters

4.2.2 Legacy NDP
423 Efficient NDP

5 Results

5.1 Legacy NDP simulation results
5.2 Efficient NDP simulation results
5.3 Summary of Results

6 Conclusions

7 Future Work

Bibliography

Appendix

viii

39
39
40
41
42
43
44
46

49
49
51
53
57
61
63

65

“main” — 2016/11/20 — 14:43 — page ix — #11

List of Acronyms

3GPP - Third Generation Partnership Project

6CO - 6LoWPAN Context Option

ABRO - Authoritative Border Router Option

ARO - Address Registration Option

CIDR - Classless Inter-Domain Routing

DAD - Duplicate Address Detection

DHCPv6 - Dynamic Host Configuration Protocol version 6
EAH - Efficiency-Aware Host

EPS - Evolved Packet System

ICMP - Internet Control Message Protocol

ICMPv6 - Internet Control Message Protocol version 6
IETF - Internet Engineering Task Force

IP - Internet Protocol

IPsec - IP security

IPv6 - Internet Protocol version 6

IoT - Internet of Things

M2M - Machine to Machine

MAC - Media Access Control

MTU - Maximum Transmission Unit

NA - Neighbor Advertisement

ix

“main” — 2016/11/20 — 14:43 — page x — #12

NCE - Neighbor Cache Entry

ND - Neighbor Discovery

NDP - Neighbor Discovery Protocol

NEAR - IPv6 ND-efficiency-aware Router
NS - Neighbor Solicitation

NUD - Neighbor Unreachability Detection
OSI - Open Systems Interconnection

PRNG - Pseudo Random Number Generator
RA - Router Advertisement

RADVD - Routing Advertisement Daemon
RS - Router Solicitation

SLAAC - Stateless Address Autoconfiguration
SLLA - Source Link Layer Address

TID - Transaction ID

UIID - Unique Interface Identifier

“main” — 2016/11/20 — 14:43 — page xi — #13

List of Figures

1.1 Internetof Things [4] L

2.1 Exchange message between host and router
2.2 lustration of DAD
2.3 Flags field of Router Advertisements [19]
2.4 Host and Router initialization
2.5 Address Registration Option [4]
2.6 Address Registration Process
2.7 Refresh of registration
2.8 Router Epocho

3.1 Refresh of registration L.
3.2 Wireshark Captureof Flags
3.3 Radvdump Capture
3.4 Adding a new neighbor oo oo
3.5 Code implementation steps

4.1 Module Structure
4.2 NED-based Network description
43 Exampleof hostin INET
4.4 Time intervals in which hosts join the network
4.5 Simulation model design oo
4.6 Network Setup of Efficient NDP

5.1 Comparison of total messages for 1 hour
5.2 Comparison of total messages for 4 hours
5.3 Comparison of total messages for 8 hours
5.4 Comparison of total messages for 24 hours

7.1 Implementationsteps
7.2 Efficient NDP Simulation model

xi

“main” — 2016/11/20 — 14:43 — page xii — #14

xii

“main” — 2016/11/20 — 14:43 — page xiii — #15

List of Tables

1.1

2.1

3.1

4.1

5.1
5.2
5.3
54
55
5.6
5.7
5.8

6.1
6.2
6.3
6.4

IPvd vs. IPV6 2
NCE Prototype 15
Status of the NDP Protocol 29
Uniformly distributed time intervals for different number of hosts and

experiment timeinseconds 43
Number of messages received by 1 host (Legacy NDP) 50
Number of messages received by 5 hosts (Legacy NDP) 50
Number of messages received by 20 hosts (Legacy NDP) 50
Total messages exchanged by 100 hosts (Legacy NDP) 50
Number of messages received by 1 hosts (Efficient NDP) 52
Number of messages received by 5 hosts (Efficient NDP) 53
Number of messages received by 20 hosts (Efficient NDP) 53
Number of messages received by 100 hosts (Efficient NDP) 53
Total messages save by hosts- 1 host 58
Total messages save by hosts -5 host 58
Total messages save by hosts - 20 hosts 58
Total messages save by hosts - 100 hosts 58

xiii

“main” — 2016/11/20 — 14:43 — page xiv — #16

Xiv

“main” — 2016/11/20 — 14:43 — page 1 — #17

Chapter].

Introduction

As the number of devices that are connected to the Internet rapidly grows, larger
networks are needed in order to be able to connect all devices. The rise of IoT
(Internet of Things) sees the interaction of all these devices, which will create
smarter environments. It is expected that between 26 and 50 billion devices will
be connected to the Internet by 2020 [1] and that IoT will together connect trillions
of devices, as it can be seen in Figure 1.1.

INTERNET OF THINGS
TRILLION NODES

FRINGE INTERNET
MILLION NODES

Phones Logistics

Personal
SENsors

CORE INTERNET
MILLION NODES

Smart
metering

Building
automation

Transportation

Industrial
automation

Figure 1.1: Internet of Things [4]

The deployment of IPv6 over IPv4 is a common topic nowadays, as the IPv4 ad-
dress space is more or less close to depletion. The address availability in IPv6 is in-
credibly vast and can host billions of devices. IPv4 permits broadcasting messages
only, whereas IPv6 supports multicast as well. Moreover, IPv4 requires manual
configurations of addresses or stateful address configuration (Dynamic Host Con-
figuration Protocol - DHCP), which makes it undesirable for the IoT network [2].

“main” — 2016/11/20 — 14:43 — page 2 — #18

2 Introduction

In contrast, IPv6 allows for both stateless (Stateless Address Autoconfiguration -
SLAAC) or stateful (Dynamic Host Configuration Protocol version 6 - DHCPv6)
address configuration. Table 1.1 summarizes some of the main differences between
IPv4 and IPv6.

1Pv4 IPv6
Address space 232 addresses 2128 addresses
Status of address space close to depletion plenty
Type of communication | broadcast / multicast multicast
Address configuration stateful only stateful / stateless
Address configuration DHCP SLAAC with ICMPv6
protocols or DHCPv6
Encryption optional required - IPsec

Table 1.1: IPv4 vs. IPv6

This thesis work focuses on the Neighbor Discovery Protocol (NDP), which is the
IPv6 alternative of the Address Resolution Protocol (ARP). It operates in the Link
Layer of the Open Systems Interconnection (OSI) model and it represents one of
the core protocols required in IPv6 networks, being used to sense other devices
in a network. It uses ICMPv6 control packets to perform functions similar to the
equivalent IPv4 ARP protocol.

1.1 Background

When IoT and M2M (Machine to Machine) were introduced, networks have be-
come more complex and so requirements for NDP started to change. RFC 4861
defines NDP and obsoletes RFC 2461. It features the behavior of the node in the
network, how it interacts with its neighbors on the other end of the link and how
identifies them. This was done by sending ICMP messages for IPv4 protocol in
the ARP case and by sending ICMPv6 messages in the NDP case. Most of those
messages are sent by NDP periodically and multicast. The ICMPv6 protocol is
defined in RFC 4443 and it’s main purpose is to perform network diagnosis. In
this thesis, only the specific ICMPv6 messages used by NDP are discussed.

The protocol operates simultaneously on two sides, one taking care of the hosts
inside the network and the other regarding the operation of the routers. The
differences between the two will be analyzed in Chapter 3. The protocols main
functions are:

e Discover other nodes inside the network;

“main” — 2016/11/20 — 14:43 — page 3 — #19

Introduction 3

e Determine nodes prefixes and parameters;
e Resolve nodes link-layer address;

e Verify the reachability of other nodes through Neighbor Unreachability De-
tection (NUD);

e Verify duplicate addresses through Duplicate Address Detection (DAD);

e Redirect nodes with better route choices.

A more detailed description of NDP, as well as a new proposed working mechanism
for NDP will be discussed in Chapter 2.

The IoT infrastructure consists of many battery operated devices, therefore the
key factors which contribute to the optimization of such a device are to reduce
the used resources, to decrease the required processing power and to increase
the life time of the battery. Although NDP performs well in wired networks,
where power supply is not a problem, in wireless networks where the connected
devices operate with batteries, it has been proven to be inefficient ([3], [4], [5], [6],
[7]). The ICMPv6 packets generated by NDP contain unnecessary periodic control
information, which increase network traffic, makes the processors work overtime
and thus depletes the battery lifetime faster. The work described in [3] suggests
changes to optimize the NDP for wireless networks and reduce this unnecessary
information as much as possible.

1.2 Problem definition

The use of the protocol described in [8] is best suited for wired instead of wireless
networks and the reason presented in the following articles.

This inefficiency of NDP has been stated in [5] and [6]. The problem described
in [5] presents the EPS (Evolved Packet System) network impact of IoT/M2M
IPv6 connectivity, in which network resources are used in 3rd Generation Part-
nership Project (3GPP) cellular networks every time periodic multicast messages
are received by mobile terminals, which increases processing loads and costs.

In [6], possible issues of using multicasting in some wireless networks including
Wi-Fi are presented. One of those issues is that when wireless multicast packets
are transmited in a network, the access point acts as a hub: if one host transmits,
the rest have to be silent, lowering data rates tremendously.

Most ICMPv6 messages are sent multicast by NDP, meaning that some nodes or
parts of networks which are not related to the communication will receive that
information as well, even when the operating device is in sleep mode, if this device

“main” — 2016/11/20 — 14:43 — page 4 — #20

4 Introduction

is part of the multicast group. In most cases, those multicast groups in IoT and
M2M networks are quite large, containing many nodes, so often the multicast
messages have nothing to do with the node, but the node has to wake up from the
sleep mode, check the packet and determine that it is irrelevant. Moreover, when
a node enters or leaves the network, multicast messages are being sent in order for
the network to be updated, but as a result, this disturbs the other devices from
their sleep cycle, causing unnecessary battery consumption and therefore making
RFC 4861 not optimal with today’s wireless networks.

RFC 4919 investigates the behavior of NDP in the context of Low Powered Area
Networks running the IPv6 Protocol (6LoWPAN). It is meant as a solution from
the Internet Engineering Task Force (IETF) to solve some of the problems risen by
the introduction of IoT and it targets devices operating in the IEEE 802.15.4-2003
standard. Wireless devices, especially ones operating in low powered networks, are
the core of IoT. They are meant to function as "out of the box", needing minimum
configuration, having limited features which target specific tasks that are required
in a network, as a complement to the existing infrastructure. Some limitations
of those devices would be: short range, low bit rate, limited power, memory and
energy.

Concerning low powered networks, the goal of RFC 4919 is to reduce packet over-
head, bandwidth consumption, decrease the required processing power of the de-
vices and decrease battery consumption. Those can be made possible through the
following strategies, without going into details:

e Fragmentation and reassembly of packets
e Header compression

e Address Auto-configuration

e Mesh Routing Protocol

e Implementation Configurations

RFC 6775 introduces later on a specific problem and solution to NDP regarding
multicast signaling in 6LoWPANs. It proposes an implementation configuration
of NDP which reduces multicast signaling to a minimum. In [3] this problem is
researched again, showing that this trend is not limited to 6LoWPAN networks,
but that multicast signaling affects all types of wireless networks.

One solution for those problems is offered in [3], which re-uses some implemen-
tation configurations presented in RFC 6775 and complements those with other
features, which altogether are meant not only for 6LoWPANSs, but for all types of
wireless networks. A suggestion of a novel method of address registration is pre-
sented, in which the routers of the network can be used as core and also convert
all the multicast ICMPv6 messages to unicast. This solves the issues in both the
above mentioned Internet drafts.

“main” — 2016/11/20 — 14:43 — page 5 — #21

Introduction 5

This thesis work complements [11], by offering an implementation method of the
Efficient NDP in the RADVD (Router Advertisement Daemon) at the router side,
in the Linux Kernel at the host side and and by analyzing a practical simulation
model, which generates results comparable to the theoretical analysis done in the
previous work. In the next chapters, more information will follow about how ND is
performed in the RFC 4861 and its issues. This thesis work’s main objective is to
see how those implementation changes to NDP affect the network, its functionality
and its scalability.

1.3 Previous work

This work is a continuation of the thesis work with title Analysis of IPv6 Neigh-
bor Discovery for Mobile and Wireless Networks [11] written by Hariharasudan
Vigneswaran and Jeena Rachel John. In their work, the problem of using RFC
4861 in wireless networks was presented and a theoretical analysis of the Legacy
NDP by the use of different scenarios took place, measuring the number of RS
(Router Solicitation), RA (Router Advertisement), NS (Neighbor Solicitation),
NA (Neighbor Advertisement). Then these results were compared theoretically
with the Efficient NDP, in order to see what gain would have been accomplished
if these modifications were applied to protocol. The IPv6 NDP behavior was an-
alyzed, the scalability of the network, the transient behavior of the network and
the number of multicast messages exchanged in the network. Sleep and wake up
scenario and its effect was only mentioned, due to the limited time. In this work,
a sleep and wake-up scenario is studied, for two test case scenarios, one based on
RFC 4861 and one based on [3] with the proposed changes. OMNeT++ is used
as a simulation tool, and the outcome of the simulation is to observe how these
changes can improve RFC 4861 for wireless devices in terms of saving power. This
is discussed further on Chapter 4 and 5. The previous work also investigated the
possible implementation of the protocol in RADVD, the Routing Advertising Dae-
mon running on all Unix devices, which is responsible for generating NDP control
messages on the router side. A working RADVD implementation will be shown in
this thesis work and the host side in the Linux Kernel will be explored, in order to
show an implementation method of the proposed modifications as a whole. This
will be described in detail in Chapter 3.

1.4 Approach

The implementation part of the protocol was performed in an Unix environment,
running Ubuntu 14.04 LTS and the latest version of RADVD (2.14). Most of the
investigated code was done in C Programming Language. On the router side, a
full analysis of RADVD was done, together with it’s functions and libraries, in

“main” — 2016/11/20 — 14:43 — page 6 — #22

6 Introduction

order to determine where changes were necessary. The implementation inside the
Linux Kernel on the host (client) side was the biggest challenge of this work and
is still only partially performed.

To prove the efficiency and scalability of the proposed protocol changes, a practical
simulation scenario was created, using the open source software OMNeT++, in
which, using C++, two different scenarios were tested and compared, one running
the Legacy NDP and one running the Efficient NDP. In both scenarios, the same
parameters were used, such as number of hosts and simulation time intervals, in
order to observe how much different is the number of the exchanged messages
between the router and the hosts in both cases. The number of hosts selected
for testing were from 1 to 100, in order to see the behavior of the network as the
number of hosts gets larger, hence test its scalability.

1.5 Organization of thesis

This thesis work is carried out by both Dragos and Antonios in collaboration with
the Department of Electrical and Information technology (EIT) at Lund University
and Ericsson AB, Stockholm. The authors had the goal, which was to evaluate
the scalability and energy consumption according to [3], as well as potentially
implementing the proposed changes in NDP. Both of the authors have taken active
part in all the key steps of the project. Dragos focused mostly on coding and the
changes that are required in designing the new Efficient ND protocol. Antonios
focused mostly on studying the sleep and wake up scenario, simulating the models
for both protocols in OMNeT++ and analyze the results. Due to the limited
time, Dragos also participated in programming the simulation environment in
OMNeT++ and extracting the results. Chapter 3 was written by Dragos, chapter
4 was written by Antonios, while the rest of the chapters were written by both
authors.

“main” — 2016/11/20 — 14:43 — page 7 — #23

Chapter 2

Neighbor Discovery Protocol

This chapter offers the reader some background information about NDP as de-
scribed in RFC 4861 - Legacy NDP and about the Efficient NDP draft [3] which
proposes changes to optimize NDP for wireless devices - Efficient NDP. The first
part of this chapter describes the packet types that are exchanged between routers
and hosts through NDP and their functions. Then, it describes the types of ad-
dresses used by NDP and the role of DAD when a new host wants to enter the
network. The next sections refer to suggested changes as they are described in the
Efficient NDP draft [3], in order to make the NDP optimal.

2.1 RFC 4861 Review - Legacy NDP

RFC 4861 was introduced to specify the NDP for IPv6. Nodes that use IPv6
are able to determine each other’s link-layer addresses and see each other in the
network. They are also able to detect routers and if at some point some of their
nodes/neighbors leave the network or lose their connection, it is possible to keep
reachability information about the paths to their neighbors that are active. The
requirement for these functions is the nodes to be at the same link when they use
Neighbor Discovery [8].

2.1.1 Overview

In a network, every node, whether it is a router or a host, needs to know all its
neighbors on the other end of the link, so it can keep its routing table updated
at all times. This process is called ND (Neighbor Discovery). Each node contains
a list with all of its neighbors, from which it can distinguish if it is a router or

“main” — 2016/11/20 — 14:43 — page 8 — #24

8 Neighbor Discovery Protocol

a host. This list is called a NEC (Neighbor Cache Entry). A node’s network ID
or prefix is defined while it is trying to get an IP address. RFC 4861 provides
following features:

Router Discovery

e Address Autoconfiguration

Prefix Discovery

Address Resolution

Duplicate Address Detection - DAD
Neighbor Unreachability Detection - NUD

2.1.2 Neighbor Discovery Protocol

Neighbor Discovery Protocol is a part of ICMPv6 and it contains the following
packet types, as it is described in RFC 4861:

e RS - Router Solicitation
e RA - Router Advertisement

NS - Neighbor Solicitation

NA - Neighbor Advertisement

Redirect message

RSs are messages packets sent from a host that enters or reconnects to a network
to any router that is on the local area of this network in order to request their
presence to be advertised in the network. In other words, the nodes request an
RA (Router Advertisement) packet.

RAs are packets that broadcast from the router in response to RS messages. They
are also sent periodically, but their time interval may vary. They contain data,
such as the address configuration, network prefix, data that can determine if there
is another address with the same link and info about the default router.

NSs are packets sent from a node in order to acquire information about a neighbor.
They are also used for DAD (Duplicate Address Detection) and for NUD (Neighbor
Unreachability Detection) to check if a neighbor can still be reached and get the
MAC address of the destination.

NAs are the response packets to NSs. When a node announces link-layer address
change, it may send unsolicited NA messages.

“main” — 2016/11/20 — 14:43 — page 9 — #25

Neighbor Discovery Protocol

The exchange of those messages in NDP is illustrated in Figure 2.1.

Host Router

Sends an RS, stating that it wants to enter the network

Responds with an RA and declares its presence to the network

Sends NS, requesting to get updated about its neighbors

Responds to the request by sending NA message

Figure 2.1: Exchange message between host and router

Redirects are messages that are simply used by routers to inform a node about a

better first hop for its destination.

2.1.3 Addresses

Neighbor Discovery uses different addresses such as:

All-nodes multicast address. It is the link-local scope address from which
all nodes can be reached, FF02::1.

All-routers multicast address. It is the link-local scope address from which
all routers can be reached, FF02::2.

Solicited-node multicast address. It is a link-local scope multicast address
that is calculated as a function of the solicited address of the target. This
function operation is described in detail in [26]. The selection of this function
is done, so the difference between the IP addresses is only between the most
significant bits.

Link-local address. All router interfaces are required to have a link-local
address. It is a unicast address that is used to reach neighbors and is link-
only. Also, according to RFC 4862, host interfaces are required to have a
link-local address.

Unspecified address. It is a reserved address value that indicates that the
specific address is missing or it is unknown. It can be used as a source
address in some cases, but never as a destination address. Its value is
0:0:0:0:0:0:0:0.

“main” — 2016/11/20 — 14:43 — page 10 — #26

10 Neighbor Discovery Protocol

The Neighbor Cache is a log of the recent traffic and it contains all the individ-
ual neighbors’ entries. The NCE also contains information about the neighbor’s
reachability, meaning if a neighbor can be reached or not, a flag from which the
neighbor origin can be distinguished, whether it is a host or a router and the num-
ber of probes that have not replied. The neighbors reachability can be in one of
the following states:

e INCOMPLETE: Neighbor Address is still to be determined.
e REACHABLE: The neighbor has been reached very recently.

e STALE: It’s not known anymore whether the neighbor can be reached or
not. The reachability is not verified until traffic is sent to the neighbor.

e DELAY: As with STALE, it’s not known anymore whether the neighbor
can be reached or not, so instead of investigating the neighbor immediately,
this investigation is being delayed in order to give chance to the upper-layer
protocols to provide reachability confirmation.

e PROBE: It’s not known anymore whether the neighbor can be reached or
not, so NS probes are sent to verify it.

Address resolution is a very essential process of RFC 4861, through which a node
can determine the link-layer address of a neighbor, given only its IP address. It
is never performed on multicast addresses, but only on on-link addresses and for
which the link-local address is known to the sender. The sender first checks its
NCE table to see if it contains the destination address. If it is not, a new entry is
created which has "INCOMPLETE" status. Before a node starts sending packets
to another node, it needs to know the IP or the MAC address of the receiver. So,
when a node wants to know about the receiver’s address, it sends an NS message
to the solicited node multicast group of the receiver. All nodes that belong in the
same group, will receive the NS. The receiver in this case, will respond with a NA.
If the NS had a source address, which means the sender is also part of the network,
the NA will go only to the sender and then the sender and the receiver only can
send NS and NA to each other. If the NS didn’t have a source address, meaning
that the sender wasn’t part of the network, then the NA will go to the multicast
address of all nodes. Once the sender gets the NA from the destination, its NCE
status is updated to REACHABLE.

2.1.4 DAD (Duplicate Address Detection)

DAD is a mechanism that determines if an address that a node wishes to use
when entering the network is available, or it is being used by another node. It
is performed on unicast addresses only, without playing any role if the addresses
were configured manually, stateless or stateful. It can’t be performed on anycast

“main” — 2016/11/20 — 14:43 — page 11 — #27

Neighbor Discovery Protocol 11

addresses though and any individual unicast address must be tested for uniqueness
[16].

To explain this mechanism, an example is given which contains a network with
a router and two hosts, of which one is already in the network and the second
one just joined the network. The new host will send an RS, asking to enter the
network and as an answer will receive RA from the router and get the network
prefix. Having the prefix, the host can then acquire its IP address with the use
of SLAAC. SLAAC is a feature which allows hosts to pick their IP address once
they know the network prefix. So, if the router picks an address which is already
taken by the other host of the network, it will send NS to the solicited node
multicast group of this selected address and check if there is someone already uses
this address.

Mo initial IP Address 5555:db1::33:9 5555:db1::19:9

Host decides to use NS to ff02::1

5555:db1::19:9

————— - \
resst I e aress’
-1 Dup\ica“’- 'Mi_d_...—""" L \'\ca‘-e nd
nAto fi020 T2 - ek O
T Ao T
* ’a;st decides to use N5to W
_______________ f02::1:ff00:8
5555:db1:19:8 TTTTeee———be
instead \ TTTTTTTm=—— i
No node in the network
objects, so Host B can
use this IP address.
NA to ff02::1 to
e e e update their routing

_________________ tables
IP address is finally E
configured

Figure 2.2: lllustration of DAD

The first host will receive the NS, but since the second host has no IP address yet,
the first will reply with NA to all nodes of this multicast address group. The new
host will receive the NA from the other host and it will then know that the selected
address is already taken. So, then it changes the network suffix and tries again
with a new address. The same process continues, but since no one uses the new
address, the host configures itself with the new address and sends NA to the other
hosts of the network to update them and they will update their NCE (Neighbor
Cache Entries) as well. The new host has now to start address resolution process
first, in order to update its NCE, before it starts exchanging packets with the

“main” — 2016/11/20 — 14:43 — page 12 — #28

12 Neighbor Discovery Protocol

other hosts. Figure 2.2 illustrates DAD.

2.1.5 Neighbor Unreachability Detection

Neighbor Unreachability Detection can be used for all paths for communication
between hosts and neighbors, such as host-to-host, host-to-router, and router-to-
host. It is a mechanism that may recover the communication between neighbors
and is performed only for neighbors to which unicast packets are sent. During the
communication between neighbors, there is a chance that the connection between
them will fail, hence communications will interrupt. If the failure occurs to the
path, there is a chance to recover the communication. In this case, nodes will start
checking the reachability status of their neighbors. If, however, the failure occurs
to the destination, the recovery is not possible and the communication will fail.

In case of a path failure, it’s important how the neighbor is being used. For
example, if the neighbor is a router, an appropriate path recovery would be to
skip this router and pick an alternative one. Address resolution should be redone
if the neighbor is the final destination.

2.2 Optimization on RFC 4861 - Efficient NDP

NDP protocol’s way of functioning was proven to be inefficient in wireless net-
works, due to the repetitive use of multicast signaling which disrupts sleeping
cycles of mobile operated devices, consuming battery life. RFC 6775 introduces
some modifications to RFC 4861, in the context of Low Power Radio Networks
(6LoWPAN), which should significantly reduce the usage of multicast signaling
and Efficient NDP draft [3] is a generalisation of the RFC 6775 [4], for all type of
networks.

2.2.1 Goals and Requirements

The main goal of this draft is to reduce the use of multicast signaling, by removing
the need of multicast NS messages and periodic RS/RA messages.

The requirements are as following:

e Add more centralized control to the routers, so that hosts register themselves
to routers;

“main” — 2016/11/20 — 14:43 — page 13 — #29

Neighbor Discovery Protocol 13

e Introduce a new working mechanism for DAD, so that the hosts do not
require to defend their address all the time; This will be done with a new
introduced option from RFC6775, which is called Address Registration Op-
tion and having SLLA enabled all the time;

e Have the protocol compatible with the Legacy NDP, and make it possible
to function in efficient mode, legacy mode or mixed mode. The mixed mode
is out of the scope of this thesis;

e The new Address Registration mechanism should function together with
SLAAC (Stateless Address Auto-configuration) and DHCPv6 (Dynamic Host
Configuration Protocol Version 6);

e Introduce a state loss mechanism (Router Epoch mechanism) to allow routers
to rebuild their cache entries in case of power failure. This option was left
out of the thesis, however it’s a possible future work implementation.

2.2.2 Proposed protocol changes

The E Flag

The E Flag is a configuration knob which signals the devices in the network that
NDP is working in the efficient mode. This flag is to be implemented inside the
RA messages, in the flag field. As of [19], until so far, the last 2 bits of the flag
field are still reserved for further use, therefore the second last bit can be used for
the E Flag. This can be observed in Figure 2.3.

0 1 2 3 4 5 6 7
M|{O|H|Pf P|E|R

Figure 2.3: Flags field of Router Advertisements [19]

Once a RA with an enabled E Flag is received, inside that network, routers and
hosts work in the Efficient NDP mode and are called NEARs (IPv6 ND-efficiency-
aware Router) and EAHs (Efficient Aware Hosts). The E Flag was implemented
in this thesis inside RADVD at the router side, which can be viewed in Chapter
3.2.1.

2.2.3 Host and Router initialization

During start up, the router becomes NEAR by enabling the E flag, then it sends
first RA to hosts. Hosts send their first RS as multicast, in which they include

“main” — 2016/11/20 — 14:43 — page 14 — #30

14

Neighbor Discovery Protocol

their Layer 2 address (SLLA). The SLLA will be updated in the router NCE and
used for the next unicast reply to the host. Unicast messaging is now possible.
This process is depicted in Figure 2.4.

EAH
HOST

Power on — legacy ND
Join all-nodes multicast
address FFO2::1

MULTICAST MAX_INITIAL_RTR_ADVERTISEMENTS [+ 2N

NEAR
ROUTER

Power on — legacy ND
Join all-nodes multicast
address FFO2::1

Join all-routers multicast

[- -
I+ 5T mMulticast MAX_RTR_SOLICITATIONS group FF02:2

unicasT 10 [ETNN + IEHG + I | upaate nce

Figure 2.4: Host and Router initialization

2.2.4 Address Registration and ARO

Address Registration is supposed to work in a different manner than in the Legacy
NDP. [4] introduces 3 new router discovery options - Address Registration Option
(ARO - Figure 2.5), 6LoWPAN Context Option (6CO) and Authoritative Border
Router Option (ABRO). The two latest, while out of scope of this thesis, they
could be taken into consideration for further implementation of RFC 6775.

01 2 3 4 5 6 7.. 32
Type =33 Length =2 Status=0, 1, 2 l Reserved
Res ‘ IDS |T TID Registration Lifetime

Unique Interface Identifier (variable length)

Figure 2.5: Address Registration Option [4]

Hosts would register to routers through unicast NS messages containing ARO
and SLLA, instead of relying of multicast DAD messages. Hosts would update
their NCE with the new Address Registrars, storing the SLLAs from the UIID
field, together with the Registration Lifetime and TID fields, which are used for
maintaining registrations and determining which registration is more recent. This
would take place while the host is performing NUD. A NCE prototype can be
seen in Table 2.1. The Registration Lifetime parameter is the same as the Default
Router Lifetime parameter contained in RA messages, which is defined in RFC
4861 between MaxRtrAdvInterval and 9000 seconds.

“main” — 2016/11/20 — 14:43 — page 15 — #31

Neighbor Discovery Protocol 15

’ UIID ‘ TID ‘ SLLA ‘ Registration Lifetime ‘

Table 2.1: NCE Prototype

Routers, receiving the NS with ARO and SLLA, update their NCEs and reply with
unicast NAs, sent to the SLLA newly learned. Both the NSs and NAs contain the
ARO option. When a NA is received on a host from a router, the router has filled
in the status field, indicating if the registration was successful or not. This process
is illustrated in Figure 2.6.

EAH NEAR
HOST ROUTER

Build IPvG Registrars :
NS ER tl ARO . .
A | SLLA | UNICAST; DNA CHECK; NUD against router

{DHCPVE, SLAAC,
temporary address etc.) UMICAST; serves for DAD + m

Verify status:
Status =0 Success; Update registrar List with Registered Lifetime
taken from Default Router Lifetime in RAs; can enter sleep.
Status=1 Duplicate Address; reply and request new address.

Status =2 NCE Full. Need to register with other Registrars.

Figure 2.6: Address Registration Process

The implementation of ARO inside the Linux Kernel was researched in this thesis
and an implementation method inside the Linux Kernel was proposed in Chapter
3.4.1.

2.2.5 Registration refresh and sleepy hosts

When a registration is about to expire, a host can unicast a RS to request new
information. Similarly, when a host enters sleeping mode, it can wake up before
it’s registration lifetime expires, send an unicast NS and the router will refresh
it’s registration with a unicast NA. This enables the hosts to enter sleeping cycles
and perform undisturbed, instead of having to defend their address all the time
as it was with DAD in Legacy NDP (See Figure 2.7). This process was suggested
for implementation inside the Linux Kernel, together with the ARO, in Chapter
3.4.1.

“main” — 2016/11/20 — 14:43 — page 16 — #32

16

Neighbor Discovery Protocol

EAH
HOST

Registered Lifetime
about to expire

+E}ﬂ UNICAST

NEAR
ROUTER

unicasT To [IETW + [0 - IEED

Refresh registration

Sleep & Wake up

0 0 + TG UNICAST; DNA CHECK; NUD against router

Update NCE

Refresh registration *

UNICAST; serves for DAD

Figure 2.7: Refresh of registration

2.2.6 Router epoch and RAO

- I AT

The Efficient NDP draft suggests implementing a Router Epoch mechanism, which
would handle re-registrations, in case of power loss or failure. This would be done
through a new option called RAO (Registrar Address Option), attached to the RA
messages sent by the routers. It also covers the case when different registrars exist
in the network, in which the routers would inform the hosts where to register. The
process is depicted in Figure 2.8.

EAH
HOST

Re-register on a

router epoch change;
in case of different
registrars than the

default routers

onicast o TN I+ I I

Figure 2.8: Router Epoch

NEAR
ROUTER

Router Epoch
Tell the hosts
where to register
State loss
mechanism

This option was not investigated in this thesis due to lack of time, however it can
be a topic for future work.

“main” — 2016/11/20 — 14:43 — page 17 — #33

Chapter 3

Code Implementation

The suggested changes of NDP, mentioned in Chapter 2.2, introduce several im-
plementation goals, in order to achieve the Efficient NDP. Those goals are depicted
in Figure 3.1. 6LoWPAN support has already been added to RADVD by Varka

RADVD Implementation Linux Kernel Implementation
(Router) [Host)
’,/’/ “‘“\H ’_,/"'/ [H‘“-H
it — e
i B Unicast
EJTZI:t::nZ?OdEtZ:SNtE' Enabling Unicast-only Decoding of mh;ii:;as :‘:3 ::::?3:
RA/RS with SLLA the E Flag at -
NEARs and hosts to 3 with Epoch
EAHSs, using the E Flag mangatory the'host side SLLA+AROD mechanism
mandatory

Figure 3.1: Refresh of registration

Bhadram in the Release 1.10.0 of RADVD on 18th of March 2014, which now sup-
ports 6Co (6LoWPAN Context Option) and ABRO (Authoritative Border Router
Option) options, options attached to RA/RS messages. The third new option in-
troduced in [4] is ARO, the one that this thesis is also focusing on. This has to be
implemented in the Linux Kernel, as it is attached to NS and NA messages. ARO
doesn’t have to be implemented in RADVD, as RADVD is only handling RA and
RSs.

This chapter is structured in two parts, a RADVD and a Linux Kernel part. In
Section 3.1, a review of RADVD was written, which would help understanding
Section 3.2, the implementation section of RADVD. Using the same principle,
Section 3.3 is offering a Linux Kernel Review and Section 3.4 is describing the
detailed implementation process of Efficient NDP.

17

“main” — 2016/11/20 — 14:43 — page 18 — #34

18 Code Implementation

3.1 Router Advertisement Daemon RADVD Overview

RADVD is the Router Advertisement Daemon used by Linux machines which
operate as routers inside networks. RADVD is responsible of sending Router
Advertisements and answering to Router Solicitations sent by hosts which require
Stateless Address Auto-configuration (SLAAC). By default, RADVD multicasts
RAs periodically inside the network. The source code of RADVD is open-source
and can be obtained from [17].

RADVD is installed on Linux machines by running the following command:
#apt-get install radvd

When performing modifications of the RADVD source code, the code has to be
build and installed on the Linux machine. This is performed by running following
commands inside the RADVD folder:
#./configure
#make
#make install

A complete guide of how to configure RADVD can be found in the previous thesis
work [11], in the Appendix.

Following source code and header files of RADVD are reviewed below, which are
afterwards involved in the implementation of the E Flag, shown in Chapter 3.2.1:

Defaults.h
Device-common.c
Device-linux.c
Gram.y
Interface.c
RADVD Process.c
Radvd.c
Radvdump.c
Radvd.conf.5.man
Scanner.]

Send.c

Defaults.h

This header file contains the definitions of key parameters of the RADVD daemon,
with their default values, such as MaxRtrAdvInterval, MAX INITIAL RTR
_ ADVERTISEMENTS, default values of flags (AdvOtherConfigFlag , AdvMan-
agedFlag etc). The E flag was defined in this header, in Chapter 3.2.1.

“main” — 2016/11/20 — 14:43 — page 19 — #35

Code Implementation 19

Device-common.c

The function setup_linklocal_addr is used to store a found SLLA (ifa_addr)
from an interface, to the iface pointer address. The function check_device
performs different checkups, such as if the RADVD daemon is running in the
UnicastOnly mode or not.

Device_linux.c

Inside update_defice_info (), the type of used hardware is determined, together
with the assigned prefix length for the specific hardware. For example, in 6LoW-
PAN networks (ARPHRD_IEEE802154), the prefix length is 64 (EUI-64).

Through setup_allrouters_membership(), the router joins the all-routers mul-
ticast group (FF02::2). The following structure, struct AdvPrefix *prefix =
iface->AdvPrefixList, determines the prefix length of the Source Link Layer Ad-
dress. A checkup of IPv6 forwarding is done through the check_ip6_forwarding()
method. Forwarding has to be enabled on the Linux machine, in order to have
RADVD running. More information can be found about this in the Appendix of
[11].

Gram.y

A .y file is a grammar input file, read and parsed by Bison, producing C language
functions. This file consists of C declarations, Bison declarations, Grammar rules
and additional C codes [18]. Inside this file, parameters of RADVD are defined
in Chapter 3.2.1 through so called tokens and their functionality is being set up -
for example, a flag would be declared as a switch which can be turned on or off,
or a timer is declared as number. The parser file calls for the lexical analyzer file,
Scanner.l in this case, explained in the same section, below.

Interface.c

Interface initialization is performed in this source code, and all parameters as mem-
bers of the interface are defined. Example: The Home Agent flag is stored at the in-
terface pointer, inside the RA header: iface->ra_header_info.AdvHomeAgentFlag
= DFLT_AdvHomeAgentFlag; The parameters used by RADVD inside RAs are at-
tached to each particular interface. The function check_iface () performs a series
of checkups of parameters for the used interface, to see if parameters receive correct
values.

“main” — 2016/11/20 — 14:43 — page 20 — #36

20 Code Implementation

Process.c

This file contain functions which process Router Advertisements and Router Solic-
itation messages, checks the size of the packets, comparing to the ICMPv6 header,
checks if the Router Advertisements received contain or not a non-linklocal source
address (IN6_IS_ADDR_LINKLOCAL), or if other parameters contained in the re-
ceived messages are valid or not. Lines 154-170 verify when the last RA was sent
(MinDelayBetweenRAs - defined in radvd.h, present as an adjustable variable in the
configuration file of radvd). If a RA was recently sent, the next RA is rescheduled
with the reschedule iface() function. This function is defined in interface.c and
schedules RAs according to MAX_INITIAL_RTR_ADVERT_INTERVAL. An addition for
the E Flag was done in Chapter 3.2.1.

Radvd.c

In summary, this source file handles the following features of NDP:

Handles the process id (PID) of the RADVD daemon; The PID file is located
in the Linux Kernel at /var/run/radvd.pid;

Defines different options for running the RADVD;

Creates the RADVD daemon with system functions;

Checks for TP forwarding, user permissions, interfaces.

Radvdump.c

This file is responsible for printing out a description of the content of RAs sent by
RADVD, similar to a tcpdump. It captures the packets being sent, showing which
options were configured on each interface. The E Flag option was added here, in
Chapter 3.2.1.

Radvd.conf.5.man

The Radvdump file described above takes input of configured parameters or con-
figuration knobs from this file. Every parameter or configuration knob is also
described here, with details such as format, if it can take a value of true or false
(enabled or disabled), or if it is true or false by default. The E Flag configuration
knob was added here, in Chapter 3.2.1.

“main” — 2016/11/20 — 14:43 — page 21 — #37

Code Implementation 21

Scanner.|

This is a Flex file - lexical analyzer. Together with the grammar file Gram.y, those
files are parsed by Flex and Bison respectively, and a C file is being produced. The
Flex file is used as an input to the Bison file. A lexical analyzer file consists of
definitions, rules and user routines, three sections delimited in the file through the
%%’ symbol. More details about this type of file can be read at [27] and the
additions done to Scanner.l, together with Gram.y, are to be found in Chapter
3.2.1.

Send.c

The file send.c contains functions which are used for creating the RAs. The func-
tion add_ra_header () creates the header of the RAs, adding all defined fileds
from RFC4861 and indexing following options:

e add prefix() - defined options for prefix are added

e add_route() - IPv6 CIDR (Classless Inter-Domain Routing) routes are ad-
vertised to clients

e add_rdnss() - Recursive DNS Server (RFC 5006)
e add_dnssl() - DNS Search List (RFC 6106) - DNS suffixes domain names
e add_sllao() - The Source Link Layer Address (SLLA) is added

e add_lowpanco() and add__abro() are functions supporting 6LowPAN - RFC
6775

The function build_ra() constructs the RA by adding all of the above options
together. Through send_ra(), the RA is then sent to the all-routers multicast
address FF02::2 with the variable all_hosts_addr. The RA header was updated
with the E Flag in Chapter 3.2.1.

This concludes the general overview of RADVD’s files and functions, and now
the detailed implementation performed in RADVD follows.

3.2 Router Advertisement Daemon RADVD Implemen-
tation

The Efficient Aware mode of the Neighbor Discovery Protocol implies offering
routers in a network a more centralized control. Introducing a new flag (E Flag,

“main” — 2016/11/20 — 14:43 — page 22 — #38

22 Code Implementation

as it is suggested in [3]) in the RAs will signal the hosts that the network is operat-
ing in the Efficient Aware mode, meaning that the hosts would be Efficient Aware
Hosts - EAHs and the router would be IPv6 ND-efficiency-aware Router - NEARs.

As it was suggested in [11], in order to implement the E Flag, changes in the
RADVD source code, as well as in the Linux Kernel have to be made. Both Linux
Kernel and RADVD are open source and can be downloaded from GitHub.

3.2.1 The E Flag - RADVD Implementation

First, as per [11], a new parameter which defines the E Flag is introduced, named
AdvEFlag. This parameter is to be defined in the structures ra_header_info and
AdvPrefix as an integer.

In the defaults.h header file, the E flag was added as a macro. The default value of
1 was given, which means all routers are working in the Efficient Aware mode (not
mandatory). This can be changed depending on the setup - we can have a mixed
mode network where part of the routers can work in the efficient aware mode, part
can work in the legacy mode.

#define DFLT_AdvEFlag 1

The E Flag was declared in gram.y as a token in the bison declaration:

%token T_AdvEFlag

In the Flex file, scanner.l, the flag was added as a token named T_AdvEFlag, which
will be then returned as input to the Bison file gram.y:

AdvEFlag { return T_AdvEFlag; }

A grammar rule was added in gram.y, where the AdvEFlag member of the ra_header_info
structure is accessed, which is a member of the iface structure. The flag is defined

as a SWITCH, so that it can be enabled or disabled, depending if the network is
operating in the efficient aware mode or in the legacy mode:

1 { | T_AdvEFlag SWITCH ’;’ /* E */

2 {

3 iface —>ra_ header_info.AdvEFlag = $2;
4 }

5}

In the process.c file, an if condition was added for the E flag, which verifies if the
flag received the correct value:

“main” — 2016/11/20 — 14:43 — page 23 — #39

Code Implementation 23
1 if ((radvert—>nd_ra_flags_reserved & ND_RA FLAG E)

2 && liface—>ra header info.AdvEFlag) {

3 (LOG_WARNING, "our AdvEFlag on,%s

4 | uudoesn’t agree with,%s", iface—>props.name, addr_str);

5 1

The configuration file enables the possibility to configure the RADVD daemon
by simply enabling or disabling any flags or parameters. The radvd.conf5 file is
responsible for this. Therefore, the addition was made here:

1 .TP

2 .BR AdvEFlag "," on | off
3

4 Default: off

The radvdump file was also updated by adding in the print_£ff () function a
condition which is verifying if the E flag is enabled in the configuration file and then
printing it in a dump capture, together with the rest of the configured RADVD
parameters:

if (!edefs || DFLT_AdvEFlag != (ND RA FLAG E —
(radvert—>nd_ra_ flags_reserved & ND_RA FLAG E)))
printf("\tAdvEFlag %s;\n", (radvert—>nd_ra_flags_reserved &
ND_RA _FLAG E) ? "on" : "off");

=W N =

In send.c, the following syntax was added in the textttadd_ra_header and add_prefix
structures. If the bitwise "OR" is true, nd_ra_flags_reserved will receive the
value of ND_RA_FLAG_E, which should be the value of the E Flag received
from the Kernel.

In the Kernel, in the include/linux/icmpv6.h header file, the E flag is defined as
ND_RA_FLAG_E, with a hexadecimal value of 0x02: #define ND_RA_FLAG_E 0x02

radvert.nd_ra_flags reserved |=
(ra_header__info—>AdvEFlag) ? ND_RA FLAG E : 0;

pinfo.nd_opt_pi_flags_reserved |=

1
2
3
4
5 (prefix —>AdvEFlag) ? ND_OPT PI FLAG_ONLINK : 0;

This concludes the changes for the E Flag implementation on the RADVD router
side. Having those changes done to the RADVD code, the code can now be
compiled, ran and installed on a Linux machine, having the E Flag set to on’ in
the configuration file. By capturing a packet through Wireshark, it can be seen
that now the second less significant bit (Reserved) of the 8 bit long Flag string is
set to 1:

“main” — 2016/11/20 — 14:43 — page 24 — #40

24 Code Implementation

8.. .. = Managed address configuration: Not set

B.. = 0ther configuration: Not set

B Home Agent: Not

= Prf (Default Router Preference): Medium (0
= Proxy: Mot set
..1. = Reserved: 1

Figure 3.2: Wireshark Capture of Flags

The capture can’t show the flag named as the E Flag, as this is part of Wireshark
implementation. As it can be seen in Figure 2.3 and according to RFC 5175 [19],
the flag options of the Router Advertisements have the last 2 bits unused.

A Radvdump capture can also show that the E flag is enabled:

radvd configuration generated by radvdump 2.12

based on Router Advertisement from feB8::a@0:27ff:fe67:a7b1l
recelved by interface ethe

#

interface ethe

[
L

AdvSendAdvert on;

Note: {Min,Max}RtrAdvInterval cannot be obtained with radvdump
AdvManagedFlag off;

AdvotherConfigFlag off;

AdvEFlag on;

AdvReachableTime @;

AdvRetransTimer 8;

Figure 3.3: Radvdump Capture

3.2.2 Unicast RA/RS messages

As [3] suggests, by introducing the Address Registration Option as a novel method
of handling Address Registration and Duplicate Address Detection, it enables the
protocol to reduce multicast signaling to a minimum. It is assumed that this would
greatly improve the battery life of 6LoWPAN devices.

The L2 SLLA, which was not mandatory in RA /RS messages, now should always
be included. In RADVD, this can be enabled by turning the AdvSourceLLLAddress
switch from the configuration file to on:

.BR AdvSourceLLAddress " " on | off

Moreover, the UnicastOnly option from the configuration file should also be turned
on, to avoid periodic multicast messages:

.BR UnicastOnly " " on | off

“main” — 2016/11/20 — 14:43 — page 25 — #41

Code Implementation 25

This concludes the implementation details of Efficient NDP at the router side,
inside the RADVD, covered in this thesis. The mixed operating mode of NDP
was not covered, which, when fully implemented, would allow NDP to function
in both Legacy and Efficient modes. Another option that was left out, due to
the broadness of the work, is the RAO option, described in Chapter 2.2.6. Since
this option would be attached to RA messages, it would also be implemented in
RADVD.

3.3 Linux Kernel Overview

The implementation of the suggested changes involves understanding general con-
cepts of Networking inside the Kernel. The Linux Kernel handles the Layer 2,
Layer 3 and Layer 4 of the OSI model, respectively the Data Link, Network and
Transport layer.

net__device

The Network Device represents the foundation of the network stack in the Linux
Kernel. It is defined in include/linux/netdevice.h, inside the net_device struc-
ture, and consists of parameters like IRQ, MTU, MAC Address, name of device etc.
The net__device consists of different categories, such as Configuration. Here, the
link layer address is configured with unsigned char dev_addr [MAX_ADDR_LEN],
addr_len being the length of the address in bytes. Another category would be
the Link Layer Multicast, where the multicast addresses used for sending packets
are configured. Therefore, the structure struct dev_mc_list *mc_list is used
for devices which use multicasting. More details can be found in [13] and [14].

Socket Buffer

In the Linux Kernel, a packet is represented through a structure named sk_buf
(SKB-Socket Buffer). This structure is located in the include/linux/skbuff.h
header. Depending on the needs, the SKB can retrieve the L2, 1.3 or L4 header of a
packet. A thorough explanation of the Socket Buffer can be found in [14], however
here are some important structures of the sk_buf, required for understanding the
source code of the ndisc protocol:

e struct net_device *dev

A SKB contains a dev member, which points to the network device (net__device),

which can be incoming or outgoing, depending if the packet is received or

“main” — 2016/11/20 — 14:43 — page 26 — #42

26 Code Implementation

about to be transmitted.

e struct sock *sk

A pointer to a sock data structure; used when generating data locally.

e alloc_skb, kfree_skb, skb_reserve, skb_put, skb_push, skb_pull

Functions for memory allocation, memory releasing, space reservation for
header, addition of a block of data in the buffer at the beginning or end
(put and push), removal of a block of data from the buffer.

Netlink

In this thesis, we will refer only to IPv6 packets, since NDP is an IPv6 Protocol.
When a packet is received by the Kernel, the method ipv6_rcv() is called and
the network device driver is sending it further to the Network Layer.

Similarly, packets are created locally through Transport Layer Protocol sockets,
then forwarded to lower layers. The struct sock represents a L3 socket and the
struct socket represents an user-space socket. The ND Protocol determines the
MAC address of a host through its IP address. Using the destination and the
MAC address, the Ethernet header is constructed and an user-space socket can
send a packet.

The Linux Kernel is communicating with the user-space through sockets called
netlink sockets, a new method which replaces the ioct1 () system calls. Netlink
sockets in user-space communicate with netlink sockets in the kernel space, and
the communication is bidirectional. Through this method, system parameters of
the kernel can be modified. Only the neighboring system part of the netlinks are
investigated, as this is the general scope of this thesis.

The Neighbor Discovery Protocol is exchanging ICMPv6 messages through rt-
netlink messages (NETLINK _ROUTE). Those messages are categorized into fam-
ilies, such as ADDR (network addresses), NEIGH (Neighboring subsystem mes-
sages), NEIGHTBL (neighboring table). FEach Netlink family can send mes-
sages for creating a new entry (e.g.: RTM_NEWNEIGH), for deleting an entry
(RTM_DELNEIGH) and for retrieving an entry (RTM__GETNEIGH).

Each time an ICMPv6 message is received, the icmpv6_rcv() function is called,
and if the message is of ND type, the ndisc_rcv() is further on called. This
function is handling all five NDP message types: RA, RS, NA, NS and Redirect.

“main” — 2016/11/20 — 14:43 — page 27 — #43

Code Implementation 27

The Neighbor

In the Neighbor Discovery Protocol, one of the most important data structure
in the Kernel is the Neighbor structure - struct neighbour. This structure
is defined in include/net/mneighbour.h. Inside a network, all neighbors are
stored in a Neighbor Cache Entry (NCE), also called neighboring table (ARP
table for TPv4), defined in include/net/neighbour.h as struct neigh_table.
For NDP, nd_tbl is an instance of neigh_table. The neighboring table is cre-
ated through the neigh_table_init() function. A constructor method, named
ndisc_constructor(), achieves initialization, when a new neighbor object has
to be introduced. __neigh_create() is calling for this constructor and returns
0 when a new neighbor has been added successfully. Similarly, the functions
pndisc_constructor() and pndisc_destructor() handle creating and remov-
ing a neighbor proxy entry.

Before calling the constructors, however, memory has to be allocated for a new
neighbor. This is done through neigh_alloc(), together with a process called
Garbage collector. This process attempts to free up some unused memory, and if
it’s successful, neigh_hash_grow() is called to increase the size of the hash table.
Figure 3.4 shows the process of adding a new neighbor to the network.

Allocate memory Check Garbage Collector Memory freed successfully | i
ncremen
__neigh_create() ’:ﬂ neigh_alloc() }:ﬂ gc_thresh roforanea |:>Dead flag=0
Hash table counter Success;
not full New
Neighbor
allocated

Hash table full

neigh_forced_gc l:>‘ neigh_hash_grow()

entries > gc_thres3 u Memory freed

return 0

Meighbour allocation failed

Figure 3.4: Adding a new neighbor

When a neighbor needs to be registered to the network, first a look-up in the
existing NCE is done through the neigh_lookup() function. If the look-up fails,
no new entry is added in the NCE. If the look-up succeeds, a new entry is added
in the NCE through the neigh_update() function.

Different parameters of NDP can be modified in the neigh_parms object of the
neigh_table. Those parameters are exported to the /proc/sys/net/ipv6/neigh
directory.

“main” — 2016/11/20 — 14:43 — page 28 — #44

28 Code Implementation

3.4 Linux Kernel Implementation

The implementation of suggested protocol changes in [3] have to be done on both
the client side, respectively Linux Kernel, and host side, in the RADVD code. In-
side the Kernel, following source code files are mainly involved in the functionality
of the Neighbor Discovery Protocol:

e include/net/neighbour.h
e net/ipv6/ndisc.c

e include/net/ndisc.h

e include/net/if_inet6.h

e include/uapi/linux/icmpv6.h

3.4.1 The E Flag - Kernel Implementation

On the host side, i.e. in the Linux Kernel, as it was mentioned above, the E Flag
was defined in the include/linux/icmpv6.h header file, as ND_RA_FLAG_E, with a
hexadecimal value of 0x02. Inside include/uapi/linux/icmpv6.h, following struc-
ture icmpv6_nd_ra can be found, containing flags of RAs, and where the E Flag
has to be added, as it can be seen in Listing 3.1.

Listing 3.1: E Flag definitions

struct icmpv6_nd_ ra {
home_agent:1,

other:1,

managed : 1;

eflag:1; ...} u_nd_ra;

#define icmp6__addrconf managed icmp6_dataun.u_ nd_ra.managed
#define icmp6__addrconf other icmp6_dataun.u_nd_ra.other
#define icmp6__addrconf eflag icmp6_dataun.u nd_ ra.eflag

© 00 O U W -

Next, the E Flag needs to be defined inside inet6_dev.if_flags in the in-
clude/net/if _inet6.h header file: #define IF_RA_EFlag 0x08.

In net/ipv6/ndisc.c, the main source file of the ND protocol, the value of the
flags is stored in ndisc_router_discovery() function, where an addition for
IF_RA_EFlag has been made in Listing 3.2.

“main” — 2016/11/20 — 14:43 — page 29 — #45

Code Implementation 29

Listing 3.2: E Flag definitions

in6_dev—>if_flags = (in6_dev—>if_flags & ~(IF_RA_MANAGED |

IF_ RA _OTHERCONF | IF_RA_EFlag)) |
(ra_msg—>icmph.icmp6__addrconf managed ?

IF_RA MANAGED : 0) |
(ra_msg—>icmph.icmp6__addrconf_ other ?

IF_RA OTHERCONF : 0)
(ra_msg—>icmph.icmp6__addrconf_eflag 7

IF_RA_EFlag :0);

0~ O Ui W N

The values of those flags are being sent from the Kernel to the user-space by
Netlink Sockets (A short review of Netlink sockets is given in the Kernel Overview
Chapter 3.3). The value of the E Flag should be decoded from the received RA’s,
and if the flag would be enabled, the protocol should work in the efficient mode.
A code found at [20], should retrieve the value of the M/O flags. This could be
modified accordingly, in order to read the E Flag as well and introduce a knob
which would set efficient mode on or off. This hasn’t been studied in this thesis,
but it can be considered a future work topic.

3.4.2 Address Registration Option

Summary of the implementation

The idea of Address Registration Option (ARO) was introduced in RFC 6775 [4]
and then further suggested for implementation in [3]. The main idea of ARO is to
replace the usage of multicast messages in the DAD process with a new method
of handling registrations, by including an ARO header in the NS/NA messages.
Inside this header, the hosts have to include their L2 Address (SLLA), which will
be stored at the router side in the router’s NCE. This allows the router to reply
to NS’s with unicast NA’s and handle address registration of hosts, which would
replace the multicast DAD process used by the Legacy NDP. If SLLA is missing,
it would either mean the protocol is working in the Legacy mode or there is an
error, as it can also be seen in Table 3.1.

ARO | SLLA Status
v’ X error
v’ v’ Working as Efficient NDP; Update NCEs
X v’ Working as Legacy NDP
X X Working as Legacy NDP

Table 3.1: Status of the NDP Protocol

“main” — 2016/11/20 — 14:43 — page 30 — #46

30 Code Implementation

Before digging into a detailed section of code implementation for the ARO option,
a summary of the implementation is depicted in Figure 3.5, to show which steps
were followed and what are the key concepts that were changed or introduced. On
the right side of the Figure, a list of each approached function or feature is shown,
together with a reference that points to the Listing in which it was implemented,
found in the detailed implementation description.

~ * ARO, 6C0O, ABRO options defined
in Listing 3.6
Define ARO — + ARO Field defined in Listing 3.1
* Field’s header defined in Listing
~ 3.2
~+ ndisc_send_na modified in
Listing 3.7
Attach ARO to NA/NS —* ndisc_recv_ns modified in Listing
3.9
+ _* ndisc_send_unsol_na modified
in Listing 3.8
~ + Registration Lifetime defined in
Listing 3.3
Address Registration Process | — « Status of Registration defined in
Listing 3.4
L= DAD verifications in Listing 3.10
[Sanity checks _ * Donein Listing 3.5, according to
Table 3.1

Figure 3.5: Code implementation steps

Detailed implementation description

An implementation attempt was made by Varka Bhadram in [15], however, as the
targeted changes enter the Linux Kernel more deeply, the implementation wasn’t
finished, nor tested. This implementation was examined in detail, and code com-
ments done by Alexander Aring were implemented. This implementation will be
now shown in detail, by taking snippets of the proposed code and explain which
additions were necessary and why.

In the Linux Kernel, the ndisc.h header contains all parameter definitions of
the NDP protocol. Here, the ARO option was defined, with the value of 33, as it
is the type defined by [4]. This is to be seen in Listing 3.3.

“main” — 2016/11/20 — 14:43 — page 31 — #47

Code Implementation 31

Listing 3.3: ARO Definitions [15]

ND OPT ARO = 33,
_ ND OPT MAX

struct ndisc_options {
struct nd_opt_hdr *nd_opts_aro;

The header of the ARO is introduced in a new structure, seen in Listing 3.4, with
its corresponding fields defined in [4] and also shown in Figure 2.5 of Chapter 2.2.4.

Listing 3.4: ARO Header [15]

1 struct aro_option {

2 struct nd_opt_hdr aro_opt;
3 __u8 status;

4 __ul6 reserved;

5 _ul6 reg_lifetime;

6 __u8 eui_ 64[8];

[

ARO uses a timer called registration lifetime, which serves for managing and re-
freshing existing neighbor registration with the routers. This registration lifetime,
defined in Listing 3.5, shall be the same as the Router Lifetime of the RA mes-
sages. jiffies is a variable used by the Kernel, which is incremented when a used
timer is expiring [14]. The timer is implemented as the Router Lifetime of RAs
(gc__staletime in Listing 3.5).

Listing 3.5: Registration Lifetime [15]

1 %include/net/neighbour.h
2 struct neigh_params {
3 #ifdef CONFIG_IEEE802154 6LOWPAN
4 _ul6 reg_lifetime;
5 #endif
6 }

7 %net/core/neighbour.c

8 if ((atomic_read(&n—>refcnt) = 1) && (state = NUD_FAILED ||

9 time_after (jiffies , n—>used 4+ n—>parms—>gc_staletime) ||
10 #if IS _ENABLED CONFIG_IEEE802154 6LOWPAN

11 time_after (jiffies , n—>used + n—>parms—>reg_ lifetime)
12 #endif

13) 1

14 *np = n—>next;

15 n—>dead = 1;

16 write__unlock(&n—>lock);

“main” — 2016/11/20 — 14:43 — page 32 — #48

32 Code Implementation

A new function was created (Listing 3.6), which handles the proposed fields of
the ARO. The ARO included in NS or NA messages is used to perform Address
Registration, Neighbor Unreachability Detection (NUD) or to refresh an existing
registration. The router receiving a NS first does a lookup in it’s NCE, to check if
the received SLLA is already registered or not, then it is checked against duplicates.
If it’s not duplicate and the SLLA is already registered, then the registration
lifetime of the ARO is verified as following:

e If the registration lifetime of the ARO is 0, it means a host wants to de-
register itself from the router. Then, the neighbor is declared as dead, NUD
is set to NUD__ FAILED and the status field of the ARO is set to 0, which
means it was successfully removed from the network. (Lines 10-13)

e If the registration lifetime of the ARO is not 0, the registration is refreshed
and then the status field of the ARO is set to 0, which means the registration
was successful (Lines 14-16).

If the address is a duplicate, then the status of the ARO field is set to 1. Otherwise,
if the SLLA of the ARO is not found in the router’s NCE, Address Registration is
performed, a new entry of a neighbor is added to the NCE and the status of ARO
is set to 0. If the NCE is full, the registration failed and the status field is set to
2. (Lines 21-29) The code of this function can be seen in the Listing 3.6.

Listing 3.6: Function handling ARO options [15]

1 static struct neighbour s#ndisc_lowpan_options__handle(

2 struct net_device xdev,

3 const struct in6_addr xsaddr,
4 struct aro_option *aro)

5 A

6 struct neighbour xneigh = NULL;

7 neigh = neigh_lookup(&nd_thl, saddr, dev);

8 if (neigh) {

9 if (!memcmp(neigh—>ha, aro—>eui 64, 8)) {

10 if (aro—>reg_lifetime = 0) {

11 neigh—>dead = 1;

12 neigh—>nud_state = NUD_FAILED;

13 aro—>status = 0;

14 } else {

15 neigh—>parms—>reg_lifetime = aro—>reg_lifetime;
16 aro—>status = 0;

17 }

18 } else

19 aro—>status = 1;

20 } else {

21 neigh = neigh_create(&nd_tbl, saddr, dev);

22 if (neigh) {

23 neigh_update(neigh, aro—>eui_64, NUD_STALE, 0);
24 neigh—>parms—>reg_lifetime = aro—>reg_lifetime;
25 aro—>status = 0;

“main” — 2016/11/20 — 14:43 — page 33 — #49

Code Implementation 33
26 } else

27 aro—>status = 2;

28 }

29 return neigh;

30 }

As [3] suggests, the SLLA has to be included in the ARO option, in order to enable
the usage of unicast messaging. However, the protocol should be able to work in
mixed mode, so when Legacy NDP is in use, SLLA can be sometimes not used.
When a NS is processed, some sanity checks should be performed, which verify if
the received NS does include an ARO option (Efficient NDP), if the ARO option
does include a SLLA, or if no ARO option is present. Those sanity checks were
done in the ndisc_lowpan_ns function, whose code can be analyzed in Listing
3.7. The ’if’ statements were slightly modified from Varka’s code, by analyzing
the code comments in [15] done by Alexander Aring.

Listing 3.7: Sanity check of ARO [15]

1 static struct neighbour s#ndisc_lowpan_ns(struct sk_buff xskb,
2 struct net__device xdev,

3 struct aro_ option xaro_ opt,

4 u8 xlladdr)

5 A

6 const struct in6_addr xsaddr = &ipv6 hdr(skb)—>saddr;

7 struct neighbour *neigh = NULL;

8

9 if (!lladdr && aro_opt) {

10 ND_PRINTK(2, warn, "NS_packet is, not having the SLLAO\n")}
11 return NULL;

12 }

13

14 if (lladdr && aro_ opt) {

15 neigh = ndisc_lowpan_options__handle(dev, saddr, aro_opt);
16 if (!neigh) {

17 ND_PRINTK(2, warn,"NS,: Error,in lowpan option

18 Luuuuuhandling\n");

19 return NULL;

20 }

21 }

22

23 if (lladdr && laro opt) {

24 neigh = __ neigh_lookup(&nd_tbl, saddr, dev, 1);

25 if (neigh)

26 neigh update(neigh, lladdr , NUD_STALE, 0);

27 }

28 return neigh;

29 }

The sanity checks from Listing 3.7 perform as following:

“main” — 2016/11/20 — 14:43 — page 34 — #50

34 Code Implementation

e Ifa NS isreceived, which contains the ARO option, but the SLLA is missing,
a warning will occur. The ARO option in this case will be ignored, as per
[4].

e If a NS is received, which contains both ARO and SLLA, the
ndisc_lowpan_options_handle() from Listing 3.1 is called. This will an-
alyze the received ARO, respectively it’s registration lifetime, to check if
refresh of registration is in order. NUD is also performed and DAD through
the status field of the ARO. Should no neighbor be found, an error message
will be generated.

e If the SLLA is present, but not the ARO, it can mean that the protocol is
working in the legacy mode, so the NCE tables will be updated with the
new SLLA, if not already present.

The 6LoWPAN options introduced in [4] - ARO, 6CO, ABRO, were added in
ndisc_parse_options() function, as it can be seen in Listing 3.8. This function
is called and verified by each of the corresponding function of sending / receiv-
ing NA, NS, RA, RS, or Redirect. 6CO and ABRO are not used in this thesis,
but they could be investigated in the future, as they are part of the RFC 6775
implementation.

Listing 3.8: ARO options [15]

1 struct ndisc_options *ndisc_parse_options(u8 *opt, int
2 opt_len, ..)
3 A
4 S
5 case ND OPT ARO:
6 if (!ndopts—>nd_opts_aro)
7 ndopts—>nd_ opts__aro = nd_opt;
8 break;
9 case ND_ OPT 6CO:
10 if (!ndopts—>nd_opts_6co)
11 ndopts—>nd__opts_ 6co = nd_ opt;
12 break;
13 case ND OPT ABRO:
14 if (!ndopts—>nd_opts_ abro)
15 ndopts—>nd_ opts__abro = nd_ opt}
16 break;
17 o
18 }

The function ndisc_send_na(), which is the one used for sending Neighbor Ad-
vertisements, was modified by Varka in order to include the ARO. Therefore, the
lines 5-8 of Listing 3.9 add the ARO space to the length of the options field of the
NA, if it’s being used. skb_put () of line 16 adds ND__OPT_ARO_ SPACE bytes
to the Socket Buffer, so that it is ready for transmission.

“main” — 2016/11/20 — 14:43 — page 35 — #51

Code Implementation 35

Listing 3.9: Sending NA's function [15]

1 static void ndisc_send_na(struct net_device xdev, ... |,

2 struct aro_option xaro)

3 A

4 ...

5 if (inc_opt) {

6 optlen += ndisc_opt_addr_space(dev);

7 if (aro)

8 optlen 4+= ND_OPT_ ARO_SPACE;

9 }

10

11 if (inc_opt) {

12 if (dev—>type =— ARPHRD_IEEE802154) {

13 ndisc_ fill _addr_option (skb,

14 ND_OPT TARGET I1I. ADDR, dev—>dev_ addr);
15 memcpy ((struct aro_option x)

16 skb__put (skb, ND_OPT_ARO_SPACE) ,
17 aro, sizeof(xaro));

18 } else

19 ndisc_ fill _addr__option (skb, ND_OPT TARGET LL ADDR,
20 dev—>dev_addr);

21 }

22

23 ndisc_send_skb(skb, daddr, src_addr);

24}

The most important outcome of the Efficient NDP is that multicast NS’s are
replaced by unicast NS’s. This also means that the protocol has to stop sending
unsolicited NA’s. In the ndisc_send_unsol_na() function from Listing 3.10, the
aro__option parameter was declared NULL (line 8), which means the ARO option
is not to be included in unsolicited NA’s, as they will not be used by Efficient
NDP in the first place.

Listing 3.10: Unsolicited NA's [15]

1 static void ndisc_send_unsol na (...)

2 {

3 ...

4 list for each entry(ifa, &idev—>addr_ list, if list) {
5 ndisc_send_na(dev, NULL,

6 &in6addr_linklocal allnodes , &ifa—>addr,
7

8 inc_opt=x/ true, NULL);

9 }

10 ...

1}

Listings 3.11 and 4.1 describe the additions that were done by Varka to the
ndisc_recv_ns() function, additions explained in theory in Chapter 2.2.4. When

“main” — 2016/11/20 — 14:43 — page 36 — #52

36 Code Implementation

a NS is received, a checkup has to be done to see if it contains an ARO. If so, the
status and length of the ARO have to be verified. The status of the ARO has to be
0, otherwise it means the address is duplicate or the NCE is full. The length of the
ARO has to be 2, as it is defined in [4]. A call to ndisc_lowpan_ns() from Listing
3.2 was done, to verify if the NS is containing the ARO and/or the SLLA. When
this is verified, the node receiving the NS will update it’s NCE with the received
SLLA, perform DAD if necessary and reply to the NS with a corresponding NA.

Listing 3.11: Receiving NS's function [15]

1 static void ndisc_recv_ns(struct sk_buff xskb)

2 {

3 ...

4 if (ndopts.nd_opts_aro) {

5 memcpy (aro, (struct aro_option *)ndopts.nd_opts_aro,
6 sizeof (xaro));

7 if (aro—>status != 0 || aro—>aro_opt.nd opt len != 2) {
8 ND_PRINTK(2, warn, "ARO: invalid,status and

9 Luuuuuuuuuuuuulength, must discard,the packet\n");

10 return;

11 }

12)

13

14 if (dev—>type =— ARPHRD_IEEE802154) {

15 neigh = ndisc_lowpan_ns(skb, dev, aro, lladdr);

16 if (neigh) {

17 ndisc_send_na(dev, neigh, daddr, &msg—>target ,
18 idev—>cnf. forwarding ,

19 true , false, true, aro);

20 return;

21 } else {

22 ND_PRINTK(2, warn,

23 "NS_:y,error,in handling, Lowpan_ packet\n");
24 return;

25 }

26 }

27

28

29 }

Lines 3-7 of Listing 4.1 treat the following case: a NS was received, stating a du-
plicate address. This means that the protocol is working in the Legacy mode and
has a conflict of address with another host, so an NA reply has to be sent back to
resolve the conflict. The ARO field receives a NULL value here (line 6), because
the protocol is in Legacy mode. The second part of the code handles the normal
situation, in which when a NS is received, a NA reply has to be sent back.

“main” — 2016/11/20 — 14:43 — page 37 — #53

Code Implementation 37
Listing 3.12: Receiving NS's function [15]

1 static void ndisc_recv_ns(struct sk_buff xskb)

2

3 if (dad) {

4 ndisc_send_na(dev, NULL, &in6addr_linklocal_allnodes,

5 &msg—>target , !!is_router, false, (ifp != NULL), true,

6 NULL) ;

7 goto out;

8 }

9

10 if (mneigh || !dev—>header ops) {

11 ndisc_send_na(dev, neigh, saddr, &msg—>target, !!is_router

12 true, (ifp != NULL && inc), inc, NULL);

13 if (neigh)

14 neigh release (neigh);

15 }

b

This concludes the review of the code implementations proposed in [15], leaving
the testing and evaluation of possible additional functions to the future work. The
following chapter investigates a simulation environment, in which the Legacy NDP
as well as the Efficient NDP are configured, in order to observe how the proposed

changes of the protocol affect a network, in terms of performance and scalability.

“main” — 2016/11/20 — 14:43 — page 38 — #5b4

38

Code Implementation

“main” — 2016/11/20 — 14:43 — page 39 — #55

Chapter 4

Simulation model

This chapter presents a simulation model that was implemented with two different
test case scenarios, in which a Legacy NDP and a Efficient NDP network were
configured. The simulations analyze a sleep and wake up scenario, in which the
number of messages arriving at the hosts in both cases will be then compared in
Chapter 5. Through this comparison, assumptions will be then made if hosts will
wake up less frequent from sleeping cycles, hence consume less battery, as it was
introduced in [3].

The software chosen for this simulation is OMNEeT++ v5.0. In order to describe
the simulation environment, first an introduction to OMNeT++ is given in Chap-
ter 4.1, and some of its main features that were essential for the simulation are
presented. An example of those features is INET, which allows the user to create
more complex simulations models.

In the next section, in Chapter 4.2, follows a description of the simulation model
that was used for the sleep and wake up experiment, its components and goals.
The section describes the implementation of the two scenarios, their parameters
and in the end what were the limitations.

4.1 Simulator description

In this section refers to OMNeT++, its compound structure and how a network
design can be represented. It also refers to INET, an extra tool of OMNeT++,
used to create and simulate more complex simulation models.

39

“main” — 2016/11/20 — 14:43 — page 40 — #56

40 Simulation model

4.1.1 OMNeT++

OMNeT++ is an open source discrete event simulator environment written in
C++. It operates under the Academic Public License, which makes the software
free for non-profit use. OMNeT++ has been recognized as reliable platform for
creating and simulating networks and distribution systems between academics, so
more and more researchers use it [24]. OMNeT++ has been designed to create
and run large scale simulations, with hierarchical and customizable modules. In
this thesis work, OMNeT++ v5.0 was used.

OMNeT++ uses a model language named NEtwork Description (NED), which
allows the user to model many simple modules together. The simple modules can
be combined and thus create more complex models. Figure 4.1 illustrates the
structure of a compound module.

system module simple modules

/

/

compound module

Figure 4.1: Module Structure

Once different modules are built, the network model can be defined with the
use of Network Description (NED) language. NED language is used to define
the topology of the network, to describe which modules are used, to define the
interconnections between the modules, and the parameters of the compounds.
Parameters can be set by using the user interface of OMNeT++, which translates
automatically the different modules into code. Figure 4.2 and Listing 4.1 show an
example of how two host are connected together, using the graphical interface and
the same structure is shown in the source code of the NED language.

-

standardHost standardHestl

Figure 4.2: NED-based Network description

“main” — 2016/11/20 — 14:43 — page 41 — #57

Simulation model 41

Depending on the experiment, parameters can also be defined on an INI file, which
overrides the parameters set on the NED language. In this thesis work, parameters
such as simulation time or number of hosts are defined on an INI file, while others
such as router lifetime can be set with the NED language.

Listing 4.1: Receiving NS's function [15]

1 network Network

2 {

3 submodules:

4 standardHost: StandardHost6 {
5 @display ("p=38,82");

6 }

7 standardHost: StandardHost6 {

8 @display ("p=228,83");

9 }
10 connections:
11 standardHost . ethg++ <—> standardHostl.ethg++;
12}
412 INET

The INET framework was built as an extension library of the OMNeT++4. The
INET framework for OMNeT++ is the keystone of the simulator. OMNeT++
implements only generic and simpler modules, but the INET framework adds up
a very large library of standards used in Internet networking such as TCP, UDP,
1Pv4, IPv6, ICMPv6, BGP, etc. Since NDP uses ICMPv6 control message, the use
of INET was a necessity. On top of protocols issued from the OSI layers, INET also
implements several applications models and routing protocols and is responsible
for the configuration of the IP network (IPv4/IPv6). It also has wireless radio
communication and distribution models along with implementations with MAC
protocols.

Therefore, this framework is really important in order to have a more realistic
simulation, but adds to complexity. Figure 4.3 shows for example the difference
between a regular OMNeT++ host and one using the INET Framework.

In order for the simulation to run properly, each node must have an IP address.
Configuration can be done either automatically, or manually. In this thesis work,
it was done automatically, as it is mentioned on Chapter 4.2. Moreover, in order to
implement network traffic, or assign IPv6 protocol in the simulation model, INET
was necessary and was used as well.

“main” — 2016/11/20 — 14:43 — page 42 — #b58

42 Simulation model

status

routingTable

interfaceTable

korderlnumPcapRecorders

ooolsizedf(oooall

Figure 4.3: Example of host in INET

4.2 Sleep and wake up Scenario

As it was mentioned in the Introduction chapter (Chapter 1), the NDP protocol
was proven to be inefficient in the wireless networks domain, creating unnecessary
traffic and use of resources, such as increased processing power and creates conse-
quences such as battery drainage. In the previous work, [11], a theoretical analysis
was performed for Legacy and Efficient NDP, which has shown that the proposed
protocol optimization is efficient, by offering a significant reduction of exchanged
messages in the network. A sleep and wake up scenario was also briefly discussed,
but not analyzed, which assumed to produce 100% saving of multicast messages.

In the current work, the sleep and wake up scenario was chosen for analysis, for
both Efficient NDP and Legacy NDP. It was considered essential to show how both
protocols operate under the same conditions, in a simulated environment. That
is, in order to relate results in terms of messages savings to a practical approach,
by assuming that battery lifetime of wireless devices running the Efficient NDP
could be improved.

The purpose of this simulation is to determine how many messages arrive at the
host side, in the two cases of Legacy NDP and Efficient NDP, and the outcome is
to determine how many messages can be saved in the Efficient NDP. The message
savings affect the number of times a host wakes up from sleeping cycles, which
also impacts battery consumption. The results are discussed in Chapter 5.

“main” — 2016/11/20 — 14:43 — page 43 — #59

Simulation model 43

4.2.1 Simulation parameters

In this simulation, two different scenarios were chosen. The first case analyzes
Legacy NDP as per [8] and the second case analyzes the Efficient NDP as it is
described in [3]. The previous analysis, [11], evaluated the behavior of the protocol
in time intervals between 5 and 20 minutes. In the current work, in order to see
how the exchange of multicast messages propagates in a longer period of time
in a network, simulations were run for 1 hour, 4 hours, 8 hours and 24 hours.
Moreover, to evaluate the scalability of the model, the number of hosts selected
for each time interval were 1, 5, 20 and 100 hosts and one IPv6 router was used.
Those parameters were selected for both Legacy and Efficient NDP. The Appendix
contains information on how those parameters were adjusted.

Hosts in this experiment have been selected to join the network in a random
manner, by using a uniform distribution. This was done in order to make sure
that all hosts can enter the network during their respective simulation time. Table
4.1 shows the time intervals for each case.

Time / Hosts 1h 4h 8h 24h
1 (0, 3600) | (0, 14400) | (0, 28800) | (0, 86400)
5 (0, 720) | (0, 2880) | (0, 5760) | (0, 17280)
20 (0, 180) (0, 720) (0, 1440) | (0, 4320)
100 (0,36) (0, 144) (0, 288) (0, 864)

Table 4.1: Uniformly distributed time intervals for different number
of hosts and experiment time in seconds

Figure 4.4 gives an example of those chosen time intervals, for the case of having
5 hosts, joining the network, for a 1 hour simulation time. The simulation time
is divided with the numbers of hosts, then the result is a equal time threshold,
in which each host joins the network. For example, Host 1 joins the network
somewhere between 0 and 720 seconds.

t=0 t=720 t=1440 t=2160 t=2880 t=3600
| | |
I L II L J I L J I L] I L J

T T T T

»-

Host 1 Host 2 Host 3 Host 4 Host 5

Figure 4.4: Time intervals in which hosts join the network

“main” — 2016/11/20 — 14:43 — page 44 — #60

44

Simulation model

OMNeT++ parameters

In order to perform the simulation in OMNeT++, several parameters were chosen,
some of them leading to model limitations:

Wireless hosts were considered to be still during the whole duration of the ex-
periment. While this option is available for implementation in OMNeT 4+,
it was left out in order to reduce the complexity of the model. If imple-
mented, it can be assumed that some delay and packet loss would be in-
troduced in the network, which could increase the number of exchanged
multicast messages, due to re-transmissions.

UDP traffic was inserted into the network. Traffic is necessary when design-
ing a simulation. TCP traffic could also have been used, but it wouldn’t
have made a difference. More information about how traffic was inserted
into the network can be found in the Appendix.

It was assumed that, during the exchange of messages, there was no packet
loss, so there was no re-transmission. This can also be implemented in
OMNeT++, by introducing a packet drop rate, according to a packet loss
probability which can be calculated. Re-transmissions could also increase
the number of exchanged multicast messages.

The model does not cover a case of hosts leaving the network (or failing),
while other hosts already joined the network. The hosts join the network
progressively, according to Chapter 4.2.1. This impacts the number of ex-
changed NS/NA messages, sent when verifying the neighbor reachability, in
the Legacy NDP case - the number would increase, making Legacy NDP less
favorable compared to Efficient NDP. This does not affect Efficient NDP, as
by implementing the proposed protocol changes, Efficient NDP hosts would
perform NUD when they wake up ([3], Chapter 8.10), to refresh their reg-
istrations. As a result, they wouldn’t have to send separate messages for
NUD and for registration refreshing.

4.2.2 Legacy NDP

To set up the environment, an existing example model from the OMNeT++ li-
brary was used (inet/examples/wireless/wiredandwirelesshostswithap/) as
a starting point, which had already Legacy NDP implemented and was designed to
operate with wired and wireless hosts. This model was changed according to the
selected simulation parameters, mentioned in Chapter 4.2.1, as well as according
to the setup that follows in the current chapter. The modified code can be found
in the Section 1 of the Appendix,. Hence simulations were run for a number of
1-100 hosts, for time intervals varying from 1 to 24 hours.

“main” — 2016/11/20 — 14:43 — page 45 — #61

Simulation model 45

The network in the simulation consists of an IPv6 router module, an access point
and a wireless host module that works with IPv6 protocol. The wired host was
removed from the original model, since it was not needed. The number of hosts
and the simulation can be changed accordingly. Those settings were be done
in the configuration file of the project (omnetpp.ini). A radioMedium module
was used for allowing wireless traffic in the simulation. Finally, the Configurator
module allows the user to implement the IPv6 protocol. OMNeT++ contains the
NDP protocol in the IPv6 router module and the time intervals between multicast
messages are set there. This simulation model is depicted in Figure 4.5. As a note,
in this figure, wirelessHost6 stands for 1 to 100 hosts.

@ | WiredAndWirelessHostsWith AP

rfrg ! !' ﬁ configurato
wirelessHostd

accessPoint router

#

radicMedium

Figure 4.5: Simulation model design

Legacy NDP is sending out unsolicited multicast RAs from the router to the hosts,
to update the network status. As it is of interest to count the number of messages
arrived at each host, parameters defined in RFC 4861 have to be configured for
this simulation model, in order to select how frequent those unsolicited RAs are
sent. Those parameters are MaxRtrAdvInterval and MinRtrAdvInterval. They
can be adjusted inside the NDP source code of OMNeT++, where they are defined
as: minIntervalBetweenRAs and maxIntervalBetweenRAs.

MaxRtrAdvInterval can take values from the interval 4s < MaxRtrAdvInterval <
1800s, with a default value of 600s.

MinRtrAdvInterval can take values from the interval 3s < MinRtrAdvInterval <
0.75 * MaxRtrAdvInterval, with a default value of 0.33 * MaxRtrAdvInterval if
MaxRtrAdvInterval > 9s; otherwise, MinRtrAdvInterval = MaxRtrAdvInterval.
In this simulation, the time intervals between RAs were selected as

MinRtrAdvInterval = 0.75 % 1800 = 1350s

and
MaxRtrAdvInterval = 1800s

“main” — 2016/11/20 — 14:43 — page 46 — #62

46 Simulation model

Those values were selected, so that a minimum number of unsolicited multicast
messages are being sent. This means that the Legacy NDP is performing in it’s
best case scenario, which can be then compared with Efficient NDP. At this point,
it is expected that by using a worse case scenario (larger number of unsolicited
multicast messages), when comparing Legacy NDP with Efficient NDP, the latter
would turn out to show more message savings than the first. This is verified in
Chapter 5.

Once all the mentioned aspects are implemented, the simulation can be started.
It follows the standard working mode of NDP, as described in Chapter 2.1. The
messages sent and received from the router go through the access point and reach
the hosts. Simulation results are then extracted from the generated vector file, and
imported in MS. Excel. The number of received messages at the host are ready to
be counted. The results follow in Chapter 5.

4.2.3 Efficient NDP

The simulation model of Efficient NDP was created by starting with a basic Tic-
Toc example from the OMNeT++ library, in which packets are just traveling
from point A to B. On top of this, a simplified model of the NDP protocol was
designed, with relevant requirements of Efficient NDP, in order to be able to have
the exchange of RS/RAs and NS/NAs as it is described in Chapter 2.2. A de-
tailed description about how this model was coded can be found in the Efficient
NDP OMNeT++ Implementation details subsection of the Appendix. Having this
model implemented, messages arriving at the hosts can be counted, compared with
the Legacy NDP case from Chapter 4.2.2 and conclusions can be drawn on how
much message savings are feasible in Efficient NDP.

Main characteristics of the model

The created model needs to have the following basic features, in order to be able
to perform the exchange of messages as Efficient NDP requires:

e Hosts initially send RS messages when they join the network, to perform
Network Discovery and receive RA’s from the router;

e Hosts send unicast NS every time their Registration Lifetime is about to
expire, and receive NA’s as response, to refresh their registration, as it was
explained in Chapter 2.2.4;

e Hosts join the network randomly, as in a real-life scenario, by using a Uni-
form Distribution. The reason for this was explained in Chapter 4.2.1.

“main” — 2016/11/20 — 14:43 — page 47 — #63

Simulation model 47

A detailed explanation of the operating mode of the model will be described later
in this chapter, after the model limitations are presented.

Model Limitations

e Hosts and Routers do not have actual IP Addresses configured. This process
is done when a host initializes his interfaces and joins a network, through
a multicast NS message to the all-routers multicast address. Since this
message is sent at initialization, and only to routers, it wouldn’t reach other
hosts in order to disrupt their sleeping cycles, so it can be left out.

e Only the Registered Lifetime field of ARO was implemented. In efficient
ND, DAD is performed through ARO. It is achieved through the NS/NA
messages mentioned above, which can signal a duplicate address trough the
status field of ARO. This process was explained in detail in 2.2.4. The Reg-
istered Lifetime is the most relevant parameter of ARO in this simulation,
as it allows the protocol to exchange unicast NS/NAs which would perform
the address registration.

e DAD, as mentioned above, was not implemented. In order to have it imple-
mented, the already embedded Legacy NDP module of OMNeT++ would
have to be modified, according to all aspects mentioned in the Efficient
NDP implementation requirements, similar to the work that was done in
Chapter 3. In the current simulation, this might not have a big impact on
the results, as it is assumed that chances of having duplicate addresses in a
real-life network, containing only 100 hosts, are quite low.

Detailed description of the model

In the efficient mode, multicast messages are removed and instead Registration
Lifetime from the Address Registration Option described in Chapter 2.2.4 is used
and set by default to 9000 seconds. A lower value could also have been used, but the
maximum value was selected, so that there would be a minimum number of NS/NA
messages exchanged, that would refresh hosts registrations. This translates to
hosts waking up less frequent from sleeping cycles. As per [4], hosts will rely
on the Address Registration Option annexed to NS/NAs in order to refresh their
registration, and this will be done through the Registration Lifetime field, which
should be the same as the Router Lifetime inside the RA/RSs.

The hosts can wake up at 2/3 of the Registration Lifetime, to refresh their regis-
tration, so in the simulation measurements, 6000 seconds was used as time interval
for NS/NAs between router and each host separately. At this point, it must be
noted that the update can also be done at 1/3 of the Router Lifetime, or another
alternative approach would be to wait until the end of the Registration Lifetime
before the update, as suggested in [3].

“main” — 2016/11/20 — 14:43 — page 48 — #64

48 Simulation model

In order to perform this simulation in OMNeT++, a simplified model of NDP
was designed through block definitions and classes. Each host, when joining the
network, would immediately send a multicast RS and receive an RA to perform
registration with the router. Then it would send an NS/NA to set up it’s Reg-
istration Lifetime and configure it’s IP address. Afterwards, it can enter sleep
mode. The timer of 9000 seconds starts right away and every 6000 seconds, the
host wakes up from sleep, sends an NS and receives an NA with the refreshed
Router Lifetime. This process is depicted in Figure 4.6.

With this model implemented, simulations were run for 1, 5, 20 and 100 hosts,
for a period of 1, 4, 8 and 24 hours. The number of messages arrived at the hosts
were counted, in order to determine, for the sleep and wake up scenario, how many
messages can be saved in the Efficient NDP, compared to Legacy NDP. Through
this comparison, assumptions can be then made on if the amount of sleeping cycles
being disrupted on battery operated devices running Efficient NDP is decreased.
The results and this analysis follow in Chapter 5.

MEAR
ROUTER

t=0, send RS, multicast (host 1)
t=0, send RA, unicast (host 1)

1 '.'-_ t=0, send NS, unicast {host 1)

W
n

routeré
t=0, send NA, unicast (host 1)

t=uniform[0,854} . 5end RS, multicast {hast 2)

(cast (host 21
10,8641 . send RA, unicast |
=uniforms:

t=6000, send NS, unicast (host 1)

) host 1)
d NA, wmicast A
=6000, sen

Host 1 wakes up
t:[unfformtﬂ,&sdhsoﬂa}, send NS, unicast

NA, unicast
i‘l\.m'uh)rn'ﬂ.o.sf"“*'sE), 5o

Host 2 wakesup *

Figure 4.6: Network Setup of Efficient NDP

“main” — 2016/11/20 — 14:43 — page 49 — #65

Chapter 5

Results

In this chapter, the results of the two test case scenarios investigated in Chapter
4 are described and analyzed. The objective is to show if the changes proposed in
the Efficient NDP would reduce the number of exchanged messages in the sleep
and wake up scenario between hosts and router and to what extend. Sleep and
wake up scenario was selected, because battery operated devices enter into sleep
mode when not in use to save power and the mechanism of Legacy NDP with
the periodic messages disrupts their cycle. So, Efficient NDP should allow hosts
to complete their sleeping cycles with no interruptions and thus save energy and
power and reduce network traffic. Moreover, this protocol should be also applicable
in networks with larger number of hosts.

In the first section, the reader can find the results for the Legacy NDP presented
and explained, in the second section the results for the Efficient NDP and in the
last section, a summary of the results is given and both test case scenarios are
being compared.

5.1 Legacy NDP simulation results

In this section, the simulation results obtained from running the Legacy NDP test
case scenario from Chapter 4 are analyzed. Tables 5.1 - 5.4 show the number of
multicast exchanged messages in the Legacy NDP case, for 1, 5, 20 and 100 hosts,
during a period of time of 1, 4, 8 and 24 hours. In the Legacy NDP, the router
sends those periodic control messages to check and update their network status.

49

“main” — 2016/11/20 — 14:43 — page 50 — #66

50 Results

Time frame [h] | RA | NS | Total messages
1 6 2 8
4 12 2 14
8 22 2 24
24 59 2 61

Table 5.1: Number of messages received by 1 host (Legacy NDP)

Time frame [h] | RA | NS | Total messages
1 50 | 41 91
4 85 | 41 126
8 130 | 41 171
24 310 | 41 351

Table 5.2: Number of messages received by 5 hosts (Legacy NDP)

Time frame [h] | RA | NS | Total messages
1 500 | 660 1160
4 620 | 660 1280
8 800 | 660 1460
24 1560 | 660 2220

Table 5.3: Number of messages received by 20 hosts (Legacy NDP)

Time frame [h] | RA | NS | Total messages
1 10500 | 9700 20200
4 11100 | 9700 20800
8 12000 | 9700 21700
24 15600 | 9700 25300

Table 5.4: Total messages exchanged by 100 hosts (Legacy NDP)

The number of exchanged messages in the case of Legacy NDP can be explained
by following the working mode of NDP, as per RFC 4861. As it can be observed
in Table 5.1, for the case of 1 wireless host in the network, simulated in 1 hour, 6
RAs are being sent. This number can be justified through the following steps:

e When the simulation starts, first the router powers up and the host joins
the network. The router is then initialized and multicasts up to 3 ini-
tial RAs to the host, according to the parameter described in RFC 4861,
MAX_INITIAL_RTR_ADVERTISEMENTS.

“main” — 2016/11/20 — 14:43 — page 51 — #67

Results 51

e Next, the host is also initialized and sends a control message (RA) to the
Router to get an IP address. The host answers the call and sends a RS as
a reply.

e The simulation time is set to 3600 seconds (1 hour) and MaxRtrAdvInterval
and MinRtrAdvInterval are set to 1350 and 1800 seconds respectively, as
described in Chapter 4.2.2. Between this time interval, the router multicasts
unsolicited RAs to check if the host is present and update its routing table,
hence RA messages are not entirely periodic. Therefore, in 3600 seconds, 2
more RAs can be sent from the router which makes the total equal to 6.

After the first periodic RA/RS is sent from the router when powering up, the
host initializes and multicasts a NS to the available router. The number of sent
NSs is stable for every time interval and seems to increase with the number of
hosts. The NS messages in the Legacy NDP can be either multicast or unicast
[8]. They are unicast in the case where the node seeks to verify the reachability
of a neighbor and multicast when the node needs to resolve an address. As it
was mentioned in the OMNeT++ parameters section of Chapter 4.2.1, this model
does not cover the case when hosts would leave the network or fail, while other
hosts are joining. Therefore, NUD was implemented such that the unreachability
detection is only done once, when a new hosts joins the network, which translates
to having the same number of NSs for a given amount of hosts, for any period
of time simulated. This was achieved by letting the ReachableTime parameter
of NUD take it’s default value, of 0 seconds. This is explained in details in RFC
4861, in Chapter 7.3.3. This can be investigated in more depth in a future work.

The number of exchanged NSs is added to the number of multicast RAs, to show
the total number of messages that arrive at each host for each simulation. This
means, except for the initial phase when the host powers up, it is assumed that
each time a host receives a message, it wakes up from sleep to send a reply.

5.2 Efficient NDP simulation results

In this section, the simulation results obtained from running the Efficient NDP test
case scenario from Chapter 4 are analyzed. Tables 5.5 - 5.8 display the obtained
results for simulations ran in case of 1, 5, 20 and 100 hosts, for a period of time of
1, 4, 8, and 24 hours. In the Efficient NDP, besides the initial RA/RS, which are
multicast, the host sends and receives NS/NA unicast control messages to/from the
router and the router responds respectively. The setup was explained in Chapter
4.2.3.

To clarify the values obtained in Tables 5.5 - 5.8, an example was chosen: in the
case where 1 host was used for simulation, in a 1 hour time period, it can be seen
that 1 RA and 1 NS have been exchanged. The RA is sent in the initial start up

“main” — 2016/11/20 — 14:43 — page 52 — #68

52 Results

phase, when the router powers up, and is multicast. Afterwards, an NS is sent
from the host, that is requesting to register in the network, receive an IP address
set up its Registration Lifetime, so it can enter sleep. As Registration Lifetime
was set to 9000 seconds and as it was assumed that hosts would refresh their
registration every 6000 seconds, no further additional NS/NAs are exchanged in a
1 hour simulation time.

The reason that in higher time intervals there is still 1 message exchanged is that
the time where the host enter the network each time varies according to the uniform
distribution (Table 4.1), hence at 4 hours, the host will send an RS asking to join
between 0 and 14400 seconds. Moreover, OMNeT++ seems to make hosts join a
little before simulation time expires, so there is no further message exchange. This
happens due to the algorithm it runs as it is mentioned in the second paragraph of
this chapter. This is why, for the case of 1 host, there is no more than 1 multicast
message.

For the cases with more than 1 hosts, it can be observed that the number of RAs
is the same with the number of hosts. This is expected, because the RAs are sent
from the router when a new host joins the network. Afterwards, no additional
RAs are required, as the hosts update their neighboring tables and Registration
Lifetime through NS/NA messages, then are ready to enter sleep mode.

After the 2/3 of the Registration Lifetime, hence 6000 seconds, NS are sent from
the host to the router and the router replies with NAs. Those messages are unicast,
but they are taken into consideration when counting because they are sent when
the host wakes up from sleep mode, making it relevant to the sleep and wake up
scenario chosen, so that it can be compared with the case of Legacy NDP.

After a host receives the NA, it goes back to sleep mode. The number of the NS
messages depend only on when the hosts will enter the network for the first time.
As it was mentioned in Chapter 4.2.1, they enter randomly, using a uniform dis-
tribution such that each host gets the chance to join the network, in the simulated
time.

Time frame (h) | RA | NS | Total messages
1 1 1 2
4 1 4
8 1) 6
24 1 15 16

Table 5.5: Number of messages received by 1 hosts (Efficient NDP)

“main” — 2016/11/20 — 14:43 — page 53 — #69

53

Time frame (h) | RA | NS | Total messages
1 5 5 10
4 5) 12 17
8 5 | 20 25
24 5 | 55 60

Table 5.6: Number of messages received by 5 hosts (Efficient NDP)

Time frame (h) | RA | NS | Total messages
1 20 | 20 40
4 20 | 45 65
8 20 | 82 102
24 20 | 227 247

Table 5.7: Number of messages received by 20 hosts (Efficient NDP)

Time frame (h) | RA | NS | Total messages
1 100 | 100 200
4 100 | 236 336
8 100 | 414 514
24 100 | 1137 1237

Table 5.8: Number of messages received by 100 hosts (Efficient
NDP)

5.3 Summary of Results

It is worth mentioning, at this point, that the uniform distribution used for the
hosts joining the network, as it was described in Chapter 4.2.1, generated the
same results every time the same simulation was run. The reason for this is how
OMNeT++ implements a deterministic algorithm, called the Mersenne Twister
PRNG (Pseudorandom Number Generator), as it is mentioned in [25].

The reason for using this uniform distribution was also described in Chapter 4.2.1,
and the objective was to observe the behavior of devices connecting to the network.
After joining the network, hosts would exchange the initial RS/RA messages,
followed by NS/NA messages to perform address registration, then they start their

“main” — 2016/11/20 — 14:43 — page 54 — #70

54 Results

Registration Lifetime timer. At this point, they are ready to enter sleep mode,
meaning they won’t be woken up by periodic multicast messages, as per Legacy
NDP. However, hosts even when they are in sleep mode, are still connected to the
network. The case of hosts disconnecting or failing in the network was not studied,
due to lack of time. The impact of this case was explained in the OMNeT+-+
parameters section of Chapter 4.2.1.

Figures 5.1 - 5.4 display graphs which compare the obtained number of messages
received by the hosts in Legacy NDP and Efficient NDP, after running the simula-
tions for 1, 4, 8 and 24 hours, for 1, 5, 20 and 100 hosts respectively. The objective
of running those two test case scenarios was to create a simulation environment
in which a network would have many end nodes, to observe the exchanged control
messages flow.

Total messages - 1h

25000
20200
20000
15000
10000
5000
g8 2 91 10 1160 40 200
0 — - | [—
1 host 5 hosts 20 hosts 100 hosts

M Legacy NDP m Efficient NDP

Figure 5.1: Comparison of total messages for 1 hour

Total messages - 4h

25000
20800
20000
15000
10000
5000
14 4 126 17 1280 ¢ 336
0 o I | . —
1 host 5 hosts 20 hosts 100 hosts

M Legacy NDP m Efficient NDP

Figure 5.2: Comparison of total messages for 4 hours

It can be observed that in every case, the number of unsolicited messages in the
Efficient NDP is significantly smaller than the ones from the respective Legacy

“main” — 2016/11/20 — 14:43 — page 55 — #71

Results 55

NDP case, where its function of sending multicast periodic RAs increases the
total number of messages. This reduction in exchanged messages occurs, due
to the mechanism of Efficient NDP which enables the hosts to exchange unicast
messages with the router in order to keep their place in the network and discards
the periodic multicast exchange of messages.

Total messages - 8h

25000 21700
20000
15000
10000
2000 1460
24 6 171 25 102 514
0 I I [[I
1 host 5 hosts 20 hosts 100 hosts

W Legacy NDP m Efficient NDP

Figure 5.3: Comparison of total messages for 8 hours

Total messages - 24h

30000
25300
25000
20000
15000
10000
5000 2220
61 16 351 60 m 247 1237
0 — —_—— — |
1 host 5 hosts 20 hosts 100 hosts

W Legacy NDP m Efficient NDP
Figure 5.4: Comparison of total messages for 24 hours

As [3] suggests implementing a centralized system, the impact the changes have
on the central node and on the whole system had to be analyzed and evaluated,
in terms of scalability, as well as complexity, workload and system failure.

The central node of Efficient NDP has now a more centralized role, as it has to keep
track of all the hosts Router Lifetime to perform a refresh of address registration if
needed. It’s workload would also be reduced, as it doesn’t send periodic multicast
RS/RAs anymore. Moreover, the router in Efficient NDP doesn’t need to remind
the hosts when to refresh registrations, as the hosts would wake up themselves

“main” — 2016/11/20 — 14:43 — page 56 — #72

56 Results

when their Registration Lifetime is about to expire.

As it can be seen from the Figures 5.1 - 5.4, more messages are being saved, as
the number of hosts being used increase, making this model scalable. Percentages
of total message savings are shown in Chapter 6, in Tables 6.1 - 6.4.

With this reduction of total messages, it can be assumed that the total network
traffic produced is also reduced, hence less workload. Also, by having less messages
being exchanged, less resources would be consumed by the operating devices, which
together with less processing power being used, the complexity of the system as
a whole entity would also be reduced. This could lead to an improve of battery
lifetime. The difference in total exchanged messages in both cases, becomes more
obvious as the number of hosts grow and naturally traffic in network grow as well.

The last objective of the thesis was to investigate the impact of the protocol
changes on Stateless Address Auto Configuration (SLAAC). As per [3], the new
Address Registration Option described in Chapter 2 and proposed for implemen-
tation in Chapter 3, is fully compatible with SLAAC and DHCPv6 and replaces
the DAD procedure of RFC 4862. RFC 4862 was not studied in great detail in this
thesis, as it is another standalone protocol, which while working closely together
with RFC 4861, would require more time for analyzing it.

“main” — 2016/11/20 — 14:43 — page 57 — #T73

Chapter 6

Conclusions

The mechanisms proposed in the Efficient NDP, mainly aim at energy efficiency
for mobile hosts that are battery powered. It aims at having them unaffected from
any unnecessary control messages when they are in sleep mode, hence inactive
and saving power. The results presented in Chapter 5, when the two cases were
compared, showed that there is a significantly larger number of unnecessary control
messages in the Legacy NDP, which is greatly reduced with the implementation
of Efficient NDP. Those results also confirm the theoretical results obtained in
[11]. By having the exchanged messages reduced, network traffic is also expected
to decrease. It is also assumed that with the reduction of these messages, the
energy of the battery could be saved for the mobile devices. However this is
just an assumption as there is no clear technique on measuring the savings of
energy power and it goes beyond the scope of this thesis. However, together with
the reduction of these messages, power saving techniques would also have to be
investigated, as manufacturers implement their own techniques [9].

Nevertheless, this outcome could have a very positive effect to both the manufac-
turers and the users of the mobile devices if Efficient NDP is actually deployed.
Tables 6.1 - 6.4 show a summary of the estimated savings in the sent control
messages for all the cases simulated and discussed in Chapter 5.

A hosts address remains unchanged even during periods, as it is already registered
to the router. Its status is updated when it wakes up and sends the unicast NS
to the router. Therefore, the implementation of Efficient NDP is able to save the
number of total exchanged messages that are sent to the hosts. The hosts don’t
need to be awake to defend their address, which allows them to finish their sleeping
cycle uninterrupted. This could improve their battery life.

o7

“main” — 2016/11/20 — 14:43 — page 58 — #74

58

Conclusions

Time (h) | Legacy NDP | Efficient NDP | Message Saving
1 8 2 75%
4 14 4 71.42%
8 24 6 75%
24 61 16 73.77%

Table 6.1: Total messages save by hosts - 1 host

Time (h) | Legacy NDP | Efficient NDP | Message Saving
1 91 10 89.01%
4 126 17 86.5%
8 171 25 85.31%
24 351 60 82.9%

Table 6.2: Total messages save by hosts - 5 host

Time (h) | Legacy NDP | Efficient NDP | Message Saving
1 1160 40 96.55%
4 1280 65 94.92%
8 1460 102 93.01%
24 2220 247 88.87%

Table 6.3: Total messages save by hosts - 20 hosts

Time (h) | Legacy NDP | Efficient NDP | Message Saving
1 20200 200 99%
4 20800 336 98.38%
8 21700 514 94.38%
24 25300 1237 95.11%

Table 6.4: Total messages save by hosts - 100 hosts

“main” — 2016/11/20 — 14:43 — page 59 — #75

Conclusions 59

It can be assumed from the results that by the use of the Efficient NDP, there
would be a reasonable gain in battery life, judging by the smaller number of the
exchanged messages. Moreover, judging from the percentage values in the tables, it
seems that there is a higher reduction of total messages exchanged, as the number
of hosts increases, making this model scalable for a large number of hosts.

The Legacy NDP is generating periodic multicast messages, which increase the
traffic in the network tremendously in proportion with the number of hosts. In
Efficient NDP, multicast messages are being sent only at host initialization, while
the rest of the exchanged messages are unicast.

Finally, it is crucial to compare the findings from the simulations run with the
theoretical results in [11]. In the theoretical analysis of the previous work, in the
sleep and wake up scenario, it was concluded that there is a 100% expectation of
saving multicast messages and when not considering sleep and wake up, savings
between 81% and 96%.

In this thesis, total message savings vary between 71% and 99%, for a sleep and
wake up scenario, the latter being for the highest number of hosts assigned. This
confirms that the theoretical results of the previous work are valid, especially when
the number of hosts gets larger. The variation of the percentage can be explained
through the usage of the uniform distribution when joining a network, which was
chosen to simulate a real-life environment.

As of the coding of Efficient NDP, the thesis report concludes with a partial im-
plementation on the Linux Kernel side and a working/tested implementation on
the RADVD side. Due to the complexity of the Linux Kernel, the implementation
couldn’t be tested. In order to complete this implementation, deep knowledge
and experience of Kernel programming is required, i.e system calls, device drivers,
netlink sockets, together with a great understanding of operating systems. A list
of future possible steps for implementation is shown in Chapter 7.

“main” — 2016/11/20 — 14:43 — page 60 — #76

60

Conclusions

“main” — 2016/11/20 — 14:43 — page 61 — #77

Chapter 7

Future Work

The coding part of Efficient NDP was only partially implemented in this thesis.
Figure 7.1 displays the status of the implementation, on both RADVD and Linux
Kernel side. The dashed lined boxes represent the future implementation steps.

/ Coding of Efficient NDP /

/ RADVD Implementation / / Linux Kernel Implementation

/
/ Unicast RA/RS using SLLA / / EFlag /
/

/ E Flag / / Address Registration Option
—————————————————————————————————————— e 1
RAO Option r.‘ f Decoding of E Flag i
1 it in e g e e b il i e i e g e e e e e e e e e e e
_________________ i it e e TP R PSSRt DA SRR G S Py O
IJ IJ rl,
B o e o e e I3 [}

Figure 7.1: Implementation steps

The Registrar Address Option (RAO) has been left out, but can be implemented
in a similar way with the Address Registration Option (ARO) inside the Linux
Kernel. For implementing it in RADVD, one can use as a starting point the already
implemented functions of 6CO and ABRO, which are the two other new options,
besides ARO, which RFC 6775 introduced. 6CO and ABRO were out of the scope
of this thesis, as this thesis mainly aimed to implement the features described in
[3], but they should also be implemented, together with ARO in the Linux Kernel,
to complete the implementation of RFC 6775. The RAO Option would cover the

61

“main” — 2016/11/20 — 14:43 — page 62 — #78

62 Future Work

case of device failure or the case of requiring different registrars than the default
routers.

The E Flag was implemented in RADVD, but has to be decoded at the host side
in the Linux Kernel, so that the protocol can switch to the efficient mode - this
is mentioned in the end of Chapter 3.2.2. Moreover, the case of mixed mode was
not studied, in which NDP would be able to function in both Legacy and Efficient
modes.

To conclude on the coding part, once those mentioned steps are completed, the
protocol can be tested in a virtual environment and further in a real environment,
to draw the final conclusion regarding the Efficient NDP protocol.

When it comes to simulations, the analysis could be extended, if one could run
the same simulations, including some assumptions or limitations that were taken
in the present one to make the simulation model less complex. One logical step
for continuation of the simulation work is to have the following factors included:

e Adding a probability of packet drop, which then as a result would require a
re-transmission of the packet.

e Having some or all the host of the network be on the move. This could make
simulation environment more realistic, considering that usually mobile hosts
move and don’t stand still.

e Hosts that leave the network and rejoin, so there are more updates in their
routing tables and thus, more exchanged messages.

e Implementing DAD, so there is a check when a host entering the network
and its IP is the same with another host of the same network. If this is
the case, then the IP address request should be rejected and a new request
should be made in order to acquire and IP address that is not occupied by
any other host in the network.

e Simulating a network with more than 100 hosts to test its stability and
scalability.

All these factors are expected to make the simulation models more complex when
implemented, however they could make the outcoming results more realistic.

“main” — 2016/11/20 — 14:43 — page 63 — #T79

Bibliography

1]

R. James and Associates "The Internet of Things - A Study in Hype, Reality,
Disruption and Growth.", St Petersburg, Florida, 800-248-8863 Jan 24, 2014

H. Shah, R. Shrimali, V. Parikh "Header Compression and Neighbor Discovery
in 6LoWPAN based IoT - A Survey", IEEE WiSPNET 2016 Conference

S. Chakrabarti. E. Nordmark, P. Thubert, M. Wasserman, "[Pv6 Neighbor
Discovery Optimizations for Wired and Wireless Networks', February 27,
2015

Z. Shelby, Ed., S. Chakrabarti, E. Nordmark, C. Bormann, "Neighbor Discov-
ery Optimization for IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs)", November 2012

F. Garneij, S. Chakrabarti, S.Krishnan,, "Impact of IPv6 Neighbor Discovery
on Cellular M2M Networks", July 2014

E. Vyncke Ed., P. Thubert, E. Levy- Abengnoli, A. Yourtchenko, "Why
Network-Layer Multicast is Not Always Efficient At Data link Layer', Febru-
ary 2014

E. Nordmark, A. Yourtchenko, S. Krishnan "IPv6 Neighbor Discovery Op-
tional Unicast RS/RA Refresh', March 2016

E. Nordmark, W. Simson, H. Soliman, "Neighbor Discovery for IP version 6
(IPv6)", September 2007

C. Betancourt, K. Shin "A white paper on Power-saving techniques lead to
ultra-low-power processors for battery-operated devices", April 2013

N. Kushalnagar, G. Montenegro, C. Schumacher "IPv6 over Low-Power Wire-
less Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals", August 2007

63

“main” — 2016/11/20 — 14:43 — page 64 — #80

64

Bibliography

[11]

[12]

Hariharasudan Vigneswaran, Jeena Rachel John, "Analysis of IPv6 Neighbor
Discovery for Mobile and Wireless Networks'[Faculty of Engineering, LTH,
Lund University, Lund, Sweden]|, October 2015

Z. Shelby, C. Bormann "6LoWPAN the Wireless Embedded Internet”, 1st ed,
John Wiley and Sons Ltd, UK, 2009

R. Rosen, "Linuz Kernel Networking: Implementation and Theory', [A press
Berkeley CA, USA], 2013

C. Benvenuti, O’Reilly, "Understanding Linux Network Internals”, 2006

Bhadram V., Aring A., "I[EEE 802.15.4 stack for Linuz." October
3, 2013. Retrieved May 10, 2016, from https://sourceforge.net/p/linux-
zighee/mailman/message/31477539/

S. Thomson, T. Narten, T. Jinmei, "IPv6 Stateless Address Autoconfigura-
tion", September 2007

Retrieved July 11, 2016, from http://www litech.org/radvd/

Retrieved July 11, 2016, from
http://dinosaur.compilertools.net/bison/bison_ 6.html#SEC49

B. Haberman, Ed., R. Hinden, "IPv6 Router Advertisement Flags Option’,
March 2008

https://github.com/tomaszmrugalski/dibbler/blob /master/scripts/mo-
flags.c and http://kumaran127.blogspot.ro/2013/05/get-m-and-o-flag-of-
most-recently.html Retrieved July, 21, 2016

https://OMNeT++pp.org/intro
OMNeT++ https://inet. OMNeT++pp.org/Introduction.html
OMNeT++ framework manual, https://OMNeT++pp.org/doc/OMNeT++pp/manual/

INET framework manual, https://OMNeT++pp.org/doc/inet/api-
current/inet-manual-draft.pdf

https://omnetpp.org/doc/omnetpp/tictoc-tutorial /part2.html
R. Hinden, S. Deering, "IPv6 Addressing Architecture", February 2006

http://docs.oracle.com/cd /E19620-01/805-4035/6j3r2rqmk /index.html, Re-
trieved June 24, 2016

“main” — 2016/11/20 — 14:43 — page 65 — #81

Appendix

Legacy NDP OMNeT++ Implementation details

The model used for simulating the Legacy NDP sleep and wake up scenario is a
modified version of inet/examples/wireless/wiredandwirelesshostswithap/,
according to the setup mentioned in Chapter 4.2.2. The source code of the model
is shown in Listing 7.1, followed by its configuration file, omnetpp.ini, shown in
Listing 7.2.

Listing 7.1: OMNeT++ source code file of Legacy NDP

1 package inet.examples. wireless.wiredandwirelesshostswithap;
2 import inet.networklayer.configurator.ipv6

3 .FlatNetworkConfigurator6;

4 import inet.networklayer.icmpv6.IPv6NeighbourDiscovery;

5 dimport inet.node.ethernet.Eth100M;

6 import inet.node.ipv6.Router6;

7 import inet.node.xmipv6. WirelessHost6 ;

8 import inet.node.wireless. AccessPoint;

9 import inet.physicallayer.ieee80211.packetlevel

10 .Teee80211ScalarRadioMedium ;
11

12 network WiredAndWirelessHostsWithAP
13 {

14 parameters:

15 int n;

16 @display ("bgb=503,434");

17 submodules :

18 wirelessHost [n]: WirelessHost6 {
19 @display ("p=58,88");

20 }

21 router6: Router6 {

65

“main” — 2016/11/20 — 14:43 — page 66 — #82

66 Appendix
22 @display ("p=412,88");

23 }

24 accessPoint: AccessPoint {

25 @display ("p=323,87");

26 }

27 configurator: FlatNetworkConfigurator6 {

28 @display ("p=323,165");

29

30 radioMedium: Ieee80211ScalarRadioMedium {

31 @display ("p=98,392");

32 }

33 connections:

34

35 accessPoint . ethg++ <—> Ethl100M <—> router6.ethg++;
36

37}

Listing 7.2 shows the OMNeT++ configuration file of Legacy NDP, omnetpp.ini.
Inside this file, the simulation time and the number of hosts can be adjusted. UDP
traffic is also inserted into the network here, as it was mentioned in Chapter 4.2.1,
in the OMNeT++ parameters section.

Listing 7.2: OMNeT++ configuration file of Legacy NDP

1 [General]

2 network = WiredAndWirelessHostsWithAP

3 sim—time—limit = 1h

4 tkenv—plugin—path = ../../../etc/plugins

5

6 # number of client computers

7 x.n =25

8 #x.*x Host *x.numUdpApps = 3

9 #x.xHost*.udpApp[0].typename = "UDPEchoApp"
10 x*.xHost*.udpApp[0].localPort = 1000

11 x*.xHost*.udpApp[*].typename = "UDPBasicApp"

12 x*.xHost*.udpApp[1..]. destPort = 1000

13 x#.xHost*.udpApp[1..]. messageLength = 100B
14 s*.xHost*.udpApp|[1..].sendInterval = 1s

15 *x.xHost*.udpApp[1l..].stopTime = 300s

Efficient NDP OMNeT++ Implementation details

The simulation model for Efficient NDP was created by using a simple TicToc ex-
ample from OMNeT++ as a starting point. Afterwards, the model was developed
by adding two types of classes, the Hub (Router) and the Station (Host). To each
class, functions were defined, as it can be seen in Figure 7.2.

“main” — 2016/11/20 — 14:43 — page 67 — #83

Appendix

67

/ Efficient NDP Simulation Model /

Class Hub (router) Class Station (host)

Initialize{) Initialize()

handleMessage() generateMessage()

e [[~ [
] I L B
e S I

forwardMessage() handleMessage()

gl (B I IS

/ forwardMessage()

Figure 7.2: Efficient NDP Simulation model

In the Hub class, the function forwardMessage() is responsible for replying to
the hosts with RAs, when RSs are received, as well as with NAs when NSs are
received. In the Station class, in the initialize() function, the uniform distribution
explained in 4.2.1 is configured, so that all hosts get the chance to join the network
in the predetermined simulation time. The generateMessage() function takes care
of sending out RS messages, where as the handleMessage() takes care of sending
NS messages.

Listing 7.3: OMNeT++ source code file of Efficient NDP

0~ O ULk W

I I I R N R N N B e e e T S R e
DU WN O OO0 Uk WwNn—=O©

#include <string.h>
#include <omnetpp.h>

using namespace omnetpp;

class Hub : public cSimpleModule

{
protected:
virtual void initialize () override;
virtual void handleMessage (cMessage xmsg) override;
virtual void forwardMessage (cMessage *msg);
b

Define__Module (Hub);

void Hub::initialize () {}
void Hub::handleMessage (cMessage xmsg){

{

forwardMessage (msg);
}
}
void Hub:: forwardMessage (cMessage *msg){
cModule *t = msg—>getSenderModule ();
int sn = t—>getlndex ();

EV << "Sender_ Module Index =" << sn << "\n";
const char *tt = msg—>getName ();

“main” — 2016/11/20 — 14:43 — page 68 — #84

68 Appendix
27 EV<<"MSG RECEIVED_ IS A "<<tt;

28

29 if (stremp(tt, "RS")==0) {

30 cMessage *copy = msg—>dup ();

31 cMessage *msg2 = new cMessage("RA");
32 copy=msg2;

33 send (copy, "outhub", sn);

34

35 else

36 {

37 cMessage *copy = msg—>dup ();

38 cMessage *msg2 = new cMessage("NA");
39 copy=msg2;

40 send (copy, "outhubNA" 6 sn);

41 }

42

43

44}

45

46 class Station : public cSimpleModule

47 {

48 protected:

49 virtual cMessage *xgenerateMessage ();
50 virtual void initialize (int n) override;
51 virtual void handleMessage (cMessage xmsg) override;
52 virtual void forwardMessage (cMessage *msg);
53}

54

55 Define Module(Station);

56

57 wvoid Station::initialize (int n)

58

59

60 for (int i=0; i<100; i++)

61 {

62

63 if (getlndex()== i) {

64 cMessage xmsg = generateMessage ();
65 scheduleAt (i*uniform (0, 720), msg);
66 }

67 }

68

69 }

70

71 cMessage xStation:: generateMessage ()

72 A

73 cMessage xmsg = new cMessage("RS");
74 return msg;

75 }

76 void Station ::handleMessage (cMessage *msg)
7

“main” — 2016/11/20 — 14:43 — page 69 — #85

Appendix 69
78 const char *tt = msg—>getName ();

79 if (stremp(tt, "RS")==0) {

30 send (msg, "outs");

81 cMessage *NS = new cMessage ("NS");
82 send (NS, "outNA");

83 }

84 else if (stremp(tt, "NA")==0) {

85 cMessage *NS = new cMessage ("NS");
86 send (NS, "outNA");

87 }

88 else{

89 delete msg;

90 }

91 }

92

93 void Station ::forwardMessage (cMessage xmsg)
94 {

95 }

Listing 7.4 defines the gates used for the two classes, the Hub and the Station.
Different gates were used at the hub, for incoming and outgoing traffic, one pair for
sending and receiving RAs (outhub/inhub) and one pair for sending and receiving
NAs (outhubNA, inhubNA). The same stands for the Station - the pair outs/ins
was used for RA /RS traffic, and the pair outNA /inNA were used for NS/NA traffic.
The third pair (outSt, inSt) was initially implemented for trafic between the hosts,
but in the end it was not used, as the hosts didn’t require to communicate between
each other.

Lines 30-41 of Listing 7.4 connect the defined gates together, as in incoming/out-
going traffic, and a loop was written in which, by taking all the used hosts (1 to
100), a delay of 6000s was introduced when sending NA messages, which is the
wake up timer of the hosts, when they have to refresh their Registration Lifetime,
as it was explained in the Detailed description of the model section of Chapter
4.2.3.

Listing 7.4: NED file source code of Efficient NDP

1 simple Hub

2 {

3 gates:

4 output outhub[100];
5 input inhub[100];
6 output outhubNA[100];
7 input inhubNA[100];
8 }

9

10 simple Station

1 {

12 gates:

13 output outs;

“main” — 2016/11/20 — 14:43 — page 70 — #86

70

Appendix

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

input ins;
output outNA;
input inNA;
output outSt@loose;
input inStQ@loose;

network Tictocl
{ parameters:
int n=>5;
submodules:
hub: Hub;
Station[n]: Station {
@display ("p=169,30");
}

connections allowunconnected:
for i=0..n—1 {
hub.outhub[i] —> Station[i]. ins;
Station[i].outs —> hub.inhub[i];

hub.outhubNA[i] —> Station [i].inNA;
Station[i].outNA —> { delay = 6000s; }

—> hub.inhubNA[i];
¥

for j=0..n—-2 {
Station [j+1].outSt —> Station[j].
}

inSt;

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2016-550 http://www.eit.Ith.se

